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Abstract

It is well-known that classical Private Information Retrieval (PIR) schemes without prepro-
cessing must suffer from linear server computation per query. Moreover, any such single-server
PIR with sublinear bandwidth must rely on public-key cryptography. Several recent works
showed that these barriers pertaining to classical PIR can be overcome by introducing a prepro-
cessing phase where each client downloads a small hint that helps it make queries subsequently.
Notably, the Piano PIR scheme (and subsequent improvements) showed that with such a client-
side preprocessing, not only can we have PIR with sublinear computation and bandwidth per
query, but somewhat surprisingly, we can also get it using only symmetric-key cryptography
(i.e., one-way functions).

In this paper, we take the question of minimizing cryptographic assumptions to an extreme.
In particular, we are the first to explore the landscape of information theoretic single-server
preprocessing PIR. We make contributions on both the upper- and lower-bounds fronts. First,
we show new information-theoretic constructions with various non-trivial performance tradeoffs
between server computation, client space and bandwidth. Second, we prove a (nearly) tight
lower bound on the tradeoff between the client space and bandwidth in information-theoretic
constructions. Finally, we prove that any computational scheme that overcomes the information-
theoretic lower bound and satisfies a natural syntactic requirement (which is met by all known
constructions) would imply a hard problem in the complexity class SZK. In particular, this shows
that Piano achieves (nearly) optimal client space and bandwidth tradeoff subject to making a
black-box use of a one-way function. Some of the techniques we use for the above results can
be of independent interest.
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1 Introduction

Private Information Retrieval (PIR), originally proposed by Chor, Goldreich, Kushilevitz, and Su-
dan [CGKS95], allows a client to retrieve a record from a database hosted by one or more untrusted
servers, without revealing which record was fetched. PIR promises a rich spectrum of applications,
such as private web search [HDCG+23], private contact discovery [sig], private DNS [pri], private
detection of whether a user’s password is contained in a leaked password database [hav], private
lightweight clients for cryptocurrencies, and so on. Classical PIR schemes [CGKS95,CG97,CMS99,
GR05,KO97,Lip09,OS07,Gas04,BFG03,SC07,OG11,MCG+08,MG07,HHCG+23,MW22] do not
use any preprocessing. Unfortunately, in the classical model, it is known that any query must in-
herently take linear server computation [BIM00]: intuitively, if there is some record that the server
did not look at, it leaks the fact that the client is not looking for that particular record. This linear
computation lower bound is viewed as a significant barrier towards scaling PIR to real-world data
sizes (e.g., private DNS and private web search). Furthermore, it is known that single-server PIR
schemes with sublinear bandwidth in the classical model cannot exist information-theoretically and
in fact require strong “cryptomania” assumptions [DMO00].

The paradigm shift to preprocessing PIR. To overcome the linear computation barrier, a
recent line of works, pioneered by Beimel et al. [BIM00] and Corrigan-Gibbs and Kogan [CK20],
proposed new preprocessing models for PIR schemes. In the most general form, the client and
the server can engage in some preprocessing protocol before any queries arrive, and at the end of
the preprocessing protocol, the client and the server can each store some extra state which later
facilitates efficient queries. Unless otherwise noted, we require that after a single preprocessing
upfront, the PIR scheme should support an arbitrary number of queries (also called the unbounded
query model). Beimel et al. [BIM00] and Corrigan-Gibbs and Kogan [CK20] considered a couple
special forms of preprocessing. Specifically, Beimel et al. [BIM00] considered a public preprocessing
that did not involve the client, where the server encodes its database into some redundant form. The
advantage of this approach is the same preprocessing works for all clients. By contrast, Corrigan-
Gibbs and Kogan [CK20] considered a client-specific preprocessing model where every client engages
in a preprocessing protocol with the server, at the end of which the client obtains a hint that will
facilitate efficient queries subsequently. The server, on the other hand, stores only the original
database and need not store per-client state.

Several recent works [BIM00,WY05,PPY18,CHR17,BIPW17,CK20,SACM21,CHK22,ZLTS23,
LMW23, ZPSZ24,MIR23,GZS24a] study various models of PIR with a preprocessing phase, and
show that they can overcome the linear computation barrier for classical PIR. Not only so, very
recent works [ZPSZ24,MIR23,GZS24a] also showed that PIR with client-specific preprocessing is
possible with weaker cryptographic assumptions than classical PIR. Specifically, relying only on one-
way functions (OWFs) and without any use of public-key cryptography, we can construct single-
server preprocessing PIR schemes with O(

√
n) bandwidth, Õ(

√
n) computation, and requiring

only Õ(
√
n) client space [ZPSZ24,MIR23, GZS24a]. This may initially seem surprising because

in classical land, it is known that any single-server PIR scheme with sublinear bandwidth would
imply oblivious transfer [DMO00] (even when we allow unbounded polynomial computation and
space). The reason why we can get away with weaker assumptions in the preprocessing model
is because known schemes [ZPSZ24, MIR23, GZS24a] as well as the constructions in our paper
allow a preprocessing phase with linear communication which can be amortized over an unbounded
number of subsequent queries. Recent works [ZPSZ24,MIR23,GZS24a] showed that minimizing
cryptographic assumptions also comes with the benefit of yielding concretely efficient constructions
which, in many realistic settings, outperform the state-of-the-art classical PIR schemes [MW22,
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HHCG+23,DPC23,LMRS23] by at least two orders of magnitude in terms of response time.

1.1 Our Results and Contributions

In this paper, we take the question of minimizing cryptographic assumptions to an extreme, study-
ing the possibility of information-theoretic security for preprocessing PIR with non-trivial perfor-
mance bounds. We also explore the necessary cryptographic assumptions in cases where computa-
tional security is the best one can hope for.

In the two-server setting, the question of preprocessing PIR with information-theoretic security
was previously studied by Beimel et al. [BIM00] and by Woodruff and Yekhanin [WY05], who
showed non-trivial information-theoretic preprocessing PIR schemes with sublinear computation
(see Table 1). One interesting question is whether we can get non-trivial information-theoretic
preprocessing PIR in the single-server setting. Unfortunately, the overall algorithmic framework
from [BIM00,WY05] fundamentally cannot work for the single-server setting, since their schemes
adopt the public preprocessing model where the clients do not store any state resulting from the
preprocessing. In this model, the lower bound of Di Crescenzo et al. [DMO00] still holds, and it
is impossible to get any information-theoretic single-server PIR with sublinear bandwidth, despite
the server-side preprocessing.

To the best of our knowledge, we are the first to explore information-theoretic preprocessing
PIR in the single-server setting. Our results include both new upper bounds and lower bounds.
To circumvent the aforementioned barrier for public preprocessing, we focus on the client-specific
preprocessing model — in this sense, our algorithmic techniques depart significantly from those
of [BIM00,WY05]. We also prove a (nearly) tight lower bound that characterizes the client space
and bandwidth tradeoff in the information-theoretic setting, and gives a barrier for improving this
tradeoff using only “symmetric” cryptographic assumptions. We summarize our main results below.

Lower bound on client space and bandwidth tradeoff. We prove the following lower bound
that characterizes the client space and bandwidth tradeoff for preprocessing PIR schemes.

Theorem 1.1 (Client space and bandwidth tradeoff for 1-server preprocessing PIR). For any
t ≥ 0, there is no information-theoretic preprocessing PIR scheme with less than t/2 client space,
where a consecutive sequence of t queries altogether consume less than n/2 bandwidth. Moreover,
if there is such a computationally secure scheme then one-way functions (OWFs) must exist.

In particular, the conclusions of Theorem 1.1 apply to any scheme that supports at least t =
√
n

online queries, where the client space and average per-query bandwidth are o(
√
n).

The above lower bound holds in a very strong sense. It holds even when we allow: (1) general
preprocessing that arbitrarily encodes the data on the server and generates a hint of the client, with-
out imposing any limits on the server space or the computation/communication of the preprocessing,
(2) both the server and the client can maintain arbitrary dynamic state after the preprocessing; the
lower-bound is only on the size of the initial client hint, (3) the scheme can use unbounded poly-
nomial server/client computation per query and arbitrary number of roundtrips. Our lower bound
also implies a fundamental client space and bandwidth tradeoff for any truly information-theoretic
Oblivious RAM (ORAM) scheme — here “truly information-theoretic” means that encryption is
no longer considered a free assumption, to disambiguate from the standard “statistically secure”
ORAM literature [Ajt10, DMN11, SCSL11, SvDS+13] where encryption is considered as a free
assumption.1

1The main difference between preprocessing PIR and ORAM is that ORAM allows the server to store a linear
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Table 1: Information-theoretic preprocessing PIR: our results and comparisons. The
server space counts only the extra storage besides storing the original database. The online
bandwidth is on the critical path for the client to obtain the answer to its query, whereas the
offline bandwidth can be viewed as background maintenance work. The lower bounds hold for

any t ≥ 1. See also Section 1.3 for additional related work.

Scheme Compute Comm. Space #
client server servers

Prior work

[BIM00] O(n/ log2 n) O(n1/3) 0 O(n2) 2

[WY05] O(n/poly log n) O(n1/3) 0 poly(n) 2

[BIM00] O(n1/2+ϵ) O(n1/2+ϵ) 0 O(n1+ϵ′) 2

Lower bound ([CK20]) Ω(n/t) any O(t) 0 1

Our results

Lower bound (Section 5) any Ω(n/t) O(t) any 1

Theorem 3.1 n1+o(1) no(1) online
n1/2+o(1) 0 1

O(n1/2) offline

Theorem A.3
Õ(n1/2) client O(n1/3) online

Õ(n2/3) 0 1
Õ(n2/3) server O(n1/2) offline

Theorem B.1
Õ(n1/2) client

O(n1/3) Õ(n2/3) 0 2
Õ(n2/3) server

The lower bound is also tight up to an no(1) factor, since if we do not care about the computation
overhead being sublinear, we can indeed construct an information-theoretic PIR scheme with t·no(1)

client space and O(n/t) amortized bandwidth per query (see Theorem 1.3 and Section 3.1).
We now compare our lower bound result to prior lower bounds. Previous works have shown

lower bounds that characterize client space and server computation tradeoff [CK20, CHK22] (in
even computational schemes). Further, the elegant work of Yeo extended these lower bounds to
the batched setting [Yeo23]. To the best of our knowledge, we are the first to prove lower bounds
that characterize the tradeoff between client space and bandwidth for preprocessing PIR. Note
that since the bandwidth is a lower bound on the server computation, in fact, our lower bound
also characterizes the tradeoff between server computation and client space. However, the nature
of the new lower bound is incomparable to prior ones [CK20, CHK22, Yeo23]. Specifically, prior
lower bounds show a tradeoff between server computation and client space which applies even
for computational schemes, but restricted to the setting where the server stores only the original
database and nothing else. Our lower bound shows that any scheme with an improved tradeoff
implies OWF and this holds even when the server can store a preprocessed version of the database.

SZK barrier for database-oblivious schemes. We get an even stronger limitation for database-
oblivious preprocessing PIR schemes, where the client’s questions to the server depend only on its
randomness and the index sequence and not on the database-dependent answers. Such schemes

amount of dynamic per-client state, whereas most known PIR schemes want the server storage to be independent of
the number of clients and static.
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can be implemented with a single roundtrip. All of the PIR schemes constructed in this paper,
as well as all prior related works [CK20, SACM21, ZPSZ24,MIR23, LP22] are database oblivious.
For such database-oblivious schemes, we get a variant of Theorem 1.1 with the stronger conclu-
sion that there is an average-case hard promise problem in the complexity class SZK (the class of
problems with statistical zero-knowledge proofs).2 Further, this lower bound shows that the client-
space and bandwidth tradeoff of Piano [ZPSZ24] and subsequent improvements [MIR23,GZS24a]
is optimal up to a super-logarithmic factor for schemes in Minicrypt. Note that although Ghoshal
et al. [GZS24a] improve the online bandwidth to Õ(n1/4) under Õ(n1/2) client space, their offline
bandwidth is still Õ(n1/2). Our SZK barrier also shows the impossibility of improving the offline
bandwidth of Goshal et al. [GZS24a] if we restrict ourselves to black-box use of OWF or even
stronger symmetric primitives.

Theorem 1.2 (SZK barrier for preprocessing PIR). Any (1-roundtrip) database-oblivious prepro-
cessing PIR scheme with less than t/3 client space, and a consecutive sequence of t queries which
together consume less than n/3 bandwidth, implies an average-case hard promise problem in SZK.
In particular, it implies a separation of (promise) SZK from BPP.

A hard SZK problem cannot be constructed in a black-box way from a OWF or even a collision-
resistant hash function [KY18,BD19,BDV21], and implies strong cryptographic primitives such as
constant-round dual-mode commitments [OV08]. More importantly, all known concrete candidates
for such promise problems are based on “structured” assumptions [BDRV18], and no random oracle
construction is known. Consequently, any database-oblivious PIR scheme which circumvents the
lower bounds of Theorem 1.1 is effectively closer to “cryptomania” than to “minicrypt.” Finally,
since our proof of Theorem 1.2 fully relativizes, we also get a barrier for preprocessing PIR in the
random oracle model. Concretely, an unconditional ROM construction with o(

√
n) client space

and bandwidth would separate (promise) SZK from BPP relative to a random oracle, settling a
natural open problem in complexity theory. We are not aware of any previous application of such
an SZK barrier to give evidence against constructions of a natural cryptographic primitive from
any “symmetric” primitive.

Constructions of information-theoretic preprocessing PIR. Our first construction achieves
a nearly optimal tradeoffs between client space and overall per-query bandwidth, allowing both to
be O(n1/2+o(1)). However, this comes at the cost of requiring slightly super-linear server computa-
tion per query. This result shows the approximate tightness of the lower bound in Theorem 1.1.
We state the results below.

Theorem 1.3 (1-server PIR with nearly optimal client space and bandwidth tradeoff). For every
t ≥ 1, there exists a single-server preprocessing PIR scheme that supports an unbounded number
of queries with the following performance bounds:

• there is an initial preprocessing in which the client makes a streaming pass over the database
consuming O(n) bandwidth and server computation, and moreover, the client performs n1+o(1) · t
computation;

• after the preprocessing, each query requires no(1) online bandwidth, O(n/t) offline bandwidth,
and n1+o(1) client and server computation;

• the client space is t · no(1);

2In fact, our conclusion is even stronger: we get a variant of a somewhere statistical binding (SSB) hash func-
tion [HW15], which implies a hard problem in SZK but is not known to be implied by it.

4



In the above, online bandwidth captures the communication on the critical path for the client to
obtain an answer, and offline communication can be viewed as background maintenance work.

To get Theorem 1.3, we adapt the Dvir-Gopi 2-server PIR scheme [DG16] to a 1-server prepro-
cessing PIR scheme. The details are described in Section 3.1.

Our second upper bound result gives a 1-server preprocessing PIR scheme with sublinear server
computation Õ(n2/3). However, this comes at the cost of having a slightly worse trafeoff between
client space and overall per-query bandwidth: we can get bandwitdth Õ(n1/2), but the client space
is now Õ(n2/3). We state the result in the following theorem.

Theorem 1.4 (1-server PIR with sublinear computation). There exists an information theoretic
1-server preprocessing PIR scheme supporting unbounded queries, and achieving the following per-
formance bounds with all but negl(n) probability where Õ(·) hides a multiplicative log n · α(n)
factor for an arbitrary super-constant function α(n):

• there is an initial preprocessing phase in which the client makes a streaming pass over the
database consuming O(n) bandwidth and server computation; and moreover, the client performs
Õ(n) computation;

• after the initial preprocessing, every query takes Õ(n1/3) online bandwidth, Õ(n1/2) offline band-
width, Õ(n1/2) client computation, and Õ(n2/3) server computation; and

• the client space is Õ(n2/3).

In the sublinear-server-computation regime, there is still some gap between our upper bound
(Theorem 1.4) and the lower bounds (Theorem 1.1, [CK20, Theorem 23]). It is a fascinating open
problem whether it is possible to close this gap and achieve a scheme where the client space,
bandwidth and server computation are all bounded by Õ(n1/2).

For all of our upper bound results, we can also think of the results as not having any “prepro-
cessing phase”, but instead count the cost of preprocessing in the cost of the first query. This results
in schemes where the worst-case bandwidth/communication is large, but we can amortize this cost
over arbitrarily many subsequent queries. Therefore we get a scheme without preprocessing that
achieves the above bandwidth/computation efficiency for the queries in an amortized sense, while
maintaining the same bounds on client space in the worst-case.

As a by-product of our work, we also improve the theoretical state-of-the-art for 2-server pre-
processing PIR in the information-theoretic setting. Specifically, we can adapt the construction of
Theorem 1.4 into a 2-server preprocessing PIR as stated in the following corollary:

Theorem 1.5 (2-server PIR with sublinear computation). There exists an information theoretic
2-server PIR scheme that supports unbounded queries, and achieving the following performance
bounds:

• there is an initial preprocessing that requires Õ(n2/3) bandwidth, Õ(n2/3) client computation,
and Õ(n) server computation;

• after the initial preprocessing, every query takes Õ(n1/3) online bandwidth, Õ(n1/6) offline band-
width, Õ(n1/2) client computation, and Õ(n2/3) server computation;

• the client space is Õ(n2/3).

Our 2-server result (Theorem 1.5) is different in nature from Beimel et al. [BIM00]. Beimel et
al.’s schemes adopt the public-preprocessing model — they require a polynomial amount of server
space, but the client is stateless. Our scheme adopts client-specific preprocessing, where the server
stores only the original database, but the client now stores a sublinear-sized hint. Table 1 provides
a more detailed comparison of the costs.
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Motivation: distributing the client. In addition to the fundamental theoretical interest in
maximizing security and minimizing assumptions, information-theoretic PIR protocols are particu-
larly useful for applications that distribute the PIR client among two or more parties. For instance,
this is the case in protocols for secure multiparty computation (MPC) that access secret locations
in a public or secret-shared database. While one can use general MPC techniques to distribute the
role of the client in previous OWF-based protocols [ZPSZ24,MIR23,GZS24a], the resulting MPC
protocol will make a non-black-box use of the underlying OWF, which typically incurs a big concrete
overhead. In contrast, an information-theoretic protocol can be distributed while only making a
black-box use of cryptography, or even without cryptography in an honest-majority setting. In
fact, this served as a primary motivation for studying information-theoretic variants of related
primitives, such as ORAM [DMN11] and distributed point functions [BGIK22]. The distributed
variants of our protocols enjoy their qualitative efficiency features of sublinear space and per-query
time without requiring non-black-box use of cryptography.

1.2 Technical Highlights

New lower bound techniques. We now explain the intuition behind the proof of our lower
bound, i.e., Theorem 1.1. Given a preprocessing PIR scheme with less than t/2 client space and
less than n/2 total bandwidth across t consecutive queries, we construct a mutual information
amplification (MIA) protocol, and we show that MIA implies one-way functions (OWF). An MIA
protocol is similar to a key exchange protocol in that it allows Alice and Bob to establish a shared
key. However, in an MIA protocol, Alice and Bob are allowed to share m bits of mutual information
upfront. The goal is to agree on a key that computationally appears to have ℓ bits of Shannon
entropy conditioned on the protocol transcript, where ℓ > m.

We construct an MIA protocol from PIR as follows. Initially, Alice is given a random n-bit
(preprocessed) database, and Bob is given the hint of size < t/2. Therefore, they share m < t/2
bits of mutual information. Next, Bob picks a random chunk of t consecutive positions i1, . . . , it
and sends the indices to Alice. Alice and Bob now run the PIR protocol, at the end of which
Bob learns the database’s values at these t positions. They both output the database value at
these positions as the shared key k = (DB[i1], . . . ,DB[it]). An adversary cannot distinguish this
protocol execution from one where the PIR is run on completely unrelated positions i′1, . . . , i

′
t that

are independent of the indices i1, . . . , it. But in that case the key is guaranteed to have high
Shannon entropy conditioned on the view of the protocol execution. This is because, conditioned
on the view of a protocol with communication complexity ≤ n/2, the database has entropy-rate
≥ 1/2, and therefore so does the random/independent t-bit chunk of the database, meaning that
the conditional entropy of k is ℓ ≥ t/2. Finally, we show that given a MIA scheme that is able to
expand the parties’ mutual information, the protocol transcript together with the shared key at
the end have noticeable false entropy, which implies OWF by [IL89, Lemma 4.5].

SZK barrier. A natural question is whether OWFs, or even stronger “symmetric” primitives,
are sufficient to circumvent the above lower bound. We give evidence against this for “database-
oblivious” schemes in which the client’s questions are independent of the database-dependent re-
sponses of the server (including any database-dependent part of the hint). Concretely, we show that
any database-oblivious scheme that circumvents the lower bound implies a hard promise problem
in the complexity class SZK. We start by observing that any such database-oblivious scheme with
t online queries implies a one-round PIR scheme in which an offline hint of size |h| ≪ t can be
used to privately retrieve a single record of length t with ≪ n download bandwidth. We then show
that if we replace the hint by having the server apply a pairwise-independent hash function to each
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record, with output length ≈ |h|, then a computationally unbounded client can still decode the
chosen record (with negligible failure probability) by just enumerating over all possible hints and
checking the hash value. Moreover, since the hash function shrinks each record, this change keeps
the download smaller than the database size. The resulting scheme can be viewed as a single-server
PIR scheme with small error probability and a computationally unbounded decoding function, or
alternatively as a relaxed variant of an SSB hash function [HW15]. The last step of our proof shows
that this primitive implies an average-case hard promise problem in SZK. This step closely follows
a similar result for standard PIR schemes which is implicit in [LV16]. The final observation is that
all of the above steps relativize, implying that an unconditional ROM construction would separate
(promise) SZK from BPP relative to a random oracle, settling an open question in complexity
theory.

New upper bound techniques. To get Theorem 1.4, we introduce two novel ideas which may
be of independent interest. First, we devise a non-trivial method to combine core ideas from
the more recent “puncturable pseudorandom set” paradigm first proposed by Corrigan-Gibbs and
Kogan [CK20], as well as classical techniques originally described by the original work of Chor
et al. [CGKS95]. Previously, it was unknown how to combine Corrigan-Gibbs and Kogan’s new
paradigm [CK20] (which was also adopted in a flurry of more recent works [SACM21, CHK22,
ZLTS23, LP22]) with the rich techniques developed in the classical PIR literature. In this sense,
our work unveils some interesting connections between the two bodies of literature.

Second, we propose a novel technique for achieving adaptive correctness. In comparison, some
recent works in the preprocessing PIR literature [ZPSZ24,GZS24a] assume that the client’s queries
are chosen independently of the adversary’s view so far in the protocol, and this assumption is
needed for correctness hold — see Section 1.3 for an explicit adaptive correctness attack against
these schemes. This non-adaptive assumption on the adversary is similar in nature a known-
plaintext adversary in the context of encryption, which is generally considered too weak in many
practical applications. To get Theorem 1.4, we also first construct a scheme with non-adaptive cor-
rectness as a stepping stone. However, we then show how to upgrade the scheme to achieve adaptive
correctness, while preserving the asymptotical performance. The ideas behind this upgrade can be
of independent interest: while it is outside the scope of our paper, we believe that our framework
can be used to upgrade existing schemes [ZPSZ24,GZS24a] to achieve adaptive correctness.

1.3 Additional Discussions on Related Work

Additional related work. Table 1 focuses on comparing information-theoretic constructions
with sublinear computation. We now survey the broader literature. Computationally secure single-
server PIR with Õ(1) bandwidth is known in the classical setting with linear computation per
query, relying on various assumptions such as LWE, ϕ-hiding, decisional composite residuosity
(DCR), and linear homomorphic encryption [HHCG+23, MW22, ACLS18, CMS99, Lip09, Lip05].
More recently, the ground-breaking work of Lin, Mook, and Wichs [LMW23] showed a PIR scheme
in the global preprocessing model that achieves polylogarithmic bandwidth and communication
per query assuming Ring LWE. All of these works require cryptographic primitives that imply
public-key cryptography.

Our work should also be distinguished from some earlier works that claim to achieve information-
theoretic security but works only for one query (e.g., Theorem 11 of Corrigan-Gibbs and Ko-
gan [CK20]). Unless otherwise stated, our work focuses on the multi-query setting because we
want to amortize the cost of the preprocessing over unbounded number of queries.
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Explicit adaptive correctness attacks on some prior schemes. We explain why earlier
schemes including Piano [ZPSZ24] and Goshal et al. [GZS24a] are explicitly broken under an adap-
tive correctness attack. The attack exploits their reliance on the following load balancing strategy:
except with negligible probability, in every window of Õ(

√
n) queries, the number of queries that

land in each chunk is at most Õ(1). In particular, preprocessing is performed every window of
Õ(
√
n) queries, and this preprocessing provisions only Õ(1) replacement entries for each chunk.

Now each query lands in some chunk and consumes a replacement entry of the chunk. To achieve
load balancing, we want each query to land in a random chunk. In Piano [ZPSZ24] and Goshal
et al. [GZS24a], this is achieved by randomly permuting the database indices using a public PRP
upfront, and assuming that queries are chosen independently of the PRP. Therefore, the adap-
tive correctness attack is: after observing the PRP, simply choose

√
n queries that all land in one

chunk.

2 Definitions

A k-server, preprocessing Private Information Retrieval (PIR) scheme consists of the following
stateful protocols:

• Preprocessing. The preprocessing phase is executed once upfront. Each server’s input is a
database denoted DB ∈ {0, 1}n. The client has no input. The client and the server(s) runs a
preprocessing protocol at the end of which each party may store some local state.

• Query. After the preprocessing phase, the query phase can be repeated multiple times. The
client’s input is an index id ∈ {0, 1, . . . , n− 1}. The servers have no input. The (stateful) client
and server(s) run a query protocol at the end of which the client outputs answer, and the servers
have no output.

If the maximum number of queries T (n) is known upfront, we call it the bounded query setting.
Otherwise, if the maximum number of queries T (n) is unknown upfront, we call it the unbounded
query setting. Throughout the paper, we assume that the total number of queries T (n) is upper
bounded by some polynomial function in n.

Perfect privacy. We say that a k-server preprocessing PIR scheme satisfies perfect privacy, iff
there exists a simulator Sim, such that for any n, for any DB ∈ {0, 1}n, for any sequence of queries
id1, id2, . . . , idT (n) ∈ {0, 1, . . . , n−1}, for any j ∈ [k], the following two distributions are identically
distributed:

• Real execution. Run the real world PIR protocol where the server’s input database is DB, and
the client’s queries are id1, id2, . . . , idT (n), output the j-th server’s view during the protocol.

• Ideal execution. Output Sim(n,DB, T (n), j).

Since the simulator Sim is not given the sequence of queries id1, id2, . . . , idT (n), the above privacy
definition captures the intuition that any single server’s view leaks nothing about the client’s queries.

Note that in this paper, we focus on the single-server and two-server settings. Therefore, in
the above privacy definition, we assume that the adversary has control of only one server. For the
case of more general k > 2, it is also meaningful to consider a t-out-of-k style definition where the
adversary may control up to t servers.

In our paper, all the constructions have the following additional features: 1) the client makes a
single streaming pass over the database during preprocessing; 2) each query can be accomplished
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with a single round-trip; 3) the server only needs to store the original database and no additional
state; and 4) the schemes are data-oblivious. However, our lower bound proof (Section 5) works
even for protocols with multiple rounds, and when the server is allowed to store an arbitrary amount
of additional state beyond just the database itself.

Non-adaptive correctness. We say that a preprocessing PIR scheme satisfies non-adaptive
correctness, iff for any T (n) that is upper bounded by some polynomial function in n, there exists
a negligible function negl(·), such that for any n, any3 DB ∈ {0, 1}n, any sequence of T (n) queries
denoted id1, . . . , idT (n) ∈ {0, 1, . . . , n − 1}, with 1 − negl(n) probability, the client outputs correct
answers for all T (n) queries after executing the honest protocol with the servers.

The above non-adaptive correctness definition is the same the one used in some earlier works [ZPSZ24,
SACM21,GZS24b].

Adaptive correctness. Consider the following execution AdaptiveCorrectDB,A,n,T (n) where the
client interacts with an adversary A who controls t out of the k servers — for the purpose of this
paper, we focus on the single-server and two-server settings, so t is always 1:

Experiment AdaptiveCorrectDB,A,n:

– Throughout the execution, the t servers controlled by the adversary A always follows the
honest protocol.

– First, the client and the servers run the preprocessing protocol where all servers receive the
input DB;

– Next, the adversary A(n,DB) repeats the following: each time the adversary A adaptively
chooses a next query id ∈ {0, 1, . . . , n− 1} for the client. The client and the servers now run
the query protocol.

– Finally, when the adversary A stops, if the client has output the correct answers for all
queries, then output 1.

We say that a preprocessing PIR scheme satisfies adaptive correctness iff for any A which
repeats the query phase polynomially in n many times, there exists a negligible function negl(·),
such that for any n, and any DB ∈ {0, 1, . . . , n}n, the above experiment AdaptiveCorrectDB,A,n

outputs 1 with probability 1− negl(n).
Intuitively, the difference between non-adaptive and adaptive correctness is the following. For

non-adaptive correctness, we implicitly assume that the clients’ queries are chosen independently
of the randomness consumed by the PIR scheme itself. For adaptive correctness, we require that
correctness still hold even when the adversary can adaptively choose the queries in a way that
depends on its view in the protocol so far. In some applications of PIR (e.g., private DNS, private
web search, private contact discovery), the queries are generated by a human independently of the
PIR schemes’ random coins. In these cases, it may be reasonable to use the weaker non-adaptive
correctness notion. In other applications, adaptive correctness may be necessary, especially if the
PIR scheme is used as a building block in a bigger protocol, and for compositional reasons we may
need to consider the case when the adversary can influence the choice of the queries of the honest
client.

3Rather than quantifying over all DB, we can alternatively let the adversary A choose the DB upfront. The two
definitional approaches are equivalent.
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3 Näıve Constructions of Information Theoretic, Single-Server
Preprocessing PIR

3.1 Construction from 2-Server Linear PIR with Nearly Optimal Client Space
and Bandwidth Tradeoff

If we did not care about the server’s computational overhead, we can construct an information-
theoretic single-server preprocessing PIR from any linear, 1-round, information-theoretic, classical
2-server PIR scheme (that satisfies some natural properties). Here, the “linear” property requires
that the answer from either server is a linear combination of the database’s values. Further, using
the state-of-the-art classical 2-server PIR [DG16] as the underlying PIR, we can get an information-
theoretic single-server preprocessing PIR with n1/2+o(1) client space, and O(

√
n) bandwidth per

query — in light of the lower bound in Section 5 which holds even when allowing unbounded server
computation, the client space/bandwidth tradeoff is tight up to sub-polynomial factors. This is
also why the resulting construction is interesting from a theoretical perspective.

Henceforth, we use a tuple of possibly randomized algorithms (query, ans1, ans2, dec) to denote
a 2-server PIR:

• (msg,msg′, st) ← query(n, q): takes n and the client’s query q ∈ {0, 1, . . . , n − 1} as input and
outputs two messages, one intended for each server, as well as some state st ;

• res ← ans1(DB,msg) and res′ ← ans2(DB,msg′): both functions take in the database and a
message received from the client and output a response;

• β ← dec(st , res, res′): takes in st as well as a response from each server denoted res and res′

respectively, and outputs the query result β ∈ {0, 1}.

We assume that the scheme satisfies perfect privacy, i.e., any single server’s view is independent
of the client’s query q ∈ {0, 1, . . . , n − 1}. We also require the classical 2-server PIR scheme to
have a few additional properties which are satisfied by natural 2-server PIR schemes known so
far [DG16,CGKS95]:

1. Linearity: We can view the database as a vector over some finite ring; further, both ans1 and
ans2 compute linear combinations of the database’s entries over the ring. Specifically, if the
output of ans1 or ans2 is a vector, then each coordinate is a linear combination of the database’s
entries.

2. Obliviously one-sided query generation: since the 2-server PIR scheme satisfies perfect pri-
vacy, each individual coordinate of the query function’s output is independent of the client’s
query. Therefore, we assume that the scheme admits an alternative way for the client to com-
pute its queries to both servers. Specifically, we assume that there exist efficient functions
(query1, query2):

• (msg, st) ← query1(n): takes only n as input but not the actual query, and outputs the
message to send to the first server, as well as some state st ;

• (msg′, st ′) ← query2(st , q): takes st and the actual query q ∈ {0, 1, . . . , n − 1} as input, and
outputs a message to the second server, as well as internal state st ′.

We want that for any n, any q ∈ {0, 1, . . . , n − 1}, let (msg, st) ← query1(n) and (msg′, st ′) ←
query2(st , q), then the tuple (msg,msg′, st ′) is identically distributed as the output of query(n, q).

10



Generic construction. We can construct a single-server preprocessing PIR as follows. Specifi-
cally, the preprocessing is executed upfront, and during each phase of t queries, the client piggybacks
the work of the next phase’s preprocessing over this phase’s queries.

• Preprocessing: // the next phase’s preprocessing is piggybacked over this phase’s queries

– for each i ∈ [t], the client runs (msgi, st i) ← query1(n), and initializes a vector resi = 0 of
appropriate length that matches the output length of ans1;

– make a streaming pass over the database: for each DB[j] read, for each hint i ∈ [t], suppose
ans1(DB,msgi) =

∑
j cjDB[j], then let resi := resi + cj ·DB[j]. Note that the client only

needs to compute the coefficient vector cj and need not compute the other coefficients for
performing this update.

– Let the hint table be {msgi, st i, resi}i∈[t].

• Query: upon receiving an index q ∈ {0, 1, . . . , n − 1}, the client grabs the next unconsumed
hint from the hint table of the form (msg, st , res), and computes (msg′, st ′) ← query2(st , q). It
then sends msg′ to the server, and obtains the answer res′. Finally, output dec(st ′, res, res′).

The perfect privacy and adaptive correctness properties of the above scheme are inherited by those
of the underlying classical 2-server PIR scheme. Specifically, for privacy, note that the server
observes a single streaming pass over the database during preprocessing, which does not leak any
information. The view of the server for the queries is identially distributed as the view of one server
in the underlying 2-server PIR.

Instantiation from Dvir-Gopi’s 2-server PIR. The most efficient classical, information-
theoretic 2-server PIR known is the scheme by Dvir and Gopi [DG16]. It is not hard to check
that their scheme satisfies the natural properties that we need. Specifically, the query algorithm
simply chooses a random vector z of length k = exp(O(

√
log n log logn)) from Zk

6. The query to
the first server is simply z which can be computed obliviously without knowing the query, and the
query to the second server can be computed from z and the query q ∈ {0, 1, . . . , n− 1}. Therefore,
each hint can be described in O(k) size. During the streaming pass in the preprocessing phase, the
client can compute the coefficient vector cj ∈ Zk

6 corresponding to each database position DB[j] in
O(k) time. Therefore, the client’s total computation during preprocessing is O(n · t ·k). Amortizing
the work over t queries, the client computation per query is O(n · k). The server computation
per query is also O(n · k) which is the same as the server computation of the original Dvir-Gopi
PIR [DG16].

Summarizing the above, we conclude with the following theorem:

Theorem 3.1 (Achieving nearly optimal bandwidth/client-space tradeoff). There exists an information-
theoretic, perfectly private, and adaptively correct single-server preprocessing PIR scheme support-
ing unbounded, arbitrary queries, and achieving the following performance bounds:

• there is an initial preprocessing phase in which the client makes a streaming pass over the
database consuming O(n) bandwidth and server computation; and the client performs O(n ·
t · exp(

√
log n log log n)) computation;

• after the initial preprocessing, every query takes O(exp(
√
log n log log n)) online bandwidth, O(n/t)

offline bandwidth, and O(n · exp(
√
log n log log n)) client and server computation;

• the client space is O(t · exp(
√
log n log log n)).
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3.2 Construction from Recent PRF-Based Constructions

Assuming the existence of pseudorandom functions (PRF), Piano [ZPSZ24] and the subsequent
work of Mughees et al. [MIR23] constructed a single-server preprocessing PIR scheme with O(

√
n)

bandwidth, and Õ(
√
n) server and client computation per query, and consuming Õ(

√
n) client

space. In their schemes, the only use of the PRF is to compress the client space. Specifically, in
these schemes [ZPSZ24,MIR23], every hint corresponds to a random set S of size O(

√
n) and the

parity ⊕i∈SDB[i]; moreover, the client stores Õ(
√
n) hints in total.

A straightforward but inefficient way to make their schemes information theoretic is to remove
the PRF, and have each hint directly store the expanded random set of size O(

√
n). However, this

would result in Õ(n) client space.

A balancing trick. One key observation is that the space overhead for the storing the expanded
set and the parity bit is unbalanced: storing the expanded set requires

√
n space but the parity bit

requires only 1 bit. We can use a balancing trick to balance these two overheads, by making the
block size n1/3. In this way, a database of n bits can be viewed as a database with n2/3 blocks where
each block has n1/3 bits. For the client to fetch any bit, it has to fetch the entire block that the bit
resides in. Therefore, the idea is to apply Mughees et al. [MIR23] over a database of n2/3 blocks
each of n1/3 bits, and have the client store the expanded sets in the hints. In this case, each phase
has n1/3 queries, and the client stores Õ(n1/3) hints. As before, the client piggybacks the next
phase’s preprocessing over the current phase’s queries. In each hint, storing the random set and
storing the parity block both take O(n1/3) space. Similarly, during each query, the client uploads
two random sets of size O(n1/3) to the server, and the serve responds with two parity blocks of
size O(n1/3) — thus the upload and download bandwidth are now also balanced. Summarizing the
above, we get the following performance overhead as stated in Theorem 3.2:

Adaptive correctness and privacy of the construction follow directly from the adaptive correct-
ness and privacy of Mughees et al. [MIR23]. Note that we can also use Piano [ZPSZ24] as the
underlying scheme instead of Mughees et al. [MIR23], but the resulting scheme would only satisfy
non-adaptive correctness since Piano satisfies only non-adaptive correctness. By contrast, Mughees
et al. [MIR23] introduced an elegant technique to achieve adaptive correctness.

Theorem 3.2 (Information theoretic single-server preprocessing PIR fromMughees et al. [MIR23]).
There exists an information-theoretic, perfectly private, and adaptively correct single-server prepro-
cessing PIR scheme supporting unbounded, arbitrary queries, and achieving the following perfor-
mance bounds:

• there is an initial preprocessing phase in which the client makes a streaming pass over the
database consuming O(n) bandwidth and server computation, and the client performs Õ(n) com-
putation;

• after the initial preprocessing, every query takes O(n2/3) online and offline bandwidth, Õ(n2/3)
client computation, and O(n2/3) server computation;

• the client space is Õ(n2/3).

4 Warmup: Scheme for Bounded, Random, and Distinct Queries

4.1 Set Definitions and Operations

Without loss of generality, we may assume that n1/6 is an integer since otherwise we can always pad
n to a 6-th power. Henceforth let m = n1/3. We will express an index from id ∈ {0, 1, . . . , n−1} as
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a tuple id := (x, y, z) ∈ {0, 1, . . . ,m− 1}3. In other words, (x, y, z) is the base-m representation of
id . We often write DB[x, y, z] = DB[id ] if id = (x, y, z), and use these notations interchangeably
to index into the database.

Set distribution D. We define the distribution D which samples a random set S ⊆ {0, 1, . . . , n−
1} of expected size

√
n. Specifically,

1. for each x ∈ {0, 1, . . . ,m− 1}, sample x with probability 1
n1/6 , and let X be the set of x-indices

sampled in this way;

2. for each y ∈ {0, 1, . . . ,m− 1}, sample y with probability 1
n1/6 , and let Y be the set of y-indices

sampled in this way;

3. for each z ∈ {0, 1, . . . ,m− 1}, sample z with probability 1
n1/6 , and let Z be the set of z-indices

sampled in this way.

4. Finally, output the cross-product X × Y × Z.

Fact 4.1. We immediately have the following facts about D where negl(·) denotes a suitable negli-
gible function:

• Size of each dimension. E[|X|] = E[|Y |] = E[|Z|] = m/n1/6 = n1/3/n1/6 = n1/6. Further,
except with negl(n) probability, the sizes of X, Y , Z are between 0.9n1/6 and 1.1n1/6.

• Set size. The probability that each (x, y, z) ∈ {0, . . . ,m− 1}3 is contained in S is (1/n1/6)3 =
1/
√
n. Therefore, the expected set size E[|S|] =

√
n. Further, except with negl(n) probability, the

size of S is between 0.6
√
n and 1.5

√
n.

• Set description size. S can be described with X and Y and Z. Therefore, the expected
description size of S is 3 · n1/6. Further, except with negl(n) probability, |desc(S)| is between
2.7n1/6 and 3.3n1/6.

Resample operation. Given a set S such that (x, y, z) ∈ S, we define the resampling operation
denoted Resample(S, (x, y, z)) to output the following set:

• write S as X,Y , and Z; it is known that x ∈ X, y ∈ Y , and z ∈ Z;

• resample the decisions whether x ∈ X, y ∈ Y , and z ∈ Z; specifically, the probabilities that
x ∈ Y y ∈ Y , or z ∈ Z should all be 1

n1/6 ; let X
′, Y ′, and Z ′ be the resampled outcomes;

• output X ′ × Y ′ × Z ′.

Parity of a set. Given a set S = X × Y × Z, and some database DB = {0, 1}n, we define the
parity of the set S as

parity(S) = ⊕(x,y,z)∈SDB[x, y, z]

Reconstruction algorithm. Let S = X × Y × Z and let (x, y, z) ∈ S. Suppose we are given
the parities of the following sets:

• p111 = parity(X × Y × Z),

• p011 = parity ((X\{x})× Y × Z),

• p101 = parity (X × (Y \{y})× Z),
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• p110 = parity (X × Y × (Z\{z})),

• p001 = parity ((X\{x})× (Y \{y})× Z),

• p010 = parity ((X\{x})× Y × (Z\{z})),

• p100 = parity (X × (Y \{y})× (Z\{z})),

• p000 = parity ((X\{x})× (Y \{y})× (Z\{z})),

we can reconstruct DB[x, y, z] in the following way:

DB[x, y, z] = ⊕i,j,k∈{0,1}pi,j,k

To see this, observe that except for (x, y, z), every other element appears an even number of times
in the final xor-sum.

4.2 PIR Scheme for Q =
√
n/10 Random Distinct Queries

We first describe a PIR scheme which achieves perfect privacy regardless of the queries, and
achieves correctness with probability at least 0.1 as long as there are only Q =

√
n/10 random and

distinct queries. It is easy to amplify the correctness probability to 1− negl(n) by running ω(log n)
independent instances in parallel. Therefore, henceforth, we focus on describing the algorithm for
a single instance. Further, in Appendix A, we show how to remove the restriction of having only
bounded, random, and distinct queries, such that we can finally support unbounded, arbitrary
queries.

Without loss of generality, we assume that n ≥ λ since we care about the asymptotical perfor-
mance of the scheme when n is large.

Preprocessing phase.

1. The client samples L = 20
√
n random sets denoted S1, . . . , SL.

2. For each i ∈ [L], write Si = Xi × Yi × Zi, the client wants to store the parities of the following
sets:

• Si = Xi × Yi × Zi;

• for each x ∈ Xi: ((Xi\{x})× Yi × Zi);

• for each y ∈ Yi: (Xi × (Yi\{y})× Zi);

• for each z ∈ Zi: (Xi × Yi × (Zi\{z}));

The client can compute all parities by making a single streaming pass over the database while
consuming only O(n2/3) space.

Henceforth, we refer to each set Si along with the associated parities a hint, and we refer to the
union of all L hints the client’s hint table.

Queries. We describe how to support
√
n distinct, random queries. Henceforth let (x, y, z) be

the current query.

1. Client: find in its hint table a hint with the set S such that the queried index (x, y, z) ∈ S. If
there are multiple such hints, choose one at random.

If no such hints are found, then sample a fresh set S from the distribution D, send S to the
server, ignore the server’s responses, and output 0. Otherwise, continue with the following.
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2. Client: let S′ ← Resample(S, (x, y, z)) and send (a succinct description of) S′ to the server.

3. Server: write S′ = X ′ × Y ′ × Z ′, and send the parities of the following sets back to the client:

• S′ = X ′ × Y ′ × Z ′;

• for each x ∈ {0, 1, . . . ,m− 1}, (X ′ ∪ {x})× Y ′ × Z ′;

• for each y ∈ {0, 1, . . . ,m− 1}, X ′ × (Y ′ ∪ {y})× Z ′;

• for each z ∈ {0, 1, . . . ,m− 1}, X ′ × Y ′ × (Z ′ ∪ {z});

4. Client: define the good event G to be the event that the set S consumed corresponds to a
good hint (i.e., not broken) in the hint table, and moreover, the earlier S′ ← Resample(S =
X × Y × Z, (x, y, z)) operation successfully removed all of x, y, and z from X, Y , and Z
respectively, do the following:

• If the good event G happens, then, the client can obtain the parities p111, p011, p101, p110 from
the parities associated with the set S stored in its hint table (see Section 4.1 for the definition
of these parities when given S and (x, y, z)). Further, the client can obtain the parities
p000, p100, p010, p001 from the server’s response. The client calls the reconstruction algorithm
and outputs the answer.

• Else if the good event G does not happen, simply output 0 as the answer.

5. Client: Sample a new set S according to the distribution D subject to containing (x, y, z), and
replace the consumed hint in the hint table with the newly sampled set. Mark this hint as
broken.

Additional details of the preprocessing algorithm. We give more details on the prepro-
cessing algorithm to show that the client can accomplish it using only O(n2/3) space and O(n)
computation.

During the streaming pass, for each hint of the form Si = Xi × Yi × Zi, the client updates the
cumulative parities for the following planar sets: {{x} × Yi × Zi}x∈Xi

, {Xi × {y} × Zi}y∈Yi
, and

{Xi × Yi × {z}}z∈Zi
. Each planar set has size n1/3, and each hint has n1/6 planar sets.

The client proceeds in batches, and for each batch, the client downloads the next n2/3 bits
from the server — we may use DB[x, ∗, ∗] to denote the batch where ∗ denotes wildcard. Now,
the client performs the following. For each hint of the form Xi × Yi × Zi, if x ∈ Xi, then for each
(y, z) ∈ Yi × Zi, the client accumulates DB[x, y, z] into the parities of the following planar sets
associated with the hint: {x} × Yi × Zi, Xi × {y} × Zi, and Xi × Yi × {z}.

Finally, for each hint of the form Xi × Yi ×Zi, the client computes the parities of the following
sets: Xi×Yi×Zi, {(Xi\{x})×Yi×Zi}x∈Xi , {Xi×(Yi\{y})×Zi}y∈Yi , and {Xi×Yi×(Zi\{z})}z∈Zi

from the parities of the planar sets associated with the hint.

4.3 Performance Bounds

Henceforth, we ignore the negligible probability that Fact 4.1 does not hold. In other words, all
the performance bounds stated below hold with all but negligible probability.

Preprocessing phase. We first analyze the cost of preprocessing.

• Bandwidth and server work. The client makes a single pass over the database, consuming O(n)
bandwidth. Since the server does not do any additional work besides streaming the database to
the client, its work is also O(n).

15



• Client space. For each of the L = O(
√
n) sets, the client needs to store 1) the description of

the set which is O(n1/6) in size; and 2) O(n1/6) parities. Therefore, the total client space is
O(L · n1/6) = O(n2/3). Further, the above preprocessing algorithm requires only O(n2/3) client
space as well, since at any time, the client only needs to store the current batch of size n2/3, and
the parities of O(L · n1/6) = O(n2/3) sets.

• Client work. For each batch of size n2/3, the client scans through all hints which takes O(n1/2)
work. Further, for each (x, y, z) in the current batch, O(1) number of planar set updates are
needed for each hint that contains (x, y, z). Because each index (x, y, z) is contained in O(1) hints
in expectation, the total update work is O(n2/3) except with negl(n) probability. Therefore, for
each batch, the expected total work is upper bounded by O(n1/2 + n2/3) = O(n2/3). Summing
over all n1/3 batches, the work so far is O(n). Finally, each hint takes O(n1/6) time to reconstruct
the parities of the sets Xi × Yi × Zi, {(Xi\{x}) × Yi × Zi}x∈Xi , {Xi × (Yi\{y}) × Zi}y∈Yi , and
{Xi × Yi × (Zi\{z})}z∈Zi from the parities of the planar sets. This step takes O(n1/2 · n1/6) =
O(n2/3) work. Therefore, the total client work during preprocessing is O(n).

Each query. We now analyze the cost of each query.

• Bandwidth. For each query, the client sends a resampled set S′ to the server. Since the descrip-
tion size of S′ is O(n1/6), the upload bandwidth required is O(n1/6). Further, the server sends
the client O(n1/3) parities which consumes O(n1/3) download bandwidth.

• Client work. The client needs to scan the L = O(
√
n) hints in its hint table and find the hints

that contain the query (x, y, z). Suppose for each hint S = X×Y ×Z we store the sets X, Y , and
Z using a Cuckoo hash table (which does not asymptotically increase the space consumption),
we can check whether (x, y, z) ∈ S in constant time. Therefore, this step takes O(

√
n) work.

The client receives a response of size O(n1/3) from the server which takes O(n1/3) work. Further,
the client needs to perform the Resample operation, reconstruct DB[x, y, z] after receiving the
response from the server, and sample a new set subject to containing (x, y, z). The work of these
steps is dominated by others. Specifically, sampling a set subject to containing (x, y, z) can be
achieved by flipping a coin for every x′ ̸= x to decide if x′ should be chosen, and forcing x to be
chosen and similarly for the other two dimensions. Therefore, the total client work is O(

√
n).

• Server work. When the server receives S′ = X ′ × Y ′ × Z ′, it needs to compute O(n1/3) parities
as the response to the client. To compute the response, the server can compute the parity of
S′ = X ′×Y ′×Z ′, as well as the parities of the following planar sets: {{x} × Y ′ × Z ′}x∈{0,...,m−1},
{X ′ × {y} × Z ′}y∈{0,...,m−1}, and {X ′ × Y ′ × {z}}z∈{0,...,m−1}. Then, it can compute each of

the O(n1/3) final parities in constant time. It takes O(
√
n) work to compute the parity of

S′ = X ′×Y ′×Z ′, and O((n1/6)2 ·n1/3) = O(n2/3) work to compute all the parities of all planar
sets. Therefore, the total server work is upper bounded by O(n2/3).

Amortized cost per query. When we amortize the cost of the preprocessing over each of the√
n queries, we get the amortized cost per query:

• Amortized bandwidth. The amortized bandwidth per query is O(n/
√
n) +O(n1/3) = O(

√
n).

• Amortized client work. The amortized client work per query is O(n/
√
n) +O(

√
n) = O(

√
n).

• Amortized server work. The amortized server work per query is O(n/
√
n) +O(n2/3) = O(n2/3).
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Finally, the above is the performance of a single instance. Recall that in our final construction,
we use super-logarithmically many instances to boost the correctness probability to 1 − negl(n),
incurring an extra super-logarithmic factor in cost. However, during the preprocessing phase, all
super-logarithmically many copies can share the same streaming pass, so the bandwidth and server
computation in the preprocessing phase need not suffer from the superlogarithmic factor.

4.4 Privacy Proof

We construct the following simulator. For the preprocessing phase, simply make a linear pass
over the database. For each query, sample a set according to the distribution D and send it to
the adversary. We want to prove that for an arbitrary sequence of queries, the simulated view is
identically distributed as the view of the adversary in the real world.

To prove this, we will prove that at the beginning of each query, even when conditioned on
the adversary’s view so far, 1) the sets in the hint table are distributed as L sets freshly and
independently sampled from the distribution D; and 2) the query sent to the adversary is identi-
cally distributed as a freshly sampled set from the distribution D. We can prove this inductively.
Suppose at the beginning of the t-th query, the hint table is distributed as L sets independently
sampled from D. We want to prove that 1) the hint table enjoys the same distribution after the t-th
query; and 2) the t-th query itself is distributed as a set sampled from D. Henceforth let (x, y, z)
denote the t-th query.

At the beginning of the t-th query, the hint table contains L sets sampled independently from
D — we can equivalently view the distribution as follows:

• First, sample according to a suitable distribution the indices of the hints that match (x, y, z).
Let this matched set be I (which is possibly empty).

• For every hint in I, sample a set according to D but subject to containing (x, y, z); for every
hint not in I, sample a set according to D subject to not containing (x, y, z).

The distribution of the hint table after the t-th query is almost the same as the above, except
that one random hint among the set I is sampled twice according to D but subject to containing
(x, y, z). The new distribution is identical as the distribution right before the t-th query. The
distribution of the t-query is the same as the following: sample a set S according to D but subject
to containing (x, y, z), and then output Resample(S, (x, y, z)). Clearly, the resulting distribution is
identical as sampling a random set from D without any constraints. It is also easy to observe that
the distribution of the t-th query is independent of the distribution of the hint table after the t-th
query.

4.5 Proof of Correctness under Random Queries

We now prove correctness under Q random, distinct queries. Later in Appendix A, we show how
to extend the scheme to support unbounded, arbitrary queries with adaptive correctness.

Fix an arbitrary time step t ∈ [Q] and consider the t-th query: we want to show that the client
outputs the correct answer with probability at least 0.1. Although the correctness probability
for a single instance is only a small constant, we can easily amplify the correctness probability
to 1 − negl(n) by running ω(log n) independent instances in parallel. Recall that the client knows
whether each instance produced a correct answer. Therefore, as long as one of the instances returns
a correct answer, the client can obtain the correct answer.

Henceforth, we focus on analyzing a single instance. Unless the following bad events happen,
the client is guaranteed to output a correct answer — henceforth let (x, y, z) be the current query:
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• Failure of finding a good match. Either the client did not find any hint in the hint table that
matches the query (x, y, z), or the client happens to choose a broken hint during the query.

• Failure of removal during Resample. The Resample(S, (x, y, z)) operation where S = X × Y ×Z
fails to achieve one of the following: 1) remove x from X, 2) remove y from Y , or 3) remove z
from Z.

Below, we first show that the probability of the second bad event is o(1). Then, we focus on
bounding the probability of the first bad event, and show that it is at most 0.6.

Probability of Resample failing to remove. The probability of failing to remove x (or y or z,
resp.) from X (or Y or Z resp.) is 1/n1/6. Therefore, the probability that there exists a dimension
for which removal fails is at most 3/n1/6.

Probability of failing to find a good match. Imagine that an honest client interacts with the
adversary. Let Tend be the client’s hint table after the adversary makes Q queries where the last
query is denoted (x, y, z) also called the challenge query. Let T ∗ ⊆ Tend be the hints that contain
the challenge query (x, y, z). We can partition T ∗ as T ∗ = T ∗good∪T ∗bad where T ∗good and T ∗bad denote
the good and the broken hints at the end of the Q queries, respectively. It is easy to see that each
hint in T ∗bad must match at least one of the Q queries — specifically, the last time this hint was
consumed, it was replaced with a freshly sampled hint subject to containing the relevant query.
On the other hand, each hint in T ∗good may or may not match any of the Q queries. We want to

show that with probability at least 0.5, |T ∗| > 0 and
|T ∗

good|
|T ∗| ≥ 0.5, or alternatively,

|T ∗
bad|
|T ∗| ≤ 0.5. Let

T ∗∩ ⊆ T ∗ be the hints that match at least one of the Q queries. Clearly, T ∗bad ⊆ T ∗∩. Therefore, it
suffices to show that with probability at most 0.5, |T ∗∩| ≥ 0.5Cnt∗.

In the privacy proof (Section 4.4), we showed that conditioned on the adversary’s view at the
end of the Q queries, T ∗end is distributed as a freshly sampled set of hints. We can imagine that
T ∗end is sampled as follows: first, sample the random variable Cnt∗ from an appropriate distribution.
Then, sample Cnt∗ hints subject to containing (x, y, z), and sample L − Cnt∗ hints subject to not
containing (x, y, z), and T ∗end is a random permutation of all the sampled hints.

Suppose we sample a random hint table with L = 20
√
n hints. The probability that each set

contains the query (x, y, z) is 1/
√
n. Therefore, the probability that no set contains (x, y, z) is

(1− 1/
√
n)L = (1− 1/

√
n)20

√
n ≤ e

− 1√
n
·20
√
n ≤ 1/e20. Henceforth, we focus on the case when there

are Cnt∗ > 0 number of hints that match (x, y, z). The following proof holds when conditioning on
some Cnt∗ > 0.

Proposition 4.2. Consider the following random experiment: sample a random set S containing
subject to (x, y, z), and sample (x′, y′, z′) at random subject to being different from (x, y, z). The
probability that (x′, y′, z′) ∈ S is at most 1.1/

√
n.

Proof. Consider the following slightly modified experiment: sample a random set S containing
subject to (x, y, z), and sample (x′, y′, z′) at random without needing to be distinct from (x, y, z).
To prove the claim, we can equivalently bound

Pr[(x′, y, z′) ∈ S and (x′, y′, z′) ̸= (x, y, z)]

Pr[(x′, y′, z′) ̸= (x, y, z)]

in the above modified experiment. Therefore, it suffices to show that Pr[(x′, y, z′) ∈ S ≤ 1.1/
√
n

in the above modified experiment where (x′, y′, z′) is sampled at random without the need to be
distinct from (x, y, z). We prove this below.
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Pr[(x′, y′, z′) ∈ S] =Pr[(x′ ̸= x) ∧ (y′ ̸= y) ∧ (z′ ̸= z) ∧ (x′, y′, z′) ∈ S]

+ 3 · Pr[(x′ = x) ∧ (y′ ̸= y) ∧ (z′ ̸= z) ∧ (x′, y′, z′) ∈ S]

+ 3 · Pr[(x′ = x) ∧ (y′ = y) ∧ (z′ ̸= z) ∧ (x′, y′, z′) ∈ S]

+ Pr[(x′, y′, z′) = (x, y, z)]

Moreover,

Pr[(x′ ̸= x) ∧ (y′ ̸= y) ∧ (z′ ̸= z) ∧ (x′, y′, z′) ∈ S]

≤Pr[(x′, y′, z′) ∈ S
∣∣(x′ ̸= x) ∧ (y′ ̸= y) ∧ (z′ ̸= z)]

=(1/n1/6)3 = 1/
√
n

Pr[(x′ = x) ∧ (y′ ̸= y) ∧ (z′ ̸= z) ∧ (x′, y′, z′) ∈ S]

=Pr[(x′, y′, z′) ∈ S
∣∣(x′ = x) ∧ (y′ ̸= y) ∧ (z′ ̸= z)] · Pr[(x′ = x) ∧ (y′ ̸= y) ∧ (z′ ̸= z)]

≤Pr[(x′, y′, z′) ∈ S
∣∣(x′ = x) ∧ (y′ ̸= y) ∧ (z′ ̸= z)] · Pr[x′ = x]

=(1/n1/6)2 · (1/n1/3) = 1/n2/3

Pr[(x′ = x) ∧ (y′ = y) ∧ (z′ ̸= z) ∧ (x′, y′, z′) ∈ S]

=Pr[(x′, y′, z′) ∈ S
∣∣(x′ = x) ∧ (y′ = y) ∧ (z′ ̸= z)] · Pr[(x′ = x) ∧ (y′ = y) ∧ (z′ ̸= z)]

≤Pr[(x′, y′, z′) ∈ S
∣∣(x′ = x) ∧ (y′ = y) ∧ (z′ ̸= z)] · Pr[x′ = x] · Pr[y′ = y]

=(1/n1/6) · (1/n1/3)2 = 1/n5/6

Finally, Pr[(x′, y′, z′) = (x, y, z)] = (1/n1/3)3 = 1/n.
Summarizing the above, we have the following for sufficiently large n.

Pr[(x′, y′, z′) ∈ S] ≤ 1.1/
√
n

Let Iij be an indicator random variable such that Iij = 1 if the j-th query is contained in the
i-th hint that contains (x, y, z). Proposition 4.2 implies that for fixed i, j, E[Iij ] ≤ 1.1/

√
n. We

have that

E[|T ∗∩|] ≤ E[
∑

i∈[Cnt∗],j∈[Q]

Ii,j ] = Cnt∗ ·
√
n

10
· 1.1√

n

By Markov Inequality, the probability that |T ∗∩| ≥ 0.5Cnt∗ is at most 0.5.
Summarizing the above, by the union bound, we have that

Pr[failure of finding a good match] ≤ 1/e20 + (1− 1/e20) · 0.5 ≤ 0.6

Therefore,

Pr[Q-th query is incorrect] ≤Pr[failure of Resample] + Pr[failure of finding a good match]

≤0.6 + o(1) ≤ 0.9

Combining the above analysis of performence bounds, privacy and correctness, we get the
following theorem.
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Theorem 4.3. There exists an information theoretic, perfectly private, and non-adaptively correct
single-server preprocessing PIR scheme supporting Θ(

√
n) bounded, random queries, and achieving

the following performance bounds with all but negl(n) probability:

• there is an initial preprocessing phase in which the client makes a streaming pass over the
database consuming with O(n) bandwidth and server computation; further, the client performs
Õ(n) computation;

• after the initial preprocessing, every query takes Õ(n1/3) online bandwidth, Õ(n1/2) offline band-
width, Õ(n1/2) client computation, and Õ(n2/3) server computation; and

• the client space is Õ(n2/3).

Further, in Appendix A we describe a new approach for upgrading the scheme to achieve adap-
tive correctness and moreover support unbounded and arbitrary queries, as stated in the following
theorem.

Theorem 4.4 (Single-server preprocessing PIR for unbounded queries). There exists an infor-
mation theoretic, perfectly private, and adaptively correct single-server preprocessing PIR scheme
supporting unbounded, arbitrary queries, and achieving the following performance bounds with all
but negl(n) probability:

• there is an initial preprocessing phase in which the client makes a streaming pass over the
database consuming with O(n) bandwidth and server computation; further, the client performs
Õ(n) computation;

• after the initial preprocessing, every query takes Õ(n1/3) online bandwidth, Õ(n1/2) offline band-
width, Õ(n1/2) client computation, and Õ(n2/3) server computation; and

• the client space is Õ(n2/3).

5 Lower Bounds and Barriers

In this section we present two different limitations on single-server PIR with preprocessing. First,
in Section 5.1, we show that schemes that achieve much better bandwidth/space tradeoff than
the one given by Theorem 3.1 cannot exist information-theoretically, and in fact imply one-way
functions (OWFs). This result holds even for significantly weaker notions of PIR with preprocessing
as discussed below. For example, it also rules out certain forms of ORAM.

Then, in Section 5.2, we show a stronger implication for schemes that satisfy an additional
“database obliviousness” requirement which is met by all known constructions. This implication
gives a complexity theoretic barrier, showing that OWFs or even stronger “unstructured” hard-
ness assumptions are unlikely to be sufficient for significantly improving the parameters of our
Theorem 3.1 or the (OWF-based) Piano [ZPSZ24].

5.1 Single-Server Scheme with o(
√
n) Hint and Bandwidth Implies OWF

The General PIR Model and Result. We will make our lower bound stronger by considering
a very weak notion of PIR with preprocessing and showing that it already implies OWFs.

Definition 1 ((n, t)-PIR). For polynomials n, t = poly(λ) we define (n, t)-PIR as follows:
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• There is a randomized PPT preprocessing procedure (D̃B, hint) ← Prep(1λ,DB) which is

given the database DB ∈ {0, 1}n. It generates a preprocessed database D̃B for the server
and hint for the client.

• There is a PIR protocol Π(D̃B; (hint, i1, . . . , it)) between the PPT server who initially holds

the preprocessed database D̃B and the PPT client who initially has hint and t indices i1, . . . , it.
At the end of the protocol the client should output DB[i1], . . . ,DB[it]. The server and the
client can maintain arbitrary local state during the protocol execution.

The per-query communication complexity c of Π is defined as C/t where C the total communication
complexity of Π. We require two properties:

• Correctness: For any DB ∈ {0, 1}n and any i1, . . . , it ∈ [n], if we sample (D̃B, hint) ←
Prep(1λ,DB) and then run Π(D̃B; (hint, i1, . . . , it)), then the client outputs the valuesDB[i1],
. . . ,DB[it] at the end of the protocol with overwhelming probability 1− negl(λ).

• Security: For any DB ∈ {0, 1}n and any two t-tuples of indices (i01, . . . , i
0
t ), (i

1
1, . . . , i

1
t ) ∈

[n]t chosen selectively, we have view0 ≈c view1, where ≈c denotes computational indistin-

guishability and viewb is the protocol transcript of Π(D̃B, (hint, ib1, . . . , i
b
t)) for (D̃B, hint)←

Prep(1λ,DB).

Remarks. Note that the above notion of (n, t)-PIR relaxes PIR with preprocessing in many ways:

• There is a trusted preprocessing algorithm Prep that gives the server an encoded database D̃B,
which may be arbitrarily correlated with the client’s hint hint. This is useful in the contexts
of ORAM [GO96] and private-key DEPIR schemes [CHR17, BIPW17]. In contrast, in our
positive results and the previous related results from the literature [ZPSZ24,MIR23,GZS24a],
as well as the definition from Section 2, preprocessing involves direct interaction between the
client and the server, and the server only stores the original database DB.

• Both the client and the server can be arbitrarily stateful during the protocol Π. Again, this
even captures ORAM. Furthermore, the client storage can grow arbitrarily after the initial
setup and our theorem only puts a bound on the size of the original hint given to the client
during preprocessing.

• The number of queries is bounded by t rather than unlimited.

• The indices i1, . . . , it are all chosen upfront and the protocol retrieves all of them together,
rather than allowing the client to select them one by one.

• We only want a weak notion of security for an outsider who only sees the protocol transcript
rather than the full view of the server itself. For example, the preprocessed database D̃B is
not included in the transcript, even though the server has it.

Our theorem says that in any PIR as above, we cannot simultaneously make the total com-
munication of t queries be sublinear in n while having hint size sublinear in t, without one-way
functions. In particular, for t =

√
n, this means that either communication complexity or the hint

size must be Ω(
√
n).

Theorem 5.1. Any (n, t)-PIR with per-query communication complexity c and hint-size |hint| ≤
t(1 − ct

n ) − 1 implies one-way functions. In particular, for t =
√
n, any information theoretic

(n, t)-PIR must have either per-query communication complexity or hint size at least
√
n/2.
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For a preprocessing PIR scheme supporting unbounded queries, the above theorem also implies
that any consecutive window of t queries must either have large total communication (at least n/2)
or large client space (at least t/2).

To prove Theorem 5.1 we introduce a new intermediate notion of “mutual information ampli-
fication (MIA)” and show that PIR schemes imply MIA and that MIA implies one-way functions
in certain parameter regimes.

Mutual Information Amplification. A mutual information amplification (MIA) protocol gives
two correlated secrets skA, skB to Alice and Bob respectively. Then Alice and Bob communicate
over a public channel and their goal is to agree on a shared value k. In a non-trivial MIA, the shared
k is computationally indistinguishable from one whose Shannon entropy conditioned on the view of
the protocol is larger than the initial mutual information I(skA; skB). We show that PIR schemes
with good enough parameters imply non-trivial MIA and that non-trivial MIA implies OWFs.

Definition 2 (Mutual Information Amplification (MIA)). For polynomialsm, ℓ = poly(λ), a (m, ℓ)-
MIA protocol consists of a PPT key generation algorithm (skA, skB) ← KGen(1λ) and a PPT
protocol Π between Alice holding skA and Bob holding skB. At the end of the protocol Alice and
Bob output values kA, kB ∈ {0, 1}ℓ respectively. We let Π(skA; skB) denote the transcript of the
protocol.

• Correctness: We require kA = kB with overwhelming probability 1 − negl(λ) over the
randomness of (skA, skB)← KGen(1λ) and the randomness of protocol execution Π.

• Initial Mutual information: I(skA; skB) ≤ m.

• Amplification: Given the protocol transcript, the shared key kA is indistinguishable from
having Shannon entropy ℓ. That is, there are some random variables view′, k′A with

(view, kA) ≈c (view
′, k′A)

such that H(view′) ≥ H(view) and H(k′A | view′) ≥ ℓ where (skA, skB) ← KGen(1λ), and
view, kA correspond to the protocol transcript and Alice’s output respectively in an execution
of Π(skA; skB).

In a non-trivial MIA, ℓ is noticeably larger than m.

PIR Implies Mutual Information Amplification. We show that PIR schemes with good
enough parameters imply non-trivial MIA.

Theorem 5.2. Any (n, t)-PIR scheme with per-query communication complexity c, gives a (m, ℓ)-
MIA with m ≤ |hint| and ℓ ≥ t(1− ct

n ).

Proof. Let (Prep,ΠPIR) be an (n, t)-PIR and assume t divides n.4 Define the MIA (KGen,ΠMIA)
as follows:

• (skA, skB) ← KGen(1λ): Choose DB ← {0, 1}n uniformly at random. Let (D̃B, hint) ←
Prep(1λ,DB). Output skA = (DB, D̃B) and skB = hint.

• ΠMIA: A protocol where Alice holds skA and Bob holds skB.

4If not, we can always scale down n to some n′ ∈ [n− t, n] that is a multiple of t and do the proof for n’.
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1. Bob samples j ← {0, . . . , n/t − 1} and sends j to Alice. Define the indices i1 := j · t +
1, . . . , it := (j + 1)t to correspond to the j’th t-bit chunk of the database.

2. Alice and Bob run the protocol ΠPIR(D̃B, (hint, i1, . . . , it)) with Alice acting as the PIR
server and Bob as the client. At the end of the protocol, Bob receives t bits y1, . . . , yt
and outputs kB := (y1, . . . , yt)

3. Alice outputs kA := (DB[i1], . . . ,DB[it]).

We will use the notation (i1, . . . , it) = chunk(j) to denote the indices iℓ = j · t+ ℓ and DB[chunk(j)]
to denote the database contents at those indices. The correctness of the above MIA follows from
that of the PIR, which ensures (y1, . . . , yt) = DB[chunk(j)] with overwhelming probability. The
initial mutual information is

m = I(skA; skB) = I((DB, D̃B); hint) ≤ |hint| (1)

as claimed. To argue amplification, we want to show that (viewMIA, kA) ≈c (view
′
MIA, k

′
A) for some

variables such that H(view′MIA) ≥ H(viewMIA) and H(k′A|view′MIA) ≥ ℓ. We have viewMIA =

(j, viewPIR), where viewPIR is the transcript of ΠPIR(D̃B, (hint, chunk(j))) and kA := DB[chunk(j)].
We define k′A = kA = DB[chunk(j)] and view′MIA = (j, view′PIR) where view′PIR is the transcript

of a PIR protocol execution ΠPIR(D̃B, (hint, chunk(j′))) for a random and independent index
j′ ← {0, . . . , n/t − 1}. Computational indistinguishability follows directly from the security of
PIR.

For the first entropy condition we have:

H(view′MIA) = H(view′PIR) +H(j | view′PIR)

= H(viewPIR) +H(j)

≥ H(viewPIR) +H(j|viewPIR)

= H(viewMIA),

where the second line follows from the fact tat view′PIR and viewPIR are identically distributed and
j is independent of view′PIR.

For the second entroy condition, first note that if the per-query communication complexity of
the PIR is c, then we can bound the Shannon entropy:

H(DB | view′PIR) ≥ H(DB)− |view′PIR|
≥ n− c · t

H(DB | view′PIR) =
∑

u∈{0,...,n/t−1}

H(DB[chunk(u)] | DB[chunk(0)], . . . ,DB[chunk(u− 1)], view′PIR)

≤
∑

u∈{0,...,n/t−1}

H(DB[chunk(u)] | view′PIR)

Therefore, for a random index j, we have:

H(kA | view′MIA) = H(DB[chunk(j)] | (j, view′PIR))

= E
u←{0,...,n/t−1}

H(DB[chunk(u) | (j = u, view′PIR))

= E
u←{0,...,n/t−1}

H(DB[chunk(u)] | view′PIR)

= (t/n)
∑

u∈{0,...,n/t−1}

H(DB[chunk(u)] | view′PIR)

≥ (t/n)(n− c · t) ≥ t(1− ct

n
)
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where the third line follows from the fact that DB, view′PIR are independent of j.

Mutual Information Amplification implies One-Way Functions. We show that any non-
trivial MIA implies one-way functions.

Theorem 5.3. Any (m, ℓ)-MIA with ℓ ≥ m+ 1 implies OWFs.

Proof. Define the distribution (view, kA), (view
′, k′A) as in the definition of security for MIA. Then:

H(kA|view) = H(kA)− I(kA; view) (2)

≤ I(skA; skB) +H(kA|kB) (3)

≤ m+ o(1) (4)

where (2) follows directly from the definition of mutual information, (3) follows directly from
[Mau93, Theorem 1], and (4) follows from Fano’s inequality: H(kA|kB) ≤ h(ε) + ε · |kA| = o(1),
where h is the binary entropy function and ε = Pr[kA ̸= kB] = negl(λ).

This implies that

H(view′, k′A) = H(view′) +H(k′A|view′)
≥ H(view) +H(k′A|view′)
≥ H(view) + ℓ

≥ H(view) + ℓ+H(kA | view)−m− o(1)

≥ H(view, k′) + 1− o(1)

So the distribution (view, kA) has noticable false entropy [IL89] meaning that it is computationally
indistinguishable from a distribution (view′, k′A) whose Shannon entropy is noticeably higher. By
[IL89, Lemma 4.5], efficiently sampleable distributions with noticeable false entropy imply the
existence of one-way functions.

Proof of Theorem 5.1: An (n, t)-PIR with with per-query communication complexity c and hint-
size |hint| ≤ t(1− ct

n )−1 implies (m, ℓ)-MIA with m ≤ |hint| ≤ t(1− ct
n )−1 and ℓ ≥ t(1− ct

n ) ≥ m+1
by Theorem 5.2. Then, by Theorem 5.3 any such MIA implies OWFs.

5.1.1 Extensions to the OWF Lower Bound

The above result in Theorem 5.1 can be further generalized along several dimensions.

Hint Size vs Mutual Information. Firstly, we notice that the condition that the hint size is
small is only used in equation 1, and therefore we can replace it by the more general condition
I((DB, D̃B); hint) ≤ t(1 − ct

n ) − 1, where DB ← {0, 1}n and (D̃B, hint) ← Prep(1λ,DB). For

example, this means that our result also applies to schemes where D̃B = DB (the server just
stores the original data) and the client hint includes an unlimited amount of randomness for free,
as long as the database-dependent size of the hint is small. In other words, if the hint is of the
form hint = (r, y = f(DB, r)) for some arbitrarily large randomness r and some small database-

dependent part y then I((DB, D̃B); hint) ≤ |y| and therefore our lower applies to the database-
dependent hint size |y|.

Index-Dependent Preprocessing. Secondly, the result even applies if the preprocessing (D̃B, hint)←
Prep(1λ,DB, (i1, . . . , it)) is allowed to depend on the indices i1, . . . , it as well. The proof is identical.
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Retrieving a Single Chunk. Thirdly, we only rely on a PIR scheme that can retrieve a single
chunk of t consecutive locations in a database consisting of n/t such chunks. Therefore, we even
get a lower bound on PIR schemes where the locations i1, . . . , it must be consecutive locations of
chunk(j) with iℓ = j · t + ℓ. (Both correctness only needs to hold for such locations and security
says we cannot distinguish PIR executions with locations chunk(j) vs. chunk(j′) for arbitrary j, j′).

Download vs. Communication. Fourth, the only place where we used that the per-query
communication complexity is small was to bound

H(DB | view′PIR) ≥ H(DB)− |view′PIR| ≥ n− c · t.

However, if we define d to be the per-query download complexity which only counts the communi-
cation from the server to the client, then we get

H(DB |view′PIR) ≥ n− d · t− |hint|.

This means that the theorem also applies when

|hint| ≤ t

(
1− dt+ |hint|

n

)
− 1 ⇐⇒ |hint|

(
1− t

n

)
≤ t

(
1− dt

n

)
− 1

When t =
√
n, this implies that either download complexity or the hint size must be Ω(

√
n) in any

information theoretic scheme.

5.2 SZK Barrier for Database-Oblivious Schemes

In this section we show that, for a natural class of schemes that captures all known constructions,
the previous OWF implication can be significantly strengthened. Concretely, we give evidence
that one-way functions or even stronger “unstructured” hardness assumptions are insufficient for
significantly improving the bandwidth/space tradeoff of our Theorem 3.1 or Piano [ZPSZ24]. We
start by defining the class of database-oblivious schemes to which our barrier applies. Note that all
known constructions [ZPSZ24,MIR23,CK20,SACM21,LP22] are database-oblivious.

Definition 3 (Database-oblivious (n, t)-PIR). A database-oblivious (n, t)-PIR scheme restricts Def-
inition 1 in the following two ways:

• The database is not encoded, namely D̃B = DB;

• Each question from the client to the server depends only on the client’s randomness and the
index sequence, but not on the server’s responses.

Note that since we will only be concerned with hint size and bandwidth and not with server
computation, eliminating the database encoding is not significant. In fact, Definition 3 only limits
our main definition from Section 2 by restricting the client’s questions to be independent of the
server’s responses (including the hint), which is a feature of our schemes as well as all relevant
schemes from the literature.

Our barrier results hold even for a simpler restricted version of Definition 3 that we formalize
next. This restriction only makes the following results stronger.

Definition 4 (Single-record (n, t)-PIR). Let n = n(λ), t = t(λ) be polynomially bounded func-
tions such that t|n. A single-record (n, t)-PIR scheme is defined by polynomial-time algorithms
(H,Q,A,D) with the following syntax:
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• Preprocessing: The client, given security parameter λ, query index i ∈ [n/t] and random-
ness r ∈ {0, 1}λ, obtains a hint h = H(1λ,DB, i; r), where DB is a database consisting of
n/t records of length t each.

• Query: The client computes a question q = Q(1λ, n, t, i; r); the server computes a response
a = A(DB, q); the client outputs d = D(a, h).

We make the following correctness and security requirements.

• Correctness: At end of the protocol, the client obtains the correct record d = DB[i] with
1− negl(λ) success probability.

• Security: For all sequences i = i(λ), i′ = i′(λ) with i, i′ ∈ [n/t], we have Q(1λ, n, t, i; r) ≈c

Q(1λ, n, t, i′; r), where the probability is over the uniform choice of r.

Note that, assuming OWF exists, restricting r to be of length λ is without loss of generality.
Indeed, the length of r can be extended using a pseudorandom generator without compromising
the correctness and security requirements.

The above notion of single-record (n, t)-PIR can be viewed as a restricted instance of database-
oblivious (n, t)-PIR from Definition 3. This follows from the fact that when i1, . . . , it are known in
advance, database-obliviousness enables making all the questions to the server in a single round,
independently of the database.

Claim 5.4. Suppose there is a database-oblivious (n, t)-PIR with preprocessing download bandwidth
α and query download bandwidth β. Then, there is a single-record (n, t)-PIR scheme with hint size
|h| = α and query download bandwidth β.

We now show that if the hint size is o(t) and the query download bandwidth is o(n), single-record
(n, t)-PIR implies a simple variant of somewhere statistical binding (SSB) hash function [HW15,
OPWW15], which we define next. Intuitively, such a hash function shrinks the input while being
statistically binding on a chosen coordinate j, which is not revealed by the hash key.

Definition 5 (Vanilla SSB hash). A vanilla somewhere statistical binding (SSB) hash function
with (polynomially bounded) input length n(λ) is defined by a pair of algorithms (Gen,Hash) with
the following syntax:

• Key generation: Given a security parameter λ and index j ∈ [n(λ)], the PPT algorithm
Gen(1λ, j) outputs a hash key hk, which we assume to contain λ.

• Hashing: Given a hash key hk and an input x ∈ {0, 1}n(λ), the polynomial-time algorithm
Hash(hk, x) outputs a string y such that |y| < |x|.

We make the following binding and hiding requirements:

• Weak local binding: There is a computationally unbounded decoder Dec such that for
every λ, x ∈ {0, 1}n(λ), and j ∈ [n(λ)] we have

Pr[Dec(hk, j,Hash(hk, x)) = xj : hk← Gen(1λ, j)] ≥ 1− negl(λ).

• Hiding: For all sequences j(λ), j′(λ) ∈ [n(λ)], we have Gen(1λ, j) ≈c Gen(1
λ, j′).
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The above notion of vanilla SSB hash relaxes the previous notion from [HW15,OPWW15] in
two ways: (1) it does not require an efficient local decommitment, (2) the usual binding requirement
is weakened by assuming that hk is chosen independently of the input x. In fact, vanilla SSB hash
is equivalent to a nontrivial standard 1-round single-server PIR (without preprocessing), where the
client’s decoding algorithm is computationally unbounded, the question size is not required to be
sublinear, and there may be a negligible failure probability.

We now show how to construct a vanilla SSB hash function from a single-record (n, t)-PIR in the
preprocessing model. The high-level idea is to replace the hint by applying a pairwise independent
hash function to each database record.

Theorem 5.5 (From preprocessing PIR to vanilla SSB hash). Any single-record (n, t)-PIR scheme
(H,Q,A,D) (Definition 4) with t = ω(log λ), |h| ≤ t/3 and |a| ≤ n/3 implies a vanilla SSB hash
(Definition 5), where |h| and |a| are the hint size and response size respectively. This holds even if
D is computationally unbounded.

Proof. Let H = H(λ) be a family of universal hash functions U : {0, 1}t → {0, 1}t/2. The SSB hash
function is defined as follows.

• Gen(1λ, j): Let i = ⌊j/t⌋ (index of record containing the j-th database bit). Pick a uniformly
random r ∈ {0, 1}λ and let q = Q(1λ, n, t, i; r). Pick a random hash function U ∈R H, and
output hk = (q, U).

• Hash(hk = (q, U), x): Parse the n-bit input x as a database with n/t records of length t.
Output y = (A(x, q), U(x[0]), . . . , U(x[n/t− 1])).

First, note that the hash function is indeed shrinking: |y| = |a| + (n/t) · (t/2) ≤ n/3 + n/2 < n.
The hiding property of Gen is inherited from the security of Q.

To argue weak local binding, consider the following unbounded decoder Dec(hk, j, y), where
hk = (q, U) and y = (a, y0, . . . , yn/t−1). First, compute the record index i = ⌊j/t⌋. Then, for every
possible hint h of length |h| ≤ t/3, compute a candidate xhi = D(a, h) for x[i]. If there is a unique
candidate xhi such that U(xhi ) = yi, output bit number (jmod i) of xhi . Otherwise output ⊥.

To see that the failure probability of the above Dec algorithm is negligible, first note that by
the correctness of the PIR scheme, except with negl(λ) probability over the choice of r, there is a
“correct” hint h for which xhi = x[i] and hence U(xhi ) = yi. If this candidate for x[i] is unique, Dec
outputs the correct value of xj . It remains to argue that the probability of an incorrect candidate
xh

′
i ̸= x[i] satisfying U(xh

′
i ) = yi is negligible. For each such incorrect candidate, the universality of

U implies that PrU∈H[U(xh
′

i ) = U(x[i])] ≤ 2−t/2. Taking a union bound over all ≤ 2t/3 + 1 values
of h′, the probability of outputting ⊥ is bounded by (2t/3 + 1) · 2−t/2 ≤ negl(λ), as required.

From vanilla SSB hash to a hard problem in SZK. Recall that our notion of vanilla SSB
hash function can be viewed as a single-server PIR scheme (in the plain model) where: (1) the
client’s final decoding function is computationally unbounded and has a negligible failure probabil-
ity, and (2) the download bandwidth is smaller than the database size n.

Liu and Vakuntanathan [LV16], in the context of arguing hardness of basing (standard) single-
server PIR on NP ̸⊆ BPP, showed how to use an SZK oracle to break the security of any nontrivial
PIR scheme. Their proof does not rely on the PIR decoding algorithm being efficient, and is
robust to a small decoding error (unlike, e.g., the PIR-based construction of collision-resistant hash
functions [IKO05]). The SZK oracle they use is the (SZK-complete) entropy difference problem
from [GV99], but their attack uses multiple oracle calls. Here we present a direct average-case
hardness result by using a single oracle call to a different SZK problem from [Vad06].
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Definition 6 (Conditional Entropy Approximation (CEA) problem). The promise problem CEA
is defined as follows. Given a circuit C, which samples a joint distribution (A,B), and an entropy
threshold τ , decide whether

• Yes instances: H(B |A) ≥ τ

• No instances: H(B |A) ≤ τ − 1.

Lemma 5.6. [Vad06] The promise problem CEA is in SZK.

Theorem 5.7 (From vanilla SSB hash to hard SZK problem). Suppose a vanilla SSB hash function
exists. Then there is a promise problem Π(λ) = (XY , XN ) in SZK and poly(λ)-time samplable
distributions XY , XN that are supported by XY and XN respectively (except with negl(λ) probability),
such that XY ≈c XN .

Proof. (sketch) We let Π = CEA. The distributions XY ,XN will be defined by SSB = (Gen,Hash)
as follows.

Let n = n(λ) be the (polynomial) input length of SSB. Consider the experiment of picking
uniformly random x ∈ {0, 1}n and j, j′ ∈ [n], and letting hkj = Gen(1λ, j) and y = Hash(hkj , x).

The weak binding property implies that H(xj | y) ≤ negl(λ). On the other hand, since Hash
shrinks x, standard information theory inequalities (cf. [LV16]) imply that there is a polynomial p
such that H(xj′ | y) ≥ 1/p(λ) (recalling that n is polynomial in λ).

For any fixed hash key hk and index j ∈ [n], define a circuit Chk,j that samples a random
x ∈ {0, 1}n and outputs (Hash(hk, x), xj).

Define XY to output a circuit containing λ ·p(λ) independent copies of Chkj ,j′ (with independent
choices of j, j′, hkj in different copies) and XN to output the same number of independent copies of
Chkj ,j . In both cases, we set the entropy threshold to τ = 2.

The hiding property of Gen implies that XY ≈c XN as required. Finally, to argue that the
support requirement is satisfied, note that the conditional entropy in the Yes case is distributed as
the sum of λ ·p(λ) independent instances of a random variable with values in [0, 1] and expectation
≥ 1/p(λ), which is ≥ 2 except with negl(λ) probability. Similarly, the conditional entropy in the
No case is the sum of λ · p(λ) independent instances of a random variable with values in [0, 1] and
expectation negl(λ), which is ≤ 1 except with negl(λ) probability.

Combining Claim 5.4, Theorem 5.5 and Theorem 5.7, we have the following corollary.

Corollary 5.8 (SZK barrier for preprocessing PIR). Any database-oblivious (n, t)-PIR scheme
(Definition 3) with t = ω(log λ), client storage t/3 and total online download bandwidth n/3 implies
a vanilla SSB hash function and an average-case hard promise problem in SZK. In particular, it
implies a separation of (promise) SZK from BPP.

Finally, we note that the above proofs fully relativize. Namely, if the database-oblivious (n, t)-
PIR has access to an oracle O, then it implies an SSB hash function with access to O. The latter
implies that CEAO (where the circuit C can make oracle calls to O) separates (promise) SZKO from
BPPO. This gives a barrier even for random oracle constructions. Concretely, a ROM construction
breaking the O(

√
n) barrier for database-oblivious (n, t)-PIR would imply a separation of SZK from

BPP relative to a random oracle, settling a natural open problem in complexity theory.
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A Unbounded, Arbitrary Queries and Adaptive Correctness

The scheme in Section 4 supports only a window of Q = Θ(
√
n) random and distinct queries. In

this section, we describe an upgrade that allows us to support an unbounded number of arbitrary
queries. We stress that unlike the earlier work Piano [ZPSZ24] that loses adaptive correctness
during this upgrade. By contrast, our new upgrade technique preserves adaptive correctness, that
is, the upgraded scheme still achieves correctness even when the queries are chosen adaptively by
the adversary (i.e., server) based on its view so far. Note that privacy holds unconditionally even
under adaptive queries, so we are mainly concerned about preserving correctness under adaptive
queries in our upgrade.

Comparison with prior works’ upgrade techniques. Instead of applying a separate pairwise-
independent permutation to each hint entry, Piano [ZPSZ24] applies a single random permutation to
the database upfront. For their approach to work, the query generation process must be independent
of the choice of the global permutation. In other words, an adversary that adaptively chooses queries
based on its view so far can easily break the correctness of their scheme. Mughees and Ren [MIR23]
suggests an elegant idea that fixes the adaptive correctness issue of Piano [ZPSZ24]. Unfortunately,
for technical reasons, their approach is not compatible with our new PIR construction.
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A.1 Overview of Our Upgrade

The key stepping stone is to get a scheme that supports Q = Θ(
√
n) arbitrary and distinct queries.

If we can achieve this, we can easily upgrade it all the way to our final scheme which supports
unbounded, arbitrary, and not necessarily distinct queries in the following way:

• Removing the distinctness restriction. further get rid of the distinctness requirement simply by
having the client store the answers to the most recent Q queries, and if there is ever a duplicate
query, the client simply looks up the answer locally, and issues a fake query that is distinct from
all previous queries instead.

• Supporting unbounded number of queries. Now, to support an unbounded number of queries, we
can simply rerun the preprocessing every Q queries. In fact, using a simple pipelining trick, we
can deamortize the work of the next phase’s preprocessing over the queries of the current phase.

A.2 Strawman Idea: Using Hint-Specific Permutations

To aid understanding, let us first consider the following inefficient idea:

• For each hint entry, we will associate it with a fresh random permutation π : {0, 1, . . . , n− 1} →
{0, 1, . . . , n− 1}. For the purpose of this hint entry alone, we use this permtuation to permute
the database before mapping it to a (x, y, z) representation. In other words, given an index
id ∈ {0, 1, . . . , n− 1} into the database, it will now be mapped to the base-m representation of
π(id) where m = n1/3 to produce the (x, y, z) coordinates.

• During a query, when the client sends (the succinct description of) the resampled set S′ to the
server, it also attaches the corresponding permutation π so the server will know how to map the
databases indices to their corresponding (x, y, z) representations.

Since the permutation attached to each hint entry is not revealed to the server until the query
time (i.e., after the query is selected), the choice of the permutation effectively randomizes the
(x, y, z) representation of the query. Indeed, it is not hard to adapt our proof in Section 4.5 to work
for this case as well.

Challenges. Unfortunately, there are two reasons why this idea causes significant performance
penalties:

1. First, the description size of each random permutation π (without any hardness assumption) is
linear. This means that the client would have to store a linear amount of information per hint
entry and during each query, send a linear amount of information.

2. Second, this idea breaks the client’s computational efficiency during preprocessing. The problem
is that now, each database index i ∈ {0, 1, . . . , n− 1} is known by each hint entry as a different
(x, y, z) representation. As the client makes a streaming pass, we cannot even afford to compute
the (x, y, z) representations of all indices for all hints — doing so would already result in Θ(

√
n·n)

computation, and amortizing over O(
√
n) queries would result in linear client computation per

query!

It is not hard to see that Θ(
√
n)-wise independence is sufficient; however, using Θ(

√
n)-wise

independence would still require linear client space, and moreover, it does not help solve the second
problem mentioned above. With a little more work, we can show that in fact, an almost pairwise
independent permutation family is sufficient for proving adaptive correctness. Since an almost
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pairwise independent permutation can be described in Õ(1) words [HMR12,ABI86]. we would be
able to solve the first problem. Unfortunately, using a pairwise independent permutation still does
not solve the second problem.

A.3 Our Idea: A Customized Random Permutation

To avoid the penalty in client computation during preprocessing, below we propose a special-purpose
random permutation π which we attach to each hint. Our special-purpose random permutation is
actually not pairwise independent, but it is sufficent for proving the key property we need, that is,
Proposition 4.2. Further, the construction still admits efficient client preprocessing. Specifically,
we can prove that the client’s amortized work per query is only O(n2/3) in the single-server setting.

Special-purpose random permutation π. Without loss of generality, we may assume that
n1/3 = 2k. Interpret an index v ∈ [n] as v = (x, y, z) ∈ GF(2k)3 for k = log n/3. The random
permutation π(·) := πr(·) is defined as follow: sample a random r = (r1, r2, r3) ∈ GF(2k)3 with
r3 ̸= 0, and define:

πr(x∅, y∅, z∅) = Rv where R =

 r
r + (1, 0, 0)
r + (0, 1, 0)

 ∈ GF(2k)3×3.

In other words, (x, y, z) = πr(x∅, y∅, z∅) is defined by x := r1 · x∅ + r2 · y∅ + r3 · z∅, y := x + x∅,
z := x+ y∅. This is a permutation since R is invertible when r3 ̸= 0.

Claim A.1. Fix arbitrary v = (x∅, y∅, z∅), v′ = (x′∅, y
′
∅, z
′
∅) such that v ̸= v′. Sample a random

permutation πr, let (x, y, z) = πr(x∅, y∅, z∅), and let (x′, y′, z′) = πr(x
′
∅, y
′
∅, z
′
∅). Then, the following

statements hold:

Pr
r
[x = x′] ≤ 1

n1/3 − 1
, Pr

r
[y = y′] ≤ 1

n1/3 − 1
, Pr[z = z′] ≤ 1

n1/3 − 1

Proof. Let j ∈ {1, 2, 3} be an index for which vj − v′j ̸= 0. Then, for the first part, we have

Pr
r
[x = x′] = Pr

r
[⟨r, v − v′⟩ = 0] ≤ Pr

rj

rj = (
∑
i ̸=j

ri · (vi − v′i))/(vj − v′j)

 ≤ 1

2k − 1
.

The argument the y, z coordinates is the same with r + (1, 0, 0) and r + (0, 1, 0) taking the role of
r and noting that their distribution is identical to that of r.

Proposition A.2 (Counterpart of Proposition 4.2). Fix any original coordinates (x∅, y∅, z∅) and
(x′∅, y

′
∅, z
′
∅) such that (x∅, y∅, z∅) ̸= (x′∅, y

′
∅, z
′
∅). For sufficiently large n,

Pr
[
Sample (S, π) s.t. (x′∅, y

′
∅, z
′
∅) ∈ Set(S, π) : (x∅, y∅, z∅) ∈ Set(S, π)

]
≤ 4.1/

√
n

In the above, Set(S, π) where S = X × Y × Z is defined as follows: (x∅, y∅, z∅) ∈ Set(S, π) iff
π(x∅, y∅, z∅) ∈ X × Y × Z.

Proof. Sample a random (S = X × Y × Z, π) subject to (x′∅, y
′
∅, z
′
∅) ∈ Set(S, π). Let (x, y, z) :=

π(x∅, y∅, z∅) and (x′, y′, z′) := π(x′∅, y
′
∅, z
′
∅). Henceforth, we use the notation E(===) to denote the
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event x′ = x, y′ = y, and z′ = z; similarly, we use the notation E(≠≠=) to denote the event x′ = x,
y′ ̸= y, and z′ ̸= z, and so on.

Pr[(x∅, y∅, z∅) ∈ Set(S, π)] = Pr[(x, y, z) ∈ X × Y × Z] (5)

=Pr[x ∈ X, y ∈ Y, z ∈ Z|E( ̸≠≠=)] · Pr[E(̸≠≠=)] (6)

+ Pr[x ∈ X, y ∈ Y |E(̸≠==)] · Pr[E( ̸≠==)] (7)

+ Pr[x ∈ X, z ∈ Z|E( ̸=≠=)] · Pr[E(̸=≠=)] (8)

+ Pr[y ∈ Y, z ∈ Z|E(≠≠=)] · Pr[E(≠≠=)] (9)

+ Pr[z ∈ Z|E(=≠=)] · Pr[E(=≠=)] (10)

+ Pr[y ∈ Y |E(= ̸==)] · Pr[E(≠==)] (11)

+ Pr[x ∈ X|E( ̸===)] · Pr[E(̸===)] (12)

+ Pr[E(===)] (13)

In the above,

(6) ≤ Pr[x ∈ X, y ∈ Y, z ∈ Z|E( ̸≠≠=)] = (1/n1/6)3 = 1/n1/2;

(7) = Pr[x ∈ X, y ∈ Y |E(̸≠==)] · Pr[E( ̸≠==)] ≤ (1/n1/6)2 · 1

n1/3 − 1
= o(1/n1/2)

Similarly, (8) ≤ o(1/n1/2), and (9) ≤ o(1/n1/2). Further,

(10) = Pr[z ∈ Z|E(== ̸=)]·Pr[E(=≠=)] ≤ Pr[z ∈ Z|E(=≠=)]·Pr[x = x′] ≤ 1

n1/6
· 1

n1/3 − 1
≤ 1.01/n1/2

where the last inequality holds for sufficiently large n. Similarly, (11) ≤ 1.01/n1/2, and (12) ≤
1.01/n1/2. Finally, (13) = 0. Summarizing the above, we get the desired proposition.

A.4 Putting Everything Together

In our final scheme for unbounded, arbitrary queries, we run ω(log n) independent instances of the
following scheme in parallel, and for each query, the client can obtain the correct answer as long as
there is one instance that gives the correct answer (which the client can detect).

The client runs the preprocessing algorithm upfront. Then, we proceed in windows of Q =√
n/10 queries. In each window, the client piggybacks the preprocessing of the next window as

it makes queries. The client caches the results of the current window of queries. If during the
same window, it makes a duplicate query, it simply looks up the answer locally, and replaces the
query with some arbitrary distinct query. Therefore, henceforth, we may assume that there are
Q =

√
n/10 arbitrary, distinct queries. To support Q =

√
n/10 arbitrary, distinct queries, we make

the following modification to the warmup scheme in Section 4:

• We now describe each hint as a pair (S, π) where S is a random set of expected size n1/2 and π
is a permutation that maps {0, 1, . . . , n1/3− 1}3 onto itself, sampled from a special permutation
family defined in Appendix A.3. Given an original database position expressed as (x∅, y∅, z∅),
we use (x, y, z) := π(x∅, y∅, z∅) to determine the (x, y, z)-respresentation for the purpose of this
hint. Recall that the set S has a succinct description of size O(n1/6) and the permutation π can
be described in Õ(1) bits.

• Whenever in the warmup scheme of Section 4, the client sends the succinct description of a
resampled set S′ to the server, it now sends both (the succinct description of) S′ and the
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correponding permutation π. To compute the response, the server needs to call (x∅, y∅, z∅) :=
π−1(x, y, z) to map each hint-specific representation (x, y, z) ∈ S′ back to an original database
index (x∅, y∅, z∅). For the special case when the the client failed to find a matching entry from
the hint table, it now sends a set S along with a permutation π both of which are sampled
freshly at random.

With the hint-specific permutations, we need to modify the preprocessing algorithm as follows.

Efficient preprocessing algorithm. Using the permutation of Appendix A.3, we can consider
the following preprocessing algorithm.

1. Proceed in batches. For each batch, download the next n2/3 bits from the server denoted
DB[x∅, ∗, ∗], and do the following:

For each hint X × Y × Z, for each x ∈ X, if y = x + x∅ ∈ Y : then for every z ∈ Z,
let (x∅, y∅, z∅) = π−1(x, y, z), and update the parities of the planar sets X × {y} × Z, and
X × Y × {z} with DB[x∅, y∅, z∅].

2. Finally, for each hint X × Y × Z, compute the parities of X × Y × Z, {(X\{x})× Y × Z}x∈X ,
{X × (Y \{y})× Z}y∈Y , and {X × Y × (Z\{z})}z∈Z from the parities of the planar sets.

Performance of preprocessing. Henceforth, we ignore the negligible probability that Fact 4.1
does not hold. Unless otherwise noted, the performance bounds hold with all but negligible prob-
ability.

For the above preprocessing algorithm, in each batch of Steps 1, for each hint, iterating over
all x ∈ X takes O(n1/6) work, and the number of updates needed for each hint is the same as the
number of indices in [x∅, ∗, ∗] that are matched by the hint, which is in expectation O(n2/3/n1/2) =
O(n1/6). By taking a Chernoff bound over all O(n1/2) hints, we get that for the entire batch, the
client needs to perform O(n1/2 ·n1/6) = O(n2/3) work with all but negligible probability. Summing
over all batches, Step 1 requires O(n) total client work with all but negligible probability.

The work of Step 2 is only O(n1/2 · n1/6) and it is asymptotically dominated by the total work
of Step 1. Summarizing, the total client work during preprocessing is O(n) with all but negligible
probability. It is also not hard to see that the client space is upper bounded by O(n2/3).

Summarizing the above, we obtain the following theorem.

Theorem A.3 (Single-server preprocessing PIR for unbounded queries). There exists an infor-
mation theoretic, perfectly private, and adaptively correct single-server preprocessing PIR scheme
supporting unbounded, arbitrary queries, and achieving the following performance bounds with all
but negl(n) probability:

• there is an initial preprocessing phase in which the client makes a streaming pass over the
database consuming with O(n) bandwidth and server computation; further, the client performs
Õ(n) computation;

• after the initial preprocessing, every query takes Õ(n1/3) online bandwidth, Õ(n1/2) offline band-
width, Õ(n1/2) client computation, and Õ(n2/3) server computation; and

• the client space is Õ(n2/3).

Proof. For correctness and privacy, it suffices to show that the above scheme for bounded, arbitrary,
distinct queries satisfies both privacy and correctness.
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Privacy. The same privacy proof of Section 4.4 holds for this new scheme, despite each entry
now having an extra permutation.

Adaptive correctness. The adaptive correctness proof follows in a similar fashion like the proof
in Section 4.5. As before, we want to show that with probability at most 0.5, |T ∗∩| ≥ 0.5|T ∗|.

The key step is to switch to a hybrid experiment that gets rid of the adaptiveness by using the
privacy of the PIR scheme. Specifically, our privacy proof shows that even when conditioned on
the adversary’s view so far, Tend is distributed like a freshly sampled table of hints. Therefore, we
can equivalently consider the following hybrid experiment which gets rid of the adaptiveness: the
adversary first chooses the Q queries, then the challenger samples Tend at random. We want to
show that in this hybrid experiment, with probability at most 0.5, |T ∗∩| ≥ 0.5|T ∗|. The rest of the
proof follows exactly like the proof in Section 4.5 except that Proposition 4.2 is now replaced with
the new version Proposition A.2: Section 4.5 considers a random query that is distinct from the
challenge query, whereas Proposition A.2 considers an arbitrary query distinct from the challenge
query. Because the constant 4.1 in Proposition A.2 is slightly larger than the constant 1.1 in
Proposition 4.2, we can conclude that with probability at most 0.6, |T ∗∩| ≥ 0.7Cnt∗ which is sufficient
to get 0.1 correctness probability.

Performance. The introduction of the hint-specific permutation π does not asymptotically in-
crease the client space or bandwidth since π has a description size of Õ(1). For the preprocessing
performance, the detailed performance analysis was presented earlier in Appendix A.4. The super-
logarithmic factor in Õ(·) comes from the ω(log n)-wise parallel repetition to boost the correctness
probability to 1 − negl(n). However, during the preprocessing phase, all ω(log n) copies of the
scheme can share the same streaming pass, so the preprocessing bandwidth and server work need
not suffer from this super-logarithmic factor.

B Preprocessing PIR for the 2-Server Setting

Our techniques also directly imply an information theoretic 2-server preprocessing PIR scheme
with O(n2/3) client space and incurring O(n1/2) client computation, O(n2/3) server computation,
and O(n1/3) bandwidth per query. The main difference from the single-server scheme is that each
preprocessing is now performed with a different server, which makes the preprocessing easier. As
before, the client piggybacks the work of the next phase’s preprocessing over this phase’s queries,
where each phase consists of Q =

√
n/10 queries. Henceforth, we use the following terminology:

we assume that the client performs all queries with the right server, and performs preprocessing
with the left server.

Specifically, for each preprocessing (piggybacked over queries except for the initial preprocess-
ing), the client generates a hint table with L hints. It sends the hint table to the left server, which
responds with all O(n1/6) parities for the hint. The left server can compute all O(n1/6) parities for
a hint in O(n1/2) time.

In this 2-server scheme, right-server privacy follows from the same proof of the single-server
scheme — in both the single-server and 2-server schemes, the (right) server learns nothing during
the preprocessing. Left-server privacy follows from the fact that its view consists of randomly
sampled hints which can be simulated without knowing the client’s queries. Correctness follows as
in the single-server scheme.

This leads to the following theorem:
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Theorem B.1 (2-server preprocessing PIR for unbounded queries). There exists an information
theoretic, adaptively correct 2-server PIR scheme that supports an unbounded number of arbitrary
queries, and achieving the following performance bounds:

• there is an initial preprocessing that requires Õ(n2/3) bandwidth, Õ(n2/3) client computation,
and Õ(n) server computation;

• after the initial preprocessing, every query takes Õ(n1/3) online bandwidth, Õ(n1/6) offline band-
width, Õ(n1/2) client computation, and Õ(n2/3) server computation;

• the client space is Õ(n2/3).
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