
ZERO KNOWLEDGE MEMORY-CHECKING TECHNIQUES FOR STACKS

AND QUEUES

ALEXANDER (SASHA) FROLOV

Abstract. There are a variety of techniques for implementing read/write memory inside of zero-
knowledge proofs and validating consistency of memory accesses. These techniques are generally
implemented with the goal of implementing a RAM or ROM. In this paper, we present memory
techniques for more specialized data structures: queues and stacks. We first demonstrate a tech-
nique for implementing queues in arithmetic circuits that requires 3 multiplication gates and 1
advice value per read and 2 multiplication gates per write. This is based on using Horner’s Rule
to evaluate 2 polynomials at random points and check that the values read from the queue are
equal to the values written to the queue as vectors. Next, we present a stack scheme based on
an optimized version of the RAM scheme of Yang and Heath [16] that requires 5 multiplication
gates and 4 advice values per read and 2 multiplication gates per write. This optimizes the RAM
scheme by observing that reads and writes to a stack are already “paired” which avoids the need
for inserting dummy operations for each access as in a stack. We also introduce a different notion
of “multiplexing” or “operation privacy” that is better suited to the use case of stacks and queues.
All of the techniques we provide are based on evaluating polynomials at random points and using
randomly evaluated polynomials as universal hash functions to check set/vector equality.

1. Introduction

Running an arbitrary RAM program in a Zero-Knowledge Proof is a long-studied problem.
Papers like Pantry [4], or BCGT 2013 [2] are early works in this area, using Merkle Trees or permu-
tation checks respectively to check consistency of memory access results provided as advice values
by the prover. Later work on implementing memory using permutation checking has substantially
optimized circuit sizes and comparisons, eventually achieving constant overhead for RAM accesses
[7]. [16] has optimized this to 6 multiplication operations and 4 comparisons per access1.

There is also some work implementing related data structures, such as sets [10], multisets [5],
maps [15], and Read-Only Memory [12]. In general, the fastest techniques for memory in Zero-
Knowledge Proofs use evaluations of polynomials at random points. These techniques (and the
ones presented in this paper) use randomness and interaction together to achieve their results.

There is also some limited work on implementing data structures related to the ones discussed
in this note, like stacks and linked lists. The Reef paper [1] and [13] present two techniques for
implementing a stack in zero-knowledge as part of executing a type of finite automata used in the
paper. We will sketch the two techniques presented by the Reef paper in Section 4. ZkPi [12]
presents a system for implementing a data structure called a “linked list”, though accesses require
a constant number of circuit gates and it does not support deletion.

In this note, we present techniques for memory checking for stacks and queues based on similar
polynomial techniques to previous papers. Our queue scheme most closely resembles the memory
techniques of ZkPi, while the stack technique can be thought of as an optimized version of the
memory techniques of [16]. They are more efficient in terms of circuit size than prior work, and

1This is in the limit where the number of memory accesses is much larger than the size of the address space (so
the setup/teardown phases are amortized), and where multiplication gates with one public input don’t count towards
the total (these are used in a step where random linear combinations of tuples of field elements are computed).

1

2 ALEXANDER (SASHA) FROLOV

our scheme for queues completely avoids permutation checking, which is somewhat novel among
polynomial-based memory checking techniques.

2. Background

2.1. Universal Hash Functions. We use the terminology of ZkPi [12] for the coefficient hash
and root hash.

Define the root hash of a vector of elements −→x ∈ Fn to be Hr(k,
−→x) = Πn−1

i=0 (k − xi). When
evaluated at a random point independent of the choice of −→x , this is a universal hash function with
collision probability n

|F| (for inputs that differ as multisets). Additionally, it can be incrementally

evaluated by multiplying a running hash value by (k − xi) if all elements of −→x are not known at
the beginning of a computation.

Likewise, define the coefficient hash of a vector of elements −→x ∈ Fn to be Hc(k,
−→x) =

∑n−1
i=0 kixi.

This is also a universal hash function with collision probability n−1
|F| for inputs that differ as vectors.

This can also be evaluated incrementally by Horner’s Rule as Hc(k,
−→x + xn) = k ∗Hc(k,

−→x) + xn
(where −→x + xn denotes appending xn to the vector).

2.2. Model for Memory-Checking Arguments. As in previous techniques like Spice’s memory
checking [15], we specify our techniques as interactions between an untrusted prover storing a data
structure and a verifier performing some procedure to verify that the prover is faithfully storing
the data structure.

Such a procedure can be converted to a procedure for zero-knowledge proofs where the circuit
run by the prover implements the technique to verify the results of storage operations provided
as advice in the witness. This allows for a zero-knowledge proof circuit to soundly access a data
structure by performing a low-cost procedure to validate that inputs in the witness represent valid
storage operations.

2.3. Notion of Operation Privacy for Queues and Stacks. If the pattern of accesses to
a queue or stack is known ahead of time, then “trivial” stack/queue schemes that require no
multiplication gates or advice values are possible. In this case, the location where a value is read
from the stack/queue can be connected to the location where it is written with a wire. These
locations are known in advance because the pattern of accesses to the stack/queue is known.

Consequently, the pattern of accesses to a stack or queue must be data-dependent for the problem
of designing a stack/queue data structure for zero-knowledge proofs to be nontrivial. This property
is called “multiplexing” or “operation privacy” in prior work. In previous papers on RAM in zero-
knowledge proofs, the primitive used is a “multiplexed” access operation, which takes an operation
type (read or write), address, and value (to be used if performing a write) as arguments. Depending
on the operation type argument, this access will perform a read or a write on the RAM.

One can naively port this idea to a stack or a queue, but the resulting primitive is difficult to
reason about. A directly analogous access method would either add or remove an element from the
data structure depending on its operation type. Both read and write operations to a stack/queue
mutate the data structure. Such an access method would be inconvenient to program with, since
such an interface does not give the option to not change the data structure.

Instead, we propose “conditional pop” and “conditional push” operations (and analogous oper-
ations for queues). The Reef system uses its stack data structure in this way [1], as does [13]. A
conditional pop operation takes a “guard” argument, and performs the operation if guard is true,
and otherwise does nothing. Likewise, a “conditional push” operation takes a guard argument and
the value to be pushed, and pushes it to the data structure if the guard is true, doing nothing
otherwise. This still makes the patterns of accesses to the stack/queue data-dependent, while be-
ing easier to reason about and program with. It is trivially possible to build a “conditional write”

ZERO KNOWLEDGE MEMORY-CHECKING TECHNIQUES FOR STACKS AND QUEUES 3

primitive from the commonly-used interface for RAM mentioned above, and this seems a way that
these primitives are commonly used.

2.4. Cost Accounting for our Schemes and Related Work. Our scheme for stacks builds on
some components in [16]. We will refer to this paper and its memory scheme as the Yang-Heath
RAM scheme.

We account for the costs of our scheme in the same way as the Yang-Heath scheme(s). The
Yang-Heath scheme’s cost accounting focuses on non-linear gates and advice values as the costs
for a memory scheme. This is because most SNARK systems’ costs are dominated by the costs of
non-linear operations.

The Yang-Heath scheme requires taking random linear combinations of tuples of values as part of
checking that 2 vectors of tuples of values are permutations of each other. The Yang-Heath scheme
considers the random linear combinations to be linear operations, since the random coefficients
for the linear combinations are public. We will inherit this method of accounting, but count the
number of random linear combinations, since these may still count as multiplications in some proof
systems.

3. Memory-Checking for Queues

A queue is a “First-In First-Out” data structure. The ith value written to a queue must be the
ith value read from a queue. Thus, queues have a much simpler notion of memory consistency than
a RAM or other data structures. There is not a notion of address, and memory consistency only
requires checking 2 conditions: 1) that the vector of values enqueued to the queue is the same as
the vector of values dequeued from the queue and 2) that the queue is not empty during every pop
operation. We will first specify and analyze a protocol that does not keep operation types private
in Figure 1 and then explain how to make the scheme private to hide operation types.

1 type Queueℓ {
2 enqueues : F
3 dequeues : F
4 queue-depth : N
5 depth-check : F
6 r : F

7 α : Fℓ

8 }
1 setup-queue()→ Queueℓ {
2 // r, α must be sampled independently of advice values

3 r
$← F

4 α
$← Fℓ

5 m← Queueℓ {0, 0, 0, 1, r, α }
6 return m

7 }
1 // Performs operation when g=1, no-op otherwise

2 enqueue(q : Queueℓ, v : Fℓ, g : {0, 1}) {
3 q.enqueues += g ∗ (q.enqueues ∗ r + ⟨v, α⟩ − q.enqueues)

4 q.queue-depth += g

5 }

1 // Performs operation when g=1, no-op otherwise

2 dequeue(q : Queueℓ, g : {0, 1})→ Fℓ {
3 v ← inputℓ()

4 q.depth-check ∗= (q.queue-depth + (1− g))

5 q.dequeues += g ∗ (q.dequeues ∗ r + ⟨v, α⟩ − q.dequeues)

6 q.queue-depth −= g

7 return v

8 }

1 teardown(q : Queueℓ) {
2 for i ∈ [q.queue-depth] {
3 v ← inputℓ()

4 q.dequeues ← q.dequeues ∗ r + ⟨v, α⟩
5 }
6 assert q.depth-check ̸= 0

7 assert q.queue-depth = 0

8 assert q.enqueues = q.dequeues

9 }

Figure 1. Our ZK queue data structure. Uses of non-linear gates are highlighted.
Note that r, α are sampled independently of the prover’s advice values (or after they
are committed to).

4 ALEXANDER (SASHA) FROLOV

3.1. Soundness analysis. Now, to analyze the soundness of the scheme, let T the number of
conditional enqueue operations performed on the queue. Let us analyze this for ℓ = 1 first. The
enqueue and dequeue methods are both evaluating degree T polynomials enqueues, dequeues at r
with Horner’s rule (note that r is independent of the values enqueued/dequeued by construction).
enqueues is obviously degree T , and teardown will make the degree of dequeues T . Call the T values
that are enqueued e1, ..., eT and the dequeued values d1, ..., dT . By Horner’s rule, enqueues will be
the polynomial eT + eT−1 ∗ x+ eT−2 ∗ x2 + ...+ e1 ∗ xT−1 evaluated at point r and dequeues will be
the polynomial dT +dT−1 ∗x+dT−2 ∗x2+ ...+d1x

T−1 evaluated at point r. If the prover performed
consistent accesses to the queue, the ith value dequeued will be equal to the ith value enqueued,
so these two polynomials will be equal with probability 1. If the prover performed inconsistent
accesses and dequeued a value at step i that wasn’t the ith value added, the two coefficient vectors
e, d will disagree. By applying the Schwartz-Zippel lemma, enqueues and dequeues will be equal
with probability (T −1)/|F| if they have different coefficients. If ℓ > 1, then enqueues, dequeues are
the evaluation of T − 1+ ℓ-degree multivariate polynomials (we can view the ℓ elements of α as the
values of ℓ separate variables of degree 1). Again, α is independent of the prover’s advice values, so
we can apply the Schwartz-Zippel Lemma. By applying the multivariate Schwartz-Zippel Lemma,
the soundness error for ℓ > 1 is at most (T − 1 + ℓ)/|F|.

Secondly, by inspection, we can see that q.queue-depth tracks the depth of the queue at every
point. For any execution that reads from the queue when it is empty, q.queue-depth must be 0 and
g must be 1 during some read (since the depth only changes by 1 at each read and the guard must
be 1 for a read to happen). This means that q.depth-check will be 0 iff the queue was read from
when it was empty, because it will have been multiplied by 0 during a call to enqueue. Thus, the
checks performed by the verifier guarantee that the queue always has at least 1 element in it when
being read from, and guarantee with negligible soundness error that the order of reads and writes
to the queue are consistent.

3.2. Cost Accounting. Without hiding operation types, this scheme uses 1 multiplication and
0 advice values per call to enqueue, and 2 multiplication and 1 advice value per call to dequeue.
Both operations also use O(ℓ) linear operations for computing additions and ⟨v, α⟩.

Including the costs for conditional operations, there is an additional cost of O(1) linear operations
per enqueue/dequeue and 1 multiplication per enqueue/dequeue to multiply by g, giving the stated
costs in the abstract.

Note that this scheme allows for operations with private operation types and public types to be
mixed.

The setup phase uses a constant number of operations, while the teardown phase does O(n)
work, where n is the maximum possible depth the queue reaches. Concretely, per remaining entry
in the queue, the teardown phase takes 1 advice value, performs one multiplication, performs, some
conditional operations, and performs O(ℓ) linear operations. To be completely general, a circuit
for the teardown phase would have to handle n remaining entries.

However, most queue-based algorithms that we are aware of completely empty the queue at
the end of execution, so we believe it is reasonable to assume that the teardown phase’s gate
requirements are negligible relative to the main program’s execution, and can be assumed to be
negligible in computing costs per operation2.

4. Memory-Checking for Stacks from existing primitives

As baselines to compare against, we describe some simple techniques for implementing a stack
in a zero-knowledge proof.

2The Yang-Heath RAM construction makes a similar assumption about the costs of the setup/teardown phases
being amortized.

ZERO KNOWLEDGE MEMORY-CHECKING TECHNIQUES FOR STACKS AND QUEUES 5

4.1. Reef’s Stack Memory Techniques. We first describe the existing stack schemes presented
in the Reef paper (these are also presented in [13]). Reef’s programming model is slightly different
from the one presented in this paper, as Reef uses the Nova folding scheme [11]. The library used
does not support commit-and-prove techniques, and evaluating permutation-check polynomials for
all memory accesses is infeasible because the folding scheme splits the computation across multiple
folded instances.

The first scheme presented, which we call HashStack, is based on a cryptographic hash function
(Reef uses Poseidon [9]) and essentially performs hash chaining. The verifier maintains a digest
D representing the stack’s state. To push a value v, the verifier computes the updated digest
D′ = H(v,D). To pop a value v, the prover provides digest D′ as advice, the verifier checks that
it satisfies D = H(v,D′), and the digest is updated to D′.

This is a constant-overhead scheme. It requires 1 advice value per pop. However, it requires a
Poseidon evaluation for each push/pop, which requires a few hundred constraints to implement [9].

The second scheme that they present, which we call WireStack, can be thought of as an ap-
plication of the “linear pass”-style RAM which was used in some early SNARK papers [6]. In
the model of a verifier outsourcing storage to a prover, this can be thought of as a trivial scheme
where the verifier just stores the stack themselves. In a circuit, this involves maintaining n wires
(where n is the maximum depth achieved by the stack), and performing linear passes to find the
first non-empty element per push/pop. The authors of Reef claim that the wire-based approach is
faster than the hash-based approach for small stacks.

4.2. RAM-based memory checking for stacks. A simple memory-checking technique on top
of an existing RAM technique is possible, requiring 1 additional multiplication per pop and only
additional linear operations per write in addition to the per-access costs of a ZK RAM scheme. This
can be done using the “depth-check” technique of the previous section. Given a contiguous region
of dedicated RAM in an existing RAM scheme, this scheme can maintain accumulators stack -depth
and depth-check . When performing a conditional push (with guard = 1 representing doing an
operation and guard = 0 representing not doing anything), the verifier must update stack -depth as
stack -depth+guard , and write the value pushed to address stack -depth. Likewise, when performing
a conditional pop, the verifier must update depth-check to depth-check ∗(stack -depth+(1−guard)),
then update stack -depth as stack -depth − guard and perform a read at address stack -depth and
return the value. During the teardown phase, it should be asserted that depth-check is nonzero.

Per pop, this scheme requires 1 additional multiplication in addition to the underlying RAM
scheme’s costs. This scheme uses 7 multiplications and 4 advice values per read when instantiated
using the Yang-Heath RAM scheme. Values are read/written in the correct order because of the
soundness of the underlying RAM scheme, and the stack depth is always nonzero because the depth
check approach would flag reads from an empty stack as justified before. The depth check approach
lets us check that a series of values is never zero with 1 multiplication per check.

5. Memory Checking for Stacks

Finally, we present a memory-checking technique for stacks based on an optimized version of
the Yang-Heath memory checking technique presented in [16], though some of the ideas presented
originate in [3] and [15].

Let T be the total number of (conditional) push/pop operations performed on the stack, and let
n be the maximum depth the stack ever reaches during a computation (for consistency with the
Yang-Heath paper). We make a few observations about stacks that allow us to optimize the costs
of this scheme:

• In a valid sequence of accesses to a stack, a value can only be popped after it is pushed.
We use this fact to avoid the O(n) initialization costs of the Yang-Heath scheme.

6 ALEXANDER (SASHA) FROLOV

• If all values pushed to the stack are eventually popped, the values read from the stack are
already a permutation of the values written, so adding “dummy operations” to the stack
accesses is not required. This halves the costs of the permutation proofs.
• The Yang-Heath scheme uses a “clock” that ranges from 1 to T and is used to check that a
read is reading a value written in the past. In our scheme, “dummy writes” don’t have to
be inserted for reads. This means the timer can only be incremented on write operations
while maintaining soundness. Reducing the number of timestamps decreases the costs of
the lookup table required for validating timestamps in the Yang-Heath scheme.

We now present our scheme for stack-based memory checking in Figure 2. We borrow 2 con-
structions from the Yang-Heath paper. We describe their costs and give a brief summary of how
they work.

First, we borrow the ro-kvs-set primitive from Section 4.2 of the Yang-Heath paper. This is
a set primitive that we will use to query whether a value belongs to the range 1...M for some M .
Generalizing their approach, for a set primitive with M elements and N queries, their set primitive
requires M +N advice values, two fan-in M +N multiplication gates, and O(M +N) linear gates.
Their read-only set construction is very similar to the plookup protocol [8].

Secondly, the Yang-Heath paper uses the syntax ∼ to represent a permutation check that 2
vectors permute each other. When −→x ,−→y are vectors of T elements of F, −→x ∼ −→y checks that the
root hashes of x, y with a random key are equal to each other. When they are vectors of ℓ-tuples
of F elements, −→x ∼ −→y takes the inner product of each element of −→x ,−→y with a random vector α
of ℓ values and checks that these vectors of inner products are permutations of each other via the
root hash. By the properties of algebraic hashing and random linear combinations, either variant
achieves negligible soundness error in checking that two vectors permute each other. Such checks
have a gate cost of 2T multiplication gates, where T is the size of the vectors being permutation-
checked.3

We specify the stack scheme in Figure 2.

5.1. Soundness Analysis. Observe that s.depth always tracks the size of the stack, and is always
equal to the address of the element of the stack that would be popped if the stack were read.

It remains to show that the values read from each address are consistent (meaning that each
value read from an address is equal to the most recently written value) and that the stack must be
nonempty at each read.

To show that the values read are consistent, we can adopt the argument of Yang and Heath,
which argues that at all points throughout an execution of a sequence of stack operations, the stack
satisfies an invariant: When the stack has depth m, the m corresponding entries of s.pushes “lead”
the entries of s.pops by one entry for each valid address. This is clear for an access pattern consisting
of only push operations on the stack. Now, whenever pop is executed, the depth decreases by 1.
The prover must provide a tuple of {m, val, t′} such that t′ < s.clock . For the permutation check of
pushes, pops to pass with high probability, the only possible value that the prover can provide is the
one value of {m, val, t′} by which pushes led pops at that point in the execution, thus preserving
the invariant. Likewise, push obviously preserves this invariant.

To show that the stack is non-empty, if the stack is popped with depth 0 for the first time at
some time t, s.pops must contain a tuple of (−1, v, t′), where v is some value, −1 is the address, and
t′ is a time satisfying t′ ≤ t. There cannot have been an entry in s.pushes with address −1 during
the first pop from address −1. The only way to add a corresponding entry to s.pushes at address
−1 is to perform a push at some time t′′ > t. However, (−1, v, t′) ̸= (−1, v, t′′), so the permutation
check will only pass with negligible probability.

3As before, taking random linear combinations of ℓ-tuples of F is considered a linear operation since the weights
are public.

ZERO KNOWLEDGE MEMORY-CHECKING TECHNIQUES FOR STACKS AND QUEUES 7

1 type Stackℓ {
2 pushes : record∗ℓ

3 pops : record∗ℓ
4 valid -diffs : set

5 clock : F
6 depth : N
7 }

1 type recordℓ {
2 address : F

3 value : Fℓ

4 time : F
5 }

1 // T is the number of conditional push operations

2 setupℓ(T : N)→ Stackℓ {
3 valid -diffs ← setup-set(0, . . . , T)

4 m← Stackℓ { { }, { }, valid -diffs, 1, 0 }
5 return m

6 }

1 // Performs operation when g = 1, no-op otherwise

2 push(s : Stackℓ, w : Fℓ, g : {0, 1}) {
3 s.depth ← s.depth + g

4 if (g = 1) {s.pushes.append({ s.depth, w, s.clock })}
5 s.clock ← s.clock + g

6 }
1 // Performs operation when g = 1, no-op otherwise

2 pop(s : Stackℓ, g : {0, 1})→ Fℓ {
3 val ← inputℓ()

4 t← input1()

5 prove-member(s.valid -diffs, s.clock − t)

6 addr ← s.depth

7 if (g = 1) {s.pops.append({ addr , val , t })}
8 s.depth ← s.depth − g

9 return val

10 }
1 teardown(s : Stackℓ) {
2 for i ∈ [s.depth] {
3 val ← inputℓ()

4 t ← input()

5 s.pops.append({i, val , t})
6 }
7 s.pushes ∼ s.pops

8 teardown-set(s.valid -diffs)

9 }

Figure 2. Our ZK stack scheme. Each stack slot holds an ℓ-tuple of field elements.
The memory is defined in terms of the set data structure from the Yang-Heath
paper. Valid usage consists of one call to setup, T calls to push, at most T calls to
pop that are executed, and one call to teardown. All uses of nonlinear gates are
highlighted.

The soundness error of the scheme is negligible, and comes from a linear error term in the
permutation checks associated with ro-kvs-check and the error from permutation-checking the
push/pop vectors.

5.2. Scheme Costs. Let there be T conditional push operations performed and T ′ conditional
pop operations. Let n be the maximum depth reached by the stack. The costs of this scheme are
as follows:

• (ℓ+ 1) ∗ T advice values as inputs for pop and 2T advice values as inputs for the set-based
permutation checking used in pop.
• 2 fan-in 2T multiplication for the set membership checks. One of the fan-in 2T multipli-
cations is over public values and can be optimized to require T multiplications as in the
Yang-Heath paper.
• 2 fan-in T multiplications for permutation-checking s.pushes and s.pops.
• T + T ′ multiplications for implementing the if statements in push, pop. (each if statement
can be implemented in 1 multiplication)
• (ℓ+ 1)n advice values for teardown.
• n multiplications for teardown.

8 ALEXANDER (SASHA) FROLOV

• O(n+ T + T ′) miscellaneous linear operations.
• O(ℓ(n + T + T ′)) operations to hash tuples of {i, val , t} for pushes, pops. These are linear
in our cost model. This requires ℓ+ 2 multiplications and additions per push/pop.

For a sequence of T conditional pushes and T ′ conditional pops (with each memory slot storing
ℓ = 1 field elements), pop uses 4T advice values. It uses 5T multiplications (T multiplications for
permutation checking, T multiplications for the if statement, and 3T multiplications for the range
checks). push uses no advice values. It uses 2T ′ multiplications (T ′ for the if statement and T ′ for
the permutation checking). teardown requires 2n advice values, n multiplications, and the costs of
the permutation proof/set teardown are already accounted for.

Assuming that n is negligible compared to T, T ′ (which makes teardown require negligibly many
operations), this uses 5 multiplications and 4 advice values per push, and 2 multiplications and no
advice values per pop. We feel this is a reasonable assumption since most stack-based algorithms
empty their stack by the end of program execution and a program that writes a large number of
unread values to the stack is inefficient and seems like a degenerate case.

Note that if the stack is not empty at the end of execution, some work can be saved in the
teardown phase over popping the values by avoiding the prove-member function and simply adding
in all required reads to s.pushes directly. At the end of execution all pushes have occurred at
previous clock values, so this check is unnecessary.

6. Discussion

We have demonstrated a technique for implementing queues in zero-knowledge proofs that re-
quires 3 multiplication gates/1 advice value per read and 2 multiplication gate per write, as well
as a technique for stacks that requires 5 multiplication gates/4 advice values per read and 2 mul-
tiplication gates per write. Assuming the stack/queues are read from approximately as often as
they are written to, this gives an average cost of 2.5 multiplications/0.5 advice values per access
for the queue, and 3.5 multiplications/2 advice values per access for the stack. These are better
than the costs of 6 multiplications and 4 advice values per access for the Yang-Heath scheme for
generic RAM.

These techniques are cheaper per operation in terms of constraints than generic RAM techniques,
at the expense of limitations on the patterns of memory accesses. As mentioned in [14], randomness
and interaction in zero-knowledge proof circuits give the ability to replace cryptographic hash func-
tions with algebraic universal hash functions for a substantial concrete performance improvement.
Our stack scheme can be thought of as replacing Reef’s Poseidon-based scheme with a variant based
on much cheaper universal hash functions.

While we do not have an obvious use case for the queue scheme, the stack scheme is potentially
useful when implementing pushdown automata, which are used in regex matching engines like Reef
[1], or in performing language parsing in zero-knowledge [13]. This would also be potentially useful
in implementing a stack-based virtual machine in Zero-Knowledge proofs, such as the EVM.

7. Acknowledgements

Thank you to Alex Ozdemir, Yibin Yang and Ian Miers for their comments and help with checking
my results.

References

[1] S. Angel, E. Ioannidis, E. Margolin, S. Setty, and J. Woods. Reef: Fast succinct non-interactive zero-knowledge
regex proofs. Cryptology ePrint Archive, Paper 2023/1886, 2023.

[2] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast reductions from RAMs to delegatable succinct
constraint satisfaction problems. Cryptology ePrint Archive, Paper 2012/071, 2013.

[3] J. Bootle, A. Cerulli, J. Groth, S. Jakobsen, and M. Maller. Nearly linear-time zero-knowledge proofs for correct
program execution. Cryptology ePrint Archive, Paper 2018/380, 2018.

ZERO KNOWLEDGE MEMORY-CHECKING TECHNIQUES FOR STACKS AND QUEUES 9

[4] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M. Walfish. Verifying computations with state
(extended version). Cryptology ePrint Archive, Paper 2013/356, 2013.

[5] M. Campanelli, D. Fiore, S. Han, J. Kim, D. Kolonelos, and H. Oh. Succinct zero-knowledge batch proofs for
set accumulators. Cryptology ePrint Archive, Paper 2021/1672, 2021.

[6] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig, B. Parno, and S. Zahur. Geppetto:
Versatile verifiable computation. Cryptology ePrint Archive, Paper 2014/976, 2014.

[7] N. Franzese, J. Katz, S. Lu, R. Ostrovsky, X. Wang, and C. Weng. Constant-overhead zero-knowledge for RAM
programs. Cryptology ePrint Archive, Paper 2021/979, 2021.

[8] A. Gabizon and Z. J. Williamson. plookup: A simplified polynomial protocol for lookup tables. Cryptology
ePrint Archive, Paper 2020/315, 2020.

[9] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. Poseidon: A new hash function for
zero-knowledge proof systems. Cryptology ePrint Archive, Paper 2019/458, 2019.

[10] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi, and N. Triandopoulos. TrueSet: Faster
verifiable set computations. Cryptology ePrint Archive, Paper 2014/160, 2014.

[11] A. Kothapalli, S. Setty, and I. Tzialla. Nova: Recursive zero-knowledge arguments from folding schemes. Cryp-
tology ePrint Archive, Paper 2021/370, 2021.

[12] E. Laufer, A. Ozdemir, and D. Boneh. zkPi: Proving lean theorems in zero-knowledge. Cryptology ePrint Archive,
Paper 2024/267, 2024.

[13] H. Malvai, S. Hussain, G. Neven, and A. Miller. Practical proofs of parsing for context-free grammars. Cryptology
ePrint Archive, Paper 2024/562, 2024.

[14] A. Ozdemir, E. Laufer, and D. Boneh. Volatile and persistent memory for zkSNARKs via algebraic interactive
proofs. Cryptology ePrint Archive, Paper 2024/979, 2024.

[15] S. Setty, S. Angel, T. Gupta, and J. Lee. Proving the correct execution of concurrent services in zero-knowledge.
Cryptology ePrint Archive, Paper 2018/907, 2018.

[16] Y. Yang and D. Heath. Two shuffles make a RAM: Improved constant overhead zero knowledge RAM. Cryptology
ePrint Archive, Paper 2023/1115, 2023.

