
Leakage-Free Probabilistic Jasmin Programs
José Bacelar Almeida
Universidade do Minho

Braga, Portugal
INESC TEC, Porto, Portugal

jba@di.uminho.pt

Denis Firsov
Guardtime

Tallinn University of Technology
Tallinn, Estonia
denis@cs.ioc.ee

Tiago Oliveira
MPI-SP

Bochum, Germany
tiago.oliveira@mpi-sp.org

Dominique Unruh
University of Tartu

Tartu, Estonia
unruh@ut.ee

Abstract—We give a semantic characterization of leakage-
freeness through timing side-channels for Jasmin programs.
Our characterization also covers probabilistic Jasmin programs
that are not constant-time. In addition, we provide a charac-
terization in terms of probabilistic relational Hoare logic and
prove equivalence of both definitions. We also prove that our
new characterizations are compositional. Finally, we relate new
definitions to the existing ones from prior work which only apply
to deterministic programs.

To test our definitions we use Jasmin toolchain to develop a
rejection sampling algorithm and prove (in EasyCrypt) that the
implementation is leakage-free whilst not being constant-time.

Index Terms—cryptography, formal methods, EasyCrypt,
leakage-freeness, side-channels, timing attack, rejection sampling,
Jasmin

I. INTRODUCTION

Cryptographic proofs are hard. Implementations are buggy.
When developing and deploying cryptographic systems we

are faced with these two challenges. Cryptographic security
proofs tend to be hand-written mathematical proofs, likely
containing oversights and other mistakes. They will be read
by other humans who may also often overlook those mistakes,
especially if they are buried in a high level of detail. In
addition, even if a cryptographic scheme is indeed secure, its
proof correct, and the underlying computational assumptions
unbroken, the final implementation may still contain bugs:
Translating an abstract specification into actual code is an
error-prone process in itself, leading to new bugs in the final
code, making the security proof in the abstract cryptographic
setting inapplicable. And finally, adding insult to injury, even
if we manage to make code that indeed exactly implements
what the specification requires, we could face insecurity due
to side-channel attacks. E.g., the code may leak information
about our secrets because its runtime depends on some bits of
the secret.

The EasyCrypt [1] and Jasmin [2] frameworks aim to resolve
this issue. EasyCrypt is a tool in which we can write crypto-
graphic security proofs and verify them using the computer,
ensuring high-reliability proofs.1 However, EasyCrypt does not

1This is not perfect, of course. There remains the issue that EasyCrypt
itself can have soundness bugs. Or that the security properties are formulated
incorrectly. Or that we use a broken cryptographic assumption. These problems
are beyond the scope of this work.

address implementation issues. The schemes are written in a
high level language, very different from what we would find in
an actual implementation. Jasmin addresses the implementation
side. It consists of an assembler-like language and a compiler.
In Jasmin, we can write a highly optimized implementation of
some cryptographic function, and have it compiled to actual
assembler (for various platforms such as x86-64). In addition,
Jasmin produces EasyCrypt code that is guaranteed2 to be
functionally equivalent to the generated assembler code! This
allows us to do cryptographic security proofs in EasyCrypt,
and know that they also apply to the assembler implementation
(which hopefully is the one actually used in the end).

But Jasmin goes further than that: The exported EasyCrypt
code contains instructions that explicitly describe side-channel
leakage that can happen in the assembler code (e.g., timing
leakage). Then, again in EasyCrypt, we can prove that the
leakage does not depend on the secret inputs and that guarantee
then carries over to the assembler code. The current released
versions of Jasmin aims at timing attacks in what they call
the “baseline model” in which control flow (i.e., the program
counter) and the addresses of memory accesses are leaked. Also,
there exist development branches of the Jasmin compiler which
support other leakage models (e.g., leaking the cache line, and
variable time assembler instructions) [3]. Unfortunately, these
branches of Jasmin does support instructions for random byte
sampling which are necessary for our goal of investigating
leakage-freenes for probabilistic Jasmin programs.

Putting these pieces together, we can get end-to-end verified
implementations of cryptographic algorithms, taking into ac-
count everything from the security property to implementation
bugs and side-channel leakage.

Previously all Jasmin programs were deterministic. For this
case, the Jasmin approach for showing leakage-freeness through
timing side-channels was to prove, essentially, that the code is
constant-time (leakage only depends on the public inputs).

Recently, Jasmin was extended with primitive which gen-
erates random bytes (#randombytes function). Therefore,
now the runtime may well depend on the random choices (not
constant-time) but still not leak anything about any secrets. In
this work, we propose new definition of leakage-freeness for

2Of course, we again need to assume that Jasmin itself does not contain
bugs here.

probabilistic Jasmin programs. We also show how it relates to
the definition of leakage-freeness for deterministic programs,
explain why the old definition fails for the probabilistic
case, and most importantly prove that the new definition is
compositional.

To motivate and test our new definition we implement and
prove leakage-freeness for rejection sampling algorithm. In
cryptographic protocols, we often need to sample numbers
at random. However, low-level random number generators
usually provide only a sequence of random bits (or bytes).
This can be interpreted as a random number from {0, . . . , 2`−
1}. Unfortunately, this does not give us all distributions: for
example, if we would like to sample from {0, . . . , p−1}, where
p is a prime (and thus not a power of two). This problem can
be resolved by rejection sampling: For some ` with 2` ≥ p,
sample repeatedly from {0, . . . , 2` − 1} until you get a value
< p.

The downside of rejection sampling is that it does not have
an apriori termination time which means that we do not know
how long will it take to produce an element which satisfies
the criteria.

We implement rejection sampling in Jasmin, and prove (in
EasyCrypt) that rejection sampling always returns uniform
element within the desired range. More interestingly, we
show (in EasyCrypt) that the Jasmin implementation is indeed
leakage-free. Since the running time of the rejection sampling
is randomized, and since it is not possible to mask it by
upper bounding the running time, we cannot show that it is
constant-time (the usual approach of showing leakage-freeness
in Jasmin) but use our new relaxed criterion instead.

Contributions: Our technical contributions include the
following results:

• We introduce workflow of Jasmin workbench and explain
motivation behind our work in Sec. II-B.

• We give semantic and pRHL characterization of leakage-
freeness for probabilistic Jasmin programs (Sec. III-B).

• We prove equivalence and compositionality of our leakage-
freeness characterizations and relate them to constant-time
definition from prior work (Sec. III-C).

• We implement a generic rejection sampling in EasyCrypt
with proofs of its correctness and termination (Sec. IV-A).

• We implement uniform sampling in Jasmin as a special
case of rejection sampling (Sec. IV-B).

• We present direct (semantical) and pRHL derivations
of leakages-freeness for Jasmin’s uniform sampling
(Sec. IV-C and Sec. IV-D).

Throughout this work, we have striven to make our results
general and reproducible. We tried to make sure that the overall
structure of our results is clean and simple to understand, and
explained them in this paper in a way that makes it easy to
understand to enable future work on other algorithms that
follows our work.

Our Jasmin and EasyCrypt developments are made available
as a GitHub repositry [4].

A. Related Work
The Jasmin toolchain was introduced with Coq proofs of

the correctness of the compiler in [2]; it was connected to
EasyCrypt in [5]; the toolchain was extended to cover leakage-
freeness guarantees in [3], [6]. Several cryptographic schemes
have been implemented in Jasmin: the ChaCha20 streamcipher,
the Poly1305 and Gimli hash function (all in [5]), the scalar
multiplication algorithm for the elliptic curve Curve25519 in
[2], the SHA-3 hash function in [7], the Kyber public-key
encryption scheme in [8], and the MPC-in-the-head protocol in
[9]. Of these, most contain proofs of functional correctness and
derivation of constant-time property for deterministic programs.

The recent work [8] analyses various Kyber [10] implemen-
tations in Jasmin and derives their functional correctness (i.e.,
that they match the abstract specification in EasyCrypt). At the
moment the published preprint only briefly mentions constant-
time property. It does not provide any information on how
“constant-time” is defined or derived. We believe that our new
definitions of leakage-freeness would come in handy especially
because Kyber is a probabilistic algorithm which also makes
use of rejection sampling. Also, their rejection sampling is a
routine from the Kyber standard for sampling elements from
a specific ring, and functional correctness (i.e., uniformity)
is not shown for the actually implemented sampling but an
idealized version of it (with hash functions replaced by fresh
random values). This is a necessary consequence of the fact
that the Kyber specifications prescribe a very specific sampling
algorithm that simply happens not to be exactly uniform, and
also probably hard to prove even approximately uniform outside
the random oracle model. In our work, Jasmin implementation
of rejection sampling is provably uniform and additionally, we
specify and obtain leakage-freeness for rejection sampling.

II. PRELIMINARIES

A. EasyCrypt
EasyCrypt (EC) is an interactive framework for verifying the

security of cryptographic protocols in the computational model.
In EasyCrypt security goals and cryptographic assumptions are
modelled as probabilistic programs (a.k.a. games) with abstract
(unspecified) adversarial code. EasyCrypt supports common
patterns of reasoning from the game-based approach, which
decomposes proofs into a sequence of steps that are usually
easier to understand and to check [11].

To our readers who are not familiar with EasyCrypt also
suggest to read a short EasyCrypt introduction in [12, Section 2].
More information on EasyCrypt can be found in the EasyCrypt
tutorial [11].

To readers who are familiar with EasyCrypt we only give
a brief overview of our syntactical conventions: we write ←
for <-, $← for <$, @← for <@, ∧ for /\, ∨ for \/, ≤ for <=,
≥ for >=, ∀ for forall, ∃ for exists, m for &m, GA for
glob A, Gm

A for (glob A){m}, λx. x for fun x => x,
× for *. Furthermore, in Pr-expressions, in abuse of notation,
we allow sequences of statements instead of a single procedure
call. It is to be understood that this is shorthand for defining
an auxiliary wrapper procedure containing those statements.

2

B. Jasmin Workbench

Jasmin is a toolchain for high-assurance and high-speed
cryptography [2]. The ultimate goal for Jasmin implementations
is to be efficient, correct, and secure. The Jasmin programming
language follows the “assembly in the head” programming
paradigm. The programmers have access to low-level details
such as instruction selection and scheduling, but also can use
higher-level abstractions like variables, functions, arrays, loops,
and others.

The semantics of Jasmin programs is formally defined in
Coq to allow users to rigorously reason about programs. The
Jasmin compiler produces predictable assembler code to ensure
that the use of high-level abstractions does not result in run-
time penalty. The Jasmin compiler is verified for correctness.
This justifies that many properties proved about the source
program will carry over to the corresponding assembly (e.g.,
safety, termination, functional correctness).

The Jasmin workbench uses the EasyCrypt theorem prover
for formal verification. Jasmin programs can be extracted to
EasyCrypt to address functional correctness, cryptographic
security, or security against timing attacks.

1) Jasmin Basics: We explain the basics and workflow of
Jasmin development on a simple example. More specifically,
our goal is to implement a procedure which with equal
probabilities returns values 0 or 1 (encoded as bytes). Below
is the “naive” implementation of such a program in Jasmin:

inline fn random_bit_naive() → reg u8{
stack u8[1] byte_p;
reg ptr u8[1] _byte_p;
reg u8 r;

_byte_p = byte_p;
byte_p = #randombytes(_byte_p);
if (byte_p[0] < 128){
r = 0;

}else{
r = 1;

}
return r;

}

The program has no arguments and outputs an unsigned
byte allocated in the register (type reg u8). The body
of the program starts by declaring the variables and their
respective types. In particular, we declare a variable byte_p
of type stack u8[1] which has an effect of allocating a
memory region on the stack. The variable _byte_p has type
reg ptr u8[1] which indicates that it uses a register to
store a pointer to value u8[1]. Next, we store a pointer to
byte_p in _byte_p. Next, we generate a random byte with
a systemcall #randombytes. The systemcall takes a pointer
to the byte array as its argument and fills its entries with
randomly generated bytes. In this way, we sample a single
random byte into local variable byte_p[0]. Hence, with
probability 1/2 the value byte_p[0] is smaller than 128
and the result of computation is 0; otherwise, we return the
value 1.

To address correctness of random_bit_naive we can
instruct the Jasmin compiler to extract an EasyCrypt model of
random_bit_naive program.

This produces a module XtrI with a procedure
random_bit_naive. Jasmin extracts programs to Easy-
Crypt by systematically translating all datatypes and Jasmin
programming constructs. See the code below.

module type Syscall_t = {
proc randombytes1(b:W8.t Array1.t): W8.t Array1.t }.

module SCD : Syscall_t = {
proc randombytes1(a:W8.t Array1.t)

: W8.t Array1.t = {
a $← dmap WArray1.darray

(λ a ⇒ Array1.init (λ i ⇒ WArray1.get8 a i));
return a;

}
}.

module XtrI(SC:Syscall_t) = {
proc random_bit_naive () : W8.t = {
var r:W8.t;
var byte_p, _byte_p:W8.t Array1.t;
_byte_p ← witness;
byte_p ← witness;
_byte_p ← byte_p;
byte_p @← SC.randombytes1 (_byte_p);
if ((byte_p.[0] < (W8.of_int 128))) {
r ← (W8.of_int 0);

} else {
r ← (W8.of_int 1);

}
return (r);

}
}.

For example, Jasmin datatype reg u8 of 8-bit words was
translated to the EasyCrypt type W8.t. The type of a single-
entry 8-bit array stack u8[1] and a pointer to such array
reg ptr u8[1] were both translated to W8.t Array1.t.
EasyCrypt model does not recognize a difference between
values allocated on stack and in registers, so this information
is abstracted away during translation.

Since random_bit_naive uses a systemcall
#randombytes then Jasmin generates a module XtrI
which is parameterized by a “provider” of systemcalls SC. In
our example, the systemcall #randombytes is translated
to an invocation of SC.randombytes1 procedure. Clearly,
that such interpretation of systemcalls makes it harder to
rigorously define the semantics of Jasmin programs, but at the
same time it allows users to choose their own interpretation of
systemcalls. Also, Jasmin produces a module SCD with the
“default” interpretation of systemcalls. In our work we use the
default interpretation (i.e., SCD systemcall provider) which
models #randombytes as a generator of truly random
bytes. Alternatively, one could interpret #randombytes as
an invocation of pseudo-random generator.

The main purpose of the EasyCrypt’s module XtrI is to
address the correctness of the Jasmin’s implementation. More
specifically, we can use the EasyCrypt’s built-in probabilistic
Hoare logic to prove that random_bit_naive returns values

3

0 and 1 with probabilities equal to 1/2.3

2) Leakage-Freeness: Another important aspect of the
Jasmin framework is that it allows users to analyze whether
the implementation is “leakage-free”. Intuitively, the program
is “leakage-free” if its execution time does not leak any
additional information about its (secret) inputs and the output.
To perform leakage-free analysis a user can instruct Jasmin
compiler to extract a program to EasyCrypt with leakage
annotations (leakage annotations are added automatically by
Jasmin). In this case, the resulting EasyCrypt module XtrR
has a global variable leakages which is used in the extracted
EasyCrypt procedures to accumulate information which can get
leaked in case of a timing attack. For example, if we compile
random_bit_naive to EasyCrypt with leakage annotations
then the result is as follows:
module XtrR(SC:Syscall_t) = {
var leakages : leakages_t // global variable
proc random_bit_naive () : W8.t = {

var r, aux0: W8.t;
var aux, byte_p, _byte_p:W8.t Array1.t;
_byte_p ← witness;
byte_p ← witness;
leakages ← LeakAddr([]) :: leakages;
aux ← byte_p;
_byte_p ← aux;
leakages ← LeakAddr([]) :: leakages;
aux @← SC.randombytes1 (_byte_p);
byte_p ← aux;

leakages ←
LeakCond((byte_p.[0] < (W8.of_int 128)))

:: LeakAddr([0]) :: leakages;

if ((byte_p.[0] < (W8.of_int 128))) {
leakages ← LeakAddr([]) :: leakages;
aux0 ← (W8.of_int 0);
r ← aux0;

} else {
leakages ← LeakAddr([]) :: leakages;
aux0 ← (W8.of_int 1);
r ← aux0;

}
return (r);

}
}.

The entries in the leakages accumulator must be understood
as a data which an attacker could learn if they would carry-out
a timing attack. The leakage annotations are added for every
basic statement of the Jasmin program.

Observe that in procedure XtrR.random_bit_naive
the call to SC.randombytes1 only adds a leakage value
LeakAddr [] to the leakages accumulator. This means
that this operation does not leak any information about result of
its computation. At the same time, since its execution requires
time then this is modelled by adding an empty leakage value
LeakAddr [].

Also notice that if-statements leak the boolean value
of the conditional statement. As a result the boolean value

3In our work we do not actually derive properties about the function
random_bit_naive because as we will see later it is not leakage-free,
instead we develop a function random_bit for which we derive correctness
and leakage-freeness.

byte_p.[0] < W8.of_int 128 is added to the accu-
mulator. This indicates that a timing attack might reveal which
branch of the if-statement was executed. As a result, we can
say that the current implementation of random_bit_naive
is not leakage-free since it leaks some data about the actual
dataflow of the program execution. In this particular case, the
function random_bit_naive entirely leaks its output.

Let us implement a procedure random_bit which gets rid
of the problematic if-statement:

inline fn random_bit() → reg u8{
stack u8[1] byte_p;
reg ptr u8[1] _byte_p;
reg u8 r;
_byte_p = byte_p;
byte_p = #randombytes(_byte_p);
r = byte_p[0];
r &= 1;
return r;

}

In random_bit definition we convert a random byte
byte_p[0] to the values 0 or 1 by doing a bitwise “and”
operation of byte_p[0] with value 1 and return the result.
We can prove that the new version of random_bit is a
uniform distribution of values 0 and 1. However, the more
interesting aspect is whether the new version is leakage-free.
In fact, after extraction to EasyCrypt with leakage-annotations
we get the following EasyCrypt code:

module XtrR(SC:Syscall_t) = {
var leakages : leakages_t

proc random_bit () : W8.t = {
var r, aux0: W8.t;
var aux, byte_p, _byte_p: W8.t Array1.t;
_byte_p ← witness;
byte_p ← witness;

leakages ← LeakAddr([]) :: leakages;
aux ← byte_p;
_byte_p ← aux;
leakages ← LeakAddr([]) :: leakages;
aux @← SC.randombytes1 (_byte_p);
byte_p ← aux;
leakages ← LeakAddr([0]) :: leakages;
aux0 ← byte_p.[0];
r ← aux0;
leakages ← LeakAddr([]) :: leakages;
aux0 ← (r ‘&‘ (W8.of_int 1));
r ← aux0;
return (r);

}
}.

Now it must be easy to see that after execution of
random_bit function the leakages accumulator does not
contain any data specific to the output of the program. Moreover,
the same list of leakages is generated on every execution of the
random_bit function (i.e., the resulting XtrR.leakages
is deterministic and not probabilistic). Therefore, we can
“intuitively” conclude that random_bit is leakage-free.

However, to be able to argue about leakage-freeness formally
we must give rigorous definitions of leakage-freeness and
cryptographic constant-time (see Sec. III).

4

III. LEAKAGE-FREENESS AND CONSTANT-TIME

We consider a collection of Jasmin procedures that are
extracted into EC in two modes: XtrI and XtrR. Each one
of these is a module that includes the EC’s model of Jasmin-
implemented functions:

• XtrI.f - an EC procedure modeling the input/output
behaviour of Jasmin function f (hence, calling it an
abstract or “Ideal” setting). This is a stateless module
(Jasmin does not have global variables).

• XtrR.f - an EC procedure that, in addition to the
input/output behavior, models also what is leaked during
execution (accumulated in variable XtrR.leakages).
This is what we call the concrete or “Real” setting.

We are interested in programs f whose outputs are expected
to be secret, and with both public and secret inputs (denoted
by pin and sin, respectively). As a meta-property of the
extraction mechanism we have that the marginal probability
distribution of the result in XtrR.f agree with the probability
induced by XtrI.f. This property can be stated as an
equivalence of programs in the probabilistic Relational Hoare
Logic (pRHL), namely:

XtrI.f ∼ XtrR.f : ={pin, sin} =⇒ ={res}.

Here, ={res} denotes the equality of outputs of the left
(XtrI.f) and the right (XtrR.f) programs. Informally, this
equivalence asserts that we obtain equally distributed results
when running both programs in initial memories that equate
the values of the input arguments pin and sin. The property
can be easily confirmed in EC for concrete instances, as it can
typically be proved automatically resorting to EC’s sim tactic.

Before Jasmin was extended with #randombytes primi-
tive all its programs were deterministic. In this case, proving
that program is leakage-free (or “constant-time” in the parlance
of the prior work) requires only to prove that probability of
producing a particular leakages does not depend on the secret
input. The formal definition is as follows:

Definition 3.1 (Constant-time Deterministic Programs): Let
f be a total deterministic Jasmin program and XtrR.f be the
result of its extraction to EasyCrypt with leakage annotations.
Then, f is constant-time (abbreviated CTdef(f)) when,
∀ sin sin’ pin l mmm,
⇒ Pr[XtrR.f(pin,sin)@mmm: XtrR.leakages = l]

= Pr[XtrR.f(pin,sin’)@mmm: XtrR.leakages = l].

Unfortunately, this definition fails to capture leakage-freeness
for probabilistic programs. For example, one could easily prove
that random_bit_naive program (see Sec. II-B2) satisfies
the Definition 3.1 from above. This happens because the output
of random_bit_naive which must stay secret is generated
by sampling and does not depend on the input arguments.

In the next section, we propose a new characterizations of
the leakage-freeness for probabilistic programs.

A. Leakage-Free Programs

We want to guarantee safety against timing attacks. In other
words, we want to ensure that programs which satisfy our

notion of leakage-freeness must not leak any information about
their secret inputs and the result of their computation through
timing attacks.

Definition 3.2 (Leakage-Free Jasmin Programs): Let f be
a total Jasmin program and XtrR.f be the result of its
extraction to EasyCrypt with leakage annotations. Also, let
pin and sin be public and secret inputs, respectively. Then,
f is leakage-free (abbreviated LFdef(f)) when,

∀ s, ∃ g, ∀ sin pin a l mmm, XtrR.leakages{mmm} = s
⇒ let v = Pr[out ← XtrR.f(pin,sin)@mmm:

XtrR.leakages = l ++ s ∧ out = a] in
let w = Pr[out ← XtrR.f(pin,sin)@mmm: out = a] in

⇒ 0 < w ⇒ v/w = g(pin,l).

In the definition above v/w denotes a conditional probability
of producing leakages l given that output is a. Intuitively, the
program is leakage-free if there exists a function g such that
the conditional probability v/w can be computed only from
public inputs and the leakages l. That is “leakage” distribution
does not depend on the secret input sin and result out.

To make our definition composable, we allow the leakage
accumulator to start from arbitrary initial state s. At this point
it is important to understand that computations themselves (i.e.,
function XtrR.f) cannot introspect (i.e., analyze) leakages in
XtrR.leakages.

To apply this definition to random_bit function defined
in Sec. II-B2 we must implement a function which computes the
conditional probability described above. For the random_bit
function it looks as follows:

op g l = let random_bit_l
= [LeakAddr []; LeakAddr [0];

LeakAddr []; LeakAddr []] in
if l = random_bit_l then 1 else 0.

Here, g checks if the list of leakages l is well-formed (i.e.,
equals to a constant list denoted by random_bit_l) in which
case it returns 1, and 0 otherwise. By using the basic EC
reasoning we can prove that the Jasmin program random_bit
with function g as defined above satisfies the definition of being
leakage-free according to Definition 3.2.

At the same time, the function random_bit_naive does
not satisfy Definition 3.2 because the “leakage” and output
distributions are not independent.

B. pRHL characterization

The advantage of Definition 3.2 is that it has a clear and intu-
itive semantics in terms of conditional probability. At the same
time, it could be cumbersome to prove directly that program
satisfies Definition 3.2 because proof requires us to explicitly
describe the contents of the leakages (i.e., we must give the
existentially quantified function g). This is an inconvenience
that contrasts with the simplicity and elegance allowed by the
standard constant-time characterization of leakage-freeness for
deterministic programs. More specifically, the prior work in
Jasmin addressed leakage-freeness of deterministic programs
by “automatically” proving the following pRHL equivalence
in EC:

5

Definition 3.3 (pRHL Constant-time Deterministic Pro-
grams): A deterministic total program f is said to be constant-
time (abbreviated CT(f)) when the following program equiva-
lence holds:
XtrR.f ∼ XtrR.f : ={pin,XtrR.leakages} =⇒ ={XtrR.leakages}.

The above is trivially equivalent to Definition 3.1. In essence,
the given equivalence enforces that, running two copies of
the program f (instrumented with leakage accumulator) in a
pre-state that equates only their public inputs and the initial
leakage, shall produce equal leakages on the post-state. Thus,
the distribution of leakage to be independent on secret inputs.
Moreover, the above pRHL definition is extremely useful, as is
often automatically proved through the EC’s sim tactic, and
moreover it also enjoys nice properties such as compositionality.

For exactly the same reasons as already explained for
Definition 3.1, the Definition 3.3 does not enforce independence
of the leakages with respect to secret outputs, turning it useless
for capturing leakage-freeness for probabilistic programs.

Nonetheless, there is a natural generalization of the constant-
time property (i.e., Definition 3.3) for probabilistic programs,
by asking the leakage to be simulated without access to secret
inputs.4

Definition 3.4 (pRHL Leakage-Freeness): A total program f
is said to be leakage-free (abbreviated LF(f)) iff the following
equivalence of programs hold: ∀ pin sin sin’,

{r @← XtrR.f(pin,sin);} ∼
{
_ @← XtrR.f(pin,sin’);

r @← XtrI.f(pin,sin);

}
: ={pin, sin,XtrR.leakages} =⇒ ={r,XtrR.leakages}

Notice that on the right-hand side we are using both the
plain and instrumented semantics of program f (respectively
XtrI.f and XtrR.f). This ensures that the global variable
accumulating the leakage is only updated once. Intuitively,
we can look at this definition as enforcing the equivalence
between a “real world” where the evaluation of f leaks, with
an “ideal world” that computes the result (without leakage), and
simulates the leakage by evaluating the instrumented semantics
on some arbitrary secret input sin’. As we shall see in the
next section the pRHL characterization indeed captures the
same property as the Definition 3.2.

The main advantage of pRHL characterization is that in
EC, for simple programs where runtime is not probabilistic
the derivation of LF property can be done in only couple of
lines of code. For example, for random_bit case after we
instantiate our generic development the EC proof looks as
follows:
lemma random_bit_LF:
equiv[RSim(XtrI,XtrR).main ~ SimR(XtrI,XtrR).main:
={pin, sin, GJR} => ={res, GJR}].

proof. proc. inline*. wp. rnd.

4In order to better understand the role of termination in the results of
interest, we choose not to to assume totality beforehand in our formalization.
Interestingly, the generality of results do carry over arbitrary (possibly
divergent) procedures, under a slight generalisation of the LF equivalence.
Unfortunately, that broaden scope clearly leads us beyond the expressiveness
of the underlying model, making it unclear how (and if) such a generalisation
relates a sensible notion of leakage-freeness.

wp. rnd. wp. skip. progress.
qed.

The above statement is an EC formalization of Definition 3.4
and the proof-script simply performs a symbolic simulation.

In contrast, the direct derivation of Definition 3.2 requires us
to specify explicit function for calculating leakages and make
a careful analysis of conditional probabilities.

In Sec. IV we perform a much more challenging analysis
of leakage-freeness for rejection sampling algorithm where
runtime is probabilistic.

C. Properties

We collect now main properties relating the various defini-
tions. They have been fully formalized in EC5.

Proposition 3.1: For any given total program f, the following
implications hold:

1) LF(f) =⇒ CT(f)
2) det(f)⇒ (LF(f)⇐⇒ CT(f))
3) LF(f)⇐⇒ LFdef(f)
4) CTdef(f)⇐⇒ CT(f)

where det(f) is an abbreviation for
∃ f_spec, ∀ p s,

hoare[XtrI.f: pin=p ∧ sin=s ⇒ res = f_spec(p,s)].

Determinism is established by a functional specification ex-
pressed by a (partial) Hoare triple, whose proof is often a
byproduct of the correctness proof.

The first two points support the view of LF(f) as a
generalization of CT(f) for probabilistic programs. To imply
LFdef(f) from LF(f), we analyze a function defined by the
following expression:
Pr[out ← XtrR.f(pin,sin)@mmm: out=r ∧ XtrR.leakages=l]

Pr[out ← XtrR.f(pin,sin)@mmm: out=r]
.

The proof of the converse implication is more challenging,
as it demands a fairly detailed reasoning on the underlying
semantics of both XtrI.f and XtrR.f. To that end, a key
role is played by what is called reflection lemmas (see [12] for
more details), that have been proved for abstract procedures, and
which allow us to bridge assertions established at the procedural
level to the underlying semantic distributions (shown here the
instance for XtrR.f):

lemma R_opsemE mmm’: ∃ d, ∀ P _pin _sin mmm,
GmXtrR = Gm’XtrR ⇒
Pr[out ← XtrR.f(_pin, _sin)@mmm’: P(out, GXtrR)]
= µ (d _pin _sin) P.

The importance of this lemma is that it allows us to exactly
capture the probabilistic semantics of XtrR.f.

Additionally, it can be shown that the witness function given
by LFdef(f) is a probability mass function of a distribution
on leakages dLeak (i.e. the summation of the direct image of

5Available on file proof/LeakageFreeness_Analysis.ec of the
development.

6

any subsets of leakage traces lie in the unit interval). Moreover,
the associated condition enforces the equality of distributions

dR = dI ‘ ∗ ‘ dLeak,

where ‘ ∗ ‘ denotes the product of distribution, and dR and
dI are the probabilistically reflected distributions related to
XtrR.f and XtrI.f, respectively. Moving back and forth
through reflection lemmas, we show that the equality of
probabilities needed to establish LF(f) holds.

We conclude this section by presenting a compositionality
result. Intuitively, compositionality allows users to “automati-
cally” conclude leakage-freeness for a composite program from
leakage-freeness of its components.

Proposition 3.2 (Compositionality): Let f and g be total
programs such that:

• f expects pin and sin1 as public and secret inputs
respectively, and produces an output sout1;

• g expects pin and (sout1,sin2) as public and secret
inputs respectively, and produces an output sout;

• both are leakage-free (i.e. LF(f) and LF(g) holds).
Then, the program

h(pin,(sin1,sin2)
.
=

sout1 @← f(pin,sin1);

r @← g(pin,(sout1,sin2);

return r;

is itself leakage-free LF(h).

Its proof relies on the observation that XtrI.f and XtrI.g,
being stateless, can be moved freely on the right-hand side of
the equivalence.

We believe that compositionality is an important property to
make our novel definitions practically useful for establishing
leakage-freeness for large composite programs and protocols.

IV. REJECTION SAMPLING

In Jasmin we can use #randombytes systemcall to
generate bytes uniformly at random. However, this does not
immediately give us uniform distributions on sets whose cardi-
nality is not power of 2. In this section our goal is to describe
verified (correct and leakage-free) Jasmin implementation of
uniform sampling of arbitrary size. One solution to this problem
is “rejection sampling”. In rejection sampling we are drawing
random elements from a given distribution d and rejecting
those samples that don’t satisfy some predefined criteria. If the
sampled element was rejected then we sample again until the
element is accepted. For example, if d is a uniform distribution
from [0 . . . 7] and we perform rejection sampling from d with
criteria that the resulting element must be smaller than 3 then
we can prove that this precisely gives a uniform distribution
of 0,1, and 2.

The challenging aspect of rejection sampling is that it does
not have an apriori termination time which means that we do
not know how long will it take to produce an element which
satisfies the criteria. However, we can prove that if the source
distribution d has elements which satisfy the criteria then the

rejection sampling is always terminating, but the runtime is
probabilistic.

We discovered that the standard library of EasyCrypt has
a formalization of rejection sampling algorithm in theory
Dexpected.ec. However the proof strategies are different.
In our work we derive properties of rejection sampling by
solving a recurrence equation which gives us a clean and
concise proof of correctness. The formalization in EasyCrypt’s
standard library is based on the game rewriting approach.

In the next section, we continue by implementing a “high-
level” rejection sampling algorithm in EC and proving its
properties. Next we implement a uniform sampling in Jasmin
as a special case of rejection sampling. Next, we extract the
Jasmin implementation to EasyCrypt and show that it is correct
by establishing equivalence with the “high-level” EasyCrypt
implementation (i.e., RS.rsample function). Finally, we
extract the Jasmin sampling algorithm to EasyCrypt with
leakage annotations and present two alternative proofs that
it is leakage-free.

A. Rejection Sampling in EasyCrypt

We start by implementing a rejection sampling algorithm
in EasyCrypt. Our algorithm is parameterized by a lossless
distribution d of parameter type X. We implement a module
RS with procedure rsample(P), where P is a predicate on
the elements of the distribution. In this procedure we run a
while loop in which we sample an element x from d on each
iteration. The while-loop terminates when the sampled element
x satisfies the predicate P.

type X.
op d : X distr.
axiom d_ll : is_lossless d.

module RS = {
proc rsample(P : X → bool) : X = {
var b : bool;
var x : X;
x ← witness;
b ← false;

while(!b){
x $← d;
b ← P x;

}

return x;
}

proc rsample1(P : X → bool) = {
var x : X;
x $← d;
if(! P x){
x @← rsample(P);

}
return x;

}
}.

To help with the derivation of correctness of rsample we also
implement rsample1 procedure which is computationally
equivalent to rsample, but with the explicit unrolling of the
first iteration of the while loop.

7

Let us now address the correctness and termination of
the RS.rsample procedure. In the first step, we show
that RS.rsample and RS.rsample1 are computationally
equivalent. This is easily proved by using pRHL and expanding
the while loop in rsample with the unroll tactic.

lemma samples_eq mmm P Q:
Pr[x ← RS.rsample(P)@mmm: Q x]

= Pr[x ← RS.rsample1(P)@mmm: Q x].

In the next step we express the probability of events of
rsample1 in terms of the probability of the same events
of rsample. To achieve that we use probabilistic Hoare logic
(pHL) and split the total probability into cases which correspond
to the branches of the if-statement in rsample1:

lemma rsample1_rsample mmm P Q:
Pr[x ← RS.rsample1(P)@mmm: Q x]
= µ d !P * Pr[x ← RS.rsample(P)@mmm: Q x]

+ µ d (Q ‘∧‘ P).

Now, we can combine samples_eq and
rsample1_rsample and arrive at the following recurrence:

lemma rsample_rec mmm P Q:
⇒ Pr[x ← RS.rsample(P)@mmm: Q x]

= µ d !P * Pr[x ← RS.rsample(P)@mmm: Q x]
+ µ d (Q ‘∧‘ P).

If the total probability mass of the predicate P is not zero then
the above recurrence has the following solution:

lemma rsample_pmf_gen mmm P Q: µ d P 6= 0
⇒ Pr[x ← RS.rsample(P)@mmm: Q x]

= µ d (Q ∧ P) / (1 - µ d !P).

For the special case when Q is a subset of P and event P has
non-zero probability then we arrive at the following equation:

lemma rsample_pmf mmm P Q: (∀ x, Q x ⇒ P x)
⇒ µ d P > 0
⇒ Pr[out ← RS.rsample(P)@mmm: Q out] = µ d Q / µ d P.

In this case, the right-hand side of the above equation denotes
a conditional probability of Q given P.

As a simple consequence we get that the procedure
RS.rsample(P) returns an element x which satisfies the
predicate P with probability 1. This also means that the
procedure rsample is terminating (or lossless in the parlance
of EasyCrypt):

lemma rsample_ll mmm P: µ d P > 0
⇒ Pr[x ← RS.rsample(P)@mmm: P x] = 1.

B. Uniform Sampling in Jasmin

Jasmin lacks expressivity to handle implementation of a
generic rejection sampling algorithm (which would be param-
eterized by predicate P and distribution d; see Sec. IV-A)6.
As a result, to perform our case study we instantiate rejection
sampling for uniform sampling (which is broadly utilized in
cryptographic protocols). We implement a Jasmin function

6Jasmin does not have any built-in types of distributions and the only way
to generate randomness in Jasmin is by using the randombytes systemcall.

which specializes the predicate P to λ x. x < a (for a
parameter a) and uses #randombytes systemcall as a
distribution d. In this way, we implement a uniform sampling
from an interval [0. . .a-1] for a given parameter a.

Also in Jasmin language it is impossible to express arrays of
parametric length. Therefore, in the preamble of all our Jasmin
development we define a constant nlimbs and then represent
the inputs and outputs of our programs by an arrays of size
nlimbs of 64-bit unsigned binary words.7

Now we describe an implementation of a Jasmin program
bn_rsamplei(a) (prefix bn stands for big-number) whose
input a is an nlimb-array representing a number from the
interval [0...264·nlimbs − 1] which is allocated on stack. The
program returns a pair (i,p), where i is a counter of
while-loop iterations and p is a binary array which represents
a number sampled uniformly at random from the interval
[0. . .a-1]. In our implementation, the counter i is a “logical”
variable of type int (i.e., unbounded integer) which is
only needed to facilitate proving in EasyCrypt. We also
define function bn_rsample(a) which discards the logical
counter i.

In the implementation below we run a while-loop and at
every iteration we use the systemcall #randombytes to
sample a random number p from the interval [0...264·nlimbs−1].
Then we subtract p from a by using a bn_subc function.8

The result of subtraction is stored in the memory of the first
argument of bn_subc. Therefore, to preserve the initial value
of p, we first copy it to the variable q by using the bn_copy
call. Importantly, in additional to the result of subtraction the
program bn_subc also returns the “carry” flag cf which is
set to true if the first argument is smaller than the second.
The while loop is iterated until the flag cf is set to true
which would indicate that the sampled number p is smaller
than a as desired:

inline fn bn_rsamplei(stack u64[nlimbs] a)
→ (inline int, stack u64[nlimbs]){

stack u64[nlimbs] q p;
reg ptr u64[nlimbs] _p;
reg bool cf;
inline int i;
i = 0;
p = bn_set0(p);
_, cf, _, _, _, _ = #set0();
while (!cf) {
_p = p;
p = #randombytes(_p);
q = bn_copy(p);
cf, q = bn_subc(q,a);
i = i + 1;

}
return i,p;

}

inline fn bn_rsample(stack u64[nlimbs] a)
→ (stack u64[nlimbs]){

stack u64[nlimbs] p;
_, p = bn_rsamplei(a);
return p;

7In our work we put nlimbs := 32, but our development can be
recompiled with any value.

8The implementation of bn_subc is included into the libjbn library.

8

}

Next, to address correctness we compile Jasmin code to
EasyCrypt without leakage-annotations. This produces a mod-
ule XtrI with the EasyCrypt’s version of bn_rsample
algorithm. The module also includes all functions which
were used in the implementation of Jasmin’s bn_rsample,
namely, bn_set0, bn_copy, and bn_subc. The result of
this compilation can be found in the accompanying code in
file W64_RejectionSamplingExtract.ec.

Due to the fact that Jasmin’s bn_rsample implements
a special case of rejection sampling, we found that it
was easy to relate the “high-level” EasyCrypt implemen-
tation RS.rsample to the Jasmin’s “low-level” extract
XtrI.bn_rsample. More specifically, we use the Easy-
Crypt’s pRHL to relate that XtrI.bn_rsample with
RS.rsample as follows:

lemma bn_rsample_spec mmm (a y : W64xN.t):
let P = λ x. x < [a] in
Pr[out ← RS.rsample(P)@mmm: out = y]
= Pr[out ← XtrI.bn_rsample(a)@mmm: [out] = y].

Here, W64xN.t stands for the type of an array of size
nlimbs of 64-bit binary words (i.e., Array32.t W64.t).
To simplify the presentation we write [x] to denote a sequence
of bits converted to unsigned integer (in EC this is done by
using function W64xN.bn).

As a consequence of bn_rsample_spec and
rsample_pmf we can immediately conclude the correctness
of Jasmin’s bn_rsample:

lemma bn_rsample_pmf mmm (a y: W64xN.t): 0 ≤ [y] < [a]
⇒ Pr[out ← XtrI.bn_rsample(a)@mmm: out = y]

= 1/[a].

In the next sections we address leakage-freeness of
bn_rsample.

C. Derivation of LFdef(bn_rsample)

In the previous section we discussed the correctness of
implementation of bn_rsample in Jasmin. In this section we
address its leakage-freeness (more specifically, LFdef property).
To do that, we compile Jasmin implementation to an EasyCrypt
module with leakage annotations. The result is as follows:9

module XtrR(SC:Syscall_t) = {
var leakages : leakages_t

proc bn_rsamplei(a:W64xN.t): (int × W64xN.t) = {
var q p i aux;
p ← witness;
q ← witness;
i ← 0;
leakages ← LeakAddr [] :: leakages;
p @← bn_set0(p);

leakages ← LeakAddr [] :: leakages;
cf ← false;

9For the sake of clarity of presentation we clean the extracted EasyCrypt
code and remove automatically generated boilerplate such as auxiliary variables
and extra assignments.

leakages ← LeakCond(!cf)
:: LeakAddr [] :: leakages;

while (!cf) {
leakages ← LeakAddr [] :: leakages;
aux @← SC.randombytes_32(

init_array nlimbs 64);
p ← (Array32.init (λ i0 ⇒ get64

(WArray256.init8
(λ i0 ⇒ aux.[i0])) i0));

leakages ← LeakAddr [] :: leakages;
q @← bn_copy(p);

leakages ← LeakAddr [] :: leakages;
(cf, q) @← bn_subc(q, a);
i ← i + 1;
leakages ← LeakCond(!cf)

:: LeakAddr [] :: leakages;
}
return (i, p);

}

// includes leakage-annotated bn_subc/copy, etc.
}.

Recall that in the implementation of bn_rsamplei the
counter i is a “logical” variable which we will use to derive
properties.

The module XtrR also includes leakage-annotated versions
of bn_subc, bn_copy, and bn_set0 which we skip here
for brevity. Our formalization contains proofs that these
auxiliary functions are correct and constant-time (i.e., CTdef).

The analysis of leakage-freeness of bn_rsamplei is
unusual because even if we proved that it terminates with
probability 1 then we do not know in advance for how
many iterations will it run. As a result, the contents of
XtrR.leakages accumulator is probabilistic and depends
on the number of iterations.

In the first step of our analysis we derive the probability of
bn_rsamplei running for exactly i iterations and returning
a specific element x. The proof is by induction on the number
of iterations i.

op fail_once (a : int) : real = µ [0..2nlimbs*64-1]
(λ x ⇒ a ≤ x).

lemma bn_rsample_pr mmm a i y: let t = 2nlimbs*64 in
1 ≤ i ⇒ 0 ≤ [x] < [a]
⇒ Pr[(c,x) ← XtrR.bn_rsamplei(a)@mmm: c = i ∧ x = y]

= (fail_once [a])^(i-1) / t.

Here, (fail_once [a]) denotes the probability of failure
of a loop iteration in bn_rsample which equals to the
probability of uniformly sampling an element which is larger
or equal than [a] from interval [0..2 nlimbs*64 -1].

In the second step we prove that the contents of the leakage
accumulator is in the functional relation with the number
of iterations of the while-loop. More specifically, we define
a function samp_t and establish that after termination of
XtrR.bn_rsamplei the contents of XtrR.leakages
equals to samp_t i. Intuitively, this shows that the leakages
do not depend on the input arguments. At the same time, it
does not mean that the result of the computation is independent
of leakages.

9

op samp_t i =
let prefix = [LeakAddr []; . . .] ++ set0_L ++ [. . .] in
let suffix = [LeakAddr []; . . .] ++ copy_L ++ [. . .] in
let loop j = repeat (j-1) [LeakAddr []; . . .] in

prefix ++ loop i ++ suffix.

The constant prefix equals to leakages before the while
loop (here set0_L is a constant corresponding to leakages
of bn_set0 function). The constant suffix corresponds to
the last iteration of while loop (here, copy_L corresponds
to the leakages produced by a bn_copy procedure). And
(loop i) corresponds to the first i-1 iterations of the loop.

We show that samp_t correctly captures the contents
of XtrR.leakages by proving that the probability of
XtrR.leakages being equal to a list l equals to the
probability of (samp_t i) being equal to l:
lemma samp_t_correct a y l s mmm: XtrR.leakages{mmm} = s
⇒ Pr[(_,x)← XtrR.bn_rsamplei(a)@mmm:

XtrR.leakages = l ++ s ∧ x = y]
= Pr[(i,x)← XtrR.bn_rsamplei(a)@mmm:

samp_t i = l ∧ x = y].

Next, we observe that function samp_t is injective and
therefore we can express the number of iterations i as an
inverse of the leakages (if l is not in the image of samp_t
then the inverse returns value -1):
lemma bn_rsample_leakf a y l s mmm: XtrR.leakages{mmm} = s
⇒ Pr[(_,x)← XtrR.bn_rsamplei(a)@mmm:

XtrR.leakages = l ++ s ∧ x = y]
= Pr[(i,x)← XtrR.bn_rsamplei(a)@mmm:

i = inv samp_t l ∧ x = y].

If we combine bn_rsample_leakf with
bn_rsample_pr then we get the formula for the
probability of producing list l and outputting the element x:
lemma bn_rsample_v a y l s mmm: XtrR.leakages{mmm} = s
⇒ let t = 2nlimbs*64, i = inv samp_t l in
Pr[(_,x)← XtrR.bn_rsamplei(a)@mmm:

XtrR.leakages = l ++ s ∧ x = y]
= if i ≤ 0 then 0 else (fail_once [a])^(i-1) / t.

Finally, by combining bn_rsample_v with
bn_rsample_pmf we can derive that bn_rsample is
leakage-free with respect to public input a (see Definition 3.2).
In particular, we define a function bn_rsample_f(a,l)
which returns the conditional probability of generating
leakages l with the public input a given that the procedure
bn_rsample returned an element x:
op bn_rsample_f(a,l) = let i = inv samp_t l in

let t = 2nlimbs*64 in
if i ≤ 0 then 0 else (fail_once [a])^(i-1)*([a]/t).

lemma bn_rsample_leakfree mmm y a l s:
XtrR.leakages{mmm} = s ⇒

let v = Pr[x ← XtrR.bn_rsample(a)@mmm:
XtrR.leakages = l ++ s ∧ x = y] in

let w = Pr[x ← XtrR.bn_rsample(a)@mmm: x = y] in
0 < w ⇒ v/w = bn_rsample_f(a,l).

The function bn_rsample_f computes the inverse of
samp_t on list l which is denoted by i. If i is larger than zero
then we know that it would take exactly i iterations to produce

leakages l (i.e., XtrR.leakages = l) and therefore we
return probability which corresponds to bn_rsample running
for exactly i iterations. In other case (i.e., i ≤ 0) the list l
is not in the image of samp_t and, therefore, the probability
of generating leakages l is 0.

To sum up, we have shown that Jasmin’s bn_rsample
procedure is correct (lemma bn_rsample_pmf) and leakage-
free (lemma bn_rsample_leakfree).

D. pRHL proof of LF(bn_rsample)

In the previous section we proved leakage-freeness of
bn_rsample by explicitly defining a leakage-function
samp_t and then proving that leakages and output are
independent. The main motivation for characterizing leakage-
freeness directly in pRHL is to avoid the explicit handling of
leakage (i.e., definition of function samp_t).

We now show how it can be achieved in the case of rejection
sampling. The formalization relies on the framework presented
in Section III-B and instantiating it for the respective functions.

At a very high level, the essence of the proof of the LF(f)
equivalence is to decouple the computation of leakage and
result in XtrR.f. This is a non-trivial task in challenging
cases like rejection sampling where running time (and, there-
fore, leakages) are probabilistic. The strategy taken can be
summarized in the following steps:

1) Exploit the LF equivalence and functional correct-
ness of the called functions to simplify the code of
XtrR.bn_rsample function;

2) Decouple the output from the leakages;
3) Restructure the rejection-loop to delay the sampling of

the output.

Let us briefly overview what encompasses each of these steps.
In the first step, the aim is to simplify XtrR.bn_rsample.
To this end, one rewrites the LF equivalences for each
called function, and replaces each Jasmin instruction by the
corresponding semantics (given by correctness lemma). It
leads to a program whose semantics is identical to that of
XtrI.bn_rsample, but intertwined with code that accumu-
lates leakages and values that are later discharged. For the
bn_rsample case, we obtain something similar to:

a $← [0..264·nlimbs-1];
b ← a < [bnd];

[. . . leakage accumulation (including "b")]

while (!b) {
a $← [0..264·nlimbs − 1];
b ← a < [bnd];

[. . . leakage accumulation (including "b")]
}

return a;

The next step we focus on the sequence of the sampling of the
result a and the evaluation of the acceptance criteria b. More
generally, given a distribution over type t (d: t distr),

10

and a predicate P: t → bool, we want to rewrite along the
following equivalence:

{
a $← d;

b ← P a;

}
∼

b $← dbiased (µ d P);

a $← if P b then dcond d P

else dcond d (predC P);

: true =⇒ ={a, b}

Where dbiased p is the Bernoulli distribution with parame-
ter p, dcond d Ev is the conditional probability of d given
Ev, and predC P is the complement of the predicate P.
Notice that on the right-hand side we sample the value b
from Bernoulli distribution in a manner which does not depend
on the variable a. Later this will allow us to delay the sampling
of the result (i.e., value of a). In our formalization we define
an EC theory that proves the above equivalence generically
and later we instantiate it for the case of rejection sampling.

The final step reshapes the loop structure to move the
sampling of a outside of the while-loop. Again, we defined
an EC theory to give a generic and reusable implementation.
In particular we define a module type AdvLoop which
represents an arbitrary computation which is not essential for
the restructuring of the loop.

Next, the module RejLoop (which is parameterized by
AdvLoop module) implements functions loopEager and
loopLazy. The difference between these two functions is
that in loopEager we sample value a at each iteration of
the while-loop and in loopLazy we sample a only once after
the while-loop is terminated.

abstract theory RejectionLoop.

type t.

op dt: t distr.
op p : t → t → bool.

module type AdvLoop = {
proc loop_init(b: bool): unit
proc loop_body(b: bool): unit

}.

module RejLoop(L:AdvLoop) = {
proc loopEager (bnd: t) = {

var a, b;
b $← dbiased (µ dt (p bnd));
a $← if b then dcond dt (p bnd)

else dcond dt (predC (p bnd));
L.loop_init(b);
while (! b) {

b $← dbiased (µ dt (p bnd));
a $← if b then dcond dt (p bnd)

else dcond dt (predC (p bnd));
L.loop_body(b);

}
return a;

}

proc loopLazy (bnd: t) = {
var a, b;
b $← dbiased (µ dt (p bnd));
L.loop_init(b);
while (!b) {

b $← dbiased (µ dt (p bnd));
L.loop_body(b);

}
a $← dcond dt (p bnd);
return a;

}
}.

[. . .properties. . .]

end RejectionLoop.

Using probabilistic relational Hoare logic we prove that
loopLazy and loopEager are equivalent:

equiv rejloop_eq (L <: AdvLoop):
RejLoop(L).loopEager ~ RejLoop(L).loopLazy
: ={bnd, GL} => ={res, GL}.

The proof of the above property relies on the formalization of
the equivalence of Eager and Lazy random oracles from the
EC’s standard library (PROM.ec).

After applying rejloop_eq to rejection sampling loop we
arrive at the program where acceptance criteria and leakage
computations are not intertwined with the output sampling. This
allows us to easily conclude LF(bn_rsample) equivalence
because the probabilistic leakage accumulation and the sampled
output become fully decoupled.

V. CONCLUSIONS

In this work we studied leakage-freeness of probabilistic
Jasmin programs. We motivated our work by explaining that
the “constant-time” property associated with deterministic
programs fails for the probabilistic case. We proposed novel
definition of leakage-freeness and provided the semantical and
pRHL characterizations. We proved that these are equivalent,
composable, and generalize the “constant-time” criteria. Also
we illustrated the derivation of leakage-freeness for rejection
sampling algorithm which has probabilistic runtime. To the
best of our knowledge, the leakage-freeness for probabilistic
programs have not yet been addressed in theorem provers.

REFERENCES

[1] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin, “Computer-aided
security proofs for the working cryptographer,” in Annual Cryptology
Conference. Springer, 2011, pp. 71–90.

[2] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. Laporte,
T. Oliveira, H. Pacheco, B. Schmidt, and P.-Y. Strub, “Jasmin: High-
assurance and high-speed cryptography,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1807–1823.

[3] B. A. Shivakumar, G. Barthe, B. Grégoire, V. Laporte, and S. Priya,
“Enforcing fine-grained constant-time policies,” Cryptology ePrint
Archive, Paper 2022/630, 2022, https://eprint.iacr.org/2022/630. [Online].
Available: https://eprint.iacr.org/2022/630

[4] “Accompanying EasyCrypt development,” https://github.com/dfirsov/
jasmin-leakage-freeness, accessed: 2023-10-06.

[5] J. B. Almeida, M. Barbosa, G. Barthe, B. Grégoire, A. Koutsos, V. La-
porte, T. Oliveira, and P.-Y. Strub, “The last mile: High-assurance and
high-speed cryptographic implementations,” in 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 2020, pp. 965–982.

[6] G. Barthe, B. Gregoire, V. Laporte, and S. Priya, “Structured leakage
and applications to cryptographic constant-time and cost,” Cryptology
ePrint Archive, Paper 2021/650, 2021, https://eprint.iacr.org/2021/650.
[Online]. Available: https://eprint.iacr.org/2021/650

11

https://eprint.iacr.org/2022/630
https://eprint.iacr.org/2022/630
https://github.com/dfirsov/jasmin-leakage-freeness
https://github.com/dfirsov/jasmin-leakage-freeness
https://eprint.iacr.org/2021/650
https://eprint.iacr.org/2021/650

[7] J. B. Almeida, C. Baritel-Ruet, M. Barbosa, G. Barthe, F. Dupressoir,
B. Grégoire, V. Laporte, T. Oliveira, A. Stoughton, and P.-Y. Strub,
“Machine-checked proofs for cryptographic standards: Indifferentiability
of sponge and secure high-assurance implementations of sha-3,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1607–1622.

[8] J. B. Almeida, M. Barbosa, G. Barthe, B. Grégoire, V. Laporte, J.-C.
Léchenet, T. Oliveira, H. Pacheco, M. Quaresma, P. Schwabe et al.,
“Formally verifying Kyber episode IV: Implementation correctness,”
Cryptology ePrint Archive, Paper 2023/215, 2023, https://eprint.iacr.org/
2023/215. [Online]. Available: https://eprint.iacr.org/2023/215

[9] J. B. Almeida, M. Barbosa, M. L. Correia, K. Eldefrawy, S. Graham-
Lengrand, H. Pacheco, and V. Pereira, “Machine-checked ZKP for NP

relations: Formally verified security proofs and implementations of MPC-
in-the-head,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 2587–2600.

[10] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber: a cca-secure
module-lattice-based kem,” in 2018 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 2018, pp. 353–367.

[11] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P.-Y.
Strub, “EasyCrypt: A tutorial,” in Foundations of Security Analysis and
Design VII. Springer, 2013, pp. 146–166.

[12] D. Firsov and D. Unruh, “Reflection, rewinding, and coin-toss in
easycrypt,” in Proceedings of the 11th ACM SIGPLAN International
Conference on Certified Programs and Proofs, 2022, pp. 166–179.

12

https://eprint.iacr.org/2023/215
https://eprint.iacr.org/2023/215
https://eprint.iacr.org/2023/215

	Introduction
	Related Work

	Preliminaries
	EasyCrypt
	Jasmin Workbench
	Jasmin Basics
	Leakage-Freeness

	Leakage-Freeness and Constant-Time
	Leakage-Free Programs
	pRHL characterization
	Properties

	Rejection Sampling
	Rejection Sampling in EasyCrypt
	Uniform Sampling in Jasmin
	Derivation of LFdef(bn_rsample)
	pRHL proof of LF(bn_rsample)

	Conclusions
	References

