
IACR Communications in Cryptology
Vol. 0, No. 0, 26 pages.

Cryptography is Rocket Science
Analysis of BPSec

Benjamin Dowling1 , Britta Hale2 , Xisen Tian2 and
Bhagya Wimalasiri3

1 King’s College London, United Kingdom
2 Naval Postgraduate School, United States

3 University of Sheffield, United Kingdom

Abstract. Space networking has become an increasing area of development with
the advent of commercial satellite networks such as those hosted by Starlink and
Kuiper, and increased satellite and space presence by governments around the world.
Yet, historically such network designs have not been made public, leading to limited
formal cryptographic analysis of the security offered by them. One of the few public
protocols used in space networking is the Bundle Protocol, which is secured by Bundle
Protocol Security (BPSec), an Internet Engineering Task Force (IETF) standard.
We undertake a first analysis of BPSec under its default security context, building a
model of the secure channel security goals stated in the IETF standard, and note
issues therein with message loss detection. We prove BPSec secure, and also provide
a stronger construction, one that supports the Bundle Protocol’s functionality goals
while also ensuring destination awareness of missing message components.
Keywords: BPSec · Bundle Protocol · Space System Security · Satellite Security

1 Introduction
Originally developed for deep space communications, the Bundle Protocol Security
(BPSec) [BM22] supports Delay Tolerant Networks (DTN)[Bir23] as an application layer
secure channel protocol to facilitate a store-and-forward paradigm for sending messages
between nodes. It was specifically designed with space system security in mind, a use case
where security protocols used on the internet today, such as IPSec [FK11] and TLS [Res18],
are sub-optimal due to latency, delays, and bandwidth constraints. BPSec was designed to
be more suitable for distressed environments where delivery is not guaranteed, bandwidth
is a premium, and roundtrip times are on the order of minutes or even hours. This has
made it suitable for use outside of deep space networks with applications extending to
the Internet of Things (IoT) [BBC17]. Such breadth of uses and interest has led BPSec
to be standardized by the Internet Engineering Task Force (IETF). Yet, to date, there
has been no formal cryptographic analysis of BPSec. This work provides a closer look at
formalizing and strengthening space system channel security in a way that is appropriate
under the intended use case constraints.

We give an example execution of BPSec in Figure 1. In this example, the satellites
orbiting Earth act as bundle protocol agents (BPA) who create, forward and receive
messages. The movement of these satellites and their availability to forward and receive
messages are in a constant state of change which in turn creates a network infrastructure
prone to high latency, connection disruptions and propagation delays. For instance in

E-mail: benjamin.dowling@kcl.ac.uk (Benjamin Dowling), britta.hale@nps.edu (Britta Hale),
xisen.tian1@nps.edu (Xisen Tian), b.m.wimalasiri@sheffield.ac.uk (Bhagya Wimalasiri)

This work is licensed under a “CC BY 4.0” license.

https://orcid.org/0000-0003-3234-6527
https://orcid.org/0000-0003-1131-2109
https://orcid.org/0000-0001-6171-2309
https://orcid.org/0000-0002-7688-504X
mailto:benjamin.dowling@kcl.ac.uk
mailto:britta.hale@nps.edu
mailto:xisen.tian1@nps.edu
mailto:b.m.wimalasiri@sheffield.ac.uk
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Analysis of BPSec

Figure 1: An execution of BPSec protocol. BPA1 creates and forwards a bundle to
BPA2. BPA2 processes blocks from the bundle, forwarding the modified bundle to BPA3.
This processing and discarding of bundle blocks by an intermediate BPA is legitimate
behavior within a BPSec execution, provided that the corresponding intermediary has
been authorized to process bundles by the relevant policies.

Figure 1, while BPA1 creates the message at t0, due to the unavailability of a viable path,
it cannot be forwarded to the intended destination (BPA3) immediately and thus stores
the message until t1. In this way, the unique network infrastructure BPSec operates within
differs to the terrestrial internet. Within such DTN infrastructures, BPAs store messages
for long periods and forward them once an appropriate link becomes available, until the
message reaches its final destination.

Underlying BPSec is the Bundle Protocol, a DTN protocol analogous to other net-
working protocols such as TCP/IP. NASA has included Bundle Protocol version 7 in its
three-phased approach for rolling out DTN-based communication links by 2030 [Man23b].
The Bundle Protocol requires security to be handled separately, a feature that BPSec
provides while being inherently bound to the functionality requirements of the Bundle
Protocol. Furthermore, customizable security contexts that define the ciphersuite and
parameters used by BPSec participants allow for fine-tuning of the level of BPSec’s security.
Authentication and/or a combination of confidentiality and authentication are applied
through use of Block Integrity Blocks (BIB) and Block Confidentiality Blocks (BCB). These
blocks store the resultant tags of Message Authentication Code (MAC) and Authenticated
Encryption with Associated Data (AEAD) calculations along with parameters used to
generate them (i.e. nonces, SHA variant, wrapped key) [BWH22]. This concept of security
reference blocks is intended to provide a great deal of flexibility to securing data blocks,
where an intermediate node (e.g., a satellite) can add or strip security layers.

Notably, BPSec does not aim to provide key agreement nor does it establish freshness
of a session in entity authentication, aiming to instead offer a secure channel protocol
under the assumption of preestablished keys. It therefore lacks the common handshake
component. If BPSec only offers data authentication and/or confidentiality, one could
ask why the protocol exists, e.g., instead of just applying ciphersuites to Bundle Protocol
messages as needed. This question points towards the subtlety of BPSec, namely that
it aims to achieve these properties among potentially several corresponding members
even when intermediate nodes can add more data to the transmission and/or strip off
corrupted data. The reader can here think of information distribution among satellites,
where intermediate satellites must relay data or even add to a message, while it is also

Benjamin Dowling, Britta Hale, Xisen Tian, Bhagya Wimalasiri 3

possible for data to be corrupted in transit, necessitating partial message discardment
to preserve bandwidth. BPSec thus aims to define a channel security protocol that can
modularly add and remove data, even while achieving its security goals.

1.1 BPSec: A Flexible Secure Channel
Typically, a secure channel is formed between two communication parties who have
previously established a shared key. The security provided by a secure channel construction
predominantly focuses on the confidentiality and integrity of transmitted data, i.e. only
the sender and their respective receiver should be able to read and modify the data
transmitted. To this extent, there is a rich body of work that formally captures the notions
of secure channels as standalone primitives. The seminal works of [BKN02] and [Rog02]
introduced the notions of stateful authenticated encryption and authenticated encryption
with associated data, respectively, formalizing early ideas on secure channels. Protections
against message replays, reordering, and dropping were early features in [BKN02]. More
recently, work has emphasized and differentiated the nature of data transmitted within
secure channels, between fragmented streams of data and atomic messages, and formalized
the notion of stream-based secure channels [FGMP15]; hierarchies of how channel AEAD
notions relate [BHMS16]; and multi-key security [GM17], enabling the analysis of secure
channel protocols such as TLS 1.3 [Res18]. The TLS protocol has in fact played a key
role in several works, motivating a better understanding of secure channels, with related
works spanning robustness [FGJ24], channel termination [BH17], and alternative channel
security notions [BMM+15].

While BPSec is a secure channel that aims to establish confidentiality and integrity
of transmitted data, modelling BPSec within any existing model for secure channels is
difficult due to its unique construction. A typical BPSec node simultaneously maintains a
set of shared keys with multiple parties, including the source and destination of a bundle,
as well as any intermediate node that might process the bundle on its way towards the
final destination. Moreover, unlike a typical message transmitted within a secure channel,
the length of a BPSec bundle may be constantly changing, which is an inherent part of
its construction. Intermediate nodes that process a bundle may add or remove layers of
security from a bundle as per their local policies for processing. This layering of security
may sound similar to the design of Tor onion routing [SDM04] but we highlight that these
two protocols are strikingly dissimilar for various reasons; unlike a Tor circuit, BPSec paths
cannot be pre-established and are subject to change hop-by-hop; message re-encryption is
strictly prohibited in BPSec; BPSec integrity checking can be performed on a hop-by-hop
basis and is not necessarily end-to-end; and anonymity is not a property captured within
the BPSec design. Furthermore, BPSec allows for the partial processing of bundles, i.e.,
intermediaries may only process blocks from a bundle for which they share a key with
the respective source of that block, which may be the bundle source or an intermediate
node. This rather “flexible” secure channel construction of BPSec cannot be successfully
captured within the rigid formalisms of any existing secure channel frameworks. Thus,
we introduce a novel Flexible Secure Channels (FSC) security definition that is capable
of capturing the unique nature of security goals for the BPSec protocol: confidentiality
and integrity guarantees of individual message blocks within a bundle. We note that our
formalism is “flexible” both in the sense that it captures the fluid nature of BPSec security
but can also be easily generalized to analyze the security of any channel protocol.

1.2 BPSec Overview
In this section we restate and clarify core components of BPSec RFC 9172 [BM22] and the
underlying Bundle Protocol version 7 RFC 9171 [BFB22]. This is a high-level description;

4 Analysis of BPSec

a detailed algorithmic description of BPSec is presented later in Figure 7 which is based
upon the mandatory minimum Default Security Context specified in [BWH22].

Entities in a BPSec Channel The Bundle Protocol Agent (BPA) is described as a
node component that offers the Bundle Protocol services and executes its procedures. We
employ a slight abstraction of this for simplicity, and refer to the BPA as the node itself.
Possible BPAs may include the Source Node (SN) that is the originator of the bundle
and the Destination Node (DN) which is the intended recipient. Intermediate Nodes (IN)
may also receive and process bundles – potentially adding or dropping component blocks –
before forwarding the transmission. If a BPA ∈ {SN, IN} adds a security block to a bundle
(i.e., that it adds encryption or authentication) it is also called a security source. Similarly,
if a BPA ∈ {IN, DN} removes a security block (e.g. decrypting a BCB target) it is also
called a security acceptor. If the same BPA does not remove the block (e.g. verifying the
MAC of a BIB), it is called a security verifier.

We give the high-level components of a bundle below:

• Primary Block The primary block carries information about the SN, DN, and lifespan
of the bundle among other basic bundle identification and forwarding values. There
is exactly one primary block per bundle, followed by possible extension blocks and
finally a payload block.

• Extension Block An extension block provides additional functionality for bundle
processing through annotative information (e.g. previous node block, bundle age
block, abstract security block, etc.). BIB and BCB are extension blocks that have
identical structures as abstract security blocks – both delineating ciphers, parameters,
etc. for the target blocks they apply to. INs may also add extension blocks.

• Payload Block: There is one payload bock per bundle, always the last block in the
bundle, which carries the application data. Since the Bundle Protocol can be used
as an encapsulating protocol for another protocol (e.g., an application layer protocol
and data) a payload block may be a partial payload or fragmented payload containing
only a segment of the overall payload.

• Target Block: The block within a bundle to which a security operation is applied.
• Security Context: A security context includes assumptions, algorithms, configurations,

and policies that are used to implement security. 1

Important BPSec Design Decisions through Example BPSec focuses on block-level
granularity and interactions. Security operations are applied to individual blocks within
a bundle according to the security context of a BPA. In this way INs between a SN and
DN can add security operations just like a security source, or indeed remove security as
if they were an acceptor for the bundle. Figure 2 shows an IN, Charlie, adding BCBs to
the bundle it received, acting as a relay from Alice to Bob. While Alice only provided
authentication to Block 2 and 4 (creating a BIB block 1 that contains the applicable
MAC tags and algorithm information), Charlie decides to AEAD-encrypt certain blocks as
well, namely target blocks 1, 2, and 4. These are Alice’s original blocks including the BIB
itself. We also demonstrate a separate BCB in Block 6 that targets only Block 3. It is not
consolidated with BCB Block 5 because it uses a different parameter-set. Moreover, this
AEAD encryption may have been realized with an encrypt-then-MAC mode vs e.g. GCM;
in such cases, BPSec requires the MAC tag output from the BCB to be placed in the BCB
block vs being considered as part of the ciphertext in Block 3.

If Charlie shares the same security context and keys with Alice and Bob, then Bob will
be able to decrypt and verify the bundle (if the bundle is delivered honestly). Otherwise,
if the DN Bob does not have the requisite keys, at least one other IN will be needed to

1Security contexts are user-defined but RFC 9173 specifies a mandatory-to-implement security context.

Benjamin Dowling, Britta Hale, Xisen Tian, Bhagya Wimalasiri 5

Figure 2: BPSec example showing block interactions between BCB and BIB made by
different BPA security sources, Alice and Charlie, for a bundle intended for Bob.

process the BCB blocks for Bob, i.e., to act as a security acceptor. Bundle encapsulation,
whereby a bundle is encapsulated as a payload of a wrapping bundle, is recommended
when the bundle may arrive at the DN before being processed by a security acceptor.

1.3 BPSec Challenges
We note that the DTN threat model gives an attacker complete network access, affording
them read/write access to bundles traversing the network. Eavesdropping, modification,
topological, and injection attacks are all described in [BM22, Section 8]. Therein, these
“on-path attackers” can be unprivileged, legitimate, or privileged nodes depending on their
access to cryptographic material: unprivileged nodes only have access to publicly shared
information, legitimate nodes have additional access to keys provisioned for itself, and
privileged nodes have further access to keys (privately) provisioned for others. In our model,
within the symmetric key based Default Security Context [BWH22], all BPSec participants
are privileged while attackers may be unprivileged or privileged. There are no guarantees
against privileged attacks. In an effort to distinguish malice by INs, we further abstract
these classes into honest and dishonest nodes in our analysis. Honest INs are privileged
nodes that faithfully execute the role of a BPA as described in Section 1.2. Dishonest INs
are unprivileged nodes that attempt to violate the integrity or confidentiality of blocks it
processes (e.g. by dropping or modifying blocks), and captured by our adversary model.
We observe a specific gap in guarantees BPSec provides through the BIB, BCB, and the
default security context. Specifically, BPSec has no cryptographic auditing mechanism for
detecting unprivileged modifications to a bundle between the SN and DN.

Claim: BPSec protections against plaintext modification are insufficient and can lead
to a self-imposed denial-of-service. A similar argument can be made for authenticated
encrypted BCB target blocks.

- Suppose an unprivileged dishonest IN strips the BIBs and/or BCBs from all bundles
it receives and forwards and appends an additional bit to all their associated security
targets. BPSec has no in-band mechanisms (i.e. cryptographically enforced) to
detect or correct this kind of modification (aside from encrypting the BIB targets
after they are authenticated). According to [BM22, 5.1.2], other BPAs who receive
this stripped bundle will use an out-of-band security policy mechanism to determine
whether to drop, modify, or forward the bundle. Under the recommended security
policy, BPAs will remove all target blocks that were supposed to be protected by a
BIB. This could lead to dropping the entire bundle if the security policy specified
that the primary block must be BIB protected.

6 Analysis of BPSec

- This paradigm sacrifices availability over authenticity. One could argue that avail-
ability was never guaranteed by BP and that it is out of scope of BPSec to prioritize
availability over authenticity (resp. confidentiality) 2.

- Under a unprivileged dishonest attacker model the DN would not have a means to
detect dropped target blocks. This may lead to the DN incorrectly assuming that
they have a complete message and acting on it, even if core actionable information
was in the dropped blocks.

The core impact of the issues highlighted above is that the destination BPA is unaware
of what messages have been removed by the intermediate nodes. To address this, we provide
a strong BPSec variant StrongBPSec that offers a ledger and read receipts. Assuming
that SNs always add a ledger block and that DNs will not accept a bundle without
one, read receipts are designed to provide a verifiable record for processed blocks. This
ensures transparency while adding an additional layer of integrity protection between
SN and DN within BPSec’s symmetric key constraints. The maintenance of a ledger
block through read-receipts guarantees the integrity of the original bundle created by SN,
while simultaneously permitting honest intermediaries to process and discard SN-created
security blocks. This should not be construed as the “return-receipt” from a Bundle Status
Report [TBW+07] which is an out-of-band (i.e. separate from the bundle) policy-driven
acknowledgment of receipt or change status. In fact, an on-path-attacker can simply drop
all Bundle Status Reports whereas StrongBPSec offers a stronger in-band (i.e. to the
bundle itself) cryptographically enforced audit log.

1.4 Contributions
As can be seen, the BPSec secure channel environment, security expectations, and function-
ality are quite unlike traditional secure channel protocols, creating a non-trivial environment
for analysis. This work formalizes the complex goals of BPSec, provides an analysis of
the protocol. This includes a model and proof corresponding to the type of security
BPSec can be claimed to offer. We note issues in BPSec and outline normative security
goals that it cannot assure. Furthermore, we offer recommendations to enhance security
guarantees within the intended design constraints of BPSec by introducing StrongBPSec,
which reinforces the integrity assurances of BPSec. StrongBPSec accomplishes this by
maintaining a verifiable ledger of changes, allowing the intended recipient of a bundle to
independently verify the integrity of modifications made throughout a bundle’s journey. We
also present a stronger model and analysis to match the improved security of StrongBPSec.

2 Related Work
We first summarize other related work on DTN protocols, BPSec security, and relevant
security approaches. Standard definitions that we use in this work for e.g., AEAD and
MAC security can be found in Appendix A.

DTN Protocols A variety of DTN protocols for space communications exist and are
managed by the Consultative Committee for Space Data Systems (CCSDS) [CCS23], includ-
ing the Space Packet Protocol [spa20] and CCSDS File Delivery Protocol (CFDP) [CFD20],
but relatively little cryptographic analysis has been done of them. The suite of DTN
protocols are focused on a store-and-forward approach to make them more robust to
environmental disruptions and message relay issues. Since ground stations may also require

2We also note that, if only a basic integrity check – not authenticity – of the data is required, the use
of the BIB to provide integrity protection is unnecessary as cyclic redundancy check (CRC) codes already
exist in BP blocks. CRCs do not provide authenticity.

Benjamin Dowling, Britta Hale, Xisen Tian, Bhagya Wimalasiri 7

Figure 3: COSE Context vs Default Context treatment of AAD

substantive planning in the order of days to send messages [Man23a], it is essential that
each transmission has the capability of aggregating message information along its path
and processing as needed. Space link efficiency is a particular concern for DTN protocols.

A survey of DTN key management protocols [MKK17] reveals that formal cryptographic
analysis in the provable security sense is relatively rare. Of the ones that have received
analysis in the areas of identity based cryptography, non-interactive key exchange, and
group key management [AKG+07, KZH07, RSKW17, LML14, ACSA11, ZSS+14], none
are documented or promulgated by public institutions such as the IETF or CCSDS as
deployed in practice, including in space communications. Other DTN protocols that have
known space uses, such as the Licklider Transmission Protocol, lack cryptographic security
analysis [BFR08]. Broadly speaking, the lack of cryptographic formal or computational
analysis in this field leaves claims of security by various DTN protocols inconclusive, threat
models under-defined, and security assumptions on the underlying cryptographic primitives
unknown. This presents a gap that we address in this work, providing a first rigorous
cryptographic analysis of BPSec.

BPSec COSE Context BPSec’s Default Security Context described in [BWH22] was
created for interoperability purposes (among space agencies), and provides the minimum
level of security based on preshared symmetric keys. In an effort to interoperate with
other networks using DTN protocols and achieve compatibility with asymmetric-keyed
algorithms, the CBOR Object Signing and Encryption (COSE) Security context was
proposed in the DTN IETF working group [Sip24]. This draft standard defines how to
incorporate signing and encryption to BPSec using PKI; expands the additional associated
data (AAD) to support binding AAD to an arbitrary number of blocks in the same bundle;
and introduces PKIX certificate for entity authentication.

Key Wrapping in BPSec BPSec [BWH22] offers the option to incorporate AES Key
Wrapping (AESKW) in security blocks, according to the AESKW standards outlined in
[HS02]. In an early request for proposal [Dwo04] for ANS X9.102 standard that discuss
key-wrapping as a primitive, the goal of key wrapping was highlighted as “to protect the
confidentiality and integrity of cryptographic keys without the use of nonces”. Accordingly,
BPSec’s use of AESKW aims to enable secure sharing of cryptographic keys used within
BIB/BCBs with other nodes who have access to the correct key wrapping keys.

The AESKW wrapping algorithm takes as input a pre-established key encryption key
(KEK), a message to encrypt which in this case is a key k, and optional associated data
concatenated with a static integrity check vector (ICV) which are passed into a six-round
non-standard Feistel-network [RS06]. This outputs a ciphertext which is sent along to a
receiver with the plaintext authenticated data. The unwrapping algorithm takes as input

8 Analysis of BPSec

the KEK, ciphertext, ICV and authenticated data and outputs either the shared key or
error upon integrity check failure.

A serious caveat with AESWK and other key-wrap schemes discussed in ANS X9.102 is
that their security has not been formally proven. Rogaway and Shrimpton in [RS06] likens
the primitive to a secure enciphering scheme similar to a strong, variable-input-length
pseudo-random permutation. However, they stop short of formally verifying the security
of AESWK due to ambiguities regarding its construction in ANS X9.102. Instead, they
introduce a novel framework called deterministic authenticated encryption (DAE) [RS06]
that is capable of capturing the security goals of key-wrapping, which we leverage in the
analysis of BPSec and our StrongBPSec improvements in (Section 5).

Key Management Key management (key derivation, key exchange, key revocation,
key separation) policies are not explicitly defined by any of the three relevant RFCs
for BPSec. Instead, it is assumed that these are handled separately as part of network
management [BM22]. RFC9173 [BWH22] stipulates that BP nodes using security contexts
need to “establish shared key encryption keys (KEKs) with other nodes in the network
using an out-of-band mechanism”. BPSec does not provide key establishment or entity
authentication mechanisms internally.

Symmetric keys were chosen over asymmetric keys (e.g. BIB with HMAC-SHA2)
“in order to create a security context that can be used in all networking environments”
[Bir23]. RFC9173 stipulates that different keys must be used to perform different security
operations (e.g. a separate key for data encryption vs integrity protection) and across
different cipher-suites for the same operations (i.e. using a separate key for AES-GCM vs
AES-CBC). Depending on how symmetric keys are distributed for a given security context
(key exchange, pre-shared, out-of-band), the use of ephemeral keys through AES-Key
wrapping or a key-rotation policy must be used to curtail key leakage. Initialization vectors
must also not be reused with the same key across multiple encryption operations.

3 BPSec Formalization and Strong BPSec
We first present a formalization of notation for BPSec, with variables shown in Table 1. A
general BPSec block is structured as shown in Figure 4.

1
2
3
4

id.bundle.src
id.bundle.dst
creation-timestamp
control-flags

 Header ≃ Primary Block

5
6
7
8
9
10
11

security context id: BCB/BIB
control-flags
block#: block id
security context info : algorithms/params/key#
target blocks: list of securiy targets
security results: pointers to targets/ MACs
id.security.src

Security Block ≃ Extension Block

12 payload

 Payload ≃ Payload Block

Figure 4: Generic BPSec bundle with cryptographically relevant fields.

We assume a 1:1:1 relationship between
⇀
M ,

⇀
F ,

⇀
P meaning that for each block in a

bundle
⇀
M , a BPA ∈ {SN, IN} can add a unique security operation

⇀
F governed by a unique

parameter set
⇀
P . The security policy of a BPA may be configured to ignore certain blocks

which corresponds to a particular
⇀
F i = ⊥. Otherwise, the BPA either adds plaintext

integrity or authenticated encryption operations to the block yielding in a new BIB or BCB,
respectively. We designate the BPSec protected bundle as

⇀
C . For authenticity protection,

Benjamin Dowling, Britta Hale, Xisen Tian, Bhagya Wimalasiri 9

Table 1: Abstracted variables used to formalize BPSec.
⇀
Π Global state {st1, ..., stn} that holds particular key sets

−→
k p and parameter sets p such

that {sti[p] = (
−→
k p, p)} used by party i participating in a BPSec channel.

aad Authenticated associated data
bid Block index which identifies the block written as a subscript of

⇀
M ,

⇀
F , or

⇀
P :

B - Index of the Strong BPSec ledger block BIBB (always the second to last block in
our construction to align with [BFB22])

PB - Index of the Primary Block (always 0)
PLD - Index of the bundle payload block (always B− 1)
tar - Index of security operation’s target block

⇀
C Resultant array after operating on

⇀
M with a set of cryptographic operations specified by

⇀
F and parameterized by

⇀
P .

ck Ciphertext of the key wrapped ephemeral symmetric key k

ctr Counter for tracking index of security blocks
⇀
F List of security operations {conf, int} for blocks in a bundle

⇀
M

⇀
F .type BPSec block type {“BCB”, “BIB”} synonymous with operations {conf, int}
⇀
F .targets Security operation targets {bid0, . . . , bidN}
⇀
ID A global set of node identifiers consisting of id ∈ {id1, . . . , idn} to uniquely identify

each state st in global state
⇀
Π

IV Initialization vector
k Ephemeral symmetric key (e.g. the key wrapped key)
kp Preshared symmetric key accessible to parties with access to

⇀
Π

kBB
Ephemeral symmetric key for BIBB authentication (i.e. the key wrapped BIBB key)

kBB
p Preshared symmetric key for BIBB authentication

kRR
Ephemeral symmetric key for BRB authentication (i.e. the key wrapped BRB key)

kRR
p Preshared symmetric key for BRB authentication

⇀
M Plaintext blundle made of blocks {bid0, . . . , bidn} where n = |

⇀
M | such that |

⇀
M | ≥ 1

(mandatory primary and payload blocks)
⇀
M i.m The plaintext data in a block

⇀
M i

meta Metadata ledger for all security operations performed by the security source that is
authenticated by the BIBB

⇀
P Sets of ciphersuite parameters associated with security operations

⇀
F specified by a

security context.
⇀
P .alg Algorithms specified (e.g. AEAD modes, key generation) for a block.
⇀
P .id Node identifier for a party that supports a particular parameter set
⇀
P .init T/F flag: T if the security source is the bundle source; F otherwise.
⇀
P .params Security parameters used for particular algorithms.
⇀
P .params.kid Key identifier
st The local state of a party within global state

⇀
Π

st.id The local state for party id

tar The target block index:
⇀
M tar is the unprotected target block whereas

⇀
C tar is the protected

target block.
valid A helper function to check if the security operation

⇀
F i conflicts with any existing security

operations already applied to a block
⇀
M i.

the BPA performs HMAC operations using a secret key to the block and stores the tag, a
security result in the BIB. For authenticated encryption, AEAD is applied to the block
yielding either separate MAC and ciphertext or single combined result: in cases where the
MAC is generated separately, it can be stored in the BCB as a result while the ciphertext
replaces the data being encrypted in-place. When multiple blocks are protected by the
same security operation using the same parameter set, they are consolidated under a single
BIB or BCB respectively as seen in Block 5 in Figure 2.

3.1 Flexible Secure Channels
A Flexible Secure Channel (FSC) is distinguished by several features from a traditional
secure channel. Specifically, an FSC includes not only a sender and receiver but also
one or more intermediate nodes which share a common set of keys

−→
k and associated

parameters p ∈
⇀

P contained in their individual states. For BPSec, the keys are preinstalled
symmetric keys and the parameters are dictated by the security context(s) supported
by the participant. The FSC global state

⇀
Π is the union of all local states, st of FSC

participants (i.e. st ∈
⇀
Π). Without loss of generality, in a symmetric key FSC, such as

10 Analysis of BPSec

in BPSec under the Default Security Context, sender state st and receiver state st′ must
match (i.e. there exists p ∈

⇀

P such that st[p] = st′[p]) to correctly process FSC messages.

Definition 1 (Syntax for flexible secure channels). A flexible secure channel Ch =
(Init, Snd, Rcv) with associated state space S and error space E , where E ∩ {0, 1}∗ = ∅,
consists of three efficient algorithms:

- Init. On input of a security parameter array
⇀
P , this probabilistic algorithm outputs

initial state array
⇀
Π ∈ (S × . . . × S). We write (

⇀
Π) $← Ch.Init(

⇀
P). We note that

global state
⇀
Π constitute many states st, where a state st matches with multiple

other states st′ ∈ {st1, . . . , stn}.
- Snd. On input of state st ∈

⇀
Π , a message bundle

⇀
M : |

⇀
M | ∈ N and ∀m ∈

⇀
M , m ∈

{0, 1}∗, a security flag array
⇀
F , and a security parameter array

⇀
P , this (possibly)

probabilistic algorithm outputs an updated state array st′ ∈
⇀
Π and a secured bundle

⇀
C : |

⇀
C | ∈ N and ∀c ∈

⇀
C , c ∈ {0, 1}∗. We write (st′,

⇀
C $← Snd(st,

⇀
M ,

⇀
F ,

⇀
P)).

- Rcv. On input of a state st ∈
⇀
Π and a secured bundle

⇀
C , this deterministic algorithm

outputs an updated state st′ ∈
⇀
Π and a message bundle

⇀
M : ∀ m ∈

⇀
M where

m ∈ ({0, 1}∗ ∪ E). We write (st′,
⇀
M←Rcv(st,

⇀
C)).

Definition 2 (Flexible secure channel correctness). Let Ch = (Init, Snd, Rcv) be a flexible
secure channel. We say that Ch provides correctness if for all state pairs (sti, stj) ∈

⇀
Π $←

Ch.Init(
⇀
P), for all messages (m0, . . . , mℓ) :

⇀
M = {m0, . . . , mℓ} (where ℓ ∈ N) , for all flags

(f0, . . . , fℓ) :
⇀
F = {f0, . . . , fℓ}, for all parameters (p0, . . . , pℓ) :

⇀
P = {p0, . . . , pℓ} and for

all message arrays
⇀
M

′
← Rcv(stj , Snd(sti,

⇀
M ,

⇀
F ,

⇀
P)), we have that

(m0, . . . , mℓ) ∈
⇀
M

′
⇐⇒ ∀pr ∈ {p0, . . . , pℓ} : i, j ∈ pr.id .

Thus, for a block to be processed correctly by a receiver, the receiver must support the
particular parameter set embedded in the associated states for each of the message blocks
in the bundle. Additionally, since an intermediate receiving node may not share a matching
state (with appropriate parameter sets) for all security blocks in a bundle

⇀
C , the node

may legitimately process only the blocks for which it shares the correct state. This partial
processing is additionally captured as correct behavior via our definition.

In our protocol construction for BPSec and StrongBPSec illustrated in Figure 7 we
leverage the flexibility and modularity of our formalism for flexible secure channels. Notably,
within the BPSec construction, the intermediary nodes process bundles differently to source
and destination nodes, who only Snd and Rcv bundles respectively. In contrast, intermediary
nodes both Snd and Rcv bundles; they Snd as they add new BCB/BIB blocks to a bundle
and forward it to the next node; they Rcv bundles forwarded to them within which they
process and discard BIB/BCB blocks and add BRB read receipts. The versatility of our
flexible channel design successfully captures all these use cases, enabling the formalization
of uncommon constructions such as BPSec.

We next provide an intuition for StrongBPSec, before formalizing the construction of
both BPSec and StrongBPSec, with a side-by-side clarification of differences, in Figure 7.

3.2 StrongBPSec with Read Receipts
As noted, the current BPsec specification [BM22] provides no security guarantees against
arbitrary message dropping by an attacker (privileged or not) during the transit of a bundle
between its source and the final destination. Particularly, an inherent feature of BPSec is

Benjamin Dowling, Britta Hale, Xisen Tian, Bhagya Wimalasiri 11

to allow honest intermediary nodes to process and discard bundle blocks as governed by
their internal policies with the exception of primary and payload blocks. However, BPSec
[BM22] does not require intermediate nodes to provide verifiable evidence of identity in
order to process or discard security blocks. Neither does the bundle maintain a record of
changes made to it on way to its destination. Thus, an unprivileged attacker can arbitrarily
and selectively drop blocks from a bundle en route without being detected. The proposed
COSE Security Context for BPSec [Sip24], as part of its integration into BPSec, includes
a recommendation to increase the integrity of bundle blocks. In order to provide stronger
integrity guarantees, they propose binding an arbitrary number of blocks together in the
same bundle, using additional associated data (aad) for each block concerned. However,
we argue that binding aad to an arbitrary number of blocks in this manner also restricts
the ability of an honest intermediary to process and discard any individual block from
such a group. In an attempt to find a fair middle ground between the somewhat relaxed
original functionality goals of BPSec [BM22] and the overly rigid security guarantees of
COSE[Sip24], we propose our StrongBPSec protocol with read receipts.

StrongBPSec introduces two additional layers of integrity that aims to guarantee to
the bundle destination one of two of the following:

1. All blocks added by the bundle source node SN has arrived unchanged at the bundle
destination node DN, or

2. Some honest intermediary node IN has correctly processed and discarded block/s
that were constructed by the bundle source SN.

Note that, for clarity, we will be exclusively distinguishing the roles of BPA as either
SN, IN or DN for the rest of this discussion.

Figure 5: StrongBPSec with Read Receipts. Source integrity block MAC BIBB is calculated
over the payload and metadata for each target/security block (BIB1 and BCB2) added by
SN. Read receipts BRB are calculated by INs every time they successfully process a security
block added by SN, recording and verifying the details of the blocks they process. INs
replace any such security blocks they process with a corresponding BRB before forwarding
the bundle. DN first verifies any BRBs added by INs followed by the verification of BIBB.

We achieve these stronger integrity guarantees through the addition of two additional
checks leveraging the already existing BIB format of BPSec. As illustrated in Figure 5, we
introduce a BIBB block, calculated and prepended to the payload block by the original
source node SN. As the originator of the bundle, SN constructs BIBB, which includes
a MAC tag calculated over the payload block and a set of uniquely identifying details

12 Analysis of BPSec

for each security block added by SN. These identifying details include unique key/block
identifiers (kid/bid), and the number of target blocks len(BIB/BCB) covered by a security
block (BIB/BCB). Once constructed, this BIBB is only verified by the destination node
DN. 3 The successful verification of BIBB with the corresponding key kBB, which is either a
pre-shared or a key-wrapped key, informs DN one of two things; either they have received
the exact same bundle SN constructed; or an honest intermediary IN has processed and
discarded some of the blocks but have replaced them with correct read receipts. These read
receipt blocks duplicate the unique identifying details of a discarded block authenticated
with MAC tag, which we discuss next. In line with the BPSec specification, we assume
honest privileged intermediary nodes.

The second type of integrity check introduced by our StrongBPSec construction is the
concept of a read receipt or Block Read-receipt Block (BRB). The addition of a BRB allows
an honest intermediary acting as a security acceptor to process and discard any block
added by SN but still maintain a verifiable record of their details that was used in the
calculation of BIBB. To clarify, recall from Section 1.3, a read receipt BRB provides an
in-band ledger of changes for processing at the DN; it should not be assumed that the
BRB gets sent back to the SN as some sort of acknowledgment of receipt or changes as
would be done by a “return-receipt” from a Bundle Status Report [TBW+07].

A BRB contains a plaintext and a MAC tag calculated over it. The plaintext duplicates
the identifying details of the corresponding discarded security block (kid/bid, len(BIB/BCB))
that was used in the calculation of BIBB, without which the verification of BIBB at DN
will fail. A MAC tag is then calculated using a unique key kRR, which is either a pre-shared
or a key-wrapped key, over the bundle BIBB concatenated with this plaintext. These BRBs
act as a transcript of the original bundle to the DN, who verifies all BRBs prior to the
verification of BIBB. The successful verification of BRBs within a received bundle informs
DN that only honest intermediaries have discarded blocks from the original bundle. In
Figure 6 we illustrate an expected execution of our StrongBPSec formalism, which we
describe in detail in Figure 7.

While significant security gains could be achieved with inclusion of digital signatures
in this improved protocol (in particular preventing impersonation within a group sharing
the same parameter set and keys), the BPSec infrastructure does not assume asymmetric
key management; pre-shared symmetric keys were favored for simplicity and broad im-
plementation. Thus, in strengthening BPSec, we inherit the original key infrastructure
and primitives assumed by the Default Security Context described in RFC9173 [BWH22].
Thus, it is not possible to detect which IN has edited the bundle nor is it possible to
protect against an insider threat. These issues are inherent to RFC9173 in absence of
asymmetric key management.

Figure 7 shows the formal construction of BPSec under RFC9173 alongside our
StrongBPSec. The construction abstracts details of BPSec [BM22] and its Default Security
Context [BWH22] into a FSC protocol (see Definition 1) with modifications needed for a
StrongBPSec protocol. Below we explain the intuition behind our formal construction.

- Init generates symmetric keys for matching BPSec states per parameter set. Parame-
ters in a state are associated with a collection of party identifiers i⃗d that all maintain
the same symmetric keys. Init generates three keys per parameter set: a symmetric
key kp; a read receipt key kRR

p and; a bundle verifier key kBB
p .

- Snd creates security blocks either by bundle source or any intermediate node. For
each message m ∈

⇀
M , Snd checks that the security operation is valid, and key wraps

a new symmetric key if necessary. Snd adds the appropriate processing information
to the security block, and either authenticates or encrypts the message m according

3We note that we only consider the use case for DN for simplicity but WLOG we say that any security
acceptor authorized by the security policy may process BIBB.

Benjamin Dowling, Britta Hale, Xisen Tian, Bhagya Wimalasiri 13

to the security operation. In StrongBPSec, Snd also adds a meta-data array for its
ledger block, which it authenticates, creating a verifiable ledger.

- Rcv processes security blocks either by bundle destination or any intermediate node.
For each ciphertext c ∈

⇀
C , Rcv checks that the security acceptor has the correct

keys to process the ciphertext, and key-wraps a new read-receipt key if necessary as
intermediate node. Rcv adds read-receipts after processing the security block, and
authenticates the associated meta-data. In StrongBPSec, the destination node also
verifies all read-receipts, and constructs a meta-data array for the ledger block and
verifies the BIBB, rejecting the payload if any checks fail. Relevant keys are either
extracted from state or decrypted from keywrapped ciphertexts.

We formally prove the respective security of BPSec and StrongBPSec in Section 5.

Figure 6: Flow of interactions during an expected execution of StrongBPSec. SN creates a
bundle and forwards it to IN. IN processes and replaces BIB block #1 with read receipt
block BRB #6. IN further adds new blocks #7 and #8 and forwards the modified bundle
to DN. DN processes and discards all remaining security blocks and extracts the bundle
message

⇀
M . All processed and discarded blocks are crossed out in red. The values for

⇀
P

and
⇀
F are selected from respective sets which can be found in Table 1.

4 Flexible Secure Channel Models
In Figure 8 we formalize the security experiment for Flexible Secure Channels (FSC) that
captures the BPSec security goals described by [BM22]. Furthermore, in Figure 8 we also
capture the intended security goals added by StrongBPSec, namely through Strong FSC
Security (SFSC) security, highlighting these as additional steps.

In the FSC experiment, the challenger begins by generating the full secret state for all
parties, and randomly sampling a bit b. The adversary is then split into two phases. First,
in the Corrupt phase, the A is allowed to issue Corrupt queries for particular parameter

14 Analysis of BPSec

Init(
⇀
P)

1: for id ∈
⇀
ID do:

2: st.id← id
3: for p ∈

⇀
P do :

4: if id ∈ p.
−→id: then

5: if (∃id′ : stid′ ∈
⇀
Π) ∧ (id′ ∈ p.

−→id) then
6: kp, kRR

p , kBB
p ← stid′ [p]

7: else
8: kp, kRR

p , kBB
p ← p.alg.Gen(p.params)

9: stid[p]← ((kp, kRR
p , kBB

p), p)
10:

⇀
Π ∪←− stid

11: return
⇀
Π

Snd(st,
⇀
M ,

⇀
F ,

⇀
P)

1:
⇀
C

∥←−
⇀
M ; let ℓ = |

⇀
F |; ctr ← |

⇀
M |

2: for i ∈ ℓ do
3: if ¬valid(

⇀
M i,

⇀
F i) then

4: return ⊥
5: // Check to find the correct cryptographic
6: // -params for the intended recipients
7: if (∃ p : (kp, p) ∈ st) ∧ (p.alg =

⇀
P i.alg) ∧

(p.params =
⇀
P i.params) ∧ (

⇀
P i.id ∈ p.

⇀

id) then
8: if (KW ∈

⇀
P i.alg) then

9: k ←
⇀
P i.alg.KW.Gen(

⇀
P i.params)

10: ck ←
⇀
P i.alg.KW.Enc(kp, k)

11: else
12: k ← kp, ck ← ∅
13: else
14: return ⊥
15:

⇀
P i.init← false

16: if
⇀
MPB.id.src = st.id then

17:
⇀
P i.init← true

18:
⇀
C

∥←−
⇀
F i.type,

⇀
C

∥←−
⇀
F i.targets

19:
⇀
C

∥←−
⇀
P i.alg,

⇀
C

∥←−
⇀
P i.params

20:
⇀
C

∥←− ck

21:
⇀
C

∥←− st.id
22:

⇀
C

∥←− ctr
23: if

⇀
F i.type = “BIB” then

24: tag[]← ∅
25: for tar ∈

⇀
F i.targets do

26: tag[tar]←
⇀
P i.alg.Auth⇀

P i.params
(k,

⇀
M tar)

27:
⇀
C

∥←− tag
28: if

⇀
F i.type = ”BCB” then

29: ∀ tar ∈
⇀
F i.targets

30: IV $← {0, 1}∗

31:
⇀
C tar ←

⇀
P i.alg.AEAD.Enc⇀

P i.params
(k,

⇀
M tar.m, IV,

⇀
M tar.aad)

32: // Check for security blocks constructed
33: // by the bundle source using the init flag
34: // and construct a meta-data array
35:

⇀
C

′
←

⇀
C1∥ . . . ∥

⇀
C l−1

36:
⇀
C

′′
←

⇀
C l

37: if
⇀
P i.init then

38: meta
∥←−

⇀
P i.params.kid, |

⇀
F i.targets|, ctr

39: ctr + +
40:

⇀
C

′ ∥←− meta
41: // Calculated only once per execution by bundle src
42: if st.id =

⇀
MPB.id.src then

43: if (KW ∈
⇀
PPB.alg) then

44: kBB ←
⇀
PPB.alg.KW.Gen(

⇀
PPB.params)

45: cBB
k ←

⇀
PPB.alg.KW.Enc(kBB

p , kBB)
46: else
47: kBB ← kBB

p , cBB
k ← ∅

48: BIBB ←
⇀
PPLD.alg.Auth⇀

P BIBB .params
(kBB, meta∥

⇀
CPLD)

49:
⇀
C

′ ∥←− BIBB,
⇀
C

′ ∥←− cBB
k

50: return
⇀
C ←

⇀
C

′
∥

⇀
C

′′

Rcv(st,
⇀
C)

1:
⇀
M

∥←−
⇀
C ; let ℓ = |

⇀
C |

2: for i ∈ ℓ do
3: if (∃ p : (kp, p) ∈ st) ∧ (p.alg =

⇀
C i.alg) ∧ (p.params =

⇀
C i.params) ∧ (

⇀
C i.id ∈ p.

⇀

id) then
4: if KW ∈

⇀
C i.alg then

5: if (
⇀
C i.init) then

6: kRR ←
⇀
C i.alg.KW.Gen(

⇀
C i.params)

7: cRR
k ←

⇀
C i.alg.KW.Enc(st.kRR

p , kRR)
8: else
9: kRR ← st.kRR

p , cRR
k ← ∅

10: k ←
⇀
C i.alg.KW.Dec(st.kp,

⇀
C i.ck)

11: else
12: k ← st.kp

13: if
⇀
C i.type = ”BCB” then

14: for tar ∈
⇀
C i.targets do

15:
⇀
M tar ←

⇀
C i.alg.AEAD.Dec⇀

C i.params
(k,

⇀
C tar.c,

⇀
C tar.IV,

⇀
C tar.aad)

16: // Decrypted blocks processed with init set to true
17: // calculate and add read receipts BRB
18: if

⇀
C tar.init then

19:
⇀
M tar ←

⇀
C i.alg.Auth⇀

C i.params
(kRR,

⇀
CBIBB∥

⇀
C tar.meta)

20:
⇀
M tar.type← “BRB”,

⇀
M tar

∥←− cRR
k

21: if
⇀
C i.type = ”BIB” then

22: for tar ∈
⇀
C i.targets do

23: if 1 ̸=
⇀
C i.alg.Auth.Vfy⇀

C i.params
(k,

⇀
C tar,

⇀
C i.tag[tar]) then

24:
⇀
M tar ← ⊥

25: // Verified blocks processed with init set to true
26: // calculate and add read receipts BRB
27: else if

⇀
C tar.init then

28:
⇀
M tar ←

⇀
C i.alg.Auth⇀

C i.params
(kRR,

⇀
CBIBB∥

⇀
C tar.meta)

29:
⇀
M tar.type← “BRB”,

⇀
M tar

∥←− cRR
k

30: // Bundle dst constructs a meta data array
31: // for all verified BRB blocks and verifies BIBB

32: if st.id =
⇀
CPB.id.dst then

33: for i ∈ ℓ do
34: if KW ∈

⇀
C i.alg then

35: if
⇀
C i ̸=

⇀
CPLD: kRR ←

⇀
C i.alg.KW.Dec(st.kRR

p ,
⇀
C i.c

RR
k)

36: if
⇀
C i =

⇀
CPLD: kBB ←

⇀
C i.alg.KW.Dec(st.kBB

p ,
⇀
C i.c

BB
k)

37: else
38: if

⇀
C i ̸=

⇀
CPLD: kRR ← st.kRR

p

39: if
⇀
C i =

⇀
CPLD: kBB ← st.kBB

p

40: if
⇀
C i.type = “BRB” then

41: if 1 ̸=
⇀
C i.alg.Auth.Vfy⇀

C i.params
(kRR,

⇀
C i) then

42: return ⊥
43: else
44: meta′ ∥←−

⇀
C i.meta

45: if 1 ̸=
⇀
CBIBB .alg.Auth.Vfy⇀

C BIBB .params
(kBB, meta′∥

⇀
CPLD) then

46: return ⊥
47: return

⇀
M

Figure 7: BPSec protocol construction. The additions needed for the StrongBPSec
protocol are highlighted in boxes. Refer to Table 1 for notational and functional definitions.
Additional notational clarifications: X

∥←− Y denotes concatenating Y to X; T [j] denotes
the value accessed by key j in table T , which we assign no particular structure; subscripts
are generally used for array indices or but are also used to associate variables (e.g. kp

to denote a key k associated with p) or to configure a function call (e.g. Auth⇀

C i.params
);

superscripts are used to classify a variable type (e.g. kRR refers to a read-receipt key);
p.alg.Gen refers to invoking a key generation function from a family of algorithms such
as Key-Wrap (KW) in p but we also overload alg as an identifier (e.g. used for boolean
comparison).

Benjamin Dowling, Britta Hale, Xisen Tian, Bhagya Wimalasiri 15

sets4. In the next phase, A outputs some state, which is given as input to the next
adversary A′, which allows us to capture static corruption adversaries.

We argue that proving the security of our construction against a static (as opposed to
adaptive) A is sufficient for the following reasons: each BPSec block is associated with a
unique set of independent security parameters that remain unchanged for the duration
of the message lifetime; there is no forward secrecy and it does not make a difference at
what point of a message’s lifetime A compromises these security parameters as they do not
update; and adversary A compromising of set of security parameters for a specific block
does not affect the security of any other blocks in the same bundle. A now has access to
two oracle queries: OSnd and ORcv:

- OSnd(i,
⇀
M ,

⇀
F ,

⇀
P)→

⇀
C : allows the adversary to indicate that party i should protect

the plaintext bundle
⇀
M using security operations

⇀
F using security parameters

⇀
P . If

the bit b sampled by the challenger is 1, the associated parameters have not been
corrupted, and the security operation is encryption (signified by type = BCB) then
the challenger records and replaces the associated ciphertext with random strings
from the same length. OSnd also records all integrity protected blocks (signified by
type = BIB), and their associated tags in the AUTH register (to detect integrity wins
later in the experiment).

- ORcv(i,
⇀
C) →

⇀
M : allows the adversary to indicate that party i should process the

ciphertext
⇀
C . ORcv also checks if the adversary has caused any win events to trigger.

Specifically, if the associated security parameters are not corrupted, and the party i
outputs a valid block which no honest party produced, then the adversary has forged
this block, and the challenger sets win← true.

At some point the adversary terminates and outputs a bit b′, and the output of the
experiment is (b = b′) ∨ win. We say an adversary A wins the FSC security game if they
succeed in achieving one of the following: forges an integrity-protected block; forges an
authenticated ciphertext within a block or; distinguishes the real-or-random ciphertext
within a block. Below we briefly summarize additional notations used in our security
experiment illustrated in Figure 8 for our security experiment.

- AUTH: A register for honestly authenticated messages and their MAC tags.
- CORR: A register used to track corrupted parameters for determining wins.
- CTXT: A register that maintains either real ciphertext and associated parameter

pairs or uniformly random strings from the same space.
- Extr: A helper function to extract a parameter set from a block and state.
- Proc: A binary function that checks if a ciphertext bundle

⇀
C can be processed.

- tsid: A state identifier that identifies the parameter set used by source.
- TXT:A register for all messages accessible by the global state

⇀
Π .

We now formally define FSC security.

Definition 3 (FSC Security). Let Ch be a channel protocol Ch = {Init, Snd, Rcv}. Let
ExpFSC

Ch,A(λ) be the FSC security experiment without red-boxed lines defined in Figure
8. We define the advantage AdvFSC

Ch,A(λ) that the adversary A wins the FSC game as
AdvFSC

Ch,A(λ) = |2 · Pr(ExpFSC
Ch,A(λ) = 1)− 1|. We say that Ch is FSC-secure if AdvFSC

Ch,A(λ) is
negligible in the security parameter λ.

Next, we turn to defining the Strong FSC game (SFSC), which adds the boxes in
Figure 8. The SFSC game adds two additional win conditions in the Rcv query, allowing

4This describes how A becomes a dishonest privileged node.

16 Analysis of BPSec

ExpFSC
Ch,A(λ)

1:
⇀
Π ← Ch.Init(λ); win← false

2: b
$← {0, 1}

3: st← ACorrupt()
4: b′ ← AOSnd,ORcv(st)
5: return (b = b′) ∨ (win)

ORcv(i,
⇀
C)→ m

1: for ℓ ∈ |
⇀
C | do

2: p← Extr(
⇀
C ℓ, sti)

3: if (type(
⇀
C ℓ) = “BCB”) ∧ (p /∈ CORR) then

4: for tar ∈
⇀
C ℓ.targets do

5: (c, ·)← CTXT[
⇀
C tar]

6:
⇀
C tar ← c

7: q ← Proc(
⇀
C)

8: sti,
⇀
M ← Ch.Rcv(sti,

⇀
C)

9: if q ∧ (
⇀
M ̸= ⊥) then

10: for ℓ ∈ |
⇀
C | do

11: p← Extr(
⇀
C ℓ, sti)

12: // BRB forgery register for SFSC
13: if (

⇀
C ℓ.type = “BRB”) ∧ (

⇀
C id.src = sti.id)∧ p /∈ CORR then

14: for tar ∈
⇀
C ℓ.targets do

15: AUTH ∪←− (
⇀
C tar,

⇀
C j .tag[tar])

16: if p /∈ CORR then
17: for tar ∈

⇀
C ℓ.targets do

18: if
⇀
C ℓ.type = “BIB”∧((

⇀
C tar,

⇀
C ℓ.tag[tar]) ̸∈ AUTH) then

19: win← true
20: else if

⇀
C ℓ.type = “BCB” ∧

(
(

⇀
C tar, p) ̸= CTXT[

⇀
C tar]

)
then

21: win← true

22: // SFSC win condition for BRB forgery
23: else if

⇀
C ℓ.type = “BRB”∧((

⇀
C tar,

⇀
C ℓ.tag[tar]) ̸∈ AUTH)

then
24: win← true

25: // SFSC win condition for BIBB forgery
26: for Mi ∈

⇀
M : ((Mi.init = true) ∨ (Mi.type = “BRB”)) do

27:
⇀
M id.src

∪←− Mi

28: if ∃
⇀
M

′
∈

⇀
Π [

⇀
C PB.id.src].TXT : ((

⇀
M

′
.tsid =

⇀
M .tsid) ∧ (|

⇀
M

′
| ≠ |

⇀
M id.src|))

then
29: win← true

30: return
⇀
M

OSnd(i,
⇀
M ,

⇀
F ,

⇀
P)→ c

1: sti,
⇀
C ← Ch.Snd(sti,

⇀
M ,

⇀
F ,

⇀
P)

2: for j ∈ |
⇀
F | do

3: if (
⇀
F j .type = “BIB”∧ (

⇀
P j /∈ CORR)

then
4: for tar ∈

⇀
F j .targets do

5: // Keep track of Auth
6: // queries ontag and msg
7: // for SUF-CMA
8: AUTH ∪←− (

⇀
C tar,

⇀
C j .tag[tar])

9: // Swap out
⇀
C tar w/rand for IND$

10: // game
11: if (

⇀
F j .type = “BCB” ∧ (

⇀
P j /∈ CORR))

then
12: for tar ∈

⇀
F j .targets do

13: if b = 1 then
14: c

$← {0, 1}
⇀

C tar

15: CTXT[c]← (
⇀
C tar,

⇀
P j)

16:
⇀
C tar ← c

17: if b = 0 then
18: CTXT[

⇀
C tar]← (

⇀
C tar,

⇀
P j)

19:
⇀
Π [j].TXT ∪←−

⇀
M

20: return
⇀
C

Corrupt(i,
⇀
P)

1: CORR ∪←−
⇀
P

2: return sti.k⇀

P

Figure 8: Security Definition for Flexible Secure Channels (FSC). The modifications
needed for SFSC experiment for the StrongBPSec with Read Receipts is presented in boxes.
Refer to Table 1 and Section 4 for notational definitions.

the adversary to win by dropping
⇀
C blocks without being detected, or by forging so-called

read receipts, which indicate to the receiving party that an honest party has “processed” a
block from the sender. As before, the adversary at some point will terminate and outputs
a bit b′ and the output of the experiment is (b = b′) ∨ win. Thus, in addition to the
FSC win conditions, the SFSC adversary A wins if it can forge either BRB or BIBB with
non-negligible probability. We now formally define SFSC security.

Definition 4 (SFSC Security). Let Ch be a channel protocol Ch = {Init, Snd, Rcv}. Let
ExpSFSC

Ch,A(λ) be the SFSC security experiment defined in Figure 8 (with all lines included). We
define the advantage AdvSFSC

Ch,A(λ) that the adversary A wins the SFSC game as AdvSFSC
Ch,A(λ) =

|2 · Pr(ExpSFSC
Ch,A(λ) = 1)− 1|. We say that Ch is SFSC-secure if AdvSFSC

Ch,A(λ) is negligible in
the security parameter λ.

5 Security Analysis
In this section, we provide a security analysis of the BPSec construction given in Figure
7 under Flexible Secure Channel security described in Definition 3. Next, we provide a
security analysis of the StrongBPSec construction given in Figure 4 under Strong FSC

Benjamin Dowling, Britta Hale, Xisen Tian, Bhagya Wimalasiri 17

security in Definition 4. We begin with our analysis of BPSec.

Theorem 1 (FSC Security for BPSec). Let na be the total number of parameter sets used
in the experiment, and let nm be the total number of key-wraps keys in the experiment. The
BPSec protocol presented in Figure 7 is FSC-secure. That is, for any PPT algorithm A
against the FSC security experiment (described in Definition 3) AdvFSC

BPSec,A(λ) is negligible
under the sufcma, aead, and dae security of the MAC, AEAD, DAE primitives, respectively.

Proof. We note that in the base FSC game there are three main ways the A can win.
First, by forging a BIB tag, secondly by forging a BCB ciphertext, and thirdly by guessing
the bit b. Thus we divide our proof into three cases: in the first case the adversary has
caused win← true by generating a forged MAC tag, in the second case the adversary has
caused win← true by forging an AEAD ciphertext, and finally the third case the adversary
guesses the challenger bit b. In each case we upper-bound the probability of the adversary
causing the winning event to occur, and thus prove that the BPSec construction is FSC
secure. We thus split our analysis into the following cases:

C1 : A sets win ← true when a party πi accepts (
⇀
M

′
t,

⇀
C j .tag[t]) such that

⇀
M

′
t ̸= ⊥,

but (
⇀
M

′
t,

⇀
C j .tag[t]) /∈ AUTH for

⇀
C j .type = BIB and Corrupt(·,

⇀
C j .

⇀
P) was not issued,

i.e. A has successfully forged a valid message MAC tag pair for a BIB that verifies
correctly.

C2: A sets win ← true when a party πi accepts
⇀
C such that

⇀
M t ̸= ⊥,

⇀
C t.type = BCB,

p← Extr(
⇀
C t, sti) and Corrupt(·,

⇀
C j ,

⇀
P) was not issued, i.e. A has successfully forged

a valid AEAD ciphertext.
C3 A does not set win← true, and has terminated the experiment and output a bit b′,

i.e. A has guessed the challenge bit b.

We proceed via a sequence of games with each game focusing on a specific win condition
(or lack thereof) in the three cases. We bound the difference in the adversary’s advantage
in each game with the underlying cryptographic assumptions until the adversary reaches a
game where the advantage of that game equals 0, which shows that adversary A cannot
win with non-negligible advantage.

Case 1 : πi accepts a forged message tag pair for a BIB.
Game 0 This is the initial FSC security game. Thus AdvFSC

BPSec,A(λ) ≤ AdvA
G0

(λ).
Game 1 In this game, for any key-wrapping keys associated with parameter sets that

have not been Corrupted, we abort if A forges a DAE ciphertext, and replace honestly
generated key-wrapped keys with uniformly random values. To do so, by a hybrid argument
we introduce a series of reductions B1 as follows: At the beginning of the experiment, B1

will initialise a DAE challenger CDAE,i for each parameter set
⇀
P i such that Corrupt(·,

⇀
P i) has

not been issued (where i is the index into the hybrid argument). Whenever the challenger
is required to key wrap ephemeral key k′ using ki, the challenger instead queries (∅, k′)
to the associated CDAE,i and replaces the honestly generated key-wrap ciphertext with
the output from CDAE,i. Additionally, each time B1 generates a ciphertext from CDAE,i,
they maintain a table DAE[i]← (C, k′) which they update with each honestly generated
key-wrap ciphertext. Whenever B1 is required to decrypt a DAE ciphertext using the
key-wrap key associated with parameter set

⇀
P i, they first check if (C, k′) ∈ DAE[i]. If so,

they use k′ as the key-wrapped key. If not, they submit (∅, C) to CDAE,i challenger.
Note that by definition of the DAE security game, if A forges a DAE ciphertext and the

bit b sampled by DAE is 0, then DAE will return the correct decryption of C, otherwise
DAE returns ⊥. Thus, any adversary that can forge a DAE ciphertext can be used to break
the security of the DAE game. Additionally, we note that if the bit b sampled by CDAE,i is
0, then the CDAE,i encrypts the ephemeral key-wrapped keys k′ honestly, and we are in

18 Analysis of BPSec

Game 0. Otherwise, if the bit b sampled by the CDAE,i is 1, then CDAE,i simply samples a
ciphertext uniformly at random, and now the key k′ is uniformly random and completely
independent of the protocol flow and we are in Game 1. Any A that could distinguish
this change can be directly used to break the DAE security of the DAE primitive.

We note that CDAE,i samples keys identically to the security experiment, and thus this
replacement is sound. Finally, we note that A can never later call Corrupt(·,

⇀
P i), so all

internal values to DAE will never need to be revealed. As a result of these changes we
know that any key-wrap output from a parameter set that has not been Corrupted is
uniformly random and independent of the protocol flow, and A has no information on this
key. There are at most na total parameter sets and thus na hybrid arguments and thus
we find: AdvA

G0
(λ) ≤ AdvA

G1
(λ) + na · Advdae

DAE,B1
(λ).

Game 2 In this game, we introduce an abort event that triggers if any un-Corrupted
party “accepts” any of the MAC tags σt ∈

⇀
C j .tag[t] for t ∈

⇀
C j .targets of a block j ∈ |

⇀
C |

such that
⇀
C j .type = BIB,

⇀
M t ̸= ⊥, and no honest party generated a message

⇀
M t. Specifically,

this occurs if A is able to successfully forge BIB using a key associated with a parameter set
p = Extr(

⇀
C t, sti) such that Corrupt(·, p) was not issued. We do so by introducing a series

of reductions B2 as follows: At the beginning of the experiment, for each parameter set
⇀
P i

that does not support key-wrapping B2 initialises a MAC challenger Csufcma,i. Additionally,
during the experiment if a DAE ciphertext is generated or decrypted using kpi (where A has
not issued Corrupt(·, pi)), B2 initialises a MAC challenger Csufcma,i. Next, whenever B2 is
required to generate a MAC tag over a message m using kpi

(or the ephemeral key-wrapped
key k′ encrypted under kpi

) for pi, B2 instead queries m to Csufcma,i. If
⇀
C t verifies correctly

but was not produced by an honest security source, then (
⇀
M t, σt) /∈ AUTH and A has

broken the sufcma security of the MAC. We note that by Game 1 and the definition of
the security experiment, all MAC keys replaced in this way were already uniformly random
and independent of the protocol flow, and A cannot learn these by issuing a Corrupt query.
We have at most na parameter sets that may be used directly as MAC keys, and at most
nm key-wrapped MAC keys, thus AdvA

G1
(λ) ≤ AdvA

G2
(λ) + (na + nm) · Advsufcma

B2,MAC(λ).
Case 1 Analysis: By definition of Case 1 we know that A has caused win ←

true by forcing some party πi to accept a message block
⇀
M t such that

⇀
C t.type = BIB,

Corrupt(·, Extr(
⇀
C t, sti)) has not been issued. By Game 1 we replaced the ephemeral key

k′ used to generate the BIB if p is a key-wrapping algorithm. By Game 2 we added
an abort query that prevents A from forging MAC tags and thus BIB blocks. Since we
abort if the adversary forges their own valid BIB, by Game 2 πi aborts and thus A
cannot win the game. Thus we have: AdvA

G2
(λ) = 0, and it follows that AdvFSC

BPSec,A,C1
(λ) ≤

na · Advdae
DAE,B1

(λ) + (na + nm) · Advsufcma
B2,MAC(λ) We now proceed to Case 2.

Case 2 : πi accepts a forged message, ciphertext pair for a BCB

Game 0 This is the initial FSC security game. Thus AdvFSC
BPSec,A,C2

(λ) ≤ AdvA
G0

(λ).

Game 1 This game proceeds identically to Game 1 of Case 1, with the same reduc-
tions and bounds. Thus we have AdvA

G0
(λ) ≤ AdvA

G1
(λ) + na · Advdae

DAE,B3
(λ).

Game 2 In this game, we introduce an abort event that triggers if any un-Corrupted
party “accepts” a ciphertext block

⇀
C t such that

⇀
C t.type = BCB,

⇀
M t ̸= ⊥, and no honest

party generated a message
⇀
M t. Specifically, this occurs if A is able to successfully forge BCB

using a key associated with a parameter set p = Extr(
⇀
C t, sti) such that Corrupt(·, p) was not

issued. We do so by introducing a series of reductions B4 as follows: At the beginning of the
experiment, for each parameter set

⇀
P i that does not support key-wrapping, B4 initialises

an auth-security AEAD challenger Cauth,i. Additionally, during the experiment if a DAE

Benjamin Dowling, Britta Hale, Xisen Tian, Bhagya Wimalasiri 19

ciphertext is generated or decrypted using kpi
(where A has not issued Corrupt(·, pi)), B4

initialises an auth AEAD challenger Cauth,i.
Next, whenever B4 is required to generate a ciphertext over a message, nonce and

header tuple (m, N, H) using kpi (or the ephemeral key-wrapped key k′ encrypted under
kpi

) for pi, B4 instead queries (m, N, H) to Cauth,i’s encryption oracle. Similarly, if B4 is
required to decrypt a ciphertext, nonce, header tuple (C, N, H) for kpi

(or the ephemeral
key-wrapped key k′ encrypted under kpi

) for parameter set pi, B4 instead queries (C, N, H)
to Cauth,i’s decryption oracle. If

⇀
C t decrypts correctly but C was not produced by an honest

security source, then (
⇀
C t, pi) /∈ CTXT and A has broken the auth security of the AEAD

scheme. Submitting (C, H, N) to Cauth,i’s decryption oracle then allows B4 to win the
auth-security game. We note that by Game 1 and the definition of the security experiment,
all AEAD keys replaced in this way were already uniformly random and independent of
the protocol flow, and A cannot learn these by issuing a Corrupt query. We have at most
na parameter sets that may be used directly as AEAD keys, and at most nm key-wrapped
AEAD keys, thus AdvA

G1
(λ) ≤ AdvA

G2
(λ) + (na + nm) · Advauth

B4,AEAD(λ).
Case 2 Analysis: By definition of Case 2 we know that A has caused win ← true

by forcing some party πi to accept a message block
⇀
C t such that

⇀
C t.type = BCB, and

Corrupt(·, Extr(
⇀
C t, sti)) has not been issued. By Game 1 we replaced the ephemeral

key k′ used to generate the BCB if p is a key-wrapping algorithm. By Game 2 we
added an abort query that prevents A from forging ciphertexts and thus BCB blocks.
Since we abort if the adversary forges their own valid BCB, by Game 2 πi aborts
and thus A cannot win the game. Thus we have: AdvA

G2
(λ) = 0, and it follows that

AdvFSC
BPSec,A,C2

(λ) ≤ na · Advdae
DAE,B1

(λ) + (na + nm) · Advauth
B2,AEAD(λ) We proceed to Case 3.

Case 3 : A has terminated the experiment and output a bit b′, i.e. A has guessed
the challenge bit b.

Game 0 This is the initial FSC security game. Thus AdvFSC
BPSec,A,C3

(λ) ≤ AdvA
G0

(λ).

Game 1 This game proceeds identically to Game 1 of Case 1, with the same reduc-
tions and bounds. Thus we have AdvA

G0
(λ) ≤ AdvA

G1
(λ) + na · Advdae

DAE,B5
(λ).

Game 2 In this game, all ciphertexts produced by un-Corrupted party generating a
ciphertext block

⇀
C t such that

⇀
C t.type = BCB, using a key associated with a parameter set

p = Extr(
⇀
C t, sti) such that Corrupt(·, p) was not issued are replaced with uniformly random

and independent strings. We do so by introducing a series of reductions B6 as follows:
At the beginning of the experiment, for each parameter set

⇀
P i that does not support

key-wrapping B6 initialises an PRIV-security AEAD challenger CPRIV,i. Additionally, during
the experiment if a DAE ciphertext is generated or decrypted using kpi

(where A has not
issued Corrupt(·, pi)), B6 initialises an PRIV AEAD challenger CPRIV,i.

Next, whenever B6 is required to generate a ciphertext over a message, nonce and
header tuple (m, N, H) using kpi (or the ephemeral key-wrapped key k′ encrypted under
kpi

) for pi, B6 instead queries (m, N, H) to CAUTH,i’s encryption oracle. Similarly, if B6 is
required to decrypt a ciphertext, nonce, header tuple (C, N, H) for kpi

(or the ephemeral
key-wrapped key k′ encrypted under kpi

) for parameter set pi, B6 instead queries (C, N, H)
to CPRIV,i’s decryption oracle. We note that by Game 1 and the definition of the security
experiment, all AEAD keys replaced in this way were already uniformly random and
independent of the protocol flow, and A cannot learn these by issuing a Corrupt query.

If the bit b sampled by CPRIV,i is 0, then the CPRIV,i encrypts the message m honestly, and
we are in Game 1. Otherwise, if the bit b sampled by the CPRIV,i is 1, then CPRIV,i simply
samples a ciphertext uniformly at random, and now the ciphertext is uniformly random
and completely independent of the protocol flow and we are in Game 1. Any A that could
distinguish this change can be directly used to break the PRIV security of the PRIV primitive.

20 Analysis of BPSec

We have at most na parameter sets that may be used directly as AEAD keys, and at most
nm key-wrapped AEAD keys, thus AdvA

G1
(λ) ≤ AdvA

G2
(λ) + (na + nm) · Advauth

B2,AEAD(λ).
Case 3 Analysis: By Game 1 we replaced the ephemeral key k′ used to generate

the BCB if p is a key-wrapping algorithm. By Game 2 we replaced all ciphertexts
with uniformly random strings regardless of the challenge bit b. Since the behaviour of
the security experiment no longer relies of the challenge bit b the A has no advantage
in guessing and thus we have: AdvA

G2
(λ) = 0, and it follows that AdvFSC

BPSec,A,C3
(λ) ≤

na · Advdae
DAE,B5

(λ) + (na + nm) · AdvPRIV
B6,AEAD(λ).

We now turn to analysing the SFSC security of the StrongBPSec construction.

Theorem 2 (SFSC Security for StrongBPSec). The StrongBPSec protocol presented in
Figure 7 is SFSC-secure. That is, for any PPT algorithm A against the SFSC security
experiment (described in Definition 3) AdvSFSC

StrBPSec,A(λ) is negligible under the sufcma and
dae security of the MAC and DAE primitives respectively.

Proof. We note that in the strong FSC game there are five main ways A can win. In
addition to those described in Theorem 1, the SFSC game introduces two new ways for
A to set win← true. In particular, if A has successfully dropped message blocks sent by
the security source without being detected when the bundle is processed by the security
target, or by forging a read receipt for a given message block. The analysis for the three
original cases from the FSC game apply here, and so we focus on the other two cases:

C1: Adversary A has successfully dropped blocks
⇀
M i from the source-constructed bundle

⇀
C without detection and the bundle payload integrity block BIBB verifies correctly;

C2: AdversaryA has successfully forged a read receipt BRB that verifies correctly.

We proceed via a sequence of games, and bound the difference in the A’s advantage
in each game with the underlying cryptographic assumptions. We conclude when the
adversary reaches a game where the advantage of that game for that case equals 0,
which shows that A cannot win with non-negligible advantage. We begin by dividing
the proof into two separate cases corresponding to each win condition (and denote with
AdvSFSC

StrBPSec,A,Ci
(λ) the advantage of the adversary in winning the strong integrity game in

Case i). It follows that AdvSFSC
StrBPSec,A(λ) ≤ AdvSFSC

StrBPSec,A,C1
(λ) + . . . + AdvSFSC

StrBPSec,A,C5
(λ).

We define with AdvA
Gi

(λ) the advantage of A in Game i. We begin with Case 1.
Case 1: Adversary A wins by causing some party πi to accept bundle

⇀
C from a

security source π
⇀

C PB.id.src with missing blocks
⇀
M i . By the definition of the case, we

know that the adversary A has not been able to Corrupt any keys (kp, kRR
p , kBB

p) such that
kBB

p was used to verify (or key-wrap keys to verify) the BIBB. We proceed via the following
series of games.

Game 0 This is the SFSC security game in Case 1: AdvSFSC
StrBPSec,A,C1

(λ) ≤ AdvA
G0

(λ).
Game 1 This game proceeds identically to Game 1 of Case 1 of Theorem 1, with

the same reductions and bounds. Thus we have AdvA
G0

(λ) ≤ AdvA
G1

(λ) + na · Advdae
DAE,B1

(λ).
Game 2 In this game, we introduce an abort event that triggers if any un-Corrupted

party “accepts” a message
⇀
M and no honest party generated a message with the same

payload and of the same length. Specifically, this occurs if A is able to successfully forge
BIBB using a key associated with a parameter set

⇀
P i such that Corrupt(·,

⇀
P i) was not

issued. This game proceeds identically to Game 2 of Case 1 of Theorem 1, with
the same reductions and bounds. We have at most na parameter sets that may be
used directly as MAC keys, and at most nm key-wrapped MAC keys, thus AdvA

G1
(λ) ≤

AdvA
G2

(λ) + (na + nm) · Advsufcma
B2,MAC(λ).

Benjamin Dowling, Britta Hale, Xisen Tian, Bhagya Wimalasiri 21

Case 1 Analysis: By definition of Case 1 we know that A has caused win ← true
by forcing some party πi to accept a message with “missing blocks”

⇀
M . Specifically, if

πi accepts a message whilst incorrectly believing that the original bundle had a different
amount of blocks than generated. By definition of the security experiment we know that A
has not issued Corrupt(·, p) such that πi used kBB

p to verify the BIBB block. By Game 1 we
replaced the ephemeral key k′ used to generate the BIBB if p is a key-wrapping algorithm.
By Game 2 we added an abort query that prevents A from forging BIBB blocks. We note
that the BIBB is computed over each key identifier that was used by the source node SN
and the number of target blocks that the key identifier was used for. Thus, if πi believed
that SN generated an incorrect number of blocks, then the bundle integrity block BIBB for
⇀
M PLD would not verify correctly. Since we abort if the adversary forges their own valid BIBB,
by Game 2 πi aborts and thus A cannot win the game. Thus we have: AdvA

G2
(λ) = 0, and

it follows that AdvSFSC
StrBPSec,A,C1

(λ) ≤ na ·Advdae
DAE,B1

(λ) + (na + nm) ·Advsufcma
B2,MAC(λ). Now we

transition to Case 2.
Case 2: A wins by causing a party πi to accept a read receipt BRB under key
kRR

p but no read receipt was generated by an honest party.. By the definition of
the case, we know that the adversary A has not issued Corrupt(·, p). We proceed via the
following series of games.

Game 0 This is the SFSC security game in Case 2: AdvSFSC
StrBPSec,A,C2

(λ) ≤ AdvA
G0

(λ).
Game 1 Let na be the total number of parameter sets used in the experiment. In

this game, for any key-wrapping keys associated with parameter sets that have not been
Corrupted, we abort if A forges a DAE ciphertext, and replace honestly generated key-
wrapped keys with uniformly random values. This proceeds identically to the reduction
described in Game 1 of Case 1 and we find: AdvA

G0
(λ) ≤ AdvA

G1
(λ) + na · Advdae

DAE,B1
(λ).

Game 2 In this game, we introduce an abort event that triggers if any un-Corrupted
party “accepts” a message

⇀
M with a read receipt BRB (generated using kRR

p and no honest
party generated BRB. Specifically, this occurs if A is able to successfully forge BRB
using a key associated with a parameter set

⇀
P i such that Corrupt(·,

⇀
P i) was not issued.

This game proceeds similarly (up to a change in notation) to Game 2 of Case 1 of
Theorem 1, with the same reductions and bounds. We have at most na parameter sets
that may be used directly as MAC keys, and at most nm key-wrapped MAC keys, thus
AdvA

G1
(λ) ≤ AdvA

G2
(λ) + (na + nm) · Advsufcma

B2,MAC(λ). Case 2 Analysis: By Case 2 we know
that a party πi that verifies a BRB using kRR

p (or a key-wrapped key encrypted under
kR

p) that sets win ← true such that A has not issued Corrupt(i, p) will abort. Thus A
cannot win the game in Case 2 and thus we have AdvA

G2
(λ) = 0, and it follows that

AdvSFSC
StrBPSec,A,C2

(λ) ≤ na · Advdae
DAE,B1

(λ) + (na + nm) · Advsufcma
B2,MAC(λ).

6 Conclusion
Space networking follows different restrictions than standard, terrestrial Internet-style
networking, which as consequently motivated work in developing and deploying suitable
networking protocols over the years. However, the cryptographic security of such, including
DTN protocols like BPSec, has largely escaped formal cryptographic analysis, leading
to a lack of understanding of how well the security intentions of such protocols are
realized. This work provides the first formal cryptographic analysis and provable security
treatment of one such protocol and lays a ground work for further analyses in this area.
Furthermore, we propose StrongBPSec, a strong alternative to BPSec with additional
integrity guarantees. We note that integrating our StrongBPSec with read receipts into
existing BPSec instantiations and implementations can be achieved through multiple

22 Analysis of BPSec

approaches: the existing standard could be extended with a new read receipt block type
(e.g. as an Other Security Block [BM22, Section 10]); or, more conveniently, read receipts
may also be introduced as an extension to the existing BIB block type in the form of
a specialized BIB block. We leave exploring the specifics of how StrongBPSec can be
incorporated within the existing BPSec paradigm to future work. We highlight, regardless
of how it is integrated, the true value of StrongBPSec lies in adopting its read receipts
with additional integrity guarantees within the current BPSec and BPSec Default Security
Context standards. We further leave finding more efficient key-wrapping solutions and
reducing the security overhead of BPSec to future work.

References
[ACSA11] Naveed Ahmad, Haitham Cruickshank, Zhili Sun, and Muhammad Asif.

Pseudonymised communication in delay tolerant networks. In 2011 Ninth
Annual International Conference on Privacy, Security and Trust, pages 1–6,
2011. doi:10.1109/PST.2011.5971956.

[AKG+07] N. Asokan, Kari Kostiainen, Philip Ginzboorg, Jörg Ott, and Cheng Luo.
Applicability of identity-based cryptography for disruption-tolerant networking.
In Proceedings of the 1st International MobiSys Workshop on Mobile Oppor-
tunistic Networking, MobiOpp ’07, page 52–56. Association for Computing
Machinery, 2007. URL: https://doi-org.libproxy.nps.edu/10.1145/12
47694.1247705, doi:10.1145/1247694.1247705.

[BBC17] Fatima Zohra Benhamida, Abdelmadjid Bouabdellah, and Yacine Chal-
lal. Using delay tolerant network for the Internet of Things: Opportu-
nities and challenges. In 2017 8th International Conference on Informa-
tion and Communication Systems (ICICS), pages 252–257, 2017. doi:
10.1109/IACS.2017.7921980.

[BFB22] Scott Burleigh, Kevin Fall, and Edward J. Birrane. Bundle Protocol Version
7. RFC 9171, January 2022. URL: https://www.rfc-editor.org/info/rfc
9171, doi:10.17487/RFC9171.

[BFR08] Scott C. Burleigh, Stephen Farrell, and Manikantan Ramadas. Licklider
Transmission Protocol - Specification. RFC 5326, September 2008. URL:
https://www.rfc-editor.org/info/rfc5326, doi:10.17487/RFC5326.

[BH17] Colin Boyd and Britta Hale. Secure Channels and Termination: The Last
Word on TLS. In Latincrypt, 2017. URL: https://api.semanticscholar.
org/CorpusID:3648242.

[BHMS16] Colin Boyd, Britta Hale, Stig Frode Mjølsnes, and Douglas Stebila. From
Stateless to Stateful: Generic Authentication and Authenticated Encryption
Constructions with Application to TLS. In Proceedings of the RSA Conference
on Topics in Cryptology - CT-RSA 2016 - Volume 9610, page 55–71, 2016.
doi:10.1007/978-3-319-29485-8_4.

[Bir23] Edward Birrane. Securing Delay-Tolerant Networks with BPSec. Wiley, 2023.
URL: https://ieeexplore.ieee.org/servlet/opac?bknumber=10015530.

[BKN02] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenticated
encryption in SSH: provably fixing the SSH binary packet protocol. In Proceed-
ings of the 9th ACM conference on Computer and Communications Security
(CCS), pages 1–11, 2002.

https://doi.org/10.1109/PST.2011.5971956
https://doi-org.libproxy.nps.edu/10.1145/1247694.1247705
https://doi-org.libproxy.nps.edu/10.1145/1247694.1247705
https://doi.org/10.1145/1247694.1247705
https://doi.org/10.1109/IACS.2017.7921980
https://doi.org/10.1109/IACS.2017.7921980
https://www.rfc-editor.org/info/rfc9171
https://www.rfc-editor.org/info/rfc9171
https://doi.org/10.17487/RFC9171
https://www.rfc-editor.org/info/rfc5326
https://doi.org/10.17487/RFC5326
https://api.semanticscholar.org/CorpusID:3648242
https://api.semanticscholar.org/CorpusID:3648242
https://doi.org/10.1007/978-3-319-29485-8_4
https://ieeexplore.ieee.org/servlet/opac?bknumber=10015530

Benjamin Dowling, Britta Hale, Xisen Tian, Bhagya Wimalasiri 23

[BM22] Edward J. Birrane and Kenneth McKeever. Bundle Protocol Security (BPSec).
RFC 9172, January 2022. URL: https://www.rfc-editor.org/info/rfc91
72, doi:10.17487/RFC9172.

[BMM+15] Christian Badertscher, Christian Matt, Ueli Maurer, Phillip Rogaway, and
Björn Tackmann. Augmented Secure Channels and the Goal of the TLS 1.3
Record Layer. In Proceedings of the 9th International Conference on Provable
Security - Volume 9451, ProvSec 2015, page 85–104. Springer-Verlag, 2015.
doi:10.1007/978-3-319-26059-4_5.

[BWH22] Edward J. Birrane, Alex White, and Sarah Heiner. Default Security Contexts
for Bundle Protocol Security (BPSec). RFC 9173, January 2022. URL:
https://www.rfc-editor.org/info/rfc9173, doi:10.17487/RFC9173.

[CCS23] Overview of Space Communications Protocols. Technical Report CCSDS
130.0-G-4, Consultative Committee for Space Data Systems, Washington DC,
USA, April 2023. URL: https://public.ccsds.org/Pubs/130x0g4e1.pdf.

[CFD20] CCSDS File Delivery Protocol (CFDP). Technical Report CSDS 727.0-B-5, The
Consultative Committee for Space Data Systems. Recommended Standard.,
2020. URL: https://public.ccsds.org/Pubs/727x0b5.pdf.

[Dwo04] Morris Dworkin. Request for Review of Key Wrap Algorithms. Cryptology
ePrint Archive, Paper 2004/340, 2004. https://eprint.iacr.org/2004/340.
URL: https://eprint.iacr.org/2004/340.

[FGJ24] Marc Fischlin, Felix Günther, and Christian Janson. Robust Channels: Han-
dling Unreliable Networks in the Record Layers of QUIC and DTLS 1.3. J.
Cryptol., 37(2), jan 2024. doi:10.1007/s00145-023-09489-9.

[FGMP15] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Kenneth G Pa-
terson. Data is a stream: Security of stream-based channels. In Advances in
Cryptology–CRYPTO 2015, Proceedings, Part II 35, pages 545–564. Springer,
2015.

[FK11] S. Frankel and S. Krishnan. IP Security (IPsec) and Internet Key Exchange
(IKE) Document Roadmap. RFC 6071, February 2011. URL: https://data
tracker.ietf.org/doc/html/rfc6071.

[GM17] Felix Günther and Sogol Mazaheri. A Formal Treatment of Multi-key Channels.
In Advances in Cryptology–CRYPTO 2017 Proceedings, Part III 37, pages
587–618. Springer, 2017.

[HS02] Russ Housley and Jim Schaad. Advanced Encryption Standard (AES) Key
Wrap Algorithm. RFC 3394, October 2002. URL: https://www.rfc-editor.
org/info/rfc3394, doi:10.17487/RFC3394.

[KZH07] Aniket Kate, Gregory M. Zaverucha, and Urs Hengartner. Anonymity and
security in delay tolerant networks. In 2007 Third International Conference
on Security and Privacy in Communications Networks and the Workshops -
SecureComm 2007, pages 504–513, 2007. doi:10.1109/SECCOM.2007.455037
3.

[LML14] Xixiang Lv, Yi Mu, and Hui Li. Non-Interactive Key Establishment for
Bundle Security Protocol of Space DTNs. IEEE Transactions on Information
Forensics and Security, 9(1):5–13, 2014. doi:10.1109/TIFS.2013.2289993.

https://www.rfc-editor.org/info/rfc9172
https://www.rfc-editor.org/info/rfc9172
https://doi.org/10.17487/RFC9172
https://doi.org/10.1007/978-3-319-26059-4_5
https://www.rfc-editor.org/info/rfc9173
https://doi.org/10.17487/RFC9173
https://public.ccsds.org/Pubs/130x0g4e1.pdf
https://public.ccsds.org/Pubs/727x0b5.pdf
https://eprint.iacr.org/2004/340
https://eprint.iacr.org/2004/340
https://doi.org/10.1007/s00145-023-09489-9
https://datatracker.ietf.org/doc/html/rfc6071
https://datatracker.ietf.org/doc/html/rfc6071
https://www.rfc-editor.org/info/rfc3394
https://www.rfc-editor.org/info/rfc3394
https://doi.org/10.17487/RFC3394
https://doi.org/10.1109/SECCOM.2007.4550373
https://doi.org/10.1109/SECCOM.2007.4550373
https://doi.org/10.1109/TIFS.2013.2289993

24 Analysis of BPSec

[Man23a] Catherine G. Manning. Delay/Disruption Tolerant Networking Overview, 2023.
URL: https://www.nasa.gov/technology/space-comms/delay-disrupt
ion-tolerant-networking-overview/.

[Man23b] Catherine G. Manning. Frequently Asked Questions, 2023. URL: https:
//www.nasa.gov/technology/space-comms/delay-disruption-toleran
t-networking-faq/.

[MKK17] Sofia Anna Menesidou, Vasilios Katos, and Georgios Kambourakis. Cryp-
tographic Key Management in Delay Tolerant Networks: A Survey. Future
Internet, 9(3):26, 2017.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
Technical report, Internet Engineering Task Force (IETF). RFC 8446, 2018.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Pro-
ceedings of the 9th ACM Conference on Computer and Communications Se-
curity, CCS ’02, page 98–107. Association for Computing Machinery, 2002.
doi:10.1145/586110.586125.

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of
the Key-Wrap Problem. In Annual international conference on the theory and
applications of cryptographic techniques, pages 373–390. Springer, 2006.

[RSKW17] Signe Rüsch, Dominik Schürmann, Rüdiger Kapitza, and Lars Wolf. Forward
Secure Delay-Tolerant Networking. In Proceedings of the 12th Workshop on
Challenged Networks, CHANTS ’17, page 7–12. Association for Computing
Machinery, 2017. doi:10.1145/3124087.3124094.

[SDM04] Paul Syverson, Roger Dingledine, and Nick Mathewson. Tor: The Second Gen-
eration Onion Router. In Usenix Security, pages 303–320. USENIX Association
Berkeley, CA, 2004.

[Sip24] Brian Sipos. DTN Bundle Protocol Security (BPSec) COSE Context. Internet-
Draft draft-ietf-dtn-bpsec-cose-04, Internet Engineering Task Force, July 2024.
Work in Progress. URL: https://datatracker.ietf.org/doc/draft-iet
f-dtn-bpsec-cose/04/.

[spa20] Space Packet Protocol. Technical Report CSDS 133.0-B-2, The Consultative
Committee for Space Data Systems. Recommended Standard, 2020. URL:
https://public.ccsds.org/Pubs/133x0b2e1.pdf.

[TBW+07] Leigh Torgerson, Scott C. Burleigh, Howard Weiss, Adrian J. Hooke, Kevin
Fall, Dr. Vinton G. Cerf, Keith Scott, and Robert C. Durst. Delay-Tolerant
Networking Architecture. RFC 4838, April 2007. URL: https://www.rfc-e
ditor.org/info/rfc4838, doi:10.17487/RFC4838.

[ZSS+14] Jian Zhou, Meina Song, Junde Song, Xian-Wei Zhou, and Liyan Sun. Auto-
nomic Group Key Management in Deep Space DTN. Wirel. Pers. Commun.,
77(1):269–287, July 2014. doi:10.1007/s11277-013-1505-1.

A Cryptographic Assumptions
In this section we describe the cryptographic primitives that are used to build BPSec and
define their security. Specifically, we use deterministic authentication encryption DAE
to model the BPSec key wrap algorithm, authenticated encryption with associated data

https://www.nasa.gov/technology/space-comms/delay-disruption-tolerant-networking-overview/
https://www.nasa.gov/technology/space-comms/delay-disruption-tolerant-networking-overview/
https://www.nasa.gov/technology/space-comms/delay-disruption-tolerant-networking-faq/
https://www.nasa.gov/technology/space-comms/delay-disruption-tolerant-networking-faq/
https://www.nasa.gov/technology/space-comms/delay-disruption-tolerant-networking-faq/
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/3124087.3124094
https://datatracker.ietf.org/doc/draft-ietf-dtn-bpsec-cose/04/
https://datatracker.ietf.org/doc/draft-ietf-dtn-bpsec-cose/04/
https://public.ccsds.org/Pubs/133x0b2e1.pdf
https://www.rfc-editor.org/info/rfc4838
https://www.rfc-editor.org/info/rfc4838
https://doi.org/10.17487/RFC4838
https://doi.org/10.1007/s11277-013-1505-1

Benjamin Dowling, Britta Hale, Xisen Tian, Bhagya Wimalasiri 25

AEAD to model their use of symmetric encryption and message authentication codes MAC
to model their use of authentication primitives. We begin by introducing the formalism
and security for DAE by repeating the definitions of Rogaway and Shrimpton [RS06] who
introduced this primitive.

Definition 5 (Deterministic Authenticated Encryption). A deterministic authenticated
encryption scheme DAE is a tuple DAE = {K, Enc, Dec} with associated with key space
K, message space M ⊆ {0, 1}∗ and headers H ⊆ {0, 1}∗∗. The key space K is a set of
strings or infinite strings endowed with a distribution. For a practical scheme there must
be a probabilistic algorithm that samples from K, and we identify this algorithm with the
distribution it induces. We denote by DAE.EncK(H, M) the deterministic DAE encryption
algorithm that takes as input a key K ∈ K, a header H ∈ H and a message M ∈M and
outputs either a ciphertext C ∈ {0, 1}∗ or a distinguished failure symbol ⊥. We denote by
DAE.DecK(H, C) the deterministic DAE decryption algorithm that takes as input a key
K ∈ K, a header H ∈ H and a ciphertext C and returns a string M ′, which is either in
the message space M or a distinguished failure symbol ⊥. We assume that M ∈M =⇒
{0, 1}|M | ⊆ M. The ciphertext space is C = {DAE.EncK(H, M) : K ∈ K, H ∈ H, M ∈
M}. Correctness of an DAE scheme requires that DAE.DecK(H, (DAE.EncK(H, M)) = M
for all K, H, M in the appropriate space.

We note that in our construction presented in Figure 7 we have adopted the notation
KW.Enc and KW.Dec instead of DAE.Enc and DAE.Dec, respectively, as defined above. We
wanted our notation to adhere to the vocabulary of the BPSec Default Security Context
[BWH22] and thus WLOG we substituted DAE with KW within our construction.

Next, we describe the security of DAE schemes. On a high level a DAE scheme ensures
confidentiality of the underlying plaintext and authenticity of the ciphertexts. We provide
this in Definition 6.

Definition 6 (DAE Security). Let DAE = {K, Enc, Dec} be a DAE scheme with header
space H, message space M , and expansion function e. The advantage of adversary A in
breaking dae-security is defined as

Advdae
DAE,A(λ) = Pr

[
K

$← K : AEncK(.,.),DecK(.,.) =⇒ 1
]
− Pr

[
A$(.,.),⊥(.,.) =⇒ 1

]
.

Upon query H ∈ H, M ∈M, A’s random oracle $(., .) returns a random string of length
|M |+ e(H, M). The ⊥(., .) oracle returns ⊥ on every input. We assume that A does not
ask (H, C) of its right oracle if some previous left oracle query (H, M) returned C; does
not ask (H, M) of its left oracle if some previous right-oracle query (H, C) returned M ;
does not ask left queries outside of H ×M ; and does not repeat a query.

Definition 7 (Message Authentication Code (MAC) security). A message authentication
code (MAC) scheme is a tuple of algorithms MAC = {KGen, Tag} where:

• KGen is a probabilistic key generation algorithm taking input a security parameter λ
and returning a symmetric key k.

• Tag is a potentially probabilistic algorithm that takes as input a symmetric key k
and an arbitrary message m from the message space M and returns a tag τ .

Security is formulated via the following game that is played between a challenger C and an
algorithm A:

1. The challenger samples k
$← K

2. The adversary may adaptively query the challenger; for each query value mi the
challenger responds with τi = Tag(k, mi)

26 Analysis of BPSec

3. The adversary outputs a pair of values (m∗, τ∗). such that (m∗, τ∗) /∈
{(m0, σ0), . . . (mi, σi)}

We define the advantage of A in breaking the strong unforgeability property of a MAC
MAC under chosen-message attack to be:

Advsufcma
MAC,A(λ) = Pr ((m∗, τ∗) /∈ {(m0, σ0), . . . (mi, σi)})

We say that MAC is classically sufcma-secure if, for all PPT algorithms A, Advsufcma
MAC,A(λ) is

negligible in the security parameter λ.

Our definition for AEAD-PRIV and AEAD-auth closely follow the work of Rogaway
[Rog02] which we describe next for completion.

Definition 8 (AEAD Security). We define an authenticated-encryption scheme with
associated-data (an AEAD-scheme) as a three-tuple Π = (K, Enc, Dec). Associated to Π
are sets of strings Nonce = {0, 1}n and Message ⊆ {0, 1}∗, the latter having a linear-time
membership test and satisfying M ∈ Message =⇒ M ′ ∈ Message for any M ′ of the same
length as M . Further associated to Π is also a set Header ⊆ {0, 1}∗ that has a linear-time
membership test. The key space K is a finite nonempty set of strings. The encryption
algorithm Enc is a deterministic algorithm that takes strings K ∈ K and N ∈ Nonce and
H ∈ Header and M ∈ Message. It returns a string C = EncN,H

K (M) = EncK(N, H, M).
Decryption algorithm Dec is a deterministic algorithm that takes strings K ∈ K and
N ∈ Nonce and H ∈ Header and C ∈ {0, 1}∗. It returns DecN,H

K (C), which is either a
string in Message or the distinguished failure symbol ⊥. The correctness of the AEAD
scheme requires that DecN,H

K (EncN,H
K (M)) = M for all K ∈ K and N ∈ Nonce and

H ∈ Header and M ∈ Message. Some linear-time computable length function ℓ is given by
|EncN

K(M)| = ℓ(|M |).

AEAD PRIV SECURITY: Let Π = (K, Enc, Dec) be AEAD-scheme with length func-
tion ℓ. Let $(·, ·, ·) be an oracle that, upon input returns (N, H, M), returns a random
string of ℓ(|M |) bits. The advantage of adversary A in breaking AEAD PRIV-security is
defined as

AdvPRIV
AEAD,A(λ) = Pr

[
K

$← K : AEncK (.,.,.) =⇒ 1
]
− Pr

[
A$(.,.,.) =⇒ 1

]
.

AEAD AUTH SECURITY: Let Π = (K, Enc, Dec) be AEAD-scheme, and let A be an
adversary with access to an orcale EncK(·, ·, ·). We say that A forges (for this key K and
on some particular run) if A outputs (N, H, C) where DecN,H

K (C) ̸= ⊥ and A did not query
EncN,H

K (M) to the encryption oracle. We say that an AEAD scheme AEAD is auth- secure
if for all PPT algorithms A, Advauth

AEAD,A(λ) is negligible in the security parameter λ.

	Introduction
	BPSec: A Flexible Secure Channel
	BPSec Overview
	black BPSec Challenges
	Contributions

	Related Work
	BPSec Formalization and Strong BPSec
	Flexible Secure Channels
	black StrongBPSec with Read Receipts

	Flexible Secure Channel Models
	Security Analysis
	Conclusion
	References
	Cryptographic Assumptions

