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Abstract. In classical cryptography, one-way functions (OWFs) play a central role
as the minimal primitive that (almost) all primitives imply. The situation is more
complicated in quantum cryptography, in which honest parties and adversaries can
use quantum computation and communication, and it is known that analogues of
OWFs in the quantum setting might not be minimal.
In this work we ask whether OWFs are minimal for the intermediate setting of
post-quantum cryptography, in which the protocols are classical while they shall resist
quantum adversaries. We show that for a wide range of natural settings, if a primitive
Q implies OWFs, then so does its (uniformly or non-uniformly secure) post-quantum
analogue. In particular, we show that if a primitive Q implies any other primitive
P that has a 2-message security game (e.g., OWFs) through a black-box classical
security reduction R, then one can always (efficiently) turn any polynomial-size
quantum adversary breaking P into a polynomial-size quantum adversary breaking
Q. Note that this result holds even if the implementation of P using that of Q is
arbitrarily non-black-box.
We also prove extensions of this result for when the reduction R anticipates its oracle
adversary to be deterministic, whenever either of the following conditions hold: (1)
the adversary needs to win the security game of Q only with non-negligible probability
(e.g., Q is collision-resistant hashing) or (2) that either of P and Q have “falsifiable”
security games (this is the case when P is OWFs). Our work leaves open answering
our main question when Q implies OWFs through a non-black-box security reduction,
or when P uses a more complicated security game than a two-message one.
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2 Minimality of Post-Quantum One-Way Functions

1 Introduction
One-way functions, or functions that are easy to compute but (typically) hard to invert, are
one of the most foundational concepts in cryptography. The seminal work of Impagliazzo
and Luby [IL89] showed that one-way functions are necessary for many basic cryptographic
primitives. Specifically, they showed that the existence of secure protocols for identification,
symmetric-key encryption, commitments, and coin flipping imply the existence of one-
way functions. Further works have extended these results to show the equivalence of
several other primitives with one-way functions as well, including pseudorandom generators
[ILL89, HILL99] and digital signatures [Rom90, NY89].

We now know of an entire hierarchy of computational assumptions that are necessary
for various cryptographic primitives, with one-way functions at the base of the hierarchy.
Simply put, classical cryptography cannot exist without one-way functions. Their role has
earned them the name of the “minimal assumption” as their existence is necessary for a
big bulk of cryptography.

The rise of quantum computing has shuffled this landscape. Quantum computing
introduces both new risks, such as the ability to break many popular public key encryption
schemes [Sho94], and new opportunities, such as the ability to do cryptography from
different, potentially weaker assumptions than are necessary for classical cryptography.
One of the first indications of a different quantum landscape was the quantum key
distribution protocol of Bennett and Brassard [BB84]. They proposed a protocol for key
agreement which only required a quantum channel as well as a classical authenticated
channel, whereas key agreement in the classical world requires computationally bounded
adversaries1 and has been black-box separated from one-way functions [IR90]. We briefly
note that despite not all constructions and (security) reductions being black-box (e.g.,
[FFS87, Bar01]), still many techniques in cryptography are black-box in the sense that
they use the primitive and adversary (in the security reduction) as a black box, and hence
they hold relative to any oracle as well [IL89, RTV04]. In fact, non-black-box security
reductions à la [Bar01] are less common in cryptography.

Minimal Assumptions in Quantum Cryptography. More recently, many foun-
dational primitives have been constructed from pseudorandom quantum states, a loose
quantum analog to classical pseudorandom generators [JLS18, AQY22, MY22]. Although
pseudorandom states can be constructed from quantum one-way functions, the reverse
direction is not known. In contrast, recent results have shown oracle separations between
pseudorandom states and one-way functions. First, Kretschmer constructed a (quantum)
oracle relative to which pseudorandom states exist but BQP = QMA [Kre21], and then
later Kretschmer et al. constructed a classical oracle relative to which (single-copy) pseu-
dorandom states exist but P = NP [KQST23]. Additional works have explored the notion
of EFI pairs—pairs of quantum states that are efficiently samplable, statistically far, and
computationally indistinguishable—as a candidate to represent the minimal computational
hardness required for quantum cryptography [BCQ23]. In short, quantum cryptography
might have a different assumption hierarchy than classical cryptography, and the quantum
analogues of one-way functions might not be at the center.

Minimal Assumptions in Post-Quantum Cryptography. Relatively little work
has explored the computational assumptions required for post-quantum cryptography,
which is the hybrid of the two worlds of classical and quantum cryptography. In post-
quantum cryptography, the protocols are still implemented classically, but they must be
secure against quantum attackers. Post-quantum cryptography models the most accessible
intermediate future where cryptographically relevant quantum computers exist but have

1Specifically, key agreement cannot be secure information theoretically, and it implies OWFs.
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not yet reached the widespread adoption necessary to implement quantum cryptographic
protocols. Given the upheaval of the assumption hierarchy brought about by quantum
computation, it is reasonable to ask what that hierarchy looks like in the post-quantum
world. With that, we state the primary question of this work.

Are one-way functions minimal for post-quantum cryptography?

The question above might seem to have a straightforward “yes” answer, but the non-
triviality of this question stems from the fact that a reduction might rewind the adversary,
potentially messing up the internal state of the adversary if it is quantum.

The minimality of one-way functions in the classical world derives from the fact that
they are implied by most basic cryptographic primitives. That is, there are black-box
reductions from one-way functions to most other primitives. With this in mind, we can
rephrase the above question as a more concrete technical question.

If a classically secure cryptographic primitive Q implies one-way functions, does the
post-quantum-secure variant of P imply (post-quantum) one-way functions as well?

1.1 Our Results
We answer this question (mostly) in the positive by showing that in a large variety of
natural settings, one-way functions are minimal for post-quantum cryptography as well.

2-Message Games. We study the problem more generally by using a primitive P rather
than OWFs, but we still restrict our focus to primitives whose own security is defined using
a 2-message game, which is the case for OWFs. We sometimes refer to such 2-message
games as non-interactive “assumptions.”2 That is, the security game of the primitive
P models a non-interactive assumption, and this is crucial for our results. While this
may seem restrictive, we observe that the security of many (if not most) foundational
cryptographic primitives can be modeled in terms of 2-message games, including one-way
functions, trapdoor one-way functions, semantically secure PKE, key agreement, etc.

Specifically, we show that if there exists a classical black-box reduction from some
primitive P defined by a 2-message security game (e.g., OWFs) to some other primitive Q,
then there also exists a post-quantum (black-box) reduction from P to Q. That is, if the
existence of Q implies the existence of P in the classical world, then the same is true in
the post-quantum world.

There is an important corollary of this result. Since one-way functions are defined by a
2-message game, then any primitive which classically implies one-way functions (through
the black-box method above) also implies one-way functions in the post-quantum setting.
In other words, the existence of post-quantum one-way functions lies at the base of the
post-quantum computational assumption hierarchy, just like in the classical world. A more
complete description is found in Section 4.

Since 2-message adversaries carry minimal state, it is perhaps not surprising that
classical reductions to non-interactive assumptions lift to the post-quantum setting. In
some sense, our results can be seen as a verification of this intuition. However, proving
this to be the case turns out to be more nuanced and non-trivial than expected, and we
believe the final result deserves a full proof. In fact, even though the adversary used in
the reduction plays in a non-interactive game, it can still be used interactively by the
reduction through both rewinding (while keeping the randomness) and resetting (to a
fresh randomness). Additionally, in light of how drastically interaction with a quantum
machine can change the computational assumption landscape, it should not be taken for
granted that a reduction that interactively uses its adversary carries over unscathed from
the classical setting to the post-quantum setting.

2Here the term assumption refers to the belief that no efficient adversary can win in this game.
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Extension: Deterministic-Adversary Reductions. We additionally present a strength-
ening of this result, showing that even reductions that expect a deterministic adversary,
which we call deterministic-adversary reductions, can be lifted to the post-quantum setting
by imposing additional restrictions on the games involved in the reduction. The extension
covers the following cases:

• First, we show that if Q has success threshold zero (i.e., the adversary only has to
win with non-negligible probability), then our main result holds, and a deterministic-
adversary reduction can be lifted to the quantum-adversary setting. This result
requires the security reduction to call its adversary on a single security parameter
(which is a mild restriction, as almost all reductions follow this restriction; see the
work of [CLMP12] for discussions on why this is usually the case).

• Second, we show that even if Q has an arbitrary security threshold (e.g., threshold 1
2

for indistinguishability games), then as long as either of the security games of P or
Q is falsifiable [Nao03] (i.e., has a polynomial-time challenger), then a deterministic-
adversary reduction can be lifted to the post-quantum setting. For the setting that
Q is falsifiable, we again limit the reduction to call its adversary on a single security
parameter, but when P is falsifiable (e.g., OWFs), such a limitation is not needed
for the result to go through.

The motivation for the case of deterministic-adversary security reductions stems from
the fact that classical reductions can benefit from such assumptions at the cost of requiring
stronger (non-uniform) assumptions in the end. Namely, reductions can pretend to use the
“best possible randomness” of their adversaries (e.g., one that is provided as non-uniform
advice) and then benefit from this determinism. For example, the work of [IMS12] achieved
their black-box sublinear malicious-verifier ZK arguments using this technique. As for
previous work on such lower bounds, the work of [CLMP12] also achieved lower bounds
against deterministic-verifier reductions for the different problem of ruling out provability
of 2-Message Zero Knowledge.

Extension: Polynomial-Size (Non-Uniform) Quantum Adversaries. Our results
also extend to cover the non-uniform quantum hardness regime. In particular, if we
start from the implication that primitive Q implies P through a black-box game-based
security reduction while P has a 2-message game, then we can lift this implication to
cover the post-quantum variants of P and Q. Indeed, we can do this lifting while we
cover the non-uniformly-hard post-quantum variants in which the given adversary of P
has non-uniform quantum advice. However, to obtain this implication, we pay the price of
using polynomially more quantum advice during our (post-quantum) reduction.

We clarify two settings that our results do not cover. The first is the case where
the quantum auxiliary input given to the reduction is an arbitrary quantum function of
the oracle adversary and the oracle primitive, similar to classical non-uniform security
reductions [CLMP12]. We emphasize that this setting is irrelevant to our results, because
we start from a classical reduction with a classical interface, and hence the reduction itself
cannot take quantum advice. The second case is where we are given only a single copy of
the adversary (and of the quantum auxiliary input), known as constructive post-quantum
reductions [BBK22]. In this case, the no-cloning theorem prohibits us from creating
polynomially many copies of the arbitrary quantum auxiliary input |s⟩.

1.2 Technical Overview
Our primary technical contribution is to prove the following. If there exists a classical
reduction from winning in a game Q to winning in a 2-message game P, then for any
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efficient quantum adversary AQ who wins in P , we can construct a new efficient quantum
adversary A′Q who wins in Q.

We now describe slightly informally the techniques which allow us to lift reductions to
2-message games to the post-quantum setting. This represents the bulk of the technical
contribution and is the crux in proving our results. Consider a reduction R from a game
Q to a 2-message game P, and let AQ be an efficient quantum adversary that wins in P.
For now suppose AQ is uniform and starts from the |0⟩ state.3 Even though AQ plays in
a non-interactive game, we cannot claim that RAQ wins in Q. Since R expects a classical
adversary, by interacting with AQ, it may potentially be able to distinguish it from a
classical adversary using techniques such as rewinding. In fact, it is not quite clear what
it formally means to classically access a quantum algorithm AQ under rewinding. What
we want instead is a successful quantum adversary that is indistinguishable from some
successful classical adversary that can be rewound, even though this classical adversary
might be inefficient. Therefore, since R must be able to win in Q given any such successful
classical adversary (even if it is inefficient), if it cannot tell that it was given a quantum
adversary, then it must win in Q even with the quantum adversary. We remark that
the running time of the adversary cannot be used to distinguish an inefficient classical
adversary from an efficient quantum adversary, because both are provided as oracles and
respond to queries instantaneously.4

This high-level plan is reminiscent of the so-called “two-oracle” technique [GW11,
Pas11, Wic13]. To achieve the above goal, we propose modifications both to AQ and
a classical algorithm (AQ)C , which is any inefficient classical algorithm that behaves
(perfectly) identically to AQ on a single query. Our modifications will essentially make
both the classical and quantum adversaries useless to rewind, allowing us to argue that
they are still indistinguishable from each other from the perspective of both the reduction
and the 2-message game.

First, we construct the modified classical adversary (ÃQ)C by fixing an exponentially
long random tape with an entry in the tape for each possible query and evaluating (AQ)C

on each query, which makes it so the output of (ÃQ)C on any query is determined in
advance (based on its long randomness) and identical for repeated queries. Next, we
construct the modified quantum adversary A′Q by lazy-evaluating AQ and also memorizing
the previously asked queries by storing the responses to previous queries. This modification
makes A′Q no longer an actual oracle (due to its memory), but that is fine for our purpose
of successfully running a reduction, as the reduction does not know that its oracle is
stateful. From here, we can argue that (ÃQ)C and A′Q are also indistinguishable from the
perspective of the reduction, even if the reduction behaves arbitrarily.

Deterministic-Adversary Reductions. We first briefly discuss the challenges that
arise when using deterministic-adversary reductions. At first, it might seem that we can
simply use the same adversary A′Q to emulate the reduction R. After all, doing so is
identical to “picking and fixing a (very long) randomness” for the equivalent adversary
(ÃQ)C . For simplicity, let us now suppose that the reduction calls its oracle adversary
only on a single security parameter nP .

Now, R treats (ÃQ)C as a deterministic adversary, and we want to analyze their
interaction using some fixed randomness for the adversary. Let ε be the adversary’s
advantage as a randomized adversary. By fixing its randomness, we use an averaging
argument to claim that with probability at least ε

2 , the adversary has advantage at least ε
2 .

While this is a non-negligible advantage, the 1 − ε
2 probability of choosing a “bad”

randomness prohibits us from making claims about the reduction’s success in a game Q
3We extend this argument to the case of non-uniform adversaries by using more advice in the reduction.
4Reductions that are almost black-box but can depend on the running time of the adversary are called

“class reductions” [Sha20].
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with an arbitrary “success threshold”; the success threshold τ is the trivial probability of
winning in the game that the adversary wants to beat with non-negligible advantage. R
wins in Q with probability ε

2 · δ( ε
2 ) + (1− ε

2 ) · unknown, where δ(γ) is the corresponding
non-negligible advantage of winning in Q if the oracle adversary wins in P with advantage γ.
In a game Q with an arbitrary success threshold, the unknown component of R’s advantage
may be negative, so we cannot claim that R’s advantage in total is non-negligible.

We now sketch the key ideas that we use to obtain this extension.

1. Q is threshold-zero. For the first case, the depiction of the challenge above already
shows that if the security threshold of Q is zero and R only calls A on a single
security parameter nP , then the advantage of emulating R using A′Q will be at least
ε
2 · δ( ε

2 ), which is also non-negligible. This is the easiest case.

2. P is falsifiable. For this case, we cannot simply rely on the picked “randomness” of
A′Q (simulating a random choice of (ÃQ)C) being good with probability ε

2 . However,
we know that if we get lucky, we can “test” that we have become lucky due to the
falsifiability of P . So, we try our luck many times until we succeed in finding a “good”
instantiation of (ÃQ)C by resetting the internal table of A′Q until hitting a good
table. We do this for every time that R calls its adversary oracle on a new security
parameter. Once we find a good table for each security parameter, we use the “good”
adversaries in the interaction in the game Q.

3. Q is falsifiable. For this case, we will use a similar idea to the one above, but
instead of testing whether a table M for A′Q is good by running A′Q in P, we must
infer whether it wins in P with sufficient probability based on its success probability
when the reduction is run in Q with oracle access to A′Q.

Polynomial-Size (Non-Uniform) Quantum Adversaries. We now explain the
simple idea that allows us to obtain the extension to the case of non-uniform quantum
hardness against adversaries that come with non-uniform advice. To explain the idea, we
need an observation about the big picture of our baseline proofs for the uniform case.

At the core of the baseline proofs, we plug a uniform quantum adversary into a classical
reduction to win a security game by running the adversary polynomially many times from
scratch with quantum auxiliary input |0⟩. However, in doing so, once an adversary starts
an execution, we do not rewind it. Now, suppose instead that the quantum adversary has
hard-coded quantum auxiliary input |s⟩ to begin with. Since we allow arbitrary advice so
long as it has polynomial length, we can simply begin with polynomially many copies of
|s⟩. Each time the proofs reset an adversary, we use a fresh (unentangled) copy of |s⟩ (as
opposed to a fresh copy of |0⟩).

1.3 Further Discussion and Related Work
Constructive and Universal Reductions. Bitansky, Brakerski, and Kalai studied the
question of which classical reductions lift to the post-quantum setting in the presence of
single-copy adversaries, showing both feasibility and impossibility results [BBK22]. Namely,
their focus is to understand which reductions carry over to the setting where we cannot
make any copy of the adversary (or the quantum advice that it comes with). Additionally,
Chan, Freitag, and Pass studied the notion of universal reductions, or reductions that
hold for a wide variety of computational models while making minimal assumptions about
which models are “physically realizable” [CFP22]. Again, they focus on settings where a
fully stateful environment carries state across its interactions and hence sometimes cannot
be reset. Similarly, they show feasibility and impossibility results in this setting. Much
of the technical contribution of both [BBK22] and [CFP22] is dedicated to remedying
the difficulties imposed by one-shot adversaries which we avoid due to our more relaxed
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model. Hence, the results of both works are incomparable to ours, as we achieve stronger
implications in a more relaxed model.

Rewinding. As mentioned, a primary difficulty against boosting a classical reduction to
the post-quantum setting is that the reduction may rewind its oracle. Quantum rewinding
is challenging in the general case due to the no-cloning theorem [WZ82], although there
have been numerous quantum rewinding algorithms that are proven to be effective in
certain restricted scenarios [Wat06, Unr12, ARU14]. (See the tutorial [LM22] for an
exposition of such subtleties.) Due to these difficulties, many existing works show positive
results only for classical reductions which are straight-line, meaning they do not rewind
their oracle [Son14, CFP22], or non-adaptive, meaning they cannot change their strategy
based on the responses they get from their oracle [BBK22]. In contrast, we show results
even for classical reductions which behave arbitrarily, but we impose restrictions on the
games involved in the reduction.

Beyond 2-Message Games? The focus of this work is on understanding when one-way
functions remain minimal in post-quantum cryptography. We study the more general
setting when primitives with a 2-message security game remain minimal, as this covers
OWFs. A reasonable question would be whether our results also extend to cases where P
is defined by a security game with more than two messages. Namely, can we still conclude
that “Q classically implies P” can be lifted to the post-quantum setting?

Here we observe that our results demonstrably do not hold if we extend P to cover
primitives with 4-message security games. In particular, consider the 4-message qubit
certification protocol of [BCM+21] used in their construction of a proof of quantumness.
That protocol presents a challenge that is secure against classical polynomial-time provers if
the LWE assumption holds. Furthermore, their security proof is done through a black-box
reduction to the learning with errors (LWE) assumption. However, that classical reduction
necessarily rewinds the adversary in a way that inherently invalidates the reduction in
the post-quantum setting. Indeed, an efficient quantum prover can provably win that
challenge, while LWE is conjectured to hold in the post-quantum setting as well. This
means that such a reduction is unlikely to exist when the given adversary is quantum.

To connect this to our results, we can construct a contrived primitive P with a 4-
message security game (based on the qubit certification test of [BCM+21]) such that: (1)
P is implied by LWE in the classical setting through a black-box security reduction, but
(2) P cannot be obtained from LWE in the post-quantum setting through a black-box
reduction, unless LWE can be broken in quantum polynomial time. The description of the
primitive P is as follows. We simply consider the identity function as the only legitimate
“implementation” for P , while its security depends on whether an “efficient” adversary can
win the 4-message security game.5

Stronger Ad-Hoc Post-Quantum Security Notions. In this work, we consider the
post-quantum variant of classical primitives, where this post-quantum variant is derived
automatically from the same (classical) security game of the classical primitives. One can
imagine ad-hoc (perhaps stronger) post-quantum variants in which the quantum adversary
can do more by asking superposition queries [BZ13]. However, as long as such notions are
stronger, such primitives also imply the weaker version as defined by us and hence imply
OWFs as well whenever the weaker notion does.

We finally comment that the work of Yamakawa and Zhandry [YZ20] also studies the
question of “what reductions from the classical world carry to the post-quantum world” in
the context of the random oracle model. However, their proof allows the new algorithm
itself to remain quantum even after making their oracle queries classical.

5This primitive plausibly exists in the classical world but not in the post-quantum world.
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2 Preliminaries
In this section we define the terms and ideas that we will use throughout the paper. A
negligible function f(n) is a function that decreases faster than any inverse polynomial
function 1/poly(n) for sufficiently large n. We say that a probability is negligible if it is a
negligible function of its parameter (which is usually the security parameter), and we say
it is non-negligible otherwise. We write x← D to represent sampling x according to the
distribution D. We begin by defining efficient classical and quantum algorithms. Both
definitions are standard. We consider a classical efficient algorithm to be a probabilistic
polynomial-time Turing machine and a quantum algorithm to be a family of efficiently
generated quantum circuits. When we deal with computationally unbounded algorithms,
we do not limit them to be implemented using Turing machines and similarly to [BBF13]
model them with arbitrary distributions.

Definition 1 (Classical Algorithms). A classical (perhaps inefficient) algorithm A is a
collection of (potentially correlated) random variables, such that for any given input x ∈
{0, 1}⋆, it outputs y from a specific definition, and we denote this process as y = A(x; r|x|),
where x is the input and r|x| is the (perhaps exponentially long or unbounded) source
of randomness for input length n. Sometimes the randomness is indexed with “security
parameter” n rather than the input length. An efficient classical algorithm is one that
can be implemented by a probabilistic Turing machine that runs in time poly(|x|) (and so
it will also necessarily use poly(|x|) bits of randomness). We sometimes refer to efficient
algorithms as PPT machines for short. More generally, a PPT machine A with access to
an oracle O is denoted by AO and shall run in probabilistic polynomial-time for every O if
one counts each query to the oracle as a single step.

Interactive Algorithms and Rewinding. Here we clarify how Definition 1 covers
the notion of interactive algorithms and what it means to rewind interactive or even non-
interactive algorithms provided as oracles. Interactive algorithms can use non-interactive
algorithms to define their “next-message” function. Namely, the interactive randomized
algorithm A first picks its randomness rn for security parameter n. Then, given inputs
x1, . . . , xi, it outputs the i answers y1, . . . , yi, or equivalently it only outputs the ith answer
yi. Then, one can interact with A by iteratively obtaining the answers. To rewind A means
to “go back in time” and ask a different branch of queries (e.g., (x1, x′2) after previously
having asked (x1, x2)). Even a non-interactive algorithm can be rewound by asking it a
different query x′1 for the same randomness rn. We also allow the randomness of an (even
unbounded) algorithm to be reset to r′n. Since the randomness can be of super-polynomial
length, we allow the oracle algorithm A that uses oracle O to have a handler for each
“randomness session.” Namely, A can ask O to respond with respect to randomness handler
h1, and then change the handler to h2, which means the randomness of O needs to be reset.
Therefore, O(x; h), O(x′; h) for |x| = |x′| = n will be answered using the same randomness
rn, while O(x, h), O(x, h′) will be answered using independent randomness rn, r′n. When
dealing with efficiently computable oracles, we can always allow the algorithm A to pick the
randomness, but for inefficient algorithms we can provide the access indirectly as stated
above, which is first formalized and used in [BJY97].

Loosely speaking, an efficient quantum algorithm is a family of efficiently generated
quantum circuits with one circuit for each input size. A circuit for input size n has three
sets of qubit registers for input, output, and work.

Definition 2 (Quantum Algorithm). An efficient quantum algorithm Q is a family of
quantum circuits {Qn}n∈N, where the description of Qn is computed by a classical PPT
algorithm A given input 1n. Qn has 3 registers: the first n qubits receive the input, the
second q(n)-qubit register is reserved for storing the output, and the third set of q(n)
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qubits are reserved for the work during the computation, while q(·) is some polynomial
function. On input x ∈ {0, 1}n, the initial quantum state is |x⟩ |0⟩ |0⟩. At the end of
computation, the second (output) register is measured in the computational basis to yield
a classical output. The number of gates in the circuit for input length n is bounded as
|Qn| ≤ p(n), where p(·) is some polynomial function. A non-uniform efficient quantum
algorithm Q is defined similarly, but the work registers are initialized with |ϕ⟩n, where
|ϕ⟩n is the quantum advice for input length n.

Since we are concerned with post-quantum cryptography, where the parties imple-
menting the protocols are classical, and their “default” security game involves classical
challengers and adversaries, we constrain quantum algorithms to work with only classical
input and output. For this reason, we can define a classical interface of a (non-interactive)
quantum algorithm Q as any (perhaps inefficient) randomized algorithm which has the
same input-output distribution as that of Q. We denote a classical interface of Q by (Q)C .
Definition 3 (Classical Interface of a Quantum Algorithm). Let Q be a quantum algorithm
with classical inputs and outputs. A classical interface (Q)C for Q is any (perhaps inefficient)
classical randomized algorithm6 such that for each possible input x, the distributions Q(x)
and (Q)C(x) are identical.

Note that in the definition above (Q)C is not necessarily unique for a fixed Q, as there
might be different ways to sample Q(x). Moreover, this definition does not state how the
answers (Q)C(x) and (Q)C(x′) are correlated. One algorithm might use smaller randomness
that leads to correlated answers, while another algorithm uses more randomness and leads
to independent answers. In fact, this very point (that (Q)C is not unique) points to the
subtle point that rewinding a classical interface of a quantum algorithm might lead to
different behavior.

We now define the notion of an interactive game between a challenger and an adversary.
Definition 4 (Security Games). A security game is an interactive game between two
machines, a challenger C and an adversary A, in which k messages are sent between C and
A, n is the common input referred to as the security parameter, and the last message is
always sent by the adversary. C and A each have their own independent randomness, rC
and rA, respectively. The game is merely described by the description of the challenger C.
Suppose ℓ is the total size of its inputs given to the challenger by an adversary. We call
the game falsifiable if C runs in polynomial time over (nℓ) and simply round efficient if
k ≤ poly(nℓ).7 At the end, C outputs 1 if A has won this particular execution of the game
and outputs 0 otherwise. We assign a “success threshold” t(n) ∈ [0, 1) to any such game,
and we say that adversary A has advantage ε(n) in (winning) the game if it wins with
probability t(n) + ε(n). In this case, we call the game a threshold-t(n) game.

In the following, we assume that games come with security thresholds, unless stated
otherwise. Intuitively, a game is falsifiable if it is possible to efficiently simulate the role of
the challenger by sampling a challenge and verifying a response. This means that one can
efficiently verify if the adversary could win and “break” the computational assumption
behind the security game. This was first proposed by Naor [Nao03].

Usually, security games of cryptographic primitives are either threshold-zero (like OWFs
or any other search problem) or threshold-( 1

2 ) (like PRGs or any other distinguishing game),
and in all of these settings the adversary’s goal is to win with non-negligible advantage.

A 2-message game is a special case of a k-message game where k = 2 and where the
only messages are the challenger’s challenge followed by the adversary’s response. We
might refer to such games as non-interactive games as well.

6Recall that we use the term algorithm generically, without requiring the algorithm to be implemented
using any specific computing model such as Turing Machines.

7Note that a special case is to have k ≤ poly(n), but for security games like that of digital signatures,
the number of rounds might be chosen by the polynomial time adversary.
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In this work, in both the classical and post-quantum settings, the challenger is a
classical algorithm. In the classical setting, the adversary is a classical algorithm, and in
the post-quantum setting, the adversary is a quantum algorithm with a classical interface.
We comment that post-quantum security does not have to have such a limitation in general,
and the security games of post-quantum-secure schemes could have their own quantum-
tailored definitions, but such primitives will not have a direct classical counterpart primitive,
as it is not automatically clear what is the security game of the corresponding classical
primitive. However, by merely allowing a quantum adversary to play in the classical
security game of the original classical primitive Q, we can talk about the post-quantum
variant of Q.

Definition 5 (Black-Box Reduction Between Games). An (ε, δ)-reductionR from (winning
in) the game G2 to (winning in) the game G1 is a PPT oracle algorithm that, given access to
any oracle adversary A which wins in G1 with advantage ε(n1) (for all security parameters
n1), RA wins in G2 with advantage δ(n2), where n2 is the security parameter of G2. R
can call A on multiple security parameters, rewind it, or reset its randomness, but if it
only calls it on security parameter n1 (that is determined by the security parameter of
G2, n2), we call this a single-security-parameter reduction. We also give 11/ε as an input
parameter to R.

Giving 11/ε as an input parameter to R is to make the definition non-vacuous by
allowing the running time of R to depend on its adversary.8

Syntax of Oracle Queries. In Definition 5 the reduction is allowed to call its oracle
adversary on different security parameters, rewind it, or reset the adversary’s randomness.
This can be syntactically enabled by letting R call A on (x, n; h) where x is the “input”,
n is the security parameter, and h is the randomness handler. x itself could be a vector
(x1, . . . , xi) for interactive adversaries. Therefore, R can rewind A by keeping the same
randomness handler h and asking a different branch of queries, like (x1, . . . , xi−1, x′i), and
it can reset the randomness of A by changing the randomness handler h.

In general, as mentioned in the definition, the oracle adversary A that wins in G1
can model a randomized algorithm that allows fixing or resetting its randomness. If the
reduction assumes that the oracle is deterministic, we call it a deterministic-adversary
reduction. Note that such an assumption might be beneficial for the reduction, as it limits
the way the oracle adversary can perform.

Non-Negligible-Advantage Security Reductions. In general, δ could be a function
of both ε and the security parameter n2. By default, security reductions can use any
non-negligible ε ≥ 1/poly(n1) and will produce δε,n2 ≥ 1/poly(n2) that is non-negligible.
From this point forward, we always assume that we work with a non-negligible-advantage
security reduction, and for simplicity we will refer to the advantage in G1 as ε and the
advantage in G2 as δε, leaving the dependence on security parameters implicit.

Next, we will define a cryptographic primitive, following [RTV04] but also with some
refinements from [BBF13] that model implementations as random variables, allowing
inefficient implementations with long randomness. We consider only primitives implemented
by classical algorithms, but they can be both classically secure and quantum-secure. In other
words, we consider classical primitives and post-quantum primitives (those implemented
classically with classical or quantum security, respectively) but not quantum primitives
(those implemented by quantum algorithms).

8Otherwise, if ε is too small, the reduction might not even get one “useful” execution out of its adversary.
See [BBF13] for more discussions.
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Definition 6 (Classical Primitives with Classical Security). A cryptographic primitive P
is a pair (FP , RP). FP is a set of potentially inefficient randomized algorithms (as defined
in Definition 1) implementing P. An implementation f is considered (classically) efficient
if it can be computed by a classical PPT algorithm. RP is a relation with pairs of the
form (f, A) in which both f, A are potentially inefficient randomized algorithms. For an
implementation f ∈ FP , an adversary A is said to P-break f if (f, A) ∈ RP . f ∈ P is a
secure implementation if no PPT algorithm P-breaks f . The primitive P exists if there
exists an efficient and secure implementation of P.

Post-Quantum Primitives. Definition 6 above can be extended to classical primitives
with quantum security (i.e., the post-quantum setting). To do so, one shall allow adversaries
A to be quantum algorithms with a potentially quantum interface. However, as mentioned
before, such post-quantum primitives might not have a direct classical variant when it
comes to their security definition. One can further limit the adversaries to have classical
interfaces. Indeed, even though a family of primitives, like public-key encryption with
various security definitions such as CPA and CCA, can include post-quantum variants in
which the security definition is fully tailored to quantum adversaries (e.g., by allowing
superposition queries to be asked by the adversary [BZ13]), here we aim to define what it
means to take a classical primitive and systematically derive its post-quantum variant. We
now define the post-quantum variant of a classical primitive that falls into this category.
Definition 7 (The Post-Quantum-Secure Variant of a Game-Based Classical Primitive).
Suppose P is a classical primitive. Suppose further that the security relation of P is defined
through a security game with challenger C that can depend on the implementation f of
P; namely, (f, A) ∈ RP iff A wins in Cf with non-negligible advantage (above its success
threshold). Then, we define the post-quantum variant of P to be the same primitive, but
now the security definition allows efficient quantum adversaries to participate in the same
security game (using classical communication).

Black-box security reductions between games are a special way of designing black-box
security proofs as depicted in [RTV04]. The reason is that the notion of a primitive as
defined above (based on [RTV04]) allows the security definition to be arbitrary, while we
focus on security definitions that are in the form of interactive security games. This means
that our results do not depend on how the implementation reduction is performed, as
formalized in [RTV04], meaning that we can handle non-black-box constructions, so long
as the security reduction is a black-box reduction between games.

The definition below first formalizes what it means for a primitive’s existence to
imply that of another without emphasizing any of the components being black-box. This
formalization is also presented for the post-quantum setting (in the second bullet). However,
the definition formalizes along the way what it means to have a free (non-constructive)
implementation reduction while the security reduction is still black-box. Although we
could also focus on defining the security reductions for the post-quantum setting in a
constructive way, we use the simpler definition as our goal is merely showing that classical
implications can be lifted to the post-quantum setting.
Definition 8 (Potentially Non-constructive Reductions). A (potentially non-constructive)
reduction exists from a classical primitive P = (FP , RP) to a classical primitive Q =
(FQ, RQ) if the following two conditions hold:

1) Implementation. For every PPT implementation f ∈ FQ, there is a PPT
implementation gf ∈ FP .

2) Security. For every PPT implementation f ∈ FQ, if there is a PPT adversary AP
that P-breaks gf , then there is a PPT adversary AQ that Q-breaks f .

Furthermore, if P and Q have security definitions that are based on security games
with challengers CP , CQ, we define the following two cases:
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• Game-Based Black-Box Security Reduction. We say that the reduction from
P to Q has a black-box game-based reduction if the existence of AQ above (based
on AP) is proved through a black-box reduction from winning in CQ,f with non-
negligible advantage to winning in CP,gf

with non-negligible advantage. Note that
such a reduction shall work even if the adversary is not efficient.

• Security Reduction for the Post-Quantum Setting. Let P ′ and Q′ be the
post-quantum variants of P and Q, respectively. Then, we say that there is a
reduction from P ′ to Q′ if (in addition to the implementation reduction above) it
holds that whenever there is an efficient quantum adversary AP that P-breaks gf ,
then there is an efficient quantum adversary AQ that Q-breaks f . The notion of
“efficient quantum algorithm” here could be either uniform or non-uniform, leading
to two different definitions.

3 Lifting Reductions to 2-Message Games
In this section, we prove our primary technical results. At a high level, we show that if
there is a classical reduction from winning in some game Q to winning in a 2-message
game P, then given any efficient quantum adversary that wins in the 2-message game P,
we can use this quantum adversary to win the second game in quantum polynomial time.
This holds both for uniform and non-uniform notions of quantum efficiency.

3.1 Useful Tools
Before turning to the main results, it will be helpful to discuss ways of modifying adversaries
to be more amenable to analysis in a reduction. Specifically, we wish to show that quantum
adversaries can be modified in such a way that classical reductions cannot distinguish
them from an equally successful classical adversary. Given a quantum adversary that wins
in some 2-message game but which may not be easily usable by a classical reduction, we
construct both a modified quantum adversary and a corresponding classical adversary such
that both have equal advantage in the game and are indistinguishable from each other,
but a classical reduction can effectively use the classical adversary. From this, we conclude
that the adversary can effectively use the modified quantum adversary as well.

We will talk at several points about inefficient classical adversaries. While it is important
for our quantum adversaries to be efficient, it is not an issue if the constructed classical
adversaries are inefficient, so long as the reduction is supposed to work with such adversaries
as well. The only purpose of the classical constructions is to show that a certain quantum
adversary is indistinguishable from some useful classical adversary. That is, the inefficient
classical adversaries are no more than a proof device.

To begin, we observe that the classical interface of a quantum adversary performs
equally well to the quantum adversary. When we later aim to substitute such an adversary
into a reduction, it becomes crucial that the original game (that the reduction is made to)
is 2-message, as otherwise, the reduction’s rewinding might make a distinction between
the two adversaries.

Lemma 1. Let AQ be a quantum adversary that wins a 2-message security game G with
probability ρ. Then any classical interface (AQ)C of AQ also wins in the same game G
with the same exact probability ρ.

Proof. The proof is immediate considering that in the eyes of the challenger there is no
difference between the two adversaries as long as (AQ)C is not rewound.

A classical interface (AQ)C is not particularly useful in making claims about quantum
behavior when we want to combine this adversary with a reduction. A classical reduction
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may be able to effectively use (AQ)C , but this provides no immediate guarantee on its
effectiveness in using the original AQ, since there is no guarantee about the similarity of
the behavior of AQ and (AQ)C under rewinding.

Always Resetting Algorithms. We now describe a method of constructing a new
classical inefficient adversary that is useful for winning a 2-message game G, starting
from any classical adversary in G with the same advantage. The new adversary, however,
uses fresh independent randomness for each independent query. Roughly speaking, this
adversary is “reset all the time” for each query asked. In particular, let AC be any classical
adversary which wins in G with some advantage ε. AC is a potentially randomized algorithm
with some arbitrary correlation between its answers to queries under the same security
parameter. (For example, AC could be a classical interface for a quantum algorithm AQ.)
On challenge message α from the challenger, we denote the distribution of responses by
AC(α). We write AC(α; r) to denote AC ’s response on input α where we fix its randomness
to r.

We now define the new inefficient classical adversary ÃC as follows. ÃC uses an
exponentially long random tape T , with an entry T [α] in the random tape for each possible
query α. For every query α, ÃC computes β = AC(α, T [α]) and returns β. ÃC is described
in Algorithm 1 below. As we observe later, ÃC has the same advantage in G as AC does.

Algorithm 1: Construction of ÃC

Input :AC , with randomness space Λn for security parameter n
1 Initialize empty Tn = [ ] for each n, and sample it as follows:
2 for each possible query (α, n) for security parameter n do
3 Tn[α]← Λn

4 end
5 Answer queries as follows:
6 for each query (α, n) for security parameter n do
7 β ← AC(α; Tn[α])
8 Return β

9 end

One interesting point about ÃC is that it is an inefficient algorithm, even if the original
AC is efficient. Another point is that Λn could be an infinite space if the original algorithm
AC is inefficient (e.g., an inefficient classical interface of an efficient quantum algorithm).
Remark 1 (Resetting Randomness of ÃC). Although ÃC already uses independent ran-
domness for each of the queries, a reduction that uses ÃC as an oracle is still allowed to
reset its (very long) randomness to a fresh value. This is doable exactly in the way that
any algorithm can be reset. Namely, we we can provide an extra parameter h along with
each query (α, n) that is the “randomness handler,” and changing h to a new value means
resetting randomness. In that case, each table of algorithm ÃC needs to be parameterized
with h as well (in addition to n). For simplicity of the presentation, we skip this parameter
in Algorithm 1, but it shall be added whenever a reduction uses this algorithm.

Lemma 2. If a classical adversary AC wins a 2-message game G with probability ρ, then
the classical adversary ÃC constructed from AC wins with the same exact probability.

Proof. The proof is immediate, considering that in a 2-message game, ÃC and AC are
asked only one query, and for a single query their answers are statistically identical.

Lazy Evaluation of Quantum Oracle Algorithms. Next, we describe a method of
modifying a quantum adversary to return identical outputs to repeated inputs to simulate
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the specific algorithm (ÃQ)C rather than (AQ)C , where (AQ)C is an arbitrary classical
interface of AQ. (ÃQ)C can be obtained from any classical interface using the modification
of Algorithm 1.

Let AQ be any quantum adversary. We construct a new quantum adversary A′Q that
lazy-evaluates AQ on each query and stores responses to previous queries. At the beginning
of execution, A′Q defines an empty mapping M from queries to responses. Upon each query
α,9 A′Q checks whether α exists in M . If M [α] is defined, A′Q returns M [α]. If M [α] is
not defined, A′Q computes β ← AQ(α), stores M [α] = β, and returns β. A′Q is described
in Algorithm 2 below. We note that the construction of A′Q makes only black-box use of
AQ. After describing the uniform case, we describe how A′Q shall be modified when AQ

comes with a hardcoded quantum auxiliary input |ϕn⟩ for security parameter n.

Algorithm 2: Construction of A′Q
Input : Uniform quantum algorithm AQ with classical inputs and outputs

1 Initialize empty Mn = [ ] for each n
2 for each classical query (α, n) for security parameter n do
3 if Mn[α] is already defined then
4 Return Mn[α]
5 else
6 β ← AQ(α)
7 M [α] = β
8 Return β

9 end
10 end

Resetting Randomness of A′Q. Similarly to Remark 1, once A′Q is used by a reduction,
we can allow “resetting” its randomness by allowing an extra parameter h as the randomness
handler, so whenever h changes, the table Mn needs to be filled from scratch, hence we
add the parameter h next to n.

When AQ Comes with Quantum Advice. Whenever the algorithm AQ comes with
quantum advice |ϕn⟩, we shall enhance A′Q with polynomially many copies of this advice.
Namely, we will start with |ϕn⟩m = |ϕ1

n⟩ ⊗ · · · ⊗ |ϕm
n ⟩, where each |ϕi

n⟩ is a copy of |ϕn⟩
and m is an upper bound on the number of queries asked to A′Q. Then, whenever A′Q
wants to run AQ on a new input (α, n, h), it will use the next unused copy |ϕi

n⟩. This of
course means that A′Q uses polynomially larger quantum advice, however this is not an
issue for our final conclusions. Namely, we can still conclude that if there is a non-uniform
algorithm winning in a 2-message challenge of P , we can use it (and more advice) and win
in another challenge of Q.

Below, we show that for a given quantum adversary AQ, the corresponding adversaries
(ÃQ)C and A′Q are statistically indistinguishable. More importantly, this holds even under
rewinding. The reason is that since both the classical modified adversary and the quantum
modified adversary will always return identical answers to repeated queries, it is useless to
rewind either of them under the same randomness, and even if their randomness is reset,
their behavior continues identically. In effect, we use the structure of 2-message games to
eliminate the main technical hurdle caused by the quantum-ness of the original AQ.

9Every query comes with a security parameter and option for resetting randomness; for now we ignore
these extra inputs.
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Lemma 3. Let AQ be any quantum algorithm with a classical interface (AQ)C . Let (ÃQ)C

be constructed from (AQ)C as described in Algorithm 1, and let A′Q be constructed from
AQ as described in Algorithm 2. Then:

1. (ÃQ)C and A′Q win in their 2-message game with the same probability.

2. In the eyes of a reduction R who can rewind and reset its oracle (which is an
adversary for a 2-message game), A′Q is identical to (ÃQ)C .

Proof. The first part follows from the second part, as R could run the challenger C of the
2-message game and ask a single query. So, we only prove the second part.

To see why Part 2 holds, it is enough to note that A′Q is simply doing a lazy evaluation,
so if we run A′Q on all possible queries once and record all their answers once in a huge
table M , its behavior against the reduction R would remain the same. Finally, this variant
of A′Q is doing exactly what (ÃQ)C does.

3.2 Main Result
We now present the main result of the paper. Given a classical reduction from winning some
game to winning another 2-message game, and given some efficient quantum adversary
who wins in the 2-message game with non-negligible advantage, we show how to construct
a new efficient quantum adversary that the classical reduction can successfully use.

Theorem 1 (Main Result). If there exists a classical reduction R from winning in security
game Q to winning in 2-message game P, and if there exists an efficient uniform (resp.
non-uniform) quantum adversary AQ who wins in P with non-negligible advantage, then
there exists another efficient uniform (resp. non-uniform) quantum adversary that wins in
Q with non-negligible advantage.

Intuition. Before presenting the formal proof, we first describe the intuition and chain
of thoughts that lead to the proof of Theorem 1.

We begin with a classical reduction R which is given oracle access to a classical
adversary AC that has advantage ε ≥ 1/poly(nP) in the 2-message game P. Suppose
δε ≥ 1/poly(nQ) is the probability that R succeeds in winning in game Q whenever it is
given a classical ε-successful adversary in P.10

Our goal is to show that we can construct some ε′-advantage quantum adversary A′Q
for ε′ ≈ ε such that we can effectively run RA′

Q and show that it can still win in Q with
advantage δε. Note that in order to win against Q it is permissible to use any stateful
adversary who might internally run efficient quantum computation.

We observe that since the game P is a 2-message game, any classical interface of the
quantum adversary, denoted by (AQ)C , wins in P with the same advantage ε as well (by
Lemma 1). Therefore, a first attempt might be to try to show that for any quantum
adversary AQ with advantage ε in P , the reduction R(AQ)C still wins in Q with advantage
δε, just like it does when given a classical adversary. Such an approach, however, suffers
when the reduction R might want to “rewind” (AQ)C and ask it to answer a new query
using the same randomness used to answer the previous query.

Instead, we use the modified version of the classical interface such that the new
classical adversary retains an ε advantage in P , while it is clear how to rewind and reset it
during the reduction. This means we can still run an efficient quantum adversary that is
indistinguishable from the new classical adversary, allowing R to use it successfully. We
modify the quantum (oracle) adversary to make it look like a deterministic algorithm by
obtaining A′Q as described in Algorithm 2. However, we are still left with the problem

10As mentioned before, δ can also depend on the security parameter, but for simplicity of notation we
only denote its dependence on ε explicitly.
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of proving that R can successfully use this modified quantum adversary, which can be
resolved by showing that A′Q is indistinguishable from a successful classical adversary. For
this classical adversary, we use the modified classical interface (ÃQ)C which is a classical
adversary that is both useful in winning the 2-message game and is indistinguishable from
A′Q even under rewinding (see Lemma 2 and Lemma 3). We now give a direct proof.

Proof of Theorem 1. Suppose R is a reduction from winning in Q to winning in P that
uses any ε-advantage classical adversary in P as an oracle and wins in Q with advantage
δε. Let AQ be any quantum algorithm who wins in P with advantage ε.

Emulating R. We now describe an algorithm B that uses R and AQ to win against Q.
The algorithm B emulates R, and whenever it asks a query from its oracle, B uses the
stateful algorithm A′Q to answer the query. We now elaborate on a few points.

• R is allowed to call A′Q on any security parameter that it wants. However, recall
that whenever A′Q is launched on a new security parameter n, we initiate the stateful
mapping M of A′Q as empty.

• Similarly, R can “reset” the randomness of its oracle (even for the same security
parameter n that it has previously queried). This can be done using randomness
handlers that are given as an extra parameter along with the security parameter n.
Again, in this case, we shall initiate A′Q using a fresh table.

• Therefore, the reduction R can indeed switch its queries between security parameters
and different reset instantiations of its oracle for the same security parameter, while
using parameters n, h that accompany a query α.

• Finally, if the algorithm AQ comes with quantum advice |ϕn⟩, then the emulation B
uses a fresh copy of |ϕn⟩ for each instance of A′Q and each reset instance of A′Q.

We now claim that this emulation of R (using quantum computation) is supposed to
win its challenge with advantage δε. Roughly speaking, we will argue that R can pretend
that it is using (ÃQ)C and that (ÃQ)C shall be helpful to let R(ÃQ)C win its challenge.
For simplicity, let’s assume that R does not change the randomness of its oracle to a new
value and that it only works with a single randomness and a single security parameter.
The argument will be the same when these restrictions do not exist. In this simpler setting,
by Lemma 3, R’s behavior will be identical when we switch between giving it oracle access
to (ÃQ)C such as R(ÃQ)C or emulating it as above using the algorithm B. Moreover, by
Lemma 2 and Lemma 1, (ÃQ)C indeed has advantage ε in winning its challenge, and hence
it is a useful adversary that leads to R(ÃQ)C having advantage δε.

3.3 Extension to Deterministic-Adversary Reductions
We now prove an extension to the main result of the previous subsection.

Assuming that a given adversary is deterministic is a useful technique in proving
security and works as follows. Suppose you have a reduction R that uses an ε-advantage
adversary, where the advantage is also over the randomness of the adversary. Then, one
can always “fix” the randomness of the adversary to “its best” leading to an adversary
that is deterministic and still has advantage ε. Sometimes such a determinism assumption
comes with benefits during the security proof (e.g., see [IMS12] for an example). Therefore,
in light of such techniques, one can wonder if our results cover such reductions as well.
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Implications of Deterministic-Adversary Reductions. Before answering the ques-
tion above, we shall clarify: how can we find such “best” randomness for the adversary
efficiently? After all, the adversary’s randomness could even be not polynomial size. The
answer is that: (1) we can fix the adversary’s randomness to “its best” theoretically and
provide oracle access to the reduction, even if it is not polynomial size, and (2) when the
adversary is a polynomial time algorithm, it will inevitably have a polynomial-size random
seed as well, in which case we can use “best randomness” provided as non-uniform advice.
This means that we end up with a non-uniform proof of security [CLMP13]. Non-uniform
proofs of security are useful for proving non-uniform implications. Therefore, any reduction
that assumes its adversary to be deterministic still yields that the non-uniform variant of
its computational assumption (i.e., that breaking Q non-uniformly is hard) implies that
breaking P is (also non-uniformly) hard as well.

Definition 9 (Black-Box Deterministic-Adversary Reductions). An (ε, δ)-reduction R
from winning game G2 to winning game G1 is deterministic-adversary if it is defined
similarly to Definition 5 with the difference that the reduction R is only required to succeed
for deterministic adversaries. Namely, it will win its game G2 with advantage δ whenever
the oracle adversary A who wins in G1 with advantage ε is also deterministic (i.e., resetting
its randomness will not change its answers). In particular, if A is a randomized adversary
who wins with advantage ε over its own randomness, RA comes with no immediate
guarantees. As usual, also give 11/ε as an input parameter to R.

We now state the extension to our main result.

Theorem 2 (Extending Theorem 1 to Deterministic-Adversary Reductions). Suppose
there is a classical reduction R from winning in the game Q with non-negligible advantage
to deterministically winning in the 2-message game P with non-negligible advantage.
Additionally suppose either of the following three cases hold:

1. Q is threshold-zero, and R only calls A on a single security parameter.

2. P is falsifiable. (There is no restriction on calling A on multiple security parameters.)

3. Q is falsifiable, and R only calls A on a single security parameter.

Then, in all three cases above, the existence of any efficient uniform (resp. non-uniform)
quantum adversary AQ who wins in P with a non-negligible advantage implies the existence
of an efficient uniform (resp. non-uniform) quantum adversary that wins in Q with a
non-negligible advantage.

Note that in the theorem above we did not mention whether or not R resets its
adversary for any security parameter. The reason is that the adversary is assumed to be
deterministic, and resetting their randomness does not change their behavior.

See Section 1.2 for an overview of the challenges and ideas for proving Theorem 2.

Proof of Theorem 2. Suppose R is a non-negligible-advantage reduction from winning
in Q to winning in P that uses any non-negligible ε-advantage deterministic classical
adversary in P to win in Q with a corresponding non-negligible advantage δε. Let AQ be
any quantum algorithm who wins in P with advantage ε. Looking ahead, we will show
how to emulate the reduction using AQ and win in the game Q with advantage δΘ(ε).

Case 1: Q is Threshold-Zero. When Q is threshold-zero and the reduction R only
calls its adversary on a single security parameter nP , then roughly speaking, we can simply
run the reduction normally without allowing its emulated adversary to be reset, and we
can pretend its adversary oracle is deterministic. The reason is as follows. If A is an
adversary who has advantage ε in P for the fixed security parameter nP , then by an
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averaging argument, it will have advantage at least ε
2 with probability at least ε

2 over its
own randomness (when we sample and fix it). We can now construct an algorithm B as
in Theorem 1 to run R and respond to its oracle queries using A′Q. RA′

Q then wins with
probability at least ε

2 · δ ε
2
, which is still non-negligible if ε is non-negligible. Since Q is

a threshold-zero game, then R’s advantage is equal to its success probability, so R has
non-negligible advantage in Q.

Case 2: P is Falsifiable. If P is falsifiable, then we can run the challenger of P
efficiently. This means that we can efficiently determine whether a given fixed randomness
of the adversary leads to a “good” adversary or not, and we can continue to guess a new
fixed randomness until we arrive at a good one. In order to do so, it will be crucial here
that we know ε (given to R as input) as stated in Definitions 5 and 9.

How to Find and Fix an Exponentially Large Random Tape? Here, we would
like to fix the randomness of a potentially inefficient or quantum adversary, and we would
like to do it efficiently. This seems like an oxymoron. First, recall that here we would like
to gradually answer oracle queries while keeping them in a table that grows over time.
For each of these partially generated tables, we have to “test” them (to conclude that
they reflect a “good randomness to be fixed”) and then use them against a reduction
that anticipates a good and deterministic adversary. In doing so, we will not change the
quantum nature of the emulation algorithm. We merely change the way the reduction
uses the adversary in a way that the reduction can pretend its adversary is a classical
successful deterministic adversary. We first describe the high level idea in the classical
context of a random oracle, and then we will use the same idea while a quantum algorithm
is emulating access to an inefficient randomized classical algorithm (just like the ROM).

Suppose we want to emulate a random oracle honestly, but we want to do it under a
condition C about the ROM that can be probabilistically tested using an efficient tester.
Also, suppose we eventually would like to run the test C in a final execution, but we want
to first find (and completely fix the randomness of) a good random oracle that has a good
chance of passing the test C in a final execution. In doing so, we are lazy-evaluating the
random oracle, but we have to stick to the answers that we simulate before the final test C.
If we could truly sample a complete random oracle and test it, this would be easy, as we
could try several random oracles and pick the one that is good against C. However, even if
we are doing a lazy evaluation efficiently, we can still stick to the partially generated oracle
that we have sampled and extend it every time that we run the next test (even during the
final test C). The key idea is that after k tests against C are passed, the probability of
failing the next (final) test C (when we again continue to extend our partial oracle using
lazy evaluation) goes down to O(1/k). This trick works even though we are not actually
fixing the whole randomness of the oracle, yet using this trick is equivalent to actually
finding and fixing a randomness for the ROM.

Now, going back to running a quantum adversary, we have a similar challenge – one can
pretend that the quantum adversary is also an oracle with exponentially long randomness
(just by modeling the input-output behavior of the algorithm in a probabilistic way).
However, we can use the same “lazy evaluation” trick by making sure that the same queries
are answered similarly if asked twice, and also testing the partially generated oracle (table)
many times before continuing to the actual final real test/reduction/game C. In both cases
of ROM and quantum adversaries, we end up skewing the distribution of the sampled
oracle/adversary by picking the good one, but it is fine as long as the adversary helps us
succeed in what we want to do (i.e., winning the reduction’s challenge).

We now use the above idea and describe an algorithm B′ that uses R and AQ to win
against Q as described in Algorithm 3, where k = poly(nQ) for security parameter nQ,
and tP is the success threshold of P . Intuitively, for every security parameter nP for which
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there is an oracle query asked, we will first create polynomially many instantiations of
A′Q, run them each against P polynomially many times (which we can do because P is
falsifiable), and select an instantiation of A′Q with good “fixed randomness”.

We denote by Pn the game P with security parameter n, and let NP be the set of
security parameters of P that the reduction R calls upon its own security parameter nQ.

Algorithm 3: Construction of B′

Input : k, ε, NP
1 for n ∈ NP do
2 for i← 1 to k do
3 Create a new A′(i,n)

Q with an empty mapping for security parameter n

4 Run A′(i,n)
Q against Pn k times, and let ρi = j/k be the fraction of its wins

5 (In case AQ had non-uniform advice |ϕn⟩, use fresh copies of this advice in
each of the k invocations of the adversary A′(i,n)

Q above or when it is reset.)
6 if ρi > tP + ε

4 then
7 Use the partial table of A′(nP )

Q = A′(i,n)
Q for security parameter n

8 Break the loop and continue to the next security parameter
9 end

10 end
11 end
12 If no such adversary was found for any of n ∈ NP , exit without success.
13 Run R, and for security parameter nP use the partially fixed oracle A′(nP )

Q , and
continue running it on new inputs by expanding its table.

For simplicity of the presentation, in what follows we will drop the explicit reference
to the security parameter nP in the instantiation of A′(nP )

Q and its statistically similar
classical algorithm (ÃQ)C . One can think of (ÃQ)C as a randomized adversary with a
huge random tape (like the ROM). We say the randomness used by (ÃQ)C is “good” if
by fixing that randomness, (ÃQ)C has advantage at least ε

2 to win against P. By an
averaging argument, (ÃQ)C picks a good randomness with probability ≥ ε

2 . By Lemma 3,
R’s behavior will be identical when we switch between giving it oracle access to (ÃQ)C

such as R(ÃQ)C or emulating it as above using algorithm B′.
In a similar vein, we can pretend that the simulated adversary A′Q also uses (infinite)

randomness ri that describes the full (infinite) table of answers in its ith execution in
Algorithm 3. We can also similarly define a randomness to be good if by fixing it, A′Q
becomes a deterministic adversary that wins against P with advantage at least ε

2 .
We will first show that over k independent samplings of random seeds r1, . . . , rk, at

least one randomness will be good with high probability. We use ρi to denote the fraction
of wins of A′(i)

Q in P over k attempts. We next show that for any individual randomness
ri, if ri is good, then ρi > tP + ε

4 with high probability, where ε
4 is chosen arbitrarily as a

non-negligible value less than ε
2 .

Claim. At least one of the random seeds r1, . . . , rk (implicitly) used in Algorithm 3 to
generate its k tables will be good with probability 1− exp(−kεO(1)).

Proof. The probability of any individual randomness being good is at least ε
2 . Thus, the

probability of any individual randomness being bad is upper bounded by (1 − ε
2 ). The

probability of the randomness being bad all k times is upper bounded by (1− ε
2 )k.

Claim. If a randomness ri is good, then ρi > tP+ ε
4 holds with probability 1−exp(−kεO(1)).



20 Minimality of Post-Quantum One-Way Functions

Proof. If ri is good, then A′(i)
Q wins in P with advantage at least ε

2 , so the expected value
of ρi is E[ρi] ≥ tP + ε

2 , where tP is the threshold of P. Hoeffding’s inequality states that,
for k trials, it holds that

Pr
[
ρi ≤ tP + ε

4

]
≤ e−2k( ε

4 )2
.

Therefore, if ri is good, the probability that the condition ρi > tP + ε
4 is not satisfied

is upper bounded by e−2k( ε
4 )2 .

From these claims, the probability that no good randomness is found is upper bounded
by 1− 2 exp(−kεO(1)) = 1− exp(−kεO(1)). Therefore, with probability 1− exp(−kεO(1)),
it holds that B′ finds an adversary A′(i)

Q with “empirical” advantage at least ε
4 in its k

executions against P.
Another use of Hoeffding shows that the probability that an adversary has empirical

advantage ε
4 in k executions, while the true advantage is less than ε

8 , is at most 1 −
exp(−kεO(1)). This bound holds for every security parameter nP for which the oracle
is asked a query. We now note that the maximum security parameter nm for which the
reduction R can ask a query is at most nm ≤ poly(nQ), since it is supposed to run in time
poly(nQ), as nQ is its own security parameter. It is also true that ε(nm) ≥ 1/poly(nm) ≥
1/poly(nQ). Therefore, if we pick k = poly(nQ) large enough, with probability 1 −
exp(−kεO(1)) ≤ 1 − exp(−nQ), it holds that B′ finds and uses an adversary A′(i)

Q with
(actual) advantage at least ε

8 in P for all the security parameters that it queries. In that
case, the reduction R will succeed against Q with probability at least δ( ε

8 ) − exp(−nQ),
which is non-negligible whenever ε is non-negligible. This finishes the proof for the second
case.

Note that the above algorithm and its analysis show that we can find “good” adversaries
whenever the reductionR wants them, and this can be done for different security parameters,
even if the reduction “resets” its adversary for a single security parameter multiple times.
We now present a variant of this argument for the third case.

Case 3: Q is Falsifiable. If Q is falsifiable and R queries its adversary only on a single
security parameter nP , we change (in fact simplify) our strategy of testing if an adversary
is good in the challenge game P , and instead we will merely test if the result of using it by
the reduction leads to good enough success advantage in challenge Q.

Algorithm 4: Construction of B′′

Input : k, ε, δ
1 for i← 1 to k do
2 Create a new A′(i)

Q with an empty mapping
3 Run RA

′(i)
Q against Q k times, and let ρi = j/k be the fraction of its wins

4 (In case AQ had non-uniform advice |ϕn⟩, use fresh copies of this advice in each
of the k invocations of the adversary A′(i)

Q above or when it is reset.)
5 if ρi > tQ + (δε/2)/2 then
6 Use RA

′(i)
Q for the final execution against Q by continuing to extend its table

7 Terminate execution
8 end
9 end

More formally, we construct a slightly different algorithm B′′ as described in Algorithm 4,
where again k = poly(nQ), and tQ is the threshold of Q. For simplicity, we drop the fixed
security parameters nQ, nP from the description. Now, rather than observing whether any
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given A′(i)
Q wins in P directly, we infer the effect of using it by the success of the reduction

RA
′(i)
Q in the challenge Q.
Just as in Case 1, the probability that no good randomness is chosen over k trials

is at most (1 − ε
2 )k. Now, for any good randomness ri, by definition, we will have to

have E[ρi] ≥ tQ + δε/2. Therefore, as in Case 1, again by Hoeffding, when ri is good,
the probability that ρi < tQ + δ(ε/2)

2 in Algorithm 4 is upper bounded by exp(−kγ) for
γ = (δ(ε/2))O(1). Finally, when Algorithm 4 runs its ith execution, the probability of
obtaining ρi ≥ tQ+ δ(ε/2)

2 , while the actual advantage is less than δ(ε/2)
4 , is at most exp(−kγ)

for γ = (δ(ε/2))O(1).
Since ε and consequently δ(ε/2) are both non-negligible in nQ, all of the error probabili-

ties above can be made at most exp(−nQ) by picking k = poly(nQ) large enough. There-
fore, the above algorithm B′′ wins its challenge with probability (δ(ε/2)/4)− exp(−nQ) ≥
1/poly(nQ), and this finishes the proof.

4 Deriving Minimal Post-Quantum Primitives
We now present the main conclusions of the paper. We use the machinery of the previous
section to lift classical reductions between cryptographic primitives to the post-quantum
setting. In Theorem 3, we show that if there is a classical reduction from a primitive
P defined by a 2-message security game to another primitive Q, then there is also a
post-quantum reduction from P to Q.

Theorem 3. If there exists a classical reduction from a primitive P with a 2-message
security game to a primitive Q defined using a multi-message security game, where the
security reduction is black-box between their games, then the existence of the uniform
(resp. non-uniform) post-quantum variant of Q (as defined in Definition 7) implies the
existence of the uniform (resp. non-uniform) post-quantum variant of P (again as defined
in Definition 7).

Proof. Let P ′ and Q′ be the post-quantum variants of P and Q, respectively. The
implementation of a post-quantum variant of a primitive is identical to the classical
implementation of the primitive. Therefore, the implementation reduction property from
Definition 8 holds, as switching from the classical setting to the post-quantum setting
changes nothing.

To show that the security reduction property of Definition 8 holds, we must show
that for any efficient uniform (resp. non-uniform) quantum algorithm AP that breaks
the security game of P ′, then there is an efficient uniform (resp. non-uniform) quantum
algorithm AQ that breaks the security game of Q′. This property holds by Theorem 1.

We stated the theorem above only for the main case, but for the case that the classical
reduction is a deterministic-adversary reduction, we can use Theorem 2 to derive similar
extensions as long as either of the three cases of Theorem 2 hold. In particular, we can use
the special case that P is falsifiable to derive a stronger result for the minimality of OWFs.

Implications for One-Way Functions. We now connect Theorem 3 with the existence
of one-way functions in post-quantum cryptography. We observe that with appropriate
definitions, post-quantum one-way functions are minimal for post-quantum cryptography,
just as classical one-way functions are minimal for classical cryptography.

Below we recall the definition of one-way functions for completeness with explicit
mention of the type of the attacker (either classical or quantum). We call one-way functions
with classical or quantum security simply classical one-way functions and post-quantum
one-way functions, respectively.
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Definition 10 (One-Way Function). A function f : {0, 1}∗ → {0, 1}∗ is considered
one-way with classical (resp. post-quantum) security if the following two conditions hold:

1. Easy to Compute. There exists a deterministic classical polynomial time algorithm
A that computes f . That is, for all inputs x, A(x) = f(x).

2. Hard to Invert. For all efficient classical (resp. uniform or non-uniform quantum
polynomial-time) algorithms A′, there is a negligible function λ, such that

Pr
x←{0,1}n,x′←A′(f(x),1n)

[f(x′) = f(x)] ≤ λ(n).

One-way functions trivially have a 2-message security game in which the challenger
sends y = f(x) for a (secretly) randomly chosen x to the adversary, and the adversary wins
if its message x′ maps to the same output f(x). The challenger is also polynomial-time, so
OWFs are falsifiable.

Finally, with this definition in hand, we can conclude that if the existence of some
cryptographic primitive implies the existence of one-way functions classically through a
black-box reduction between their security games, then the implication also holds in the
post-quantum setting.

Corollary 1. Let Q be a cryptographic primitive with a game-based security definition
such that the classical existence of Q implies the existence of classical one-way functions
through a black-box game-based reduction (but the implementation could be arbitrarily
non-black-box). Then the existence of the post-quantum uniformly (resp. non-uniformly)
secure variant of Q (as defined in Definition 7) implies the existence of uniformly (resp.
non-uniformly) secure post-quantum one-way functions. Furthermore, this holds even if
the reduction assumes its adversaries to be deterministic.

To derive Corollary 1 from Theorem 3 we merely observe that one-way functions
have a 2-message security game and that their security game is falsifiable. Therefore,
Corollary 1 holds without restrictions on how the reduction from (post-quantum) OWFs
to (post-quantum) Q calls its adversary.

One can use Theorem 3 to derive other similar results about the post-quantum minimal-
ity of other foundational primitives in classical cryptography, and this goes beyond one-way
functions. For example, we could model the security of trapdoor one-way functions, key
agreement, and semantically secure public-key encryption with 2-message games. Among
these, trapdoor (one-way) functions (TDFs) play a central role in the Cryptomania world
[Imp95], and our results demonstrate their minimality for post-quantum Cryptomania for
every primitive that implies TDFs in a black-box way.

Many primitives, however, have security games with more than 2 messages (e.g.,
signatures, CCA-secure encryption, etc.). This raises the following question: do implications
such as Q → P carry to the post-quantum setting when P = S is, for example, the primitive
of signatures? The particular question about signatures can be answered using our results
indirectly, due to the following reasons: (1) signatures and OWFs are equivalent in
the classical setting through a fully black-box reduction, and (2) post-quantum OWFs
imply post-quantum signatures as well. So, Q → S implies Q → OWFs, and therefore
the post-quantum Q implies post-quantum OWFs, which in turn implies post-quantum
signatures. For other complicated primitives, it remains open to study their minimality in
the post-quantum world (for the appropriate class of primitives).
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