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Abstract. Internet-scale consensus protocols used by blockchains are
designed to remain operational in the presence of unexpected temporary
crash faults (the so-called sleepy model of consensus) – a critical feature
for the latency-sensitive financial applications running on these systems.
However, their leader-based architecture, where a single block proposer
is responsible for creating the block at each height, makes them vul-
nerable to short-term censorship attacks, in which the proposers profit
at the application layer by excluding certain transactions. In this work,
we introduce an atomic broadcast protocol, secure in the sleepy model,
that ensures the inclusion of all transactions within a constant expected
time, provided that at least one participating node is non-censoring at
all times. Unlike traditional approaches, our protocol avoids designating
a single proposer per block height, instead leveraging a so-called dynam-
ically available common subset (DACS) protocol – the first of its kind in
the sleepy model. Additionally, our construction guarantees deterministic
synchronization – once an honest node confirms a block, all other honest
nodes do so within a constant time, thus addressing a shortcoming of
many low-latency sleepy protocols.

1 Introduction

Consensus is the problem of reaching agreement on a growing log of values
among a group of nodes, some of which may be corrupted and controlled by
an adversary. It is one of the most fundamental problems in the distributed
computing literature and the backbone of modern blockchain systems. Before
blockchains, most of the consensus literature considered settings with consis-
tent participation, where the set of participants (called nodes) is publicly known
and fixed throughout the execution of the protocol [LSP19,DS83,BT85,CL99].
Over the last fifteen years, growing interest in blockchain systems motivated
research on Internet-scale consensus protocols, executed by a large, but less re-
liable set of nodes [Nak08,BHK+20,PS17b,KRDO17,DPS19,DGKR18]. Desider-
ata for these protocols are often informed by the economic considerations of the
applications running on them (cf., ebb-and-flow property [NTT21], accountable
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safety [SWN+21a]). In this work, we focus on one such requirement, called short-
term censorship resistance, a crucial property for financial applications such as
on-chain auctions and automated market makers [Pra24,FPR23,BGR24].

Internet-scale consensus. Blockchains such as Bitcoin and Ethereum aim to
support a highly decentralized set of nodes, both in number and geographical
location, not all of which might be active at all times. Therefore, the consensus
protocols underlying these systems must remain secure amidst unexpected tem-
porary crash faults. This requirement was formalized under the names dynamic
availability [KRDO17] and sleepy model of consensus [PS17b]. In this work, we
consider the synchronous sleepy model with a known message delay upper-bound
∆, where the set of potential nodes (of size N) is publicly known, and at any
given time t, only an unknown nt ≤ N number of nodes is awake (i.e., active)
to the discretion of the adversary.

Short-term censorship resistance. The majority of both Internet-scale (cf. Ta-
ble 1) and PBFT-style consensus protocols (e.g., [CL99,BKM18,YMR+19a]) can
be characterized as leader-based : Time is divided into intervals, and in each inter-
val, a leader node is designated to propose the next batch of values (called block)
to be added to the log. The monopoly power of the leaders over the block con-
tents makes the protocols vulnerable to short-term censorship. For illustration,
consider the state machine replication formulation of the consensus problem, in
which the nodes receive transactions of a blockchain application as input. Due
to the economic incentives of these applications [But15,Pra24,FPR23,BGR24],
leader nodes can often profit from actively excluding certain transactions from
their blocks, significantly delaying the time for the transactions to enter the log.
Not only is this behavior highly profitable, but also the nodes acting in this way
can often not be held accountable, i.e., one cannot produce a transferable proof
that censorship took place. Therefore, protocols cannot deter short-term censor-
ship via financial penalties that are deployed against other types of attacks (e.g.,
forking, safety violations [SWN+21b,BLR24]).

To explicitly capture short-term censorship attacks, we consider a setting
where an overwhelming majority of the honest awake nodes engage in censor-
ship by excluding certain transactions from their blocks. Intuitively, an honest-
but-censoring node follows the protocol faithfully, except that whenever given
the opportunity to construct blocks, it proposes blocks excluding the censored
transactions3. Then, our goal is to design a protocol that guarantees low (O(∆))
latency for the inclusion of transactions within the log, even when all but a con-
stant number of the honest awake nodes are censoring. We informally refer to
such a protocol as having O(∆)-censorship resistance.

3When the protocol enforces external validity rules, it might require the inclusion
of certain transactions in a given block. In this case, the honest-but-censoring nodes
include these transactions. However, such rules cannot be enforced for many transaction
types (e.g., bids in on-chain auctions).
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1.1 Technical Contributions

Our main result can be stated as follows.

Theorem 1 (Informal). There exists a consensus protocol secure in the syn-
chronous sleepy model with O(∆) expected latency and censorship resistance, as
long as at any given time, a majority of the awake nodes are honest.

Namely, even if all but one of the honest awake nodes are censoring, if the
majority of the awake nodes are honest (can be censoring or not) at all times,
then our protocol guarantees the inclusion of all inputs within the log in O(∆)
expected time.

Our protocol is optimal in terms of its latency and security resilience, and is
the first to achieve O(∆) censorship resistance in the synchronous sleepy model
(for a detailed comparison to existing work, cf. Table 1). In the optimistic case,
i.e., when all awake nodes are honest (but can be censoring except one), our pro-
tocol achieves a latency of 4∆. As no atomic broadcast protocol can remain se-
cure under both the sleepy and partially-synchronous (or asynchronous) network
models [LR23], synchrony is justified as a necessary assumption for Internet-scale
consensus, implying the optimality of O(∆) latency and censorship resistance.
Similarly, no protocol can satisfy security in the ∆-synchronous sleepy model,
when the adversary can control half or more of the awake nodes [PS17a, Theorem
3], implying the optimality of the resilience.

Deterministic synchronization. In many synchronous protocols [AMN+20,CS20],
once the first honest node adds a value to the log (i.e., confirms a value), all
honest nodes confirm that value within O(∆) time. In these protocols, a node
typically confirms a value only upon collecting sufficient evidence. Therefore,
by forwarding this evidence to all other nodes, it can convince them to confirm
the same value in ∆ time. This approach becomes far more complex to imple-
ment in the sleepy model, as the number of participating nodes at any point
in time is unknown; and thus what might appear as sufficient evidence in the
view of one node, may be insufficient for another. Evidently enough, no consen-
sus protocol with O(∆) expected latency in the sleepy model offers deterministic
synchronization, instead satisfying a weaker property called randomized synchro-
nization: Once the first honest node confirms a value, all honest nodes add the
same value to their logs within O(λ) time with probability 1−exp(−λ), where λ
is a security parameter. In this context, we design the first low latency consensus
protocol in the sleepy model with deterministic synchronization, in which once
an honest node confirms a value, all other honest nodes follow suit within O(∆)
time.

1.2 Technical Overview

Our main construction is an Atomic Broadcast (ABC) [CASD95a] protocol with
O(∆)-censorship resistance in the synchronous sleepy model. The primary build-
ing block of the ABC protocol and the main technical contribution is a low
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Fig. 1: Intuitive overview of the structure of a single iteration of our DACS pro-
tocol. First, every awake honest node multicasts its input value to all nodes, at
which point each node inputs the value it received from node i to BAi. Each
asleep node, e.g., node 1 in the figure, is treated by the other nodes as if it sent
⊥, and that value is input to the corresponding BA. See Section 7.1 for the full
formal details.

latency (i.e., O(∆)) Dynamically Available Common Subset (DACS) protocol
(Figure 1), which can be thought of as the sleepy model analogue of the well-
known Asynchronous Common Subset (ACS) primitive [BKR94,CKPS01]. In
DACS, the nodes aim to come to agreement on a set of values that includes the
inputs of all honest nodes awake at the beginning of the protocol. We describe
the technical details of the DACS construction from the bottom up, starting with
the primitives used within the construction. The first such primitive is Consistent
Graded Agreement (CGA), our variant of the Graded Agreement (GA) primitive.

Consistent Graded Agreement. (Section 4 and Section 5) In graded agreement
(GA), each node inputs a value to the protocol and outputs a pair consisting
of a value and a binary grade g ∈ {0, 1}, intuitively indicating its confidence in
the output value. The usual security desiderata for the problem include graded
delivery and validity. Graded delivery states that if an honest node is confident
about a value (i.e., outputs it with grade 1), then all other honest nodes out-
put that value. Validity requires that if all honest nodes input the same value,
then all honest nodes output that value with grade 1. We present two novel GA
constructions for a primitive called Consistent Graded Agreement (CGA), which
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satisfies consistency in addition to graded delivery and validity. Consistency
stipulates that all honest nodes outputting a value v ̸= ⊥ for a special value ⊥,
output the same value v. Our CGA protocols requires 4 rounds and have O(n2)4

message complexity. We compare our constructions to similar primitives found
in the literature in Section 2. The CGA primitive is a key building block of the
next component of our construction, the well-known Byzantine Agreement (BA)
problem.

Byzantine Agreement. (Section 6) We propose the first BA protocol in the sleepy
model with O(∆) expected latency. Furthermore, our protocol has deterministic
synchronization. Our BA is iteration-based, and each iteration is comprised of
two instances of the Consistent Graded Agreement (CGA) protocol, followed by
a leader election step (See Figure 2). Nodes start the first CGA instance of the
first iteration with their original inputs to the BA protocol. The first CGA in
each iteration is called the decision CGA, from which an output with grade 1
triggers a node to decide that value for the BA protocol. The goal of the second
CGA is to preserve the agreement among the nodes in case a node made a
decision during the first CGA. The leader election step selects a leader uniformly
at random from among the awake nodes, in an attempt to bring the network into
a favorable position before entering the next iteration. If the leader is honest,
all honest nodes decide and terminate in the next iteration. Therefore, when
the honest nodes constitute over half of the awake nodes, with probability at
least 1

2 , all honest nodes decide and terminate in the next iteration, implying
an expected latency of O(∆). Moreover, due to the second CGA, once the first
honest node decides a value, all honest nodes decide that value after the next
iteration (i.e., within O(∆) time), implying deterministic synchronization. With
BA in hand, we can now describe our DACS protocol.

DACS construction. (Section 7) From a high level, each DACS instance consists
of N parallel executions of BA, the outputs of which constitute the output set of
the DACS instance (See Figure 1). Each BA instance is associated with a node in
the network, and its goal is to ensure agreement on that node’s contribution to
the set for the current DACS instance. However, recall that each BA instance has
O(∆) expected latency; thus with this construction, our DACS protocol would
incur an Ω(log (N)) latency blowup, as it would be equal to the latency of the
slowest BA instance. We circumvent this by correlating the leader election step
of the BA instances, specifically by choosing the same leader for all BA instances
in each iteration. Then, all BA instances terminate within O(∆ · k) time, with
probability at least 1− 1

2k
, yielding O(∆) expected latency for DACS. Although

the message complexity of DACS is O(Nn2) due to the N instances of BA,
employing aggregate signatures and a trick from [YMR+19b], we show that this
can be reduced down to O(n3).

Finally, our ABC protocol is comprised of repeated sequential executions of
DACS, each commencing O(∆) time after its predecessor (with appropriately set

4Henceforth, n refers to an upper bound on the number of awake nodes during the
execution of a protocol/primitive, the identity of which will be clear from context.
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constants). Contents of the final log output by each node are ordered first by
the order of the DACS instances, and second by a deterministic ordering given
a particular output S of a DACS instance. We provide a detailed comparison of
our ABC protocol to other protocols in the literature in Table 1 and Section 2.

2 Related Work

Table 1: Overview of previous work and our contributions for Atomic Broadcast
protocols in the synchronous sleepy model, along with some of their correspond-
ing properties. Below, the message complexity column refers to the amortized
message complexity per block, ρ refers to the fraction of corrupt nodes, CR
refers to the censorship resistance parameter (i.e., expected latency given ma-
jority censoring nodes), γ refers to the participation rate of all nodes, ∆ is the
upper bound on network delay, and λ is the security parameter.

Paper Message complexity ρ CR Synchronization Latency

[Nak08,GKL15] O(1) 1
2

O(n∆/γ) Randomized1 O(λ∆
γ
)

[DPS19,BGK+18]2 O(1) 1
2

O(n∆/γ) Randomized1 O(λ∆
γ
)

[GLR21a] O(n) 1
2

O(n∆) Randomized O(λ∆)

[BKT+19] O(n) 1
2

O(n∆/γ) Randomized O(∆
γ
)

[MMR23a,DZ23b] O(n2) 1
2

O(n∆) Randomized O(∆)

[DNTT22] O(n) 1
2

O(n∆) Randomized O(λ∆)3

BRAID on [MMR23b] O(Nn) 1
2
O(∆ logN) Randomized O(∆ logN)

This paper O(n2) 1
2

O(∆) Deterministic O(∆)

1. It is possible to achieve deterministic synchronization by requiring the honest nodes
to multicast the observed blocks. However, this makes message complexity O(n).

2. Here, we also consider [PS17b,KRDO17,DGKR18].
3. The latency is O(∆) optimistically, i.e., when the participation is high.

2.1 Asynchronous Common Subset & Interactive Consistency

Protocols solving asynchronous common subset (ACS) have been constructed by
several works [BKR94,CKPS01,MXC+16]. Honeybadger BFT builds a practical
asynchronous ABC protocol by running ACS iteratively [MXC+16]. For validity,
an ACS protocol with N = 3f + 1 nodes requires each set output by an honest
node to contain the inputs of at least N−f nodes and N−2f honest nodes. This
is the best possible guarantee achievable under asynchrony due to the indistin-
guishability of the corrupt and delayed nodes. In contrast, our DACS protocol
exploits the synchrony assumption to ensure that each set output by an honest
node contains the inputs of all other honest nodes. As we work in the sleepy
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network model, and no common subset protocol can satisfy security under both
the sleepy and partially-synchronous (or asynchronous) network models [LR23],
synchrony is a necessary assumption to solve the DACS problem. Furthermore,
the synchrony assumption, together with our leader correlation trick allows to
shave a logN factor in latency in order to design a DACS protocol with O(∆)
expected latency, this is in contrast to state of the art ACS protocols, which
have latency Θ(logN).

The common subset problem has also been studied in the more standard
synchronous non-sleepy setting, where it is usually referred to as the Interac-
tive Consistency (IC) problem. We refer the reader to [CDG+24] for a deeper
discussion on the related work in IC.

2.2 Sleepy Consensus

Variants of the consensus problem have been formulated over the past 40 years
[LSP19,DS83,BT85,CL99]. Recent years have been marked by increased atten-
tion to many of these formulations in the sleepy model.

Atomic Broadcast. The vast majority of the work on consensus in the sleepy
model has focused on the Atomic Broadcast (ABC) problem. Nakamoto con-
sensus [Nak08], introduced as part of the Bitcoin protocol, was the first to
achieve security [GKL15] given large numbers of unexpected and temporary
crash faults. Whereas Bitcoin uses a proof-of-work based sybil resistance mech-
anism, Nakamoto consensus was subsequently adopted by proof-of-stake proto-
cols [PS17b,KRDO17,DPS19,DGKR18]. These works also formalized the afore-
mentioned network model under the names dynamic availability [KRDO17] and
the sleepy network model [PS17b].

Despite its security, Nakamoto consensus suffers from a latency of Ω(λ∆/γ),
where λ is the security parameter,∆ is the delay bound, and γ = n/N is the frac-
tion of awake nodes over all nodes. This motivated a long line of research aiming
to reduce latency, shaving-off either the λ [BKT+19,FGKR18,DNTT22,DZ23a]
or the γ [GLR21b] terms. The desired O(∆) expected latency was eventually
achieved by [MR22a], with follow-up works [MMR22a,MMR23b,MMR22b] fur-
ther reducing the constant expected latency. Assuming a 1/2-bounded adver-
sary, [MMR23b] has the best known expected latency at 14∆.

Building on classical BFT protocols, [MR22a,MMR22a,MMR23b,MMR22b]
inherit their view-based structure with a single leader proposing a batch of trans-
actions (i.e., a block) at each view. The leader has absolute control over the
contents of its view’s block. Therefore, these protocols suffer from short-term
censorship: when all but a constant number of the honest nodes censor a trans-
action by excluding it from their blocks, they cannot ensure its inclusion with
latency o(λ), as it takes in expectation Ω(λ) slots for a non-censoring honest
node to be the leader.

Byzantine Agreement. Thie first Byzantine agreement protocol secure in the
sleepy model is due to Garay et al. [GKL15]. The protocol is based on Nakamoto
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consensus [Nak08], and thus has a latency of Ω(λ∆/γ), message complexity of
O(1) and randomized synchronization. Goyal et al. [GLR21b] later improved on
the latency, which was reduced to Ω(λ∆), at the expense of message complexity
that became O(n). We design a BA protocol with O(∆) expected latency, O(n2)
message complexity and deterministic synchronization. The work of [GL23] de-
signs a BA protocol with O(∆) latency for the sleepy model where the adversary
is restricted to be non-equivocating, and messages are time-stamped.

Graded Agreement. There exist several formulations and implementations of the
graded agreement problem in the sleepy model, under varying assumptions. The
works of [GLR21a,MR22b,DSTZ24b,DLZ24,DSTZ24a] all implement a constant
round graded agreement protocol under varying stable participation assump-
tions, requiring that some subset of the honest nodes remains consistently awake
for a sufficiently long interval of time. Malkhi et al. [MMR23a] design a graded
agreement protocol that makes no assumption about stable participation, but
lacks the consistency property that usually accompanies the primitive. To the
best of our knowledge, we design the first graded agreement protocol in the sleepy
model with no stable participation assumptions that satisfies both validity and
consistency. Our protocol takes 4 rounds, and has message complexity of O(n2).

2.3 FOCIL

FOCIL (fork choice conditional inclusion lists) was proposed as a protocol add-
on to combat short-term censorship on Ethereum [TMDM24]. In each Ethereum
slot, a subset of the nodes called the inclusion committee builds and propagates
to the slot leader a set of censored transactions called the inclusion list (IL). The
nodes then check if the block proposed for that slot contains the transaction in
the IL up to the block size limit (i.e., gas limit), otherwise refusing to vote for the
block. Without FOCIL, the adversary can censor a transaction tx by paying to a
rational slot leader slightly more than tx to exclude it from the block [Pra24]. In
FOCIL, once tx is part of the IL, the adversary must fill up either IL or the block
with its transactions to exclude tx, paying a lot more than tx in the process.

Censorship is only one protocol deviation made possible by the leaders’
monopoly over the block contents. More generally, the leaders enjoy last-mover
advantage, enabling them to extract more surplus from the blockchain applica-
tions [Pra24]. Although FOCIL raises the bar for a successful censorship attack,
it does not alleviate the problems due to the last-mover advantage. In contrast,
both issues can be addressed by consensus protocols with multiple concurrent
leaders in each slot (i.e., multi-proposer schemes). First, to avoid censorship, a
transaction tx can offer to pay a large amount T upon inclusion by one block
only, and some t << T upon inclusion by multiple blocks [FPR23]. Then, tx
ends up paying only Θ(t) in equilibrium, whereas the adversary must pay T to
each leader to exclude tx. Second, timelock or threshold encryption schemes can
ensure that no leader observes the block contents before any other leader. Then,
competition among these equally-positioned leaders can prevent the surplus of
on-chain activity from flowing to any single one, thus mitigating the last-mover
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advantage. Ensuring such competition requires a careful design of transaction
fee mechanisms, which is beyond the scope of this work.

2.4 BRAID

BRAID is a candidate multi-proposer scheme. To reduce the latency of censored
transactions, it entails running multiple instances of a view-based blockchain
protocol in parallel, each executed by the whole set of awake nodes. At any view
v, BRAID selects a different leader for each protocol instance to ensure an honest,
non-censoring leader for one of the instances. Then, the final block confirmed for
view v consists of the blocks confirmed for that view by each parallel instance.
This ensures the inclusion of a censored transaction as long as one of the leaders
is a non-censoring honest node.

Assuming that all but a constant number of the honest nodes is censoring,
BRAID has to run I = Ω(N ϵ), ϵ ∈ [0, 1], instances at all times to achieve an
expected latency of o(N1−ϵ) for the censored transactions5. Moreover, BRAID
nodes confirm the meta-block consisting of the blocks at a certain view v, only
after confirming a view v block for all protocol instances. Therefore, BRAID
instantiated with the protocols in [MR22a,MMR22a,MMR23b,MMR22b] has
O(log (I)∆) = O(log (N)∆) expected latency, as these protocols achieve con-
stant latency only in expectation. In these protocols, the nodes are guaranteed
to confirm only the blocks proposed by the honest leaders and their prefixes
(regardless of whether the leader is censoring or not). As the leaders at differ-
ent views of a given protocol instance are selected uniformly at random, for a
given view v, it takes in expectation O(log (I)∆) time for each of the I instances
to have an honest leader at view v or higher. In contrast, our DACS protocol
achieves a constant expected latency by correlating the leaders across different
BA instances. This idea is not applicable to BRAID since correlated leaders
across different protocol instances defeats the purpose of censorship resistance.

The construction described above for BRAID has a message complexity of
O(N ϵn2) as it consists of more than N ϵ protocol instances and each instance
incurs a complexity of O(n2). This can be reduced to O(n3) using aggregate
signatures in a manner similar to that of our DACS protocol.

Finally, BRAID based on [MR22a,MMR22a,MMR23b,MMR22b] inherits the
probabilistic synchronization of these protocols.

3 Model & Definitions

A function f(x) is said to be negligible in the security parameter λ if f(x) =
o(1/xd) for all d > 0. Time proceeds in discrete rounds denoted by t. We denote
the set {1, . . . , n} by [n]. For two sequences of values u = (a1, . . . , an) and
v = (b1, . . . , bm), we write u ⪯ v if n ≤ m and ai = bi for all i ∈ [n].

5Recall that N is the total number of nodes in the sleepy model.
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3.1 Model

Adversary. The adversary A is a PPT algorithm, which upon observing a given
protocolΠ, can statically corrupt and subsequently control a subset of the nodes,
hereafter called corrupt nodes. They surrender their internal states to the ad-
versary and can deviate from the protocol arbitrarily (Byzantine faults). The
remaining nodes are called honest and execute the protocol as specified. We
denote the total number of nodes corrupted by the adversary throughout the
execution by f .

Environment and network. Nodes exchange messages over a peer-to-peer syn-
chronous network. The adversary can delay the messages sent by the honest
nodes up to ∆ rounds and deliver them in any order. At each round, it can
insert a polynomial number of messages to any honest node. The environment
is an external entity to the protocol that at any point in time, can send trans-
actions from a universe I to nodes in the network. The timing and content of
these messages is to the discretion of the adversary.

Sleepy model of consensus. There are N nodes in total, identified by a public
key infrastructure (PKI). At any round t, the adversary can adaptively6 select a
subset of the honest nodes to be asleep, whereas the remaining nodes are awake.
Asleep nodes are temporarily crashed: they do not execute the protocol or send
messages. Messages sent to an asleep node are buffered and delivered to the node
in an adversarially selected order once it is awake. Upon being awake, nodes know
the current round number7. Once corrupted, nodes stay awake throughout the
entire execution. The number of awake nodes at round t is denoted by nt

8. We
say that the adversary is ρ-bounded if for all rounds t, f/nt < ρ. We assume
that the adversary is 1/2-bounded unless stated otherwise, i.e., nt ≥ 2f + 1 at
all rounds t.

Cryptographic primitives. Our protocols use a cryptographic hash function H(.),
a digital signature scheme and a verifiable random function (VRF), with public
keys given by the PKI. A message m signed by a node p is denoted by ⟨m⟩p.
The VRF function evaluated by a node p on input m is denoted by VRFp(m)
and outputs a deterministic pseudorandom value ρ and a proof π that attests to
the correct VRF evaluation by node p on message m.

Censorship. As discussed in the introduction, we propose a formal model to cap-
ture the short-term censorship phenomena, which plagues modern blockchain
protocols. While the intuition from the introduction about nodes being hon-
est but censoring is helpful to consider, defining the concept of an honest-but-
censoring node in a protocol agnostic fashion, i.e., as part of the model, without

6The adaptive adversary is not strongly rushing, i.e. it can not observe the contents
of a message sent by a node, intercept it, and then put the node to sleep.

7We assume synchronized clocks. The latency ∆ will be larger under a bounded
clock skew and will require occasional clock synchronization.

8We drop the subscript when the round is clear from the context.
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making assumption on the structure or behavior of any protocol, seems like an
elusive task. We thus resort to defining a property which we argue captures the
essence of censorship, and is well defined for any primitive equipped with the
termination property and whose interface has the honest nodes commence the
protocol with input values from some known universe, and output a set of val-
ues from said universe (e.g., Byzantine Agreement, Graded Agreement, ACS,
DACS). Specifically, in the context of the sleepy model, we say that a protocol Π
for such a primitive has censorship resistance if the output of Π always contains
the inputs of all honest nodes. We then say that Π has ℓ-censorship resistance
where ℓ is the latency (See section 3.2) of Π.

Message complexity. A standard measure in the literature for the communication
cost of a protocol is bit complexity, i.e. the number of bits sent by honest nodes
on the communication links throughout the execution. Note that in a network
with N nodes, an honest node multicasting a message of size O(λ) to all nodes
incurs O(Nλ) bit complexity. In the context of the sleepy model, however, when
n << N , we would want to capture the communication cost in terms of the
number of awake nodes. As such, we focus on message complexity, which is
the number of different messages sent by honest nodes over the communication
network throughout the execution. We define a message to be any string of length
O(λ). The bit complexity of our protocol is thus obtained by simply multiplying
the message complexity by Nλ.

3.2 Consensus Primitives

Definition 1 (Atomic Broadcast (ABC)). In atomic broadcast [CASD95b],
nodes receive values v ∈ V from the environment and output a growing sequence
of values called the log. Let Lpr denote the log output by a node p at round r. A
secure ABC protocol satisfies the following properties:

– Safety. For all honest nodes p1, p2 and rounds r1, r2, either Lp1r1 ⪯ Lp2r2 , or
Lp2r2 ⪯ Lp1r1 . For any honest node p and rounds r1 ≤ r2, L

p
r1 ⪯ Lpr2 .

– Liveness. If all9 awake honest nodes receive an input v from the environ-
ment by round r, then there is a finite time r′ such that v is in all the logs
output at or after round r′ + r by the awake honest nodes.

We define a version of the graded agreement problem [MR22a,MMR23b]
(similar to Gradecast [KK06]) with an additional consistency requirement.

Definition 2 (Consistent Graded Agreement (CGA)). In consistent graded
agreement, each node takes as input a value v ∈ V and outputs a value v′ ∈
V ∪ {⊥} along with a grade g ∈ {0, 1}, subject to the following constraints:

– Consistency. If two honest nodes output (v, ∗) and (v′, ∗) for v, v′ ̸= ⊥,
then v = v′.

9Even if a single awake honest node were to receive an input value, it can multicast
it to all current and future awake honest nodes.
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– Graded delivery. If an honest node outputs (v′, 1), then all honest nodes
that produce an output, output (v′, ∗).

– Integrity. If an honest node outputs (v′, ∗), then at least one honest node
awake at time t = 0 has input v′.

– Validity. If all honest nodes awake at time t = 0 have v as input, then all
honest nodes that produce an output, output (v, 1).

– Termination. There exists time T such that every honest node awake at
any time ≥ T outputs and halts.

We next define the well known problem of byzantine agreement (BA) [LSP19].

Definition 3 (Byzantine Agreement (BA)). In byzantine agreement, each
node has an input value v ∈ V, and every node can output a value v′ ∈ V, subject
to the following constraints:

– Agreement. There exists a value v ∈ V, such that all honest nodes that
output a value, output v.

– Validity. If all honest nodes awake at time t = 0 hold the same input value
v, then all honest nodes that output a value, output v.

– Termination. There exists time T such that every honest node awake at
any time ≥ T outputs and halts.

3.3 Dynamically Available Common Subset

We next formalize dynamically available common subset (DACS), the cornerstone
of our protocol. It can be thought of as the analogue of the well-known ACS
primitive [BKR94,CKPS01,MXC+16] in the sleepy network model. The formal
definition is as follows.

Definition 4 (Dynamically Available Common Subset (DACS)). In dy-
namically available common subset, each node has an input value vi and can
output a subset S ⊆ V, subject to the following constraints:

– Agreement. There exists a set S ⊆ V such that all honest nodes that output
a set, output S.

– Validity. If an honest node awake at time t = 0 holds the input v, then for
any honest node that outputs a set S, v ∈ S.

– Termination. There exists a time T such that every honest node awake at
any time ≥ T outputs and halts.

We say that a protocol is ρ-secure protocol if it satisfies its respective prop-
erties for all ρ-bounded adversaries. If it satisfies a property prop (for some
property e.g., agreement) for all ρ-bounded adversaries; then we say it satisfies
ρ-prop (e.g., ρ-agreement). Given a ρ-secure protocol Π and an adversary A, we
denote by L(ΠA) the random variable (over the randomness used by the honest
nodes and the adversary) indicating the termination time T in the presence of A.
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We define the expected latency of Π with respect to A by LA(Π) = E[L(ΠA)].
We define the expected latency of Π to be

L(Π) = sup
1
2−bounded A

LA(Π).

Similarly, we denote by C(ΠA) the expected message complexity of Π w.r.t. A,
and by C(Π) the supremum of C(ΠA) over all

1
2 -bounded adversaries A.

4 Consistent Graded Agreement

We now describe the CGA protocol and prove its security.

4.1 The CGA Protocol

The CGA protocol builds on the graded agreement protocol of [MMR23b]. We
give a step-by-step description of the protocol below. The start time is normalized
to be t = 0.

1. Round 1: Echo. Each node awake at time t = 0 multicasts its input value
vi via an echo message, ⟨echo, vi⟩ (echovi for short). At any future round, all
awake nodes multicast all observed echo messages if they have not multicast
that message before. If two different messages of any type by a node p were
observed, then we say that p is an equivocating node.

2. Round 2: Tally. Each node awake at time t = 1 does the following:
– Construct Fv - The set of received echov messages.
– S - The set {Fv | v ∈ V, |Fv| ≠ 0} of tallies for the values v. Here, we

denote Fv by S[v].
– Multicast the tally message ⟨tally, S⟩.

3. Round 3: Group. Each node awake at time t = 2 does the following:
– D - The dictionary that has v ∈ V as its keys, and the set of echov

messages by non-equivocating nodes as the value D[v] (i.e., no echo
message by an equivocating node is included in D). If D[v] = ∅, then v
is omitted from D.

– Multicast the group message ⟨group, D⟩.
4. Round 4: Vote. Each node awake at time t = 3 does the following:

– E4 - The number of nodes such that an echo message by the node was
received.

– F - The number of nodes from which a group message was received.
– Cv - The set of non-equivocating nodes p such that over E4/2 echov

messages by non-equivocating nodes appear in the set Dp[v] within the
dictionary Dp received from the node p.

– If |Cv| > F/2 for some value v ∈ V, multicast a vote message ⟨vote, v⟩.
5. Round 5: Output. Each node awake at time t ≥ 4 does the following:

– E5 - The number of nodes such that an echo message by the node was
received.

13



– V - The number of nodes from which a vote message was received.
– Vv - The number of nodes from which a vote message for value v was

received.
– S′

p - In each tally message ⟨tally, {Fv | v ∈ V, |Fv| ≠ 0}⟩p from the nodes
p, remove the equivocating nodes’ messages from the sets Fv to obtain
F ′
v and reconstruct the set S′

p = {F ′
v | v ∈ V, |F ′

v| ≠ 0} with the new F ′
v.

– Mv - For each value v such that a non-empty set F ′
v appears in a recon-

structed S′
p, calculate the median Mv of |S′

p[v]| across the nodes p from
which a tally message was received.

– If Mv > E5/2 for a value v, output (v, 1). Else, if Vv > V/2 for v, output
(v, 0). Else, output (⊥, 0).

4.2 Security Analysis

In the analysis below, we denote a value A in a node p’s view by Ap unless stated
otherwise.

Lemma 1 (Graded delivery). The CGA protocol satisfies 1/2-graded deliv-
ery: If an honest node outputs (v, 1), then for all t ≥ 4, all honest nodes awake
at time t output (v, ∗).

Proof. Suppose an honest node p outputs (v, 1). LetMp
v and Ep

5 denote the values
of Mv and E5 respectively in p’s view at time t = 4. By definition, Mp

v > Ep
5/2.

Let Cq
v and Eq

4 denote the values of Cv and E4 respectively in an honest node
q’s view at time t = 3. Since q forwards all of the echo messages counted in E4,
we have Ep

5 ≥ Eq
4 .

Since the adversary is 1/2-bounded, the median Mp
v in p’s view is upper

bounded by at least one honest node p0’s tally |S′
p0 [v]| for v after p removes the

equivocating nodes. Since p0 forwards all of the echov messages received by time
t = 1, these messages are received by all honest nodes awake at time t = 2,
and the forwarded echov messages by non-equivocating nodes are included in
the dictionary D of all honest nodes awake at time t = 2. Moreover, if a node p1
is detected as an equivocating node by q at time t = 3, then p1’s messages are
also not in any set S[v] in p’s view at time t = 4; since q forwards all observed
echo messages at least once. Therefore, all messages within S′

p0 [v] are also in the
set D[v] for each dictionary D received by q from an honest node, and for each
such dictionary D, it holds that

|D[v]| ≥ |S′
p0 [v]| ≥Mp

v > Ep
5/2 ≥ Eq

4/2

Since for each dictionary D received by q from an honest node, |D[v]| ≥ Eq
4/2,

and the adversary is 1/2-bounded, it holds that Cq
v ≥ F q. Therefore, q sends a

vote message for v.
Since the reasoning above holds for any honest node awake at time t = 3,

all honest nodes awake at time t = 3 sends a vote for v. By the 1/2-bound on
the adversary, each node awake at any time t ≥ 4 outputs (v, 0), if it has not
already output (v, 1).
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Lemma 2 (Consistency). The CGA protocol satisfies 1/2-consistency: If two
honest nodes output (v, ∗) and (v′, ∗) respectively, where v, v′ ̸= ⊥, then v = v′.

Proof. Lemma 1 shows that if for an honest node, the condition for outputting
(v, 1), i.e., Mp

v > V/2, is satisfied; then for all honest nodes, the condition for
outputting (v, 0) is also satisfied, i.e., Vv > V/2. Thus, to prove consistency, it
suffices to show that the condition for outputting (v, 0), i.e., Vv > V/2, cannot
be satisfied for two different values v ̸= v′ in the views of any (potentially the
same) honest nodes. Towards contradiction, suppose Vv > V/2 in the views of
two (potentially the same) honest nodes p1 and p2. Then, as the adversary is
1/2-bounded, two (potentially the same) honest nodes p and q must have sent
vote messages for v and v′ at time t = 3. Therefore, it must be that Cp

v > F p/2
and Cq > F q/2 at time t = 3.

As the adversary is 1/2-bounded, Cp
v > F p/2 and Cq > F q/2 respectively

imply the existence of distinct honest nodes p1 and p2 such that p1’s dictionary
D1 is received by p, p2’s dictionary D2 is received by q, and after p and q
remove the equivocating nodes from the dictionaries, (i) |D1[v]| > Ep

4/2, and (ii)
|D2[v

′]| > Eq
4/2. Since p1 and p2 are honest, p and q both receive all of the echov

messages within D1[v] and the echov′ messages within D2[v
′]. Hence, after the

equivocating nodes are removed, the sets D1[v] and D2[v
′] are disjoint, and

min(Ep
4 , E

q
4) ≥ |D1[v]|+ |D2[v

′]|

Now, summing the inequalities in (i) and (ii) gives

|D1[v]|+ |D2[v
′]| > (Ep

4 + Eq
4)/2 ≥ min(Ep

4 , E
q
4)

However, this is a contradiction, implying that no two honest nodes output (v, ∗)
and (v′, ∗) such that v ̸= v′ and v, v′ ̸= ⊥.

Lemma 3 (Integrity). The CGA protocol satisfies 1/2-integrity: If an honest
node outputs (v, ∗), then at least one honest node has input v.

Proof. Lemma 1 shows that if for an honest node, the condition for outputting
(v, 1), i.e., Mp

v > Ep
5/2, is satisfied; then for all honest nodes, the condition

for outputting (v, 0) is also satisfied, i.e., Vv > V/2. Thus, to prove integrity,
it suffices to show that if the condition for outputting (v, 0), i.e., Vv > V/2,
is satisfied in the view of an honest node, value v must be the input of an
honest node. Suppose Vv > V/2 in the view of an honest node. Then, as the
adversary is 1/2-bounded, an honest node p must have sent a vote message for
v at time t = 3 Therefore, it must be that |Cv| > E4/2 in p’s view at time t = 3.
By the definition of Cv, p must have received over F/2 dictionaries by unique
nodes such that for each of these dictionaries, |D[v]| > E4/2 after p removes
the equivocating nodes. As the adversary is 1/2-bounded, this cannot happen
unless an honest node sends an echov message, i.e., v is the input of an honest
node.

Lemma 4 (Validity). The CGA protocol satisfies 1/2-validity: If all honest
nodes have v as input, then all honest nodes output (v, 1).
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Proof. Let Mp
v and Ep

5 denote the values Mv and E5 observed by an honest node
p at time t ≥ 4. Since the adversary is 1/2-bounded, the median Mp

v must be
lower bounded by at least one honest node p0’s tally S′

p0 [v] for v after p removes
the equivocating nodes. Let nh denote the number of honest nodes awake at
time t = 0. As honest nodes never send equivocating echo messages, it holds
that S′

p0 [v] ≥ nh. Thus, M
p
v ≥ S′

p0 [v] ≥ nh > f . Moreover, for Ep
5 , it holds

that nh ≤ Ep
5 ≤ nh + f , which together with the inequalities above implies that

Mp
v > Ep

5/2. Therefore, p outputs (v, 1).

4.3 Performance

The protocol has a round complexity of 4 and message complexity of Ω(n2)
when the number of awake nodes is n. The message complexity is due to the
group step, where each honest awake node multicasts a dictionary to n−1 other
nodes, where the total size of the keys and values is O(n).

5 An Alternative Consistent Graded Agreement Protocol

5.1 The CGA Protocol

The start time is again normalized to t = 0. The protocol works as follows:

1. Round 1: Echo. Each node awake at time t = 0 multicasts its input value
vi via an echo message, ⟨echo, vi⟩.

2. Round2: Forward1. Each node awake at time t = 1 does the following:
– Construct Fv - The set of echo messages received for value v, v ∈ V.
– Multicast ⟨forward1, {Fv | v ∈ V}⟩10.

3. Round 3: Vote1. Each node awake at time t = 2 does the following:
– E∗ - The set of nodes from which an echo message was received.
– F ∗ - The set of nodes from which a forward1 message was received.
– Cv - The set of nodes for which an echov message appeared in more than
|F ∗|/2 of the forward1 messages, and no equivocation was detected.

– If |Cv| > |E∗|/2 for some value v ∈ V, multicast ⟨vote1, v⟩. Else, multi-
cast ⟨novote⟩.

4. Round 4: Forward2. Each node awake at time t = 3 does the following.
– Wv - The set of vote1 messages received for value v, v ∈ V.
– Wnv - The set of novote messages received.
– Multicast ⟨forward2, {Wv | v ∈ V},Wnv⟩11.

5. Round ≥ 5: Output. Each node awake at time t = 4 does the following.
– V ∗ - The set of nodes for which a vote1 or novote message was received.
– W ∗ - The set of nodes for which a forward2 message was received.
– Dv - The set of nodes for which a vote1i message appeared in more than
|W ∗|/2 of the forward2 messages, and no equivocation was detected.

– If |Dv| > |V ∗|/2 for some value v ∈ V, output (v, 1). Else, if |Dv| > |Du|
for all u ̸= v for some v ∈ V, output (v, 0). Else output (vi, 0).

10Sets Fv which are empty are omitted from the message.
11Similarly, Wv which are empty are omitted from the message.
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5.2 Security Analysis and Performance

For the analysis, we first start with proving validity.

Lemma 5. Assume that all honest nodes awake at time t = 0 commence GA
with the same input v. Then every honest node awake at time ≥ 4 outputs (v, 1).

Proof. Assume all honest nodes awake at t = 0 input the same value v. By the
honest majority assumption, and the behavior of the protocol we get that for
every honesttt p, ⟨echo, v⟩p is included in all forward1 messages created by honest
nodes at time t = 1, and in parituclar p ∈ Cv for all honest nodes awake at time
t = 2. Since this holds for all honest nodes p, we get then that |Cv| > |E∗|/2
for all honest nodes awake at t = 2, which in particular means they all cast
⟨vote1, v⟩. By a similar argument, all awake nodes at time ≥ 4 have that p ∈ Dv

for any honest p awake at time t = 2, and so |Dv| > |V ∗|/2. Thus any honest
node awake at time ≥ 4 outputs (v, 1), as required.

Before we prove graded delivery, we prove the following lemma.

Lemma 6. Denote by S the set of values v for which there exists a honest node
that sent ⟨vote1, v⟩. Then |S| ≤ 1.

Proof. Assume towards a contradiction that |S| ≥ 2, and let p, q be two honest
nodes awake at t = 2, s.t. p sent ⟨vote1, v⟩, and q sent ⟨vote1, u⟩, for u ̸= v. Denote
by Cp

v , C
q
u the corresponding sets C as defined in Round 3 of the protocol that

triggered these messages.

Claim. It holds that Cp
v ∩ Cq

u = ∅.

Proof. Let a ∈ Cp
v , in particular this means, that there exists an honest node a,

awake at time t = 1, that included ⟨echo, v⟩a in its forward1 message, that was
sent to all nodes. If it was the case that a ∈ Cq

u, then all honest nodes would
witness an equivocation from a, and would thus discard it from their C set, as
instructed. This concludes the proof.

Denote by E∗
p , E

∗
q the E∗ variables witnesses by p, q respectively at time

t = 2. Next, we prove the following.

Claim. Cp
v ∪ Cq

u ⊆ E∗
p , and Cp

v ∪ Cq
u ⊆ E∗

q .

Proof. We prove Cp
v ∪Cq

u ⊆ E∗
p . The proof of Cp

v ∪Cq
u ⊆ E∗

q follows an identical
line or arguing. Cp

v ⊆ E∗
p is immediate by the behavior of the protocol. Thus

all that is left is to prove Cq
u ⊆ E∗

p . Let a ∈ Cq
u. This implies that ⟨echo, u⟩a

appeared in more than |F ∗
q |/2 of the forward1 messages received by q, which in

particular means that there exists a honest node b, awake at time t = 1, that
included ⟨echo, u⟩a in its Fu set, and in particular sent this set to all nodes via
a forward1 message. Thus, all honest nodes awake at time t = 2, including p
have received the forward1 message from b and thus received ⟨echo, u⟩a, which
in particular means that a ∈ E∗

p , as required.
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Assume w.l.o.g. that |E∗
p | > |E∗

q |. Recall that |Cp
v | > |E∗

p |/2, and |Cq
u| >

|E∗
q |/2. Since Cp

v ∩ Cq
u = ∅, we thus have that |Cp

v ∪ Cq
u| = |Cp

v | + |Cq
u| >

|E∗
q |/2 + |E∗

q |/2 = |E∗
q |. This contradicts Cp

v ∪ Cq
u ⊆ E∗

q . Thus concluding the
proof of the lemma.

We can now prove graded delivery.

Lemma 7. Assume there exists a honest node p awake at time t ≥ 4 that output
(v, 1) for some v ∈ V. Then all honest nodes awake at time ≥ 4 output (v, ∗).

Proof. We begin by observing that an identical line of arguing as in the claim
above, it holds for any two honest p, q awake at time ≥ 4 that Dp

v ∩ Dq
u = ∅,

and that Dp
v ∪ Dq

u ⊆ V ∗
p , V

∗
q , for any u ̸= v. Assume p output (v, 1). This

in particular means that there exists a honest a, awake at t = 2, that sent a
⟨vote1, v⟩a message. Which by lemma 6 implies that no other honest nodes sent
a vote1 message for any other value. Let q be a honest node awake at time
≥ 4 and assume towards a contradiction that |Dq

u| ≥ |Dq
v| for some u ̸= v. Let

Hvote1,v be the set of honest nodes awake at time t = 2 that cast a ⟨vote1, v⟩
message. Let H be the set of honest nodes awake at time t = 2, and let B denote
the set of corrupt nodes. Let Bp

v = Dp
v\Hvote1,v. It holds that Hvote1,v ⊆ Dq

v, and
that Dp

v ∩Dq
u = ∅. We further have that Dp

v ∪Dq
u ⊆ V ∗

p . Notice now that

H ∪Bp
v ∪Dq

u ⊆ V ∗
p

, and this is a disjoint union. Thus

|Dp
v | > |V ∗

p |/2 ≥ (|H|+ |Bp
v |+ |Dq

u|)/2
≥ (|H|+ |Bp

v |+ |Dq
v|)/2 ≥ (|H|+ |Bp

v |+ |Hvote1,v|)/2

Note that |Bp
v | + |Hvote1,v| = |Dp

v |. Thus in total we get that |Dp
v | > (|H| +

|Dp
v |)/2. This boils down to |Dp

v | > |H|. On the other hand, we have that

|Dp
v | = |Bp

v |+ |Hvote1,v| ≤ |Bp
v |+ |Dq

v| ≤ |Bp
v |+ |Dq

u|

Recall now that Dq
u contains no nodes from H. Also recall that Dp

v ∩Dq
u = ∅,

and so in particular Bp
v ∩Dq

u = ∅. Thus

|Bp
v |+ |Dq

u| = |Bp
v ∪Dq

u| ≤ |B| < |H|

This is a contradiction, and thus every node q awake at time ≥ 4 observes
|Dq

v| > |Dq
u| and thus outputs (v, ∗).

The message complexity of ΠGA is O(n2), and its round complexity is 4.
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Fig. 2: Overview of the structure of a single iteration of our BA protocol. The
input to an iteration is the output to the former iteration, or the input to the
BA instance for the first iteration. The CO task is captured by CGA2 and the
leader election (LE) tasks.

6 Byzantine Agreement

In this section, we present a multi valued Byzantine Agreement (BA) protocol
with O(1) expected latency in the sleepy model (Figure 2). Specifically, we boot-
strap our BA construction by interlacing CGA executions with leader election.
We begin by defining the conciliator primitive.

Definition 5. In the conciliator task, each node has an input value vi ∈ V and
produces an output oi ∈ V, subject to the following constraints:

– Validity. If all honest nodes awake at time t = 0 have the same input v,
then all honest nodes that output a value, output v.

– Probabilistic agreement. With probability (w.p.) at least 1
2 , all honest

nodes that output a value, output the same value v.
– Termination. There exists T such that every honest node awake at time
≥ T outputs and terminates.

If a conciliator protocol Π is ρ-valid, ρ-terminating and has ρ-probabilistic
agreement we say that Π is a ρ-secure conciliator (CO) protocol.

We now present a constant round CO protocol ΠCO which is 1
2 -secure.

1. Rounds 1-5: Each honest node awake at time 0 ≤ t ≤ 4 executes ΠCGA that
starts at time t = 0 with its input vi. Furthermore, if awake at time t = 4,
after obtaining the output (oi, gi) from ΠCGA, each honest node multicasts
⟨leader,VRF(p, t), op⟩.

2. Round 6. After obtaining the output (oi, gi) from ΠCGA, let val be the
largest value of VRF(p, 4) observed from all received leader messages, and let
⟨leader,VRF(p, 4), vp⟩ be the witness message. Each node awake at time ≥ 5
does the following:
– If gi = 1, output oi.
– Else, output vp.
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We now prove security.

Lemma 8. ΠCO is a 1
2 -secure CO protocol.

Proof. Let A be some 1
2 -bounded adversary. ΠCO is clearly 1

2 -terminating. For
validity, assume all honest nodes awake at t = 0 input the same value v. Then,
due to ΠCGA being 1

2 -valid, all nodes awake at time ≥ 4 obtain output (v, 1)
from ΠCGA, which in turn implies that they output v from ΠCO, as required.
Lastly, for 1

2 -probabilistic agreement, we prove that when the highest VRF(·, t)
value is attained by an honest node q awake at t = 4 (an event that occurs with
probability at least 1

2 , by the honest majority assumption and the modeling of
the VRF as a random oracle), all honest nodes awake at time ≥ 5 output the
same value. We now have two cases.

– There exists an honest p, awake at time ≥ 5, that has gp = 1 and outputs
op. By the consistency of ΠCGA, all honest nodes awake at time ≥ 4 output
(op, ∗) from ΠCGA. In particular, q has oq = op. Thus, all honest nodes awake
at time ≥ 5 receive the leader message from q, and by our conditioning,
VRF(q, 4) is the highest VRF value seen by all honest nodes awake at time
≥ 5. Therefore, all honest nodes output oq = op, as required.

– No honest node awake at time ≥ 5 outputs grade 1 from ΠCGA, in which
case all honest nodes output from ΠCO according to item 2 in Round 6.
Since all honest nodes awake at time ≥ 5 receive the leader message from
q, and by our conditioning, VRF(q, 4) is the highest VRF value seen by all
honest nodes awake at time ≥ 5, all honest nodes awake at time ≥ 5 output
oq, as required.

We are now ready to describe our BA protocol, ΠBA. The protocol consists of
interlacing executions of CGA and CO. Intuitively, the CGAs purpose is to detect
when the network is in a favorable condition (all honest nodes hold the same
value), and trigger a decision, while the goal of the CO is twofold in attempting
to bring the network to a favorable condition and preserving preexisting agree-
ment in case some honest node decided in the preceding CGA. More formally,
our protocol proceeds in iterations where iteration i consists of an execution of
CGA, denoted by CGA[i], followed by a CO, denoted by CO[i]. Formally, the pro-
tocol ΠBA is as follows. Denote by Lc, Lga the constant latencies of ΠCO, ΠCGA,
respectively. Denote by t the current timeslot. The following is executed by every
honest node p with input vp whenever it is awake. See fig. 2 for an illustration
of the structure of the protocol.

1. Compute i← ⌊t/(Lc + Lga)⌋.
2. While true:

(a) If t ∈ [(Lc +Lga)i, (Lc +Lga)i+Lga], run as in CGA[i] with input being
the output of CO[i− 1] or vp if i = 0.

(b) If r ∈ [(Lc +Lga)i+(Lga +1), (Lc +Lga +1)i], let (oi, gi) be the output
obtained from CGA[i].
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i. If gi = 1, then output oi as BA decision. Participate in the protocol
for one more iteration with inputs to all subroutines being fixed to
oi, and then halt.

ii. Else, continue.
(c) If r ∈ [(Lc+Lga)i+(Lga+1), (Lc+Lga+1)i] run as in CO[i] with input

being p’s output in CGA[i].

Our goal for the reminder of the section is to prove the following theorem.

Theorem 2. ΠBA is a 1
2 -secure BA protocol. Furthermore ΠBA satisfies deter-

ministic synchronization, has message complexity of O(n3) and expected latency
of O(∆) against any 1

2 -bounded adversary.

Proof. We begin with validity. Assume that all honest nodes awake at time t = 0
hold the same input value v. This implies by the validity of CGA that all honest
nodes awake at time ≥ 4 output (v, 1) from CGA[0]. Then, all honest nodes
awake at time ≥ 4 output v, as required. Next, for agreement, let p be the first
honest node to decide a value v. This implies that there exists an iteration i for
which p outputs (v, 1) from CGA[i], and no other honest node outputs from CGA
with grade 1 prior to that. Note that this implies (by 1

2 -consistency of ΠCGA)
that any honest node that outputs from CGA[i] outputs either (v, 0) or (v, 1).
As even the nodes that output (v, 1) continue to participate in the protocol for
an additional iteration, security guarantees required for CO[i] and CGA[i + 1]
are satisfied. Moreover, by the 1

2 -validity of CO, all honest nodes that output
from CO[i], output v. Now, by 1

2 -validity of CGA, we have that all honest nodes
that output from CGA[i+ 1] output (v, 1), and thus output v. In conclusion, all
honest nodes that output a value, output the same value v. For termination, we
prove the following claim.

Lemma 9. For any i ≥ 1, with probability at least 1− 1
2i , all honest nodes awake

at or after the end of CGA[i] decide a value.

Proof. We prove this by induction on i. By 1
2 -probabilistic agreement, w.p. at

least 1
2 , all honest nodes that output from CO[0], output the same value, and thus

by 1
2 -validity of CGA[1], all nodes awake at or after the end of CGA[1] immediately

decide a value. Now we assume the statement holds for up to iteration i, and
prove it for iteration i+1. Observe that each invocation of CO uses independent
randomness from all previous invocations, and thus we get by the 1

2 -probabilistic
agreement property of CO[i], that conditioned on no honest node deciding up to
the end of iteration i, w.p. at most 1

2 , not all honest nodes commence CGA[i+1]
with the same value. Thus, using the induction assumption we get that the
probability that not all honest nodes commence CGA[i+1] with the same value
is upper bounded by 1

2 ·
1
2i = 1

2i+1 . This implies that w.p. at least 1 − 1
2i+1 ,

all honest nodes commence CGA[i + 1] with the same value, and decide at its
end.

Lemma 9 proves 1
2 -termination, i.e., w.p. 1, there exists T such that any hon-

est node awake at time ≥ T outputs and halts. Furthermore, Lemma 9, combined
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with the behavior of the algorithm, gives that Pr[T > end of iteration i] ≤ 1
2i−1

for all i ≥ 1. Thus, as required, we get that

E[T ] =
∞∑
j=0

Pr[T > j] = O(∆)

∞∑
i=0

Pr[T > end of iteration i]

< O(∆) · (1 +
∞∑
i=1

1

2i−1
) = O(∆)

For deterministic synchronization, consider the first honest node to decide
a value (e.g., v) at some iteration i. Then, this node must have output v with
grade 1 at the end of CGA[2i − 1] at time t = 4∆ + 9∆(i − 1). Then, for any
time s ≥ t, all honest nodes awake at time s also output v from CGA[2i − 1],
either with grade 1, thus deciding v at iteration i, or with grade 0, by the graded
agreement of CGA. Then, all honest nodes awake at time t input it to CGA[2i].
By the validity of CGA, for any time s ≥ t+4∆, all honest nodes awake at time
s output v with grade 1 for CGA[2i]. Therefore, all honest nodes awake at time
t + 5∆ input the same value v to CGA[2i + 1], and by the validity of CGA, for
any time s ≥ t + 9∆, all honest nodes awake at time s output v with grade 1
from CGA[2i], thus deciding at iteration i+ 1, within as early as 9∆ time of the
first deciding honest node.

Finally, O(n2) message complexity follows from the O(n2) message complex-
ity of CGA.

7 DACS and Atomic Broadcast

Finally, we describe our DACS and atomic broadcast protocols. By Definition 4,
DACS has censorship resistance, and thus, its censorship resistance parameter
corresponds to its latency.

7.1 DACS

We first showcase a DACS protocol with O(logN) expected latency. Afterwards,
we demonstrate how this protocol can be modified with a novel trick to obtain a
DACS protocol with O(∆) expected latency. The DACS protocol ΠDACS follows
directly from Byzantine agreement and formally proceeds as follows:

1. Round 1: Each honest node p awake at time 0 with input v multicasts
⟨content, z⟩p.

2. Round ≥ 2. Each honest node p awake at time t ≥ ∆ participates in N
instances of BA, denoted by BA[i], that commence at t = ∆. Each node
p inputs a value zi to the instance BA[i] if p received a unique message
⟨content, zi⟩i from node i. Otherwise, it inputs ⊥.

3. Decision. Let vp1, . . . , v
p
N denote the outputs of an honest node p once it

decides and terminates all of the N BA instances. Node p outputs the set
Sp = {vp1 , . . . , v

p
N}.
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We now prove the following.

Lemma 10. ΠDACS is a 1
2 -secure DACS protocol, satisfies deterministic syn-

chronization, has O(∆ log n) expected latency and O(Nn2) message complexity.

Proof. We prove the security, deterministic synchronization, latency and com-
plexity claims below.

Security: By 1/2-agreement of BA, there exists a value vi ∈ V for each
i ∈ [N ] such that each honest node that outputs a value for BA[i], outputs vi.
Therefore, there exists a set S = {v1, . . . , vN} such that all honest nodes that
output a set, output S, proving 1/2-agreement for DACS. For validity, let I∗

denote the set of indices i such that node i is honest and awake at time t = 0.
Note that for all i ∈ I∗, all honest nodes input the same value vi multicast by
node i to BA[i]. Then, by 1/2-validity of BA, all honest nodes that output a
value for BA[i], output vi, implying that for any honest node that outputs a set
S, vi ∈ S. This shows 1/2-validity for DACS.

Finally, since by 1/2-termination, for each BA[i], i ∈ [N ], there exists a time
Ti such that every honest node awake at any time ≥ Ti outputs and halts in
BA[i], there exists a time T = maxi∈[N ](Ti) such that every honest node awake
at any time ≥ T outputs and halts in DACS. This shows 1/2-termination for
DACS.

Latency: Let n denote the total number of awake nodes at time t = 0.
Note that the termination of DACS requires the completion of all of the N BA
instances. For the (honest) nodes p that are asleep at time t = 0, each honest
node inputs ⊥ to the associated BA instance. Similarly, for each honest node p
that is awake at time t = 0, each honest node inputs the unique value vp multicast
by p to the instance BA[p]. Therefore, any awake honest node decides these BA
instances after one round of CGA, i.e., by time t = 4∆ time, and terminates
by time t = 13∆. As for the other k < n/2 BA instances, termination is only
guaranteed after the election of an honest leader. Since the leader of each BA
instance is selected independently from the other instances and is honest with
probability 1/2, latency of these k instances are upper bounded by independent
identically-distributed random variables Xi, i ∈ [k], which take value (13+9j)∆,
j ≥ 0, with probability 2−j . Given the geometric random variables Xi, the
expected value of the maximum of these random variables can be found as

E[max
i∈[k]

(Xi)] = 13∆+ 9∆E[max
i∈[k]

(Yi)] ≤ 13∆+ 9∆E[max
i∈[n]

(Yi)] = O(log (n)∆),

which gives O(log (n)∆) expected latency.
Deterministic synchronization: An honest node outputs a set only after

it decides all of the N BA instances BA[i], i ∈ [N ]. As BA satisfies deterministic
synchronization with a delay of at most 9∆, once an honest node decides a value
for a BA instance at some time t, for any time s ≥ t + 9∆, all honest nodes
awake at time s decide a value for the same BA. Therefore, if the first honest
node to decide a value for all of the N instances BA[i], i ∈ [N ], does so by some
time t, then, for any time s ≥ t+9∆, all honest nodes awake at time s decide a
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value for all of these BA instances, i.e., outputs a set. This shows deterministic
synchronization for DACS with a delay of 9∆.

Message complexity: After round 1, which incurs O(n) message complex-
ity, the awake nodes participate in N concurrent BA instances. Since each BA
instance has message complexity of O(n2), DACS has a total message complexity
of O(Nn2).

7.2 Reducing the Latency of DACS

The DACS protocol has logarithmic latency due to the independence of the leader
election processes within the concurrent BA instances. Therefore, to achieve
constant expected latency, we make the leader election process correlated across
the BA instances. In other words, at each time t = 8∆+9∆i, i ≥ 0, a single node
p is selected to act as the leader in all of the CO protocols across all BA instances
that have not terminated in p’s view. More formally, honest nodes when electing
a leader for each CO instance, send only a single VRF value, that applies for all
CO instances simultaneously, and each honest node deems the highest VRF value
observed to be the leader for all CO instances. Then, we can assert the following.

Lemma 11. ΠDACS with correlated leaders is a 1
2 -secure DACS protocol with de-

terministic synchronization, O(∆) expected latency and O(Nn2) message com-
plexity.

Proof. Proof of security, deterministic synchronization and message complexity
claims is identical to the proof of Lemma 10.

As for latency, all awake honest nodes again decide the BA instances corre-
sponding to the asleep and awake honest nodes after one round of CGA, i.e.,
by t = 4∆ and terminate by t = 13∆. As for the other k < n/2 BA instances,
termination is again only guaranteed after the election of an honest leader. Since
all BA instances have the same leader at any given time t = 8∆ + 9∆i, i ≥ 0,
and this leader is honest with probability 1/2, latency of all of these k instances
is upper bounded by the same random variable X, which takes value (13+9j)∆,
j ≥ 0, with probability 2−j−1. Then, the expected latency is constant and can
be found as

E[X] = 13∆+ 9∆ = 22∆

7.3 Reducing the Message Complexity of DACS

The DACS protocol incurs O(Nn2) message complexity since it entails running
N concurent BA instances, each with complexity O(n2). To reduce this to O(n3),
we borrow a trick from HotStuff [YMR+19b] and use aggregate signatures. This
is obtained by modifying the PKI setup, as follows. There are now N public
verification keys for each of the N nodes, one for each of the N possible BA
instances (i.e., the PKI contains N2 keys). With these keys, the nodes can ag-
gregate their signatures on the echo and vote messages for the value v = ⊥
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across all N BA instances. For efficient verification, they attach a bit map to the
aggregate signature to indicate the public keys of the instances that contributed
to the signature12.

Equipped with the aggregate signatures, we modify the BA and CGA proto-
cols run by an honest node as follows. For simplicity, we only state the differences
compared to the original BA and CGA protocols.

Changes in BA: In any BA instance BA[i], where the node p multicasts
a leader message with a value z ̸= ⊥, it attaches a justification ⟨content, z⟩i to
the message: ⟨leader,VRF(p, 4), z, ⟨content, z⟩i⟩p. For the BA instances, where the
node would like to multicast a leader message with the value z = ⊥, it creates a
message ⟨leader,VRF(p, 4),⊥⟩p, aggregates these messages across the instances
and multicasts a single aggregate leader message for the value ⊥ (recall that at
any given iteration, the leader is the same across all BA instances). Non-justified
leader messages, i.e., leader messages for values v ̸= ⊥ without a justification are
treated as invalid and ignored.

Changes in CGA:

1. Round 1: Echo. Suppose that the input to CGA at some instance BA[i]
is z ̸= ⊥. Then, the node sends the echo message ⟨echo, z, ⟨content, z⟩i⟩
augmented by the justification ⟨content, z⟩i within the instance BA[i]. For
the BA instances where the input to CGA is z = ⊥, it creates an echo
message for the value ⊥, aggregates these messages across these BA instances
and multicasts a single echo⊥ message. Within each BA[i], non-justified echo
messages, i.e., echov for values v ̸= ⊥ without a justification, and the tally
and group messages containing non-justified echov with v ̸= ⊥ are treated
as invalid and ignored. Similarly, any echo message sent by a node q for the
value ⊥ that is not an aggregate of the echo⊥ messages for the N instances
is treated as invalid and ignored. If a node sends two different aggregate
echo⊥ messages, it is treated as an equivocating node.

2. Round 2: Tally. For each instance BA[i], each awake node constructs the
set S = {Fv | v ∈ V, |Fv| ≠ 0} as usual, except that F⊥ is the same across
all instances and contains the same aggregate echo⊥ messages. The node
multicasts F⊥ once, rather than for each BA instance.

3. Round 3: Group. For each instance BA[i], each awake honest node con-
structs the dictionary D as usual, except that D[⊥] is the same across all
instances and contains the same aggregate echo⊥ messages by the non-
equivocating nodes. The node multicasts D[⊥] once, rather than for each
BA instance.

4. Round 4: Vote. Each awake honest node aggregates all vote messages for
the value ⊥ across all BA instances into a single message vote⊥. The node
multicasts vote⊥ once, rather than for all BA instances. It also attaches the
justification ⟨content, v⟩i to its vote messages for v ̸= ⊥ within the instance
BA[i]: ⟨vote, v, ⟨content, v⟩i⟩. Within BA[i], vote messages for the values v ̸=
⊥ without a justification are treated as invalid and ignored. Similarly, any

12Although the aggregate signature with the bit map has size O(λ)+N , in practice,
N = O(λ).
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vote message sent by a node q for the value ⊥ that is not an aggregate of
the vote⊥ messages for the BA instances is treated as invalid and ignored.

5. Round 5: Output. Same as in the original CGA protocol.

Finally, we argue the security of the modified CGA, BA and DACS protocol.

Theorem 3. ΠDACS equipped with correlated leaders and the modified CGA pro-
tocol is a 1

2 -secure DACS protocol with deterministic synchronization, O(∆) ex-
pected latency and O(n3) message complexity.

Proof. We first argue by induction that an honest node can always justify the
leader, echo and vote messages for the values v ̸= ⊥. In the first CGA of a
BA instance BA[i], an honest node sets its input as a value z ̸= ⊥ only upon
observing a unique message ⟨content, z⟩i, implying that it can justify its echo
message for z. In the later CGA instances within BA[i], the input is set to be
either the output value z of an earlier CGA instance, or the value z multicast in
a leader message. In the first case, the output value of the earlier CGA must be
the input value of an honest node by the integrity of CGA, and by an inductive
argument, this honest node can justify its echo message for the value z within the
earlier CGA instance. Hence, all honest awake nodes observe the justification for
z by the time the latter CGA instance commences. By the same argument, honest
nodes can always justify their leader messages, since the values multicast in these
messages are set as the output of the previous CGA instance. In the second case,
an honest node sets its input to the latter CGA as z only if the leader message
is justified, implying that the honest node observes the justification for z by the
time the latter CGA instance commences. Finally, by the proof of Lemma 3, an
honest node sends a vote message for the value z only if it observes justified echo
messages for this value, implying that the node observes the justification for z
by the time it sends the vote message.

Next, we note that adding justifications to echo and vote messages does not
change the security analysis of CGA, BA or DACS; since honest nodes never send
non-justified messages, and the non-justified messages sent by the corrupt nodes
can simply be treated as messages that were never sent. Similarly, considering a
node that sends two different aggregate echo⊥ messages as an equivocating node
does not change the security analysis of CGA, BA or DACS; since honest nodes
never send different aggregate echo⊥ messages, and the corrupt nodes that sent
those messages can be treated as nodes that sent equivocating messages, as these
messages serve as evidence of equivocation. Therefore, proofs of the security and
latency claims are identical to the proofs in Lemma 10 and Lemma 11.

As for message complexity, the BA instances corresponding to the corrupt
and honest nodes awake at time t = 0 incur a total message complexity of
O(n3). In the remaining BA instances for the honest nodes asleep at time t = 0,
no leader, echo or vote message for a value v ̸= ⊥ can be justified. Therefore,
covering all of these instances, all honest nodes awake at times t = ∆, 2∆ or 3∆
send a single aggregated echo⊥ message at time t = ∆, a single tally message
with F⊥ containing O(n) aggregated echo⊥ messages, and a single group message
with D[⊥], containing O(n) aggregated echo⊥ messages, at times t = 2∆ and
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3∆ respectively. Similarly, all honest nodes awake at time t = 4∆ send at most
a single aggregated vote message for the value ⊥. In these instances, leader,
echo and vote messages for values v ̸= ⊥ as well as the tally and group messages
that contain them are deemed invalid and ignored13. Finally, honest awake nodes
send a single aggregate leader message across these instances. Therefore, the total
message complexity of these instances is collectively equal to the complexity of
a single instance, i.e., O(n2), making the total complexity O(n3).

7.4 Atomic Broadcast

The atomic broadcast (ABC) protocol ΠABC is comprised of consecutive DACS
instances, each commencing 4∆ time after its predecessor. Here, DACS[i] indi-
cates the i-th DACS instance starting at i = 0. Let Lpr denote the log in the view
of an honest node p at time t and Inputpt denote the set of values input to p by
time t. Then, at each time t, each honest node p awake at t does the following
(let k := ⌈t/(4∆)⌉):

1. Node p participates as instructed in the instances DACS[i], i ∈ {0, . . . , k},
that have not yet terminated in its view.

2. Let mp denote the largest number such that p decided all of the instances
DACS[i], i ∈ {0, 1, . . . ,mp}, by time t. Let Si, i ∈ {0, 1, . . . ,mp}, denote the
set of values output by p for the instance DACS[i], i ∈ {0, 1, . . . ,mp}. Define

Ŝi as the sequence obtained by ordering the values within Si according to
some deterministic rule (e.g., by the output of some cryptographic hash
function applied to the values). Then, p sets Lpr as (Ŝ0, . . . , Ŝmp).

3. If t = 4k, then p orders the values within Inputpr \
(
∪mp

i=0Si

)
according to some

deterministic order and inputs this sequence as its ‘value’ to the instance
DACS[k].

Theorem 4. ΠABC is a 1
2 -secure ABC protocol with deterministic synchroniza-

tion, O(∆) expected latency and O(n3) expected message complexity.

Proof. We prove the security, deterministic synchronization, latency and com-
plexity claims below.

Deterministic synchronization: Since DACS satisfies deterministic syn-
chronization with a delay of 9∆, if an honest node p outputs a log Lpt = (Ŝ0, . . . , Ŝℓ)
at time t, i.e., decides the instances DACS[i], i ∈ {0, . . . , ℓ}, by time t, then for
any time s ≥ t+ 9∆, all honest nodes q awake at time s must have decided the
instances DACS[i], i ∈ {0, . . . , ℓ}, by time s, and thus output a log that extends
Lpt at time s, i.e., Lpt ⪯ Lqs. This proves deterministic synchronization for ΠABC

with latency 9∆.

13Although the corrupt nodes might attempt to flood the honest ones with invalid
messages, we can stipulate each node to list the aggregated echo and vote messages
for ⊥ at the first position within the network package, followed by the justification
of other messages; and thus enable the honest nodes to ignore the invalid messages
without downloading much data.
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Security: By 1/2-agreement of DACS, for any two honest nodes p and q,
the output of the instances DACS[i], i ∈ {0, 1, . . . ,min(mp,mq)}, is the same
for both nodes. Therefore, for any two honest nodes p and q awake at times t
and s respectively, it holds that either Lpt ⪯ Lqs or vice versa, i.e., ΠABC satisfies
1/2-safety.

For liveness, consider a value v input to the honest nodes at some time t.
Since at all times, there is an awake honest node that includes v as part of its
input value, either (i) v will be part of the value input to the instance DACS[i∗]
by some honest node p awake at time 4i∗, where i∗ = argmin4i>t(i), or (ii) for
this node, v ∈ Lp4i∗ . Next, we consider the following cases:

– Case (i): Recall that DACS satisfies 1/2-termination, and more specifically
its latency is upper bounded by the random variable T that takes the value
(13 + 9j)∆, j ≥ 0, with probability 2−j−1. Next, we observe that there
exists a random variable T with constant expectation, i.e., E[T ] = O(∆),
such that for any time s > 4i∗ +T , all honest nodes awake at time s decides
all instances DACS[i], i ∈ {0, 1, . . . , i∗}, by time s (the precise calculation of
E[T ] is presented below). Now, by 1/2-validity of DACS, v ∈ Si∗ . Hence, for
any time s > 4i∗ + T and any honest node q awake at time s, v ∈ Lqs.

– Case (ii): For any time s > 4i∗ + 9∆, for any honest node q awake at time
s, v ∈ Lqs by deterministic synchronization.

This implies that ΠABC satisfies 1/2-liveness with constant expected latency.
Upper-bounding the expected latency:
Termination time of the DACS instances is upper bounded by independent,

identically-distributed random variables Xi which take value (13 + 9j)∆, j ≥ 0,
with probability 2−j−1. Let Ti denote the random variable maxj∈{0,1,...,i}(Xj −
4∆(i − j)), and observe that Ti upper-bounds the difference between the time
4∆i (i.e., the start time of the instance DACS[i]), and the time all DACS in-
stances DACS[j], j ∈ {0, 1, . . . , i}, terminate. Define Dk as (Xi−k − 4∆k) for
k ∈ {0, 1, . . . , i}. We note that for any time t ≥ 4∆i+ 13∆,

Pr[Dk ≤ t] ≥ 1− 2−⌊1+(t−4∆i−13∆+4∆k)/9∆⌋.

For t ≥ 4∆i+ 13∆, renaming s = (t− 4∆i− 13∆)/∆, we can write

Pr[Dk ≤ t] ≥ 1− 2−(s∆+4∆k)/9∆ = 1− 2−(s+4k)/9.

Therefore, there exists a value q = 1/2 such that Pr[Dk ≤ s∆ + 4∆i + 13∆] ≥
1− q(s+4k)/9 for s ≥ 0. This implies

E[Ti] =

∞∑
t=4∆i

(1− Pr[Ti ≤ t]) =

∞∑
t=0

(1−
i∏

k=0

Pr[Dk ≤ t])

≤ 13∆+∆

∞∑
s=0

(1−
i∏

k=0

(1− q(s+4k)/9))

≤ 13∆+∆

∞∑
s=0

(1−
∞∏
j=0

(1− q(s+4k)/9))
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for all i ≥ 0.
As 1− 1

2x ≥ e−x for all x ∈ [0, 1], it holds that

∞∏
k=0

(1− q(s+4k)/9) ≥
∞∏
k=0

e−2q(s+4k)/9

= e−2q(s/9)
∑∞

k=0 q(4k/9)

= e
−2q(s/9) 1

1−q(4/9) ,

Combined with x ≥ 1− e−x for x ≥ 0, this implies that for all i ≥ 0,

E[Ti] ≤ 13∆+∆

∞∑
s=0

(1− e
−2q(s/9) 1

1−q(4/9) )

≤ 13∆+
2∆

1− q(4/9)

∞∑
s=0

q(s/9) = 13∆+
2∆

(1− q(4/9))(1− q(1/9))
,

which is constant in ∆.
Expected message complexity:
Expected message complexity is equal to the expected number of DACS in-

stances that can be running at any point in time multiplied with the complexity
of the DACS instance itself. Consider the instances DACS[k], k ∈ {0, 1, . . . , i},
for some i ≥ 0. Define Ik as the indicator random variable that DACS[i − k] is
still running at time 4∆i and Mi as the number of DACS instances still running
at time t = 4∆i. Note that

E[Mi] = E

[
i∑

k=0

Ik

]
=

i∑
k=0

E[Ik] =
i∑

k=0

Pr[Dk ≥ 4∆i].

Since for k > 4,

Pr[Dk ≥ 4∆i] ≤ 2−(4∆k−13∆)/9∆ = 2−(4k−13)/9,

it holds that
∑i

k=0 Pr[Dk ≥ 4∆i] is monotonically increasing in i, and,

lim
i→∞

i∑
k=0

Pr[Dk ≥ 4∆i] ≤ 4 + lim
i→∞

i∑
k=5

2−(4k−13)/9,

which is a constant. Therefore, E[Mi] < C for some constant C for all i ≥ 0, and
the expected message complexity of atomic broadcast is O(n3).

We note that in the optimistic case, where all awake nodes are honest, the
protocol achieves an expected latency of 4∆, and there is a single DACS instance
running at all times.

Acknowledgments. We thank Joachim Neu for many fruitful discussions and
Max Resnick for bringing this problem to our attention. ENT is supported by
the Stanford Center for Blockchain Research.

29



References

AMN+20. Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin.
Sync HotStuff: Simple and practical synchronous state machine replica-
tion. In SP, pages 106–118. IEEE, 2020.

BGK+18. Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Rus-
sell, and Vassilis Zikas. Ouroboros genesis: Composable proof-of-stake
blockchains with dynamic availability. In CCS, pages 913–930. ACM, 2018.

BGR24. Maryam Bahrani, Pranav Garimidi, and Tim Roughgarden. Transaction
fee mechanism design in a post-mev world. IACR Cryptol. ePrint Arch.,
page 331, 2024.

BHK+20. Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi
Qiao, Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X Zhang. Combin-
ing GHOST and Casper. arXiv:2003.03052v3 [cs.CR], 2020.

BKM18. Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on
BFT consensus. arXiv:1807.04938v3 [cs.DC], 2018.

BKR94. Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous Secure Com-
putations with Optimal Resilience (Extended Abstract). In James H. An-
derson, David Peleg, and Elizabeth Borowsky, editors, Proceedings of the
Thirteenth Annual ACM Symposium on Principles of Distributed Com-
puting, Los Angeles, California, USA, August 14-17, 1994, pages 183–192.
ACM, 1994.

BKT+19. Vivek Kumar Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and
Pramod Viswanath. Prism: Deconstructing the blockchain to approach
physical limits. In CCS, pages 585–602. ACM, 2019.

BLR24. Eric Budish, Andrew Lewis-Pye, and Tim Roughgarden. The economic
limits of permissionless consensus. CoRR, abs/2405.09173, 2024.

BT85. Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast
protocols. J. ACM, 32(4):824–840, October 1985.

But15. Vitalik Buterin. The problem of censorship, 2015.
CASD95a. Flaviu Cristian, Houtan Aghili, H. Raymond Strong, and Danny Dolev.

Atomic broadcast: From simple message diffusion to byzantine agreement.
Inf. Comput., 118(1):158–179, 1995.

CASD95b. Flaviu Cristian, Houtan Aghili, H. Raymond Strong, and Danny Dolev.
Atomic broadcast: From simple message diffusion to byzantine agreement.
Inf. Comput., 118(1):158–179, 1995.

CDG+24. Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui,
Jovan Komatovic, and Manuel Vidigueira. DARE to agree: Byzantine
agreement with optimal resilience and adaptive communication. In PODC,
pages 145–156. ACM, 2024.

CKPS01. Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Se-
cure and Efficient Asynchronous Broadcast Protocols. In Joe Kilian, edi-
tor, Advances in Cryptology - CRYPTO 2001, 21st Annual International
Cryptology Conference, Santa Barbara, California, USA, August 19-23,
2001, Proceedings, volume 2139 of Lecture Notes in Computer Science,
pages 524–541. Springer, 2001.

CL99. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In
OSDI, pages 173–186. USENIX Association, 1999.

CS20. Benjamin Y. Chan and Elaine Shi. Streamlet: Textbook streamlined
blockchains. In AFT, pages 1–11. ACM, 2020.

30



DGKR18. Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.
Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake
blockchain. In EUROCRYPT (2), volume 10821 of LNCS, pages 66–98.
Springer, 2018.

DLZ24. Francesco D’Amato, Giuliano Losa, and Luca Zanolini. Asynchrony-
resilient sleepy total-order broadcast protocols. In PODC, pages 247–256.
ACM, 2024.

DNTT22. Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. No
more attacks on proof-of-stake ethereum? IACR Cryptol. ePrint Arch.,
page 1171, 2022. In Financial Cryptography and Data Security 2024.

DPS19. Phil Daian, Rafael Pass, and Elaine Shi. Snow White: Robustly reconfig-
urable consensus and applications to provably secure proof of stake. In
Financial Cryptography, volume 11598 of LNCS, pages 23–41. Springer,
2019.

DS83. Danny Dolev and H. Raymond Strong. Authenticated algorithms for
byzantine agreement. SIAM J. Comput., 12(4):656–666, 1983.

DSTZ24a. Francesco D’Amato, Roberto Saltini, Thanh-Hai Tran, and Luca Zanolini.
3-slot-finality protocol for ethereum. CoRR, abs/2411.00558, 2024.

DSTZ24b. Francesco D’Amato, Roberto Saltini, Thanh-Hai Tran, and Luca Zanolini.
Tob-svd: Total-order broadcast with single-vote decisions in the sleepy
model, 2024.

DZ23a. Francesco D’Amato and Luca Zanolini. Recent latest message driven
GHOST: balancing dynamic availability with asynchrony resilience. IACR
Cryptol. ePrint Arch., page 279, 2023. In CSF’24.

DZ23b. Francesco D’Amato and Luca Zanolini. Streamlining sleepy consensus:
Total-order broadcast with single-vote decisions in the sleepy model.
CoRR, abs/2310.11331, 2023.
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