
Round-Optimal Compiler for Semi-Honest to Malicious
Oblivious Transfer via CIH

Varun Madathil1, Alessandra Scafuro2, and Tanner Verber*2

1Yale University, New Haven, CT
2North Carolina State University, Raleigh, NC

January 8, 2025

Abstract

A central question in the theory of cryptography is whether we can build protocols
that achieve stronger security guarantees, e.g., security against malicious adversaries,
by combining building blocks that achieve much weaker security guarantees, e.g., secu-
rity only against semi-honest adversaries; and with the minimal number of rounds. An
additional focus is whether these building blocks can be used only as a black-box. Since
Oblivious Transfer (OT) is the necessary and sufficient building block to securely real-
ize any two-party (and multi-party) functionality, theoreticians often focus on proving
whether maliciously secure OT can be built from a weaker notion of OT.

There is a rich body of literature that provides (black-box) compilers that build ma-
licious OT from OTs that achieve weaker security such as semi-malicious OT and de-
fensibly secure OT, within the minimal number of rounds. However, no round-optimal
compiler exists that builds malicious OT from the weakest notion of semi-honest OT, in
the plain model.

Correlation intractable hash (CIH) functions are special hash functions whose prop-
erties allow instantiating the celebrated Fiat-Shamir transform, and hence reduce the
round complexity of public-coin proof systems.

In this work, we devise the first round-optimal compiler from semi-honest OT to
malicious OT, by a novel application of CIH for collapsing rounds in the plain model.
We provide the following contributions. First, we provide a new CIH-based round-
collapsing construction for general cut-and-choose. This gadget can be used generally
to prove the correctness of the evaluation of a function. Then, we use our gadget to build
the first round-optimal compiler from semi-honest OT to malicious OT.

Our compiler uses the semi-honest OT protocol and the other building blocks in a
black-box manner. However, for technical reasons, the underlying CIH construction re-
quires the upper bound of the circuit size of the semi-honest OT protocol used. The
need for this upper-bound makes our protocol not fully black-box, hence is incompara-
ble with existing, fully black-box, compilers.

*Alessandra Scafuro and Tanner Verber are supported by a research grant from Horizen Labs.

1

1 Introduction

Round-Collapsing Techniques for Proof Systems with the Random Oracle. The Fiat-
Shamir transform [FS86] is a seminal technique that allows to collapse a three-round public-
coin proof system into one single round. Recall that a proof system is an interactive protocol
between a prover P and a verifier V, with common input a theorem x ∈ L (for some NP-
language L), and the prover aims to convince the verifier that the theorem is true, without
revealing any information about the witness. Public coin means that the messages of the ver-
ifier of the proof system are simply random strings. In the Fiat-Shamir transform, every mes-
sage of the verifier is replaced with the evaluation of a hash function, on input the transcript
of the proof system so far. These hash evaluations can be performed by the prover locally, as
a result, the prover can compute the entire transcript on their own, and the proof consists of a
single string. To prove that the collapsed version of the proof system still retains its security
properties (i.e., soundness and zero-knowledge) the hash function, originally, was modeled
as a Random Oracle (RO) [BR93]. Since the Random Oracle is an ideal object that cannot be
instantiated in practice, any concrete instantiation of this transform written in the RO model
will not be provably secure, but heuristically secure. From a theoretical perspective, this
was unsatisfactory and a rich line of work studied under which conditions the Fiat-Shamir
round-collapsing technique could be instantiated with a cryptographic primitive in the stan-
dard model (i.e., without RO). While some works [GK03] show that this round-collapsing
technique is impossible to securely instantiate with any concrete function if the interac-
tive proof system is an argument, other works [BLV06, CCR16, KRR17, CCRR18] showed
that, if the underlying hash function satisfies the additional property of conditional entropy,
then the Fiat-Shamir transform can be securely instantiated. Canetti et al.[CCRR18] and
Kalai et al.[KRR17] built a new primitive called correlation intractable hash functions (CIH)
and show that it satisfies conditional entropy. Such constructions, however, were based
on strong computational assumptions, such as subexponentially secure indistinguishability
obfuscation, subexponentially secure puncturable PRFs, and input-hiding obfuscation for
multi-bit point functions.
Round-Collapsing Techniques for Proof Systems with the CIH in the CRS model. Re-
cently, however, there has been an exciting sequence of works building CIH from much
weaker and standard assumptions, such as LWE assumption [PS19, CCH+19, LV22], sub-
exponential DDH [JJ21, CGJ+23], and trapdoor hash functions [BKM20] (which can be built
from DDH, QR, DCR, and LWE). However, all existing frameworks are designed for proof
systems only, and aim at achieving the specific task of non-interactive zero-knowledge.
Round-Optimal Compilers for Secure Computation in the Plain Model. A central ques-
tion in the theory of cryptography is to establish the minimal number of rounds required to
realize any functionality securely. A further focus of such question is what is the minimal
assumption that can be used to realize such a functionality, in a minimal number of rounds,
and in the plain model (that is, a model that does not use setup assumptions, such as the
CRS or RO). Since Oblivious Transfer1 (OT) has been proven to be sufficient to implement
any functionality, often the question is narrowed down to building a protocol that securely

1Oblivious Transfer [Rab05] is a two-party functionality with a sender S, possessing two inputs s0, s1 and a
Receiver R possessing a bit b, and the goal is for R to learn sb. The security requirements are R learns nothing
about sb and S learns nothing about b.

2

realizes the OT functionality in the presence of malicious adversaries (under the simulation-
based paradigm), from the minimal assumption of the existence of an OT protocol that is
secure only in the presence of semi-honest adversaries. Often, such protocols are called com-
pilers, as they compile a semi-honest secure protocol into a maliciously secure protocol.

In the plain model, Katz and Ostrovsky in [KO04] proved that four rounds are neces-
sary and sufficient to build a maliciously secure OT (under the simulation-based paradigm).
Their transformation builds a malicious secure OT from the very specific assumption of cer-
tified trapdoor permutations. Since [KO04], a sequence of work showed various round-
optimal compilers that build maliciously secure OT from weaker notions of OT [FMV19,
MOSV22]. Furthermore, all such compilers focused on using the underlying building blocks
in a black-box manner2. Recall that a protocol uses a primitive in a black-box manner if it only
uses the input/output interface of the primitives. In contrast, non-black-box usage is when
the protocol needs to use the knowledge of the circuit of the primitives (e.g., the GMW
compiler [GMW87] needs the circuit of the commitments and OT protocol to compute a
zero-knowledge proof), or it uses the specific structure of the assumptions (e.g., being a
group element, etc). Black-box protocols are often more efficient than non-black-box proto-
col [IKOS07] and from a theoretical perspective constitute a more general result.

Currently, all existing round-optimal black-box compilers build maliciously secure OT
from notions of OT that are stronger than basic semi-honest OT. The compiler of Friolo
et al. [FMV19] builds on top of an OT protocol that is strong-uniform3, while Madathil et
al. [MOSV22] builds on top of a defensibly-secure OT.

The question of whether we can build a maliciously secure OT protocol from black-box
use of semi-honest secure OT, with the minimal number of rounds, in the plain model is still
open.

This work: Round-Optimal Semi-honest to Malicious OT Compiler using CIH in the
Plain model. The main bottleneck in starting from a semi-honest protocol and upgrading
to malicious security in just four rounds is that the number of rounds are insufficient to
both enforce and check that a malicious receiver is honestly running the protocol, using
the primitives in a black-box manner (i.e., without adding zero-knowledge proofs, which
require the circuit of the primitives).

This is the reason why all known compilers start with an OT protocol that has a bit more
structure (e.g., strong uniformity) or a bit more security guarantees (e.g., defensibility) than
the bare-bone semi-honest OT.

The main challenge in starting with bare semi-honest security is that this notion only
gives guarantees when the adversary is forced to use proper inputs and proper randomness.
It is well known that through coin-flipping we can force a malicious adversary to use input
and randomness that he cannot influence, and with cut-and-choose we can check that the
adversary is using the randomness that was established in the coin-flipping. The problem is
that to achieve round optimality we have only four rounds, which means that coin-flipping
and cut-and-choose for the receiver must be concluded by the third round.

2We note that to our knowledge there are no round-optimal non-black-box compilers of semi-honest OT to
malicious OT. However, it is folklore that if one uses the code of the underlying OT protocol one can build a
compiler based on non-interactive witness indistinguishable proof systems.

3Strong uniformity means that the messages sent by the receiver appear computationally indistinguishable
from random to a malicious sender

3

Motivated by this open problem, and inspired by the recent development of CIH based
round-collapsing techniques for proof systems under standard assumptions [CCH+19], in
this work we explore how we can extend and apply the techniques from CIH-based round-
collapsing techniques, to general compilers, and in the plain model.

1.1 Our Contribution

In this paper we provide the first round-optimal compiler from semi-honest OT to malicious
OT, using CIH. Our compiler uses all the cryptographic primitives in a black-box manner,
which means that when running the protocol, the sender and the receiver treat all primitives
as black boxes. However, for technical reasons [CGH04], the underlying CIH construction
requires the upper bound of the circuit size of the semi-honest OT protocol used. This is
because the CIH we use from [CCH+19]4 is built on sparse relations and the code of the
functions involved is required (in the proof) to define the relation (more details will be pro-
vided in Sec. 4). The need for this upper-bound makes our protocol not fully black-box,
hence is incomparable with existing, fully black-box, compilers.

Our contribution can be summarized as follows:

1. The first application of CIH round-collapsing technique to cut-and-choose and in the
plain model. Most known round collapsing techniques apply to proof systems [CCRR18,
HL18, CCH+19, PS19, BKM20, LV22, CJJ21b, JJ21, JKKZ21, CJJ21a, CGJ+23]. We intro-
duce novel techniques that allow us to apply CIH for general cut-and-choose in the
plain model (without the CRS or RO), and avoid additional assumption of using pub-
lic key encryption with pseduorandom public keys. Cut-and-choose is a major build-
ing block in protocols [LP07, Hai08, HIK+11, Lin13, MOSV22], hence this gadget can
be used as a building block for other purposes besides the ones we are pursuing in this
paper.

2. The first round-optimal compiler from semi-honest OT to malicious OT from CIH. We
use our gadget to design the first cut-and-choose-based compiler from semi-honest
OT to malicious in the plain model. While our compiler uses all primitives in a black-
box manner, we do need an upper bound on the circuit of the underlying semi-honest
OT, and our proof of security is non-black-box. This makes our construction not fully
black-box.

1.2 Our Techniques

Recall that our goal is to build a four-round (optimal) malicious OT from a two-round semi-
honest OT. Furthermore, in the protocol, we want the parties to invoke the underlying cryp-
tographic primitives as a black-box. First, let us recall the definition of simulatable malicious
OT (see Sec. 3.1) roughly requires that there exists a polynomial time simulator, that on in-
put only the security parameter, is able to simulate the protocol transcript for a malicious
receiver (resp. sender) so that it is indistinguishable from the transcript played by an honest
sender (resp. receiver) who plays with the real inputs s0, s1 (resp. b). A simulatable protocol
must fulfill two properties: (1) extraction: the protocol should be designed so that – through

4Although, all existing CIH constructions are non-black-box in the relation.

4

rewinding – the (black-box) simulator can correctly extract the input that the malicious party
is using in the protocol; (2) indistinguishability: the protocol is such that a malicious party
cannot distinguish if the honest party is playing with an input sampled from the input dis-
tribution, or a random input.

With our upper bound of four rounds, we have that extraction and indistinguishability
with respect to a malicious receiver must be achieved in three rounds only. That is, by
the end of the third round the receiver must have committed to their input and must have
convinced the sender that they played it correctly.

Let us walk through a simple approach to identify the root of the challenge.
First, we define some notation. Let us denote by Πsh = (OTR, OTS, OTD) a semi-honest

oblivious transfer protocol, which achieves indistinguishability only. Let ot1 = OTR(b; r-ot1),
and ot2 = OTS(s0, s1, ot1; r-ot2) be the first and second round messages, with r-ot1 and r-ot2
being the input randomness. Then, OTD is the output computation procedure of the receiver.
Recall that semi-honest security guarantees input privacy for the sender only if the receiver
follows the protocol and computes ot1 = OTR(b; r-ot1), using the randomness r-ot1 and the
input b provided by the “challenger.” If the receiver instead chooses its randomness or
input, no security is guaranteed.

Hence, when using Πsh as a building block in a protocol that must withstand a malicious
receiver who can arbitrarily deviate from the protocol and use arbitrary inputs, we must
add a mechanism that (1) forces the receiver to use inputs (b; r-ot1) in Πsh, and (2) forces
the honest execution of Πsh.OTR(·) with such inputs while guaranteeing the privacy of the
inputs played by the receiver.

Coin flipping can be used to force the inputs used by the receiver. That is, the in-
puts (b, r-ot1) can be generated using contributions from both S and R as r-ot1S, r-ot1R,
and setting r-ot1 = r-ot1S ⊕ r-ot1R and b = r-ot1[0]. Coin-flipping requires at least two
rounds to be completed, as it entails one message from R to S where R sends a commitment
com-rR = COM(r-ot1R) to R’s contribution to the inputs of OTR(·), then S replies with their
own contribution r-ot1S. R can then proceed and compute ot1 = OTR(b; r-ot1S ⊕ r-ot1R) in
the third round, after the r-ot1S is observed. Cut-and-choose can then be used to confirm
that for most of the executions, the receiver is computing ot1 := OTR(·) using the inputs
generated by the coin-flipping, i.e., (b, r-ot1) = (r-ot1R[0]⊕ r-ot1S[0], r-ot1R⊕ r-ot1S). Recall
that cut-and-choose consists of having a party, in this case the receiver R, run many, say m,
executions of OTR in parallel (all with independent inputs) and sending ot(i)1 for all i ∈ [m] to
S. Then S will choose a subset A of them, and challenge the receiver to show the inputs and
randomness used to compute ot(j)

1 for all j ∈ A. The cut-and-choose is successful if the input
and randomness used in the opened sessions correspond to the output of the coin-flipping
and are consistent with the honest computation of ot(j)

1 .
The cut-and-choose itself requires three rounds, and since it can start only after the coin-

flipping is concluded, this approach yields more than four rounds.
Our approach: Round-collapsing Cut-and-Choose with CIH. We take inspiration from the
sequence of work aiming at collapsing the rounds in zero-knowledge proof system using a
correlation intractable hash function (CIH)
[CCRR18, HL18, CCH+19, BKM20].

We have the same goal of turning a three-round public-coin protocol into a one-round
one, however, our setting has more constraints than [CCRR18, HL18, CCH+19, BKM20].

5

First, our setting is the plain model, hence we cannot borrow directly their approach of
using a trusted setup to choose parameters for the protocol. Second, we aim to provide a
transformation that does not use public key with pseudorandom keys, as this property has
the same flavor of strongly uniform oblivious transfer, for which a transformation is already
known [FMV19]. On the positive side, however, our setting is also very different from the
setting of non-interactive zero-knowledge proofs where the CRS must be established once
and can be reused many times by different provers. We will leverage such differences to
design a new CIH-based transform where there is a one-time CRS for a designated prover, as
we describe next.
Our technique: new round-collapsing technique for designated provers from CIH. First,
let us recall the definition of CIH. A CIH is a hash function family H associated with a
relation ensemble R, that has the following property. Given a hash function H ∈ H, it
is hard for any PPT adversary to find an input x∗ such that y = H(x∗) and (x∗, y) are in
any relation R ∈ R. Canetti et al. [CCH+18] show that when the relation R is sparse and
efficiently samplable, then there exists H that is correlation intractable with respect to R
(see Theorem 3.11 [CCH+18]) Then, their goal is to collapse a three-round sigma protocol
x, r1, r2, r3 into a one message proof system, by computing r2 = H(x, r1). The intuition is to
take the three-round public-coin proof system and define a relation to pair ((x, r1), r2) such
that, when x is not in the language, the pair ((x, r1), r2) yield an accepting proof that violates
the soundness of the proof-system. Then, for a hash family that is correlation intractable
with respect to this relation, we can collapse the rounds knowing that the output r2 of the
hash will only allow a prover to prove a false statement with negligible probability.

We follow the blueprint of Canetti et al [CCH+19], but we provide a novel implementa-
tion with symmetric key encryption instead of public key encryption, as follows.

• A designated prover proof system for proving correct function computation. First,
we provide a three-round proof system that allows a designated prover to show that
the outputs y for a function F are computed correctly and consistently to some public
inputs. Specifically, the proof system is defined for a language L, where the instances
of the language are vectors of inputs x = (F , {inp(i)1 , com-inp(i)2 , y(i)}i∈[m]), where inp(i)1

is a plaintext input and com-inp(i)2 is a commitment to input inp(i)2 . Then x ∈ L if, for
all but a small fraction of i, y(i) are the result of the computation of F on inp(i), where
inp(i) is constructed using inp(i)1 and inp(i)2 . Looking ahead, it is in the definition of
RL, the relation containing instances x ∈ L and their witnesses, that the construction
becomes non-black-box, as the relation depends on the circuit of F . The knowledge of
the circuit of F is required only in the proof of security. In the protocols, this informa-
tion is not required, and just an upper bound of the size of the function is needed.

The proof system that we show is the natural one, where the verifier challenges the
prover to open m/3 of the first round messages and checks that the prover is being
honest.

We deviate from the blueprint of Canetti et al. [CCH+19] in our CRS. Specifically, in-
stead of containing a public key, it contains a vector of commitments to symmetric keys,
namely, CRS = (com-key(1), . . . com-key(m)), where each com-key(i) = COM(key(i); ρ(i))
and key(i) is a key for a symmetric key encryption scheme with perfect decryption.
This CRS is for one-time use and can be used only by a designated prover who will be

6

provided the opening of all the commitments. These keys will be used by the prover
to encrypt a partial witness for each session, which serves as the first-round message.
Hence, this proof system is for designated provers because the prover must know the
keys committed in the CRS to compute these ciphertexts. Along with the witness for
these sessions, the prover must also provide the opening to the commitment com-key(i)

in the CRS so that the verifier can confirm that the encryptions of the first round were
computed correctly.

This proof system is defined for any function F , hence it can be used as a building
block for other cut-and-choose applications. To prove soundness of this system, we
use the standard counting argument for cut-and-choose (Lem. 1). In our compiler,
we instantiate F with OTR and OTS which are the receiver’s and sender’s functions
respectively.

• A round-collapsing transform via CIH. Towards collapsing the rounds of the three-
round proof system, we then define our relation RF{key(i)}i∈[m]

with respect to this proof

system. Specifically, this relation consists of proofs that violate the soundness of the
three-round proof system. We then prove that the relation RF{key(i)}i∈[m]

is sparse and

efficiently sampleable (Lem. 2). It would be preferable to use a relation that is effi-
ciently searchable, as opposed to sampleable, since this would allow us to use a CIH
constructed from plain LWE [PS19]. However, a relation can only be searchable if each
pair (x, y) ∈ R is unique. Since our construction is based on cut and choose, it is not
the case that an x has a unique y.

With this three-round proof system and our relation RF{key(i)}i∈[m]
, we are now ready

to use a CIH to collapse the rounds. This proof system uses the same CRS as the
three-round proof system, except that the CIH H is part of the CRS as well. Here we
follow the blueprint of Canetti et al. [CCH+19], using the hash function to determine
the challenge message. We denote the collapsed proof system ΣNIP. The soundness
of our collapsed proof system ΣNIP (Lem. 4) mostly follows from the soundness of
the three-round proof system, as the only change is using H to compute the challenge
message. We then prove that any malicious prover who can violate the soundness of
the collapsed proof system can violate the correlation intractability of the hash family.

• Making the CRS computable through coin-flipping. The last piece of the puzzle is to
address the computation of the CRS through a coin-flipping protocol, as our goal is to
be in the plain model. The CRS that we use is a vector of well-formed commitments
to keys, whose openings must be known by the prover. At first sight, it seems that
this CRS cannot be computed via a coin-flipping, as coin-flipping can only generate a
vector of random commitments, for which no one knows the openings. Another look
however suggests a different approach. Instead of using coin-flipping to generate the
commitments, we use coin-flipping to generate the openings of the commitments. From
the openings, which also serve as the backdoor for the designated prover, the prover
can derive the commitments, which determine the CRS. The choosing of the CIH is
done by the verifier (as is done by Kalai, Rothblum, and Rothblum [KRR17]). In Fig. 6,
we provide the one-round proof system combined with the CRS generation, which we
call Σplain

NIP .

7

Note that a malicious prover might lie in the commitments that were generated as a
part of the coin-flipping. However, recall that in our proof system, the prover must
open a large fraction of the first round messages, which must be validated against the
CRS that the prover claimed to be the result of the coin-flipping. If the prover changes
too many commitments in the CRS, they will be caught.

Putting it all together. The one-round designated prover proof system for correct function
evaluation that we developed can now be used in combination with the two-round coin-
flipping. The receiver is asked to provide a proof that the output of function F = OTR, on
the inputs, {inp(i)1 , com-inp(i)2 }, appearing in the transcript of the coin-flipping, is correctly
computed. Note that OTR is used as a black-box by the sender and the receiver. But the hash
family from which the hash function is picked is determined by the size of the circuit of OTR.

We have focused on the receiver, but the same approach is mirrored on the sender side,
with only one difference. We leverage the observation (made in [MOSV22]) that any two-
round semi-honest OT is always private against a malicious sender. Hence, on the sender
side, we do not require a coin-flipping for the inputs to OTS. The detailed OT protocol is
described in Sec. 5. In the following, we describe the protocol with very broad strokes:

• Round 1. R → S: R prepares and sends commitments com-crs-prvrR for the coin-
flipping for the CRS for her proof system and commitments com-r(i)R to randomness
r-ot1(i)R for the coin-flipping to build the inputs to OTR.

• Round 2. S→ R : The sender sends the randomness crs-vr f rR which includes {r-key(i)V }i∈[m]

for the coin-flipping of the receiver’s CRS, and the randomness r-ot1(i)S for the coin-
flipping for the input to OTR. S also chooses the CIH HR

k ← H to be used by R.

Next S initiates a coin-flipping for their own CRS and commits to the inputs they will
use to compute the sender’s message via OTS. S computes commitments com-crs-prvrS
for the CRS and com-r(i)S for their input r-ot2(i) = k(i)0 ∥k

(i)
1 ∥r-ot2∗(i) for i ∈ [m] in the

OTS algorithm and sends them to R.

• Round 3. R → S: The coin-flipping for R is concluded, and R learns the openings
key(i)R , ρ

(i)
R (computed as r-key(i)P ⊕ r-key(i)V) from which she can derive the commitments

to be included in the CRS she will be using in the proof CRSR = ({com-key(i)R }i∈[m],

HR
k). R also learns the inputs r-ot1(i) to be used to run OTR and obtain outputs ot(i)1

and proves using our one-round proof system Σplain
NIP that each ot(i)1 was computed as

OTR(r-ot1(i)S [0]⊕ r-ot1(i)R [0]; r-ot1(i)S ⊕ r-ot1(i)R). That is, prove that ot(i)1 is the output of
OTR on input the result of the coin-flipping, and sends the proof to the S.

Then R participates in the coin-flipping for S’s CRS, sending crs-vr f rR to S. Along with
this, R chooses the hash function HS

k that S must use in their proof system and sends
HS

k .

Finally, R computes “adjustment bits”. Because we are performing many OT sessions
while R has as input a single bit, we cannot use R’s input bit for each session. Oth-
erwise, S would learn the bit from an opened session. Instead, R plays with random

8

bits and now sends adjustment bits to ensure that each session results in R learning
the correct string.

• Round 4. S → R In the last round, S finishes the coin-flipping to obtain CRSS =

({com-key(i)S }i∈[m], HS
k). S then computes ot(i)2 and proves via Σplain

NIP that each ot(i)2 was

computed as ot(i)2 = OTS(k(i)0 , k(i)1 , ot(i)1 ; r-ot2∗(i)), where r-ot2(i) = k(i)0 ∥k
(i)
1 ∥r-ot2∗(i) was

committed in round two. S then sends the proof to R.

Now S computes shares s(i)0 and s(i)1 of their input strings s0, s1, and encrypts each share
using one-time-pad keys k(i)0 , k(i)1 , adjusting the positions according to the adjustment
bits, which were the inputs to OTS. The sender sends each ciphertext to R.

• Output Computation. R uses ot(i)2 as input to the output computation function OTD to
learn one of the keys k(i)0 , k(i)1 . Then, using these keys, R is able to decrypt shares of the
input strings and reconstruct the final output sb.

2 Related Work

Correlation-Intractable Hash Functions. Correlation-intractable hash functions (CIH) were
first used to instantiate the Fiat-Shamir transform in two concurrent works: Canetti, Chen,
and Reyzin [CCR16] and Kalai, Rothblum, and Rothblum [KRR17]. [CCR16] constructed a
CIH from subexponentially secure iO, subexponentially secure puncturable PRFs, and input
hiding obfuscation for multi-bit point functions. [KRR17] used CIH to collapse a constant
round public-coin proof to a two-round system.

Canetti et al. [CCRR18] construct a CIH from strong KDM-secure encryption and use
it to transfrom public-coin HVZK proof system to a non-interactive ZK (NIZK) in the CRS
model. Holmgren and Lombardi [HL18] construct a CIH from subexponential iO and ex-
ponentially secure OWFs to achieve NIZK in the CRS model. These works rely on heavy
assumptions. Subsequent works aimed to construct CIH from simpler assumptions. Canetti
et al. [CCH+19] provided a CIH from almost optimal search-LWE and one from circular se-
cure FHE. They used this CIH to construct a publicly verifiable SNARG by collapsing the
round of the GKR [GKR08] interactive proof.

Peikert and Shiehian [PS19] construct a CIH from plain LWE and use it to construct
a NIZK. Holmgren, Lobardi, and Rothblum [HLR21] later showed that by coupling the
hash function of Peikert and Shiehian [PS19] or of Canneti et al. [CCH+19] with a deran-
domization procedure to apply the Fiat-Shamir transform to GMW, or, more generally, any
commit-challenge-response proof5. Lombardi and Vaikuntanathan [LV22] present a CIH
from shift hiding shiftable functions6. Brakerski, Koppula, and Mour [BKM20] consider
CIHs for approximable relations, which they build using trapdoor hash functions (which
can be built from DDH, QR, DCR, and LWE) and consequently construct a NIZK. Two con-
current works [BFJ+20, GJJM20] use these strategies to construct the first statistical two mes-

5There is an additional requirement that the commit-challenge-response proof have their commitments in-
stantiated with a public key encryption scheme.

6Shift hiding shiftable functions [PS18] are a type of constrained PRFs, where a party can compute secret
keys that allow a party to evaluate only at authorized points, while all other points remain pseudorandom.

9

Work OT from Black-box Plain Model Round
optimal

[KO04] Certified TDPs ✗ ✓ ✓

[HIK+11] Semi-honest OT ✓ ✓ ✗

[ORS15] Certified TDPs ✓ ✓ ✓

[DGH+20] Elementary OT ✗ ✗ ✓

[FMV19] Strongly-uniform OT ✓ ✓ ✓

[CCG+21] TDPs ✓ ✓ ✓

[IKSS22a] Semi-honest OT ✓ ✗ ✓

[MOSV22] Defensible OT ✓ ✓ ✓

[MOSV22] Semi-honest OT ✓ ✗ ✓

This work Semi-honest OT ✗ ✓ ✓

Table 1: Comparison of Our Work with Existing OT Compilers

sage public coin witness indistinguishable (statistical ZAP) arguments. Both works modify
the NIZK approach by using an extractable statistically hiding commitment scheme. Jain
and Jin [JJ21] construct their CIH from sub-exponential DDH, and use this CIH to construct
a NIZK and a statistical ZAP. Finally, Choudhuri, Jain, and Jin [CJJ21b] use CIH to construct
SNARGs for P, and Choudhuri et al. [CGJ+23] later extend this to SNARGs for P and Batch
NP.
Round-Optimal Compilers for Secure Computation. There is a large body of literature
on how to build cryptographic tasks (e.g., MPC [Kil88, IKLP06, CDMW09, PW09, Wee10,
Goy11, LP12, KMO14, ORS15], zero-knowledge proofs [PW09, Goy11, GOSV14], non-malleable
commitments [PW09, Wee10, Goy11, GLOV12]) using weaker primitives in a black-box
manner.

Since our focus is on (round-optimal) compilers we shall focus only on related work for
round-optimal black-box constructions of Oblivious Transfer and secure computation, from
weaker building blocks.

Ostrovsky, Richelson, and Scafuro show four-round OT from certified trapdoor permu-
tation [ORS15], improved by Choudhuri et al. [CCG+21], who do not require the permuta-
tion to be certifiable. In [FMV19] Friolo, Masny, and Venturi, show a four-round OT from
strongly-uniform OT (i.e., the first message of the receiver must be indistinguishable from
a random string). Such a result can be seen as building four-round OT from PKE with
pseudorandom keys. Such assumptions are less general than semi-honest OT, which we
use in this paper, although our compiler uses CIH (which are incomparable with PKE with
pseudorandom keys). Madathil et al. in [MOSV22] build malicious OT from two-round
defensible OT (defensible means that, while a malicious receiver can cheat in the protocol
and learn both inputs of the sender without being detected, it should be hard to later con-
vince the sender that it behaved honestly). In the multiparty setting, Ishai et al. [IKSS21]
show various round-optimal black-box transformations of round-optimal MPC protocols.
Their transformations rely on PKE with pseudorandom keys and on semi-malicious OT.
Semi-malicious security [AJL+12] means that security is guaranteed against a passive ad-
versary, even if the adversary is allowed to choose the randomness maliciously. Although
mildly, semi-malicious security is stronger than semi-honest security. More recently, Ishai

10

Ideal Functionality FOT:

• Upon receiving message (send, s0, s1, S, R) from S, where s0, s1 ∈ {0, 1}λ, store
s0, s1 and answer send to R and Sim.

• Upon receiving message (receive, b) from R, where b ∈ {0, 1}, send sb to R and
receive to S and Sim, and halt. If no message (send, ·) was previously sent, do
nothing.

Figure 1: Ideal functionality for oblivious transfer

et al [IKSS23] show a new transformation that uses a sub-exponential 2-round OT secure
against unbounded malicious receivers, to build a 4-round MPC protocol. Still in the MPC
setting, [COSW23] Ciampi et al, also explores lower bounds for round-optimal transforma-
tion for specific inputless functionalities. Their transformation builds on OT that is private
(but not simulatable) against malicious adversaries.

Finally, in the CRS model, Ishai at al. [IKSS22b] show a two-round OT from two-round
malicious private OT. The same authors show a two-round OT protocol from a semi-honest
OT protocol, in the Random Oracle Model. We note that, their use of the RO is not only for
collapsing the rounds of the protocol, but also to allow the simulator to extract the inputs of
the parties, as well as programming the output of the RO in the proof. Therefore, even al-
lowing for more rounds, the CIH cannot be directly used to instantiate the RO in [IKSS22b]’s
construction, but new techniques are required. Our results are in the plain model.

In Table 1, we present a succinct comparison of our compiler with existing OT Com-
pilers. We compare compilers that construct malicious secure simulatable OT from weaker
primitives. We emphasize that our work is non-black-box because the CIH instantiations
will require an upper bound of the size of the circuit (semi-honest OT in our work).

3 Preliminaries

Notation: We denote our security parameter by λ ∈ N, which we treat as an implicit pa-
rameter. For a number n ∈N, let [n] = {1, . . . , n}. We denote by x(i) ∈ X the i-th element of
the set X. For a bit string bits, we use bits[i] to refer to the ith bit. We show plaintext values
in italics and hidden values (either by commitment or encryption) in sans serif. Lastly, let
viewA

Π,B(x, y) denote the random variable representing the view of party A using input x
after executing the two-party interactive protocol Π with party B with input y. This view
contains A’s input, randomness, and messages received.

3.1 Oblivious Transfer

We present the definition of semi-honest OT [MOSV22].
The ideal OT functionality definition is presented in Fig 1.

Definition 1. Let Π = ⟨S(s0, s1),R(b)⟩ be a non-trivial OT protocol. We say that Π is private
for random inputs against semi-honest receivers if the following holds:

11

{viewR
Π,S((b), (s0, s1)), s1−b}b ≈ {viewR

Π,S((b), (s0, s1)), s′}b

Where s0, s1, s′ $←− {0, 1}λ. We say that Π is private for random inputs against semi-honest
senders if the following holds:

{viewS
Π,R((s0, s1), (0))}s0,s1 ≈ {viewS

Π,R((s0, s1), (1))}s0,s1

Where s0, s1 ∈ {0, 1}λ

Note that Madathil et al.[MOSV22] showed that any two-round OT protocol with pri-
vacy against semi-honest senders is already private against malicious senders.

Simulatable OT Simulatable OT considers security in the real/ideal world paradigm. In
this paradigm, an attacker corrupts either the sender S or receiver R (denoted S∗ or R∗ re-
spectively when corrupt), and participates in the OT protocol. The protocol is executed in
either the real world or the ideal world, where an ideal functionality FOT (Fig. 1 [MOSV22])
performs the computation. realΠ,S∗(z)((s0, s1), (b)) (respectively realΠ,R∗(z)((s0, s1), (b))) is
the view, and consequently the output, of the adversary after executing the OT protocol Π
in the real world as a corrupt sender (respectively receiver), where z is the auxiliary input of
the adversary. Likewise, idealΠ,SimS∗(z)((s0, s1), (b)) (respectively idealΠ,SimR∗(z)((s0, s1), b))
is the view simulated by the ideal adversary Sim.

Definition 2. The protocol Π = (S,R) securely realizes FOT if

• For every non-uniform, PPT malicious sender S∗ there exists a non-uniform, PPT simulator
Sim such that

{realΠ,S∗(z)((s0, s1), (b))}λ,s0,s1,b,z ≈ {idealΠ,SimS∗(z)((s0, s1), (b))}λ,s0,s1,b,z

Where λ ∈N, s0, s1 ∈ {0, 1}λ, b ∈ {0, 1}, and z ∈ {0, 1}∗.

• For every non-uniform, PPT malicious receiver R∗ there exists a non-uniform, PPT simulator
Sim such that

{realΠ,R∗(z)((s0, s1), (b))}λ,s0,s1,b,z ≈ {idealΠ,SimR∗(z)((s0, s1), (b))}λ,s0,s1,b,z

Where λ ∈N, s0, s1 ∈ {0, 1}λ, b ∈ {0, 1}, and z ∈ {0, 1}∗.

3.2 Commitment Scheme

A commitment scheme allows a party to commit to a value and later reveal the committed
value. A commitment scheme consists of one polynomial-time algorithm:

• COM(x ; r) = com: Takes as input a value x and randomness r and outputs a commit-
ment com to x. The commitment can be opened by revealing the value x and the ran-
domness r. Any party with knowledge of these values can check that com = COM(x ; r).

12

The two properties we require of our commitment scheme are statistical binding and
computational hiding.

Definition 3. (Hiding of commitments) A commitment scheme for message space M is statisti-
cally (resp. computationally) hiding if for all m0, m1 ∈ M it holds the {COM(m0; Uλ)}λ∈N is
statistically (resp. computationally) indistinguishable from {COM(m1; Uλ)}λ∈N, where Uλ denotes
the uniform distribution over {0, 1}λ.

Definition 4. (Binding of commitments) A commitment scheme is computationally binding if
for all PPT adversaries A there is a negligible function negl : N→ [0, 1] such that:

Pr[COM(m; r) = COM(m′; r′) ∧m ̸= m′ : ((m, r), (m′, r′)← A(1λ))] < negl(λ)

We say that COM is statistically binding if A is unbounded and the above probability holds.

In this work, we occasionally specify the randomness being used to commit. Specifically
com = COM(m ; r) means that com is a commitment to the message m using randomness r.
However, if the randomness is not specified, as in com = COM(m), then we let the second
half of m be the randomness used to compute the commitment.

3.3 Symmetric Key Encryption

A symmetric key encryption scheme E = (KeyGen,Enc,Dec) is a tuple of algorithms defined
as follows:

• KeyGen(1λ) = key: On input the security parameter outputs a key key

• Enc(key, m) = c: On input a key key and a message m outputs a ciphertext c of m

• Dec(key, c) = m: On input a key key and a ciphertext c = Enc(key, m), outputs the
original message m

We require that E is secure against chosen plaintext attacks and that keys are random.

Definition 5. (IND-CPA security with random keys) An encryption scheme E = (KeyGen,
Enc,Dec) is IND-CPA secure if

|Pr[A(c∗) = 1 : c∗ = Enc(key, m0)]− Pr[A(c∗) = 1 : c∗ = Enc(key, m1)]| < negl(λ)

Where key ← KeyGen(1λ), KeyGen(1λ) is indistinguishable from the uniform distribution, and
A(1λ)→ (m0, m1)

Finally, we require that E has perfect decryption correctness. This property, similar to
the binding of a commitment scheme, states that given a ciphertext and key, this ciphertext
can only be decrypted to one value.

Definition 6. (Perfect decryption correctness) An encryption scheme E = (KeyGen,Enc,Dec) has
perfect decryption correctness if

Pr[Enc(key, m0 ; r0) = Enc(key, m1 ; r1)] = 0

For m0 ̸= m1 or r0 ̸= r1 where r0, r1 is the randomness used to encrypt

13

3.4 Correlation Intractability

A hash family H = {H : K × X → Y} is correlation intractable (Def. 7) with respect to a
relation ensemble R = {R ⊆ X × Y} if it is hard for an adversary, given Hk ∈ H to output
x ∈ X such that (x, Hk(x)) ∈ R [CGH98, CGH04]. That is, an adversary should not be able
to find an input x to the hash function such that the output of the hash function satisfies
some relation. We present the formal definition in Def. 7.

Definition 7. Given a family H = {H : K × X → Y} of hash functions and a relation ensemble
R = {R ⊆ X×Y},H is said to be correlation intractable with respect toR if for all polynomial
time A, Pr[(x, Hk(x)) ∈ R] ≤ negl(λ), when k← K and A(k)→ x.

Further, it is necessary that the relation R ∈ R be sparse (Def. 8) and efficiently sampleable
(Def. 9). As shown by Canetti et al. (see Theorem 3.11 [CCH+18]) these properties imply the
existence of a CIH for that relation. For a relation to be sparse, it means that, given x ∈ X,
there should be a restricted number of y ∈ Y such that (x, y) ∈ R. We present the definition
of sparsity from [CCH+19] below:

Definition 8. A relationR = {R ⊆ X×Y} is said to be ρ(·) -sparse if for λ ∈N and any x ∈ X
we have

Pr[(x, y) ∈ R] ≤ ρ(λ)

when ρ(·) is negligible, we simply say thatR is sparse.

Efficient sampleability means that there exists a polynomial-sized circuit that, given x,
can approximate the distribution {z ∈ Y : (x, z) ∈ R} within some error ϵ, assuming that
this distribution is non-empty.

Definition 9. A relation ensemble R = {R ⊆ X × Y} is non-uniformly ϵ-approximately
sampleable if there exists a polynomial time circuit ensemble {Samp} such that for every (x, y) ∈
R the distribution Samp(x) multiplicatively ϵ-approximates the uniform distribution on the (by
assumption, non-empty) set {y ∈ Y : (x, y) ∈ R}

Lastly, we need the CIH to have approximate average-case programmability (Def. 10)
[CCH+19]. This property states that, given x and a uniformly random y, there is a way to
efficiently sample a hash function H ∈ H such that H(x) = y.

Definition 10. We say that a hash family H has approximate average-case programmability
if there exists an efficient sampling algorithm Samp such that for all fixed x, the distribution {H ←
Samp(x, y)} where y is uniformly random is statistically indistinguishable from the distribution
H ← H. In other words, there exists a sampling algorithm Samp(1λ, x, y) that samples from the
conditional distribution k← H.KeyGen(1λ)|H(k, x) = y.

Note that without the programmability property, we would have such a CIH from plain
LWE [HLR21]. However, the programmability is what allows the simulators for our OT
protocol to extract the input of the malicious parties and is therefore necessary.

14

Algorithm: Σ.SetUp(1λ)

1. For i ∈ [m] : Compute key(i) ← KeyGen(1λ). Sample ρ(i)
$←− {0, 1}λ. Compute

com-key(i) = COM(key(i) ; ρ(i))

2. Output {com-key(i)}i∈[m] as the CRS, and send (key(i) ; ρ(i)) to the prover

Figure 2: Set-Up Algorithm of Σ

4 Proof of Correct Function Evaluation

In this section, we present a designated prover proof system for proving that a set of values
{y(i)}i∈[m] are the output of a function F on a specific input {inp(i)}i∈[m]. Each inp(i) is

computed using a plaintext input inp(i)1 that is part of the statement, and a hidden input
inp(i)2 that is part of the witness and committed in the statement. We follow the cut-and-
choose paradigm [LP07], where the first message contains encryptions of the witnesses, and
the second round (challenge) message determines which encryptions to open. This proof
system is in the CRS model, where our CRS contains a set of commitments {com-key(i)}i∈[m]

to the symmetric encryption keys, and the prover receives the opening {(key(i), ρ(i))}i∈[m] to
these commitments from the same party who computes the CRS. This means that only the
party who receives these openings can compute a verifying proof, hence the term designated
prover. We present the set-up algorithm of our proof system in Fig. 2.

In the language of this proof system, L, we have the statement x = (F , {inp(i)1 , com-inp(i)2 ,
y(i)}i∈[m]) where F is the function, inp(i)1 is some plaintext input, com-inp(i)2 is a commitment

to some input inp(i)2 , and y(i) is the output y(i) = F (inp(i)) where inp(i) is constructed using
inp(i)1 and inp(i)2 . Next, we have the witness w = ({inp(i), inp(i)2 , γ(i)}i∈[m]) where, for at

least 8m/9 of i ∈ [m], inp(i) is the input to the function built using inp(i)1 and inp(i)2 , inp(i)2 is
the input committed in com-inp(i)2 , γ(i) is the randomness used to compute the commitment
com-inp(i)2 , and the external predicate CheckF confirms that inp(i) is constructed correctly.
This predicate is dependent on the function and must be computable in polynomial time.

L = {x = (F , {inp(i)1 , com-inp(i)2 , y(i)}i∈[m]) | ∃ w = ({inp(i), inp(i)2 , γ(i)}i∈[m])

where com-inp(i)2 = COM(inp(i)2 ; γ(i)), y(i) = F (inp(i)), CheckF (inp(i)1 , inp(i)2 , inp(i)) = 1
for > 8m/9 of i ∈ [m]}

A formal description of the proof system Σ is presented in Fig. 3.
Now we present our lemma on the soundness of Σ.

Lemma 1. If E = (KeyGen,Enc,Dec) is a symmetric key encryption scheme with perfect decryption
correctness, F is a deterministic function, and COM is a statistically binding commitment scheme,
then Σ is a sound proof system

15

Proof System:
Σ = ⟨P(x, w ; {key(i), ρ(i)}i∈[m]),V(x) ; {com-key(i)}i∈[m]⟩

1. P computes c(i) = Enc(key(i), (inp(i), inp(i)2 , γ(i), ρ(i)); ζ(i))i∈[m] and send
({c(i)}i∈[m]).

2. V : Upon receipt of ({c(i)}i∈[m]) from P, choose e $←− {0, 1}m such that m/3 bits
of e are 1. Send (e) to P.

3. P : Upon receipt of (e) from V. If there are not m/3 1s in e, abort. Let z(i) =

(inp(i), inp(i)2 , γ(i), ζ(i), key(i), ρ(i)) such that e[i] = 1. Send ({z(i)}) to V

4. V (verification): Upon receipt of ({z(i)}) from P. If com-key(i) ̸= COM(key(i) ; ρ(i)),
com-inp(i)2 ̸= COM(inp(i)2 ; γ(i)), y(i) ̸= F (inp(i)), or CheckF (inp(i)1 , inp(i)2 , inp(i)) =
0 for any z(i) = (inp(i), inp(i)2 , γ(i), ζ(i), key(i), ρ(i)) output 0. Else output 1

Figure 3: Three-Round Proof of Function Output for receiver via Cut-and-Choose

Proof. Assume towards a contradiction that Σ is not sound. That means that there exists
an adversary A that can prove a statement x = (F , {inp(i)1 , com-inp(i)2 , y(i)}i∈[m]) /∈ L with
non-negligible probability p(λ).

Because COM is a statistically binding commitment, we know thatA cannot open com-inp(i)2

to anything other than (inp(i)2 ; γ(i)) or com-key(i) to anything other than (key(i) ; ρ(i)).
Next, because F is a deterministic function, we know that there is only one inp(i) such

that F (inp(i)) = y(i).
Further, because we assume that E has perfect decryption correctness, we know that A

cannot open a ciphertext to any value other than the value that was encrypted.
Thus the only way forA to win is if cut-and-choose fails. That is, if the m/3 values {z(i)}

are all correct, but there are less than 8m/9 correct values in the witness w. Note that our
analysis here is identical to the analysis of cut-and-choose in [MOSV22], we restate it here
for completeness. Let j ∈ [m] be the number of incorrect values in w. Let Bad0 be the event
that j exceeds or equals m/9. We need to show Pr[Bad0] < negl(λ). This can be done by
summing the probability of Bad0 over all j.

First note that if j > 2m/3, then A cannot pass cut-and-choose as there are not enough
correct values to open. Next note that if j < m/9, A has not reached the set limit on the
number of bad values. Therefore we need only take the sum from m/9 to 2m/3.

Finally, since A must pass cut-and-choose, Pr[Bad0] for a specific j can be computed by
taking the ratio of the number of ways to select only good values over the number of ways
to select any values. Therefore we have:

16

Pr[Bad0] =
2m/3

∑
j=m/9

(m−j
m/3

)(m
m/3

) (1)

=
∑8m/9

j=0

(j
m/3

)(m
m/3

) (2)

=

(8m/9+1
m/3+1

)(m
m/3

) (3)

=
(8m/9 + 1)!(m/3)!(2m/3)!

m!(m/3 + 1)!(5m/9)!
(4)

=
(2m/3)(2m/3− 1) . . . (5m/9 + 1)

(m)(m− 1) . . . (8m/9 + 2)(m/3 + 1)
(5)

=
∏2m/3

j=5m/9+1 j

(m/3 + 1)∏m
j=8m/9+2 j

(6)

=
(8(m/9) + 1)
(3(m/9) + 1)

∏6(m/9)
j=5(m/9)+1 j

∏9(m/9)
j=8(m/9)+1 j

(7)

=
(8(m/9) + 1)
(3(m/9) + 1)

∏(m/9)
j=1 5(m/9) + j

∏(m/9)
j=1 8(m/9) + j

(8)

=
(8(m/9) + 1)
(3(m/9) + 1)

m/9

∏
j=1

5(m/9) + j
8(m/9) + j

(9)

In the above, Eq. 2 follows from shifting the indices of the summation. Eq. 3 follows from
the column-sum property of binomial coefficients. Eqs. 4, 5, and 6 are based on the definition
of binomial coefficients. Eq. 7 we simply multiply both the numerator and denominator by
8m/9 + 1. Eq. 8 follows from shifting the indices of the products.

In the equations above we have that 1 ≤ j ≤ (m/9) we know that 8(m/9)+1
3(m/9)+1 ≤ 8/3

and ∏m/9
j=1

5(m/9)+j
8(m/9)+j ≤ (2/3)m/9. Therefore we have Pr[Bad0] ≤ (8/3)(2/3)m/9, which is

negligible due to the choice of m = O(λ)7.
Thus we know that cut-and-choose fails negligibly, and therefore Σ is sound.

The Relation. Given this three-round cut-and-choose-based proof system Σ, we now col-
lapse the rounds using a CIH. To do this, we first define the relation RF{key(i)}i∈[m]

that we need

7Madathil et al. [MOSV22] show that this can be reduced to a tighter bound using Stirling’s formula

17

the hash family to be correlation intractable with respect to (Def. 7). Then, we will prove
that the relation is both sparse (Def. 8) and sampleable (Def. 9).

Our relation is similar to the relation of Canetti et al. [CCH+19], however we use sym-
metric key encryption and have the additional requirement that the input inp(i) is con-
structed using the value inp(i)1 in the statement, and the value inp(i)2 in the witness (which
was committed to in the statement via com-inp(i)2). Because of this requirement on the input
inp(i), we also encrypt the opening (inp(i)2 ; γ(i)) to the commitment com-inp(i)2 in the third
round to retain sampleability of the relation. The shape of inp(i) is function dependent, and
therefore we defer this check to an external predicate CheckF . Moreover, the predicate Check
validates the commitments, the encryptions, and the output of the function F .

RF{key(i)}i∈[m]
= {(({com-key(i)}i∈[m], x = (F , {inp(i)1 , com-inp(i)2 , y(i)}i∈[m]),

{c(i)}i∈[m]), e) : x /∈ L, Check({com-key(i)}i∈[m]x, {c(i)}i∈[m], e, {z(i)}e[i]=1) = 1

and CheckF (inp(i)1 , inp(i)2 , inp(i)) = 1 for at least 8m/9 of i ∈ [m] where

(inp(i), inp(i)2 , γ(i), ρ(i)) = Dec(key(i), c(i))}

Lemma 2. RF{key(i)}i∈[m]
is sparse (Def. 8) and non-uniformly efficiently sampleable (Def. 9) for every

key in support of key← KeyGen(1λ)

Proof. Our proof is nearly identical to the proof of Lemma 7.5 by Canetti et al. [CCH+18].
RF{key(i)}i∈[m]

is sparse due to the soundness of Σ. For any statement x /∈ L, an adversary

has probability at most (8/3)(2/3)m/9 + negl(λ) of providing a verifying proof. There-
fore, given this statement x /∈ L, for every first message {c(i)}i∈[m] we know there are as
many second messages e such that the relation is satisfied. To prove efficient sampleability,
note that one can compute (inp(i), inp(i)2 , γ(i), ρ(i)) = Dec(key(i), c(i)) for each i ∈ [m] given
x = (F , {inp(i)1 , com-inp(i)2 , y(i)}i∈[m]), {c(i)}, and {key(i)}i∈[m]. Then compute com-key(i) =

COM(key(i); ρ(i)) for i ∈ [m]. Finally, choose e such that (({com-key(i)}i∈[m],F , {inp(i)1 , com-inp(i)2 ,
y(i)}i∈[m]), {c(i)}i∈[m]), e) ∈ RF{key(i)}i∈[m]

Collapsing the Rounds. Now we give our non-interactive cut-and-choose based proof sys-
tem ΣNIP for the same language L by collapsing the rounds of Σ via CIH family H. The
statement and witness are the same. The set-up algorithm is nearly identical, except that it
now samples and includes the CIH Hk ∈ H in the CRS. This hash family is chosen based on
the relation. More specifically, the hash function’s description depends on the circuit’s size
representing the relation.

Recall, that the hash function needs to output a binary string with m/3 ones and 2m/3
zeros on expectation. We outline and analyze below how this can be accomplished with
rejection sampling. Let the output of Hk be a random binary string of length N. Now, we
modify the code of Hk as follows.
The Algorithm

1. Treat the N-bit string as N
2 independent bit pairs.

18

2. Ignore the bad pairs that are (0, 0) and keep only the good pairs that are (1, 1), (1, 0), (0, 1).

3. From these good pairs, produce output bits according to the following rule:

• (1, 1)→ 1
• (0, 1) or (1, 0)→ 0

4. Stop once m outputs have been collected.

Analysis For any single pair, the probability that it is good is 3
4 and the probability it is bad

is 1
4 . Hence the expected number of good pairs in N

2 draws is

N
2
× 3

4
=

3N
8

Now using the Chernoff bound we can estimate that if N ≥ 8m
3 , the number of good

pairs is m with high probability. More specifically,

Pr[# Good pairs among
N
2

pairs ≤ (1− δ) · 3N
8

] ≤ e−cδ2·N

for some absolute constant c > 0.
Therefore, if N is set as N > 8m

3N(1−δ)
, the probability of failure is exponentially small. We

treat this algorithm as implicit, and instead assume that the hash function outputs strings of
length m where m/3 bits are one.

We give a formal description of the round-collapsed proof system in Fig. 4.

Proof System:
ΣNIP = ⟨P(x, w ; {key(i), ρ(i)}i∈[m]),V(x) ; (Hk, {com-key(i)}i∈[m])⟩

1. P : Compute c(i) = E .Enc(key(i), (inp(i), inp(i)2 , γ(i)); ζ(i)) for i ∈ [m]. Compute
e = Hk(F , {com-key(i), inp(i)1 , com-inp(i)2 , y(i), c(i)}i∈[m]). If there are more than

m/3 1s in e, abort. Let z(i) = (inp(i), inp(i)2 , γ(i), ζ(i), key(i), ρ(i)) such that e[i] = 1.
Send ({c(i)}i∈[m], e, {z(i)}e[i]=1) to V.

2. V (verification): Upon receipt of ({c(i)}i∈[m], e, {z(i)}e[i]=1):

If Hk(F , {com-key(i), inp(i)1 , com-inp(i)2 , y(i), c(i)}i∈[m]) ̸= e or
Check({com-key(i)}i∈[m], x, {c(i)}i∈[m], e, {z(i)}e[i]=1) ̸= 1 output 0. If

CheckF (inp(i)1 , inp(i)2 , inp(i)) = 0 for any (inp(i), inp(i)2 , γ(i), ζ(i)) = z(i) out-
put 0. Else output 1.

Figure 4: One Round Proof of Function Output via Cut-and-Choose

Next, we define the predicate Check (Fig. 5) used by ΣNIP to verify that the commitments,
the encryptions, and the function output are all computed correctly for the opened values
of the proof π = ({c(i)}i∈[m], e, {z(i)}c(i)=1).

19

Predicate: Check({com-key(i)}i∈[m]x, {c(i)}i∈[m], e, {z(i)}e[i]=1)

1. For i such that e[i] = 1:

(a) Parse z(i) = (inp(i), inp(i)2 , γ(i), ζ(i), key(i), ρ(i)).

(b) If c(i) ̸= E .Enc(key(i), (inp(i), inp(i)2 , γ(i), ρ(i)) ; ζ(i)), or com-key(i) ̸=
COM(key(i) ; ρ(i)), or com-inp(i)2 ̸= COM(inp(i)2 ; γ(i)), or y(i) ̸= F (inp(i)) for
y(i) ∈ x, output 0. Else Output 1

Figure 5: Input Check Predicate of ΣNIP

Finally, we prove that our round collapsed proof system ΣNIP is sound.

Lemma 3. If COM is a statistically binding commitment scheme, E = (KeyGen,Enc,Dec) is a sym-
metric key encryption scheme with perfect decryption correctness, and H is a correlation intractable
hash function with respect to relation RF{key(i)}i∈[m]

, then ΣNIP is an adaptive sound proof system.

Proof. By the proof of Lem. 1, we know that the only way an adversary can gain a non-
negligible advantage in breaking soundness is through the use of H to generate the chal-
lenge message e.

Towards a contradiction, assume that ΣNIP is not sound. Then ∃ an adversary A(Hk,
{com-key(i), key(i), ρ(i)}i∈[m]) that can construct a proof π = ({c(i)}i∈[m], e, {z(i)}e[i]=1) for
statement x such that x /∈ L but V({com-key(i)}i∈[m], x, π) = 1 with non-negligible prob-
ability p(λ). Since we prove adaptive soundness, A will receive the public parameters as
input first, then choose the statement x. We will then construct an adversary B such that B
can violate the correlation intractability ofH. Define B as follows:
B(Hk) :

1. Compute key(i) ← KeyGen(1λ) and ρ(i)
$←− {0, 1}λ for i ∈ [m]

2. Compute com-key(i) = COM(key(i), ρ(i)) for i ∈ [m]

3. Activate A(Hk, {com-key(i), key(i), ρ(i)}i∈[m]) = (x, π = ({c(i)}i∈[m], e,
{z(i)}e[i]=1))

4. Output (F , {com-key(i), inp(i)1 , com-inp(i)2 , y(i), c(i)}i∈[m]) as the hash function input

We know that V(x, π) = 1 for x /∈ Lwith non-negligible probability. For this to be true, it
must be the case that Check(pk, x, {c(i)}i∈[m], e, {z(i)}e[i]=1) = 1 and CheckF (inp(i)1 , inp(i)2 , inp(i)) =
1 for at least 8m/9 of i ∈ [m]. This is exactly the requirements of the relation RF{key(i)}i∈[m]

.

Therefore,

20

Pr
Hk←H

B(Hk)→({com-key(i)}i∈[m],x,{c(i)}i∈[m])

[
(({com-key(i)}i∈[m], x, {c(i)}i∈[m]), e) ∈ RF{key(i)}i∈[m]

]

= Pr
A(Hk ,{com-key(i),key(i),ρ(i)}i∈[m])→(x,π)

[
x /∈ L and V(x, π) = 1

]
= p(λ)

for non-negligible p(λ). Thus we have found an adversary that violates the correlation
intractability of H with non-negligible probability, and ΣNIP is a sound proof system.

Towards the Plain Model. Finally we give our protocol for CRS generation between the
prover and verifier. In this CRS generation, the verifier chooses the CIH that the prover
must use (as is done in [KRR17]). We specify the protocol with four algorithms Σplain

NIP =
⟨P = (P0,P1),V = (V0,V1)⟩. The randomized algorithm P0 takes as input the security pa-
rameter λ outputs a string com-crs-prvr and auxiliary information crs-prvr. The randomized
algorithm V0 takes as input the security parameter and outputs a string crs-vr f r. The ran-
domized algorithm P1 takes as input crs-prvr, crs-vr f r, x, w outputs a proof π and the CRS
The deterministic algorithm V1 takes as input the π, CRS and outputs a bit 1. In this CRS
generation, P begins M > m sessions of coin flipping, and V uses the string sel to determine
which sessions to continue with. This is necessary later, in the proof of security of our OT
protocol, to allow us to rewind and set the CRS. We present a concrete protocol, Σplain

NIP , in
Fig. 6.

Lemma 4. If COM is a statistically binding commitment scheme and ΣNIP is an adaptive sound proof
system, then Σplain

NIP is an adaptive sound proof system.

Proof. By the proof of Lem. 3, we know that the only way an adversary can gain a non-
negligible advantage in breaking soundness is through the generation of the CRS.

Towards a contradiction, assume that Σplain
NIP is not an adaptive sound proof system. Then

there exists an adversary A(x, w) that can construct a proof π = ({c(i)}i∈[m], e, {z(i)}e[i]=1)

for statement x such that x /∈ L but V({com-key(i)}i∈[m], x, π) = 1 with non-negligible prob-
ability p(λ).

Because COM is a statistically binding commitment scheme, we know that A cannot suc-
ceed by opening com-r-key(i) to anything other than r-key(i)P .

Then, the only way for A to succeed is for cut-and-choose to fail. That is, if the m/3
opened commitments com-key(i) open to the correct key(i), ρ(i)), but there are less than 8m/9
honest commitments in the CRS.

By the proof of Lem. 1, we know that the probability this occurs is at most (8/3)(2/3)m/9

which is negligible due to our choice of m = O(λ)

5 Four-Round Malicious OT from Semi-Honest OT

In this section, we present our compiler that transforms any 2-round semi-honest oblivious
transfer to a round-optimal simulatable oblivious transfer protocol.

21

Prover(x, w) Verifier(x)

x = (F , {inp(i)1 , com-inp(i)2 , y(i)}i∈[m]) x = (F , {inp(i)1 , com-inp(i)2 , y(i)}i∈[m])

w = ({inp(i), inp(i)2 , γ(i)}i∈[m])

P0(λ) :

- For i ∈ [M]

- r-key(i)P =← {0, 1}λ

- com-r-key(i) ← COM(r-key(i)P)

- com-crs-prvr = {com-r-key(i)}i∈[M]

- crs-prvr = {r-key(i)P }i∈[M]
com-crs-prvr V0(com-crs-prvr)

- sel ← {0, 1}M such that ∑
i

sel[i] = m

- r-key(i)V ← {0, 1}λ for i ∈ [m]

- Hk ← H

P1(crs-prvr, crs-vr f r, x, w) crs-vr f r - crs-vr f r = (Hk, sel, {r-key(i)V }i∈[m])

- r-key(i)∥ρ(i) = r-key(j)
P ⊕ r-key(i)V where

j is the i-th index where sel[j] = 1

- key(i) ← KeyGen(r-key(i))

- com-key(i) = COM(key(i) ; ρ(i))

- CRS = {com-key(i)}i∈[m]

- c(i) = E .Enc(key(i), (inp(i), inp(i)2 , γ(i));

ζ(i)) for i ∈ [m]

- e = Hk(F , {com-key(i), inp(i)1 , com-inp(i)2 ,

y(i), c(i)}i∈[m])

- If there are more than m/3 1s in e, abort

- z(i) = (inp(i), inp(i)2 , γ(i), ζ(i), key(i), ρ(i))

such that e[i] = 1

- π = (x, w, c(i), e, z(i)) CRS, π V1(CRS, π)

Hk(F , {com-key(i), inp(i)1 , com-inp(i)2 ,

y(i), c(i)}i∈[m]) = e

- Check({com-key(i)}i∈[m], x,

{c(i)}i∈[m], e, {z(i)}e[i]=1)

- CheckF (inp(i)1 , inp(i)2 , inp(i))

∀(inp(i), inp(i)2 , γ(i), ζ(i)) = z(i).

- ∀key(i), ρ(i) ∈ z(i)com-r-key(i) =

COMstat-hide(key(i) ⊕ r-key(i)V)

- If any checks fail output 0, else 1

Figure 6: Σplain
NIP Proof system with CRS generation using coin-flipping

22

5.1 Protocol Description

Let Πsh = (OTR, OTS, OTD) be a 2 round semi-honest OT protocol. We transform Πsh into
a four-round OT protocol Π in Fig. 7. Here we provide a high-level description of our
protocol.
Round 1:

1. The proof system for receiver: The receiver executes the P0 algorithm of the Σplain
NIP protocol.

Recall that this is the first step of the coin flipping for the generation of the CRS.

2. Inputs to OT for receiver: The receiver also commits to m independently sampled ran-
dom strings (denoted r-ot1(i)R) that will determine the input to the first message func-
tion OTR for each session of a semi-honest OT protocol.

Round 2:

1. The proof system for receiver: The sender executes algorithm V0 of Σplain
NIP . Recall that this

algorithm samples randomness that will be used in the coin-flipping to determine the
CRS for the receiver.

2. The proof system for the sender: Similar to the receiver in round 1, the sender executes P0

of Σplain
NIP to begin the generation of their own CRS.

3. Input to OT for receiver Next, for each session i ∈ [m], the sender samples a random
string (denoted r-ot1(i)S). Looking ahead, the receiver input to the first round mes-
sage function OTR of the semi-honest OT protocol in session i will be determined by
r-ot1(i)R ⊕ r-ot1(i)S .

4. Input to OT for sender: The sender also commits to m random strings (denoted r-ot2(i))
that will be the sender input to the second message function OTS of the 2 round semi-
honest OT protocol.

Round 3:

1. Compute ot1 messages: The receiver computes the first message of the OT protocol in
each of the sessions. The input bit is the first bit of r-ot1(i)R ⊕ r-ot1(i)S and the random-
ness for the OT is determined by the rest of the bits.

2. Execute the proof system: The receiver then executes the P1 algorithm of Σplain
NIP . Recall

that this first computes the CRS for the proof system, and then computes a proof that
each ot(i)1 is computed correctly. In the proof system, the hash function determines
which of the indices must be opened. These indices are denoted as A.

3. Adjustment bits for encryption: For each session in [m] \ A the receiver sends an adjust-
ment bit d(i) = b(i) ⊕ b, where b(i) is the random bit used as input in session i by the
receiver. This informs the sender how to encrypt the input strings in the last round.

4. Proof system for the sender: The receiver runs the V0 algorithm of Σplain
NIP that computes

the randomness that will be used to determine the CRS used by the sender’s proof
system.

23

Round 4:

1. Verify the receiver’s proofs: The sender executes the V1 algorithm of Σplain
NIP . This checks

that the CRS for the proof system used by the receiver was computed correctly, the cor-
rect indices were opened, and the OT messages for the opened indices were computed
correctly.

2. Compute OT messages: The sender computes the ot2 messages using the randomness
they committed to in the second round using the OTS function of Πsh.

3. Execute the proof system: Similar to the receiver, the sender runs the algorithm P1 of
Σplain

NIP to first compute the CRS for the sender and then prove that the ot2 messages are
computed correctly. The indices opened by this proof are denoted as B. Let Alive =
[m] \ A ∪ B be the unopened indices of [m]. These are the sessions that are still “alive”
and will be used to finish the simulatable OT protocol.

4. Encrypt shares of input for the main OT protocol: The sender secret shares its input strings
s0 and s1 obtaining m/3 shares {si

0}i∈Alive, {si
1}i∈Alive such that each pair of shares can

be assigned to a distinct alive session. Finally, the sender uses the key k(i)
0⊕d(i)

(resp.

k(i)
1⊕d(i)

) to encrypt the share si
0 (resp. si

1) and sends the resulting ciphertexts ct0⊕d(i) and
ct1⊕d(i) to the receiver. These keys are determined by the randomness used to compute
ot2.

Output Computation:

1. Verify sender proofs: The receiver first executes the V1 algorithm of Σplain
NIP . This checks

that the CRS generated by the sender is correct, the correct indices are opened, and the
OT messages for these indices were computed correctly.

2. Output computation: Next the receiver computes k(i)
b(i)

using OTD of Πsh, the output com-
putation function of the semi-honest OT protocol. Finally, since b(i) = d(i) ⊕ b, the
receiver decrypts the ciphertexts ct

(i)
b(i)

using k(i)
b(i)

to get secret shares of sb denoted as

s(i)b . Using any τ valid shares, where τ is the threshold of the secret sharing scheme,
the receiver reconstructs the secret sb.

We define the predicates CheckOTR (Fig. 8) and CheckOTS (Fig. 9) which are part of V1
algorithm run by the sender and the receiver respectively. These predicates (along with
Check) are used by the sender (resp. receiver) to verify the proof πR (resp. πS)) in Σplain

NIP .
The theorem below states the security of our compiler.

Theorem 1. Let (OTR, OTS, OTD) be a semi-honest secure OT protocol, COM be a computationally hid-
ing commitment scheme, COMstat-hide be a statistically hiding commitment scheme, E = (KeyGen,Enc,Dec)
be a CPA secure encryption scheme, H be a family of correlation intractable hash functions with ap-
proximate average case programmability, and (Share, Reconstruct) be a statistically private secret
sharing scheme. Then for parameters m, M, τ, such that m = O(λ), M = O(poly(m, λ)), τ =
2m/9, the protocol Π = (S, R) presented in Fig. 7 securely realizes the FOT functionality.

To prove our Thm. 1, we consider the case of a malicious receiver and the case of a
malicious sender. We simulate the protocol in both cases, then prove through a series of
hybrids that the simulation is indistinguishable from the real-world protocol ΠOT.

24

Sender(s0, s1) Receiver(b)

(com-crs-prvrR, crs-prvrR)← P0(λ)

r-ot1(i)R
$←− {0, 1}λ for i ∈ [m]

For i ∈ [m] : com-r(i)R ← COM(r-ot1(i)R ; γ
(i)
R)

crs-vr f rR ← V0(com-crs-prvrR) msg1 msg1 = (com-crs-prvrR, com-r(i)R }i∈[m])

(com-crs-prvrS, crs-prvrS)← P0(λ)

For i ∈ [m] :

- r-ot1(i)S
$←− {0, 1}λ, r-ot2(i) $←− {0, 1}3λ

- com-r(i)S ← COM(r-ot2(i) ; γ
(i)
S)

msg2 = (crs-vr f rR, com-crs-prvrS,

{r-ot1(i)S , com-r(i)S }i∈[m])
msg2 r-ot1(i) = r-ot1(i)R ⊕ r-ot1(i)S for i ∈ [m]

b(i) = r-ot1(i)[0]

ot(i)1 = OTR(b(i) ; r-ot1(i)) for i ∈ [m]

xR = (OTR, {r-ot1(i)S , com-r(i)R , ot(i)1 }i∈[m])

wR = ({r-ot1(i), r-ot1(i)R , γ
(i)
R }i∈[m])

CRSR, πR = P1(crs-prvrR, crs-vr f rR, xR, wR)

{d(i) = b⊕ b(i)}i∈[m]\A; A = {i}e[i]=1,

crs-vr f rS ← V0(com-crs-prvrS)

msg3 = (CRSR, πR, crs-vr f rS, {ot(i)1 }i∈[m],

Check V1(CRSR, πR) = 1, else abort msg3 {d(i)}i∈[m]\A)

Parse r-ot2(i) = k(i)0 ∥k
(i)
1 ∥r-ot2∗(i)

ot(i)2 = OTS(k(i)0 , k(i)1 , ot(i)1 ; r-ot2∗(i))

xS = (OTS, {ot(i)1 , com-r(i)S , ot(i)2 }i∈[m])

wS = ({(k(i)0 , k(i)1 , ot(i)1 , r-ot2∗(i)), r-ot2(i),

γ
(i)
S }i∈[m]\A)

CRSS, πS ← P1(crs-prvrS, crs-vr f rS, xS, wS)

B = {i}eS[i]=1; Alive = [m] \ (A ∪ B)

(s(i)0)i∈[|Alive|] ← Share(s0, τ),

(s(i)1)i∈[|Alive|] ← Share(s1, τ)

ct
(i)
0⊕d(i)

= k(i)
0⊕d(i)

⊕ s(i)0 for i ∈ Alive

ct
(i)
1⊕d(i)

= k(i)
1⊕d(i)

⊕ s(i)1 for i ∈ Alive

msg4 = ({ot(i)2 }i∈Alive, CRSS, πS,

{ct(i)0 , ct(i)1 }i∈Alive)
msg4 Check V1(CRSS, πS) = 1, else abort

k(i)b = OTD(b(i), r-ot1(i), ot(i)2) for i ∈ Alive

s(i)b = k(i)
b⊕d(i)

⊕ ct
(i)
b⊕d(i)

sb = Reconstruct({s(i)b })

Figure 7: Four Round Oblivious Transfer Protocol Π

25

Predicate: CheckOTR(inp1, inp2, inp)

1. If inp ̸= inp1 ⊕ inp2 output 0. Else output 1.

Figure 8: Preducate for Checking Input to OTR

Predicate: CheckOTS(inp1, inp2, inp)

1. Parse k0∥k1∥r2 = inp2

2. If inp = (k0, k1, inp1, r2) output 1, else output 0

Figure 9: Predicate for Checking Input to OTS

5.2 Simulator for malicious receivers

In Fig. 10 we present the simulator with oracle access to a malicious receiver R∗.
Upon receiving the first round message from the malicious receiver the simulator plays

as an honest sender and sends the corresponding second round messages to the receiver.
Upon receiving the third round message from the receiver, which includes the ot(i)1 mes-
sages, the CRS CRSR, and the proof πR that proves that the ot(i)1 messages were computed
correctly, the simulator first checks that the proof verifies. If not the simulator aborts. Recall
that the proof includes m/3 indices (denoted A) for which the receiver sends the inputs to
the ot(i)1 messages.

The simulator then computes the fourth round message as an honest sender and learns
the indices that will be selected for the sender’s cut and choose (denoted B). Now the goal
of the simulator is to extract the inputs to the ot(i)1 messages sent by the receiver that are in
the remaining “alive” sessions (Alive = [m] \ (A ∪ B)).

To this end, the simulator starts a rewind thread, where the simulator rewinds the re-
ceiver to the beginning of round 2. In each iteration, the simulator first randomly samples a

bit string eR
$←− {0, 1}λ such that m/3 of the bits are 1. Using the approximate average-case

programmability (Def. 10) of the hash family H, the simulator samples a hash function Hk
such that on the inputs used by the receiver in the main thread, the hash function H outputs
eR. The simulator then sends this hash function along with the rest of the round 2 message
that is honestly computed to the malicious receiver. Upon receiving the openings of the ot(i)1
messages that correspond to eR[i] = 1, the simulator stores each valid opening it receives for
the ot(i)1 messages that correspond to the sessions in Alive.

The simulator repeats this until it receives at least 2m/9 openings from the sessions in
Alive. Now the simulator exits the rewind thread and computes bits b̂(i) = d(i) ⊕ b(i). The
input of the malicious receiver is then set as the bit b that appears at least m/9 times in the
extracted b̂(i) bits. The simulator then sends this bit to the FOT functionality and receives

26

Main Thread:

• Upon receiving (com-crs-prvrR, com-r(i)R }i∈[m]) from R∗

– Compute crs-vr f rR, com-crs-prvrS, {r-ot1(i)S , com-r(i)S }i∈[m] as an honest
sender would, and send to R∗

• Upon receiving (CRSR, πR, crs-vr f rS, {ot(i)1 }i∈[m], {d(i)}i∈[m]\A) from R∗

– If V1(CRSR, πR) ̸= 1 abort

– Set Bits = ∅, ctr = 0, and let Alive := [m] \ (B ∪ A)

Rewind Thread:

–
Choose eR

$←− {0, 1}m, such that eR contains m/3 ones, and HR
k ←

Samp((OTR, {com-key(i)R , r-ot1S(i) , com-r(i)R , ot(i)1 , {c(i)R }i∈[m]),

eR) where {c(i)R }i∈[m] ∈ πR, and compute crs-vr f rR using HR
k

– Send (crs-vr f rR, com-crs-prvrS, {r-ot1(i)S , com-r(i)S }i∈[m]) to R∗ and re-

ceive (CRSR, πR, crs-vr f rS, {ot(i)1 }i∈[m], {d(i)}i∈[m]\A))

* If V1(CRSR, πR) ̸= 1 abort

* For every i ∈ Alive that was not observed in a previous
rewind:

· Parse r-ot1(i) = b(i)∥r-ot1∗(i)

· If ot(i)1 = OTR(b(i) ; r-ot1∗(i)) add b(i) to Bits

*
Set ctr = ctr + 1 if ctr = 2λ abort, else if |Bits| < 2m/9, go to
beginning of rewind thread, else proceed

– For each b(i) ∈ Bits compute b̂(i) = b(i) ⊕ d(i)

– Let b be the bit b̂(i) that appears more than τ/2 times.

– Forward b to FOT obtaining sb ∈ {0, 1}λ. Sample s1−b
$←− {0, 1}λ

– Simulate the rest of the protocol as an honest sender using sb and s1−b

Figure 10: SimR∗ : The Simulator of Π for a Malicious Receiver R∗. Hyb1 , Hyb2, Hyb3

27

back the string sb. It then samples an arbitrary string s1−b
$←− {0, 1}λ and simulates the rest

of the protocol as an honest sender would with the strings sb and s1−b.
First, we prove that SimR∗ runs in polynomial time.

Lemma 5. SimR∗ runs in expected time polynomial in λ and m

Proof. Note that outside of the rewind thread, all actions performed by SimR∗ in the main
thread are polynomial-time. Further, all aborts in the main thread are at the same point
and for the same reason that a real-world sender would abort. Assume that the simulator
does not abort with probability p ∈ (0, 1) in the main thread. Within a rewind iteration
note, the simulator only changes how the hash function HR

k is sampled. Now, since HR
k

is sampled efficiently and is statistically indistinguishable from a randomly sampled hash
function, each rewind iteration runs in polynomial time and does not abort with probability
p. Thus we only need to present a bound on the number of rewinds that occur.

The goal of rewinding is to receive enough bits in Alive, specifically 2m/9, such that
the input bit b can be reconstructed. Upon receiving an opening for an index i ∈ Alive for
the first time, if the opening is such that it computes the ot(i)1 message in the main thread,
then add the bit b(i) to Bits. Thus the number of rewinds corresponds to covering 2m/9
indices of Alive. This is a variation of the coupon collector’s problem. The coupon collector’s
problem asks, given m items with equal probability of selection, how many selections with
replacement must be performed before all m have been chosen at least once. The coupon
collector’s problem models the worst-case scenario of our simulator, where at most only one
new index is selected per rewind.

Consider the N to be the number of rewinds required to gather 2m/9 of the indices of
Alive. Then we have N = n1 + . . . n2m/9 where ni is the number of rewinds needed to
obtain the ith new index. The probability of selecting the ith new index is pi =

(2m/9)−i+1
m .

Therefore, we have that the expected value of N is:

E(N) = E(n1, . . . n2m/9) = E(n1) + . . . E(n2m/9) =
1
p1

+ . . . +
1

p2m/9

=
m

2m/9
+

m
2m/9− 1

+ . . .
m
1

= m(
1

2m/9
+

1
2m/9− 1

+ . . . + 1) = m ·H2m/9

Where H2m/9 is the 2m/9th harmonic number, which be approximated to H2m/9 ≈ ln(2m/9)+
γ + 1/(2n) + ∑∞

k=1
B2k

2k(2m/9)2k for the Euler-Mascheroni constant γ ≈ 0.57722 and Bernouli
numbers B2k. Therefore we need approximately m ln(2m/9) + mγ +O(1/m) = O(m ln(m))
rewinds to cover 2m/9 of the indices in Alive. Since the receiver continues with probability
p in each rewind iteration, the expected number of rewinds is O(m ln(m))/p.

We can thus bound the expected running time of the simulator as:

poly(λ, m) · p ·O(m ln m)/p = poly(λ, m) ·O(m ln m) = poly(λ, m)

For our choice of m = O(λ), this is a polynomial in the security parameter and this con-
cludes our analysis.

28

Before proving indistinguishability, we present a helper lemma for the proof system
ΣNIP. Specifically, the proof system is defined with a CRS generated by a trusted party,
however, our OT protocol takes two rounds to generate the CRS. First, we define what it
means to break soundness in the context of our OT protocol. We prove that if ΣNIP is sound,
then our generation of the CRS and subsequent computation of the proof is also sound.

Definition 11. Let badR ⊂ Alive be the set of indices for which CheckOTR(r-ot1(i)S , r-ot1(i)R , r-ot1(i)) ̸=
1

Lemma 6. If ΣNIP is a sound proof system, then Pr[|badR| > m/9] ≤ negl(λ)

Proof. Towards a contradiction, assume that there exists an adversary R∗ such that SimR∗

does not abort and |badR| > m/9. We can then construct a reduction B such that B can
violate the soundness of ΣNIP. Let c be a constant and let Hm be the mth harmonic number.
Define B as follows:

B(CRSR, {key(i)R , ρ
(i)
R }i∈[m]) :

1. Activate R∗(1λ)

2. Simulate as in SimR∗ until receiving the round 3 message (CRS∗R, πR, crs-vr f rS,
{ot(i)1 }i∈[m], {d(i)}i∈[m]\A)).

3. Rewind to set CRS

(a) Rewind to the beginning of round 2

(b) For every (key∗(i)R , ρ
∗(i)
R) ∈ z(i)R ∈ πR that has not been observed, compute the

corresponding r-key∗(i)R .

(c) Set r-key(i)S = (key(i)R ∥ρ
(i)
R)⊕ r-key∗(i)R and store r-key(i)S in CRSKeys

(d) If |CRSKeys| < m go to step (a).

4. Rewind to the beginning of Round 2, and use CRSKeys as {r-key(i)S }i∈[m] to compute
crs-vr f rS.

5. Simulate the rest of the protocol as in SimR∗ , except abort if ctr = c ·m · Hm + 1.

(a) If during the rewind thread we have |badR| > m/9, output (x, πR) to the chal-
lenger

(b) Else, abort.

We know that the reduction runs in strictly polynomial time, because, as we saw in the
proof of Lemma 5, m · Hm is polynomial and therefore c ·m · Hm is polynomial. Further, by
the coupon collectors problem, we have that

Pr[N ≥ c ·m · Hm] ≤
1
c

where N is the number of rewinds to collect all indices. Therefore, our reduction aborts with
probability at most 1/c.

29

Since CheckOTR(r-ot1(i)S , r-ot1(i)R , r-ot1(i)) ̸= 1 for more than m/9 of i, we know that x /∈
L. However, πR must verify, else SimR∗ must have aborted. We have then constructed a
reduction that breaks the soundness of ΣNIP with non-negligible probability, and Pr[[|bad| >
m/9] ≤ negl(λ).

Next we prove indistinguishability through a series of hybrids, beginning from the real-
world protocol ΠOT, making small changes until we reach the simulated protocol. Our
hybrids are as follows:

• Hyb0 The real world protocol

• Hyb1 This is the same as Hyb0, except we rewind as in SimR∗

• Hyb2 This is the same as Hyb1, except that ct(i)
1−b(i)

is computed as k̂(i)
1−b(i)

⊕ s(i)
1−b̂(i)

for a randomly sampled k̂(i)
1−b(i)

• Hyb3 This is the same as Hyb2, except that we sample s1−b randomly. This is exactly

the simulation of the protocol for a malicious receiver SimR∗

Lemma 7. IfH has approximate average case programmability (Def. 10) and ΣNIP is a sound proof
system then Hyb0 is indistinguishable from Hyb1

Proof. Towards a contradiction assume that there exists an adversary R∗ such that R∗ can
distinguish between Hyb0 and Hyb1 with non-negligible probability p(λ)

These hybrids are distinguishable only if SimR∗ aborts when ctr = 2λ, or if the adversary
can distinguish between Hk ← H and Hk ← Samp((OTR, {com-key(i), r-ot1(i)S , com-r(i)R , ot(i)1 ,
c(i)R }i∈[m]), e).

First, we prove that SimR∗ aborts with negligible probability. We consider three events
bad1, bad2, and bad3, defined as follows, which are the only events that would cause ctr ≥ 2λ:

• bad1 : |Bits| < 2m/9 after poly(λ) rewind attempts

• bad2 : The proof πR verifies, but CheckOTR(r-ot1(i)S , r-ot1(i)R , r-ot1(i)) ̸= 1 for more than
m/9 of the opened values in the rewind thread

• bad3 : R∗ never responds in the rewind thread

We know that bad1 occurs with negligible probability since SimR∗ runs in expected poly-
nomial time as shown in Lem. 5. Further, we know that bad2 happens with negligible prob-
ability by the proof of Lem. 6.

Lastly, assume that bad3 occurs with non-negligible probability. The only remaining dif-
ference between Hyb1 and Hyb0 is in the rewind thread where Hk ← Samp((OTR, {com-key(i),
r-ot1S(i) , com-r(i)R , ot(i)1 , c(i)R }i∈[m]), e) for random e where {c(i)}i∈[m] ∈ πR. Therefore, R∗ must

be able to distinguish between Hk ← Samp((OTR, {com-key(i), r-ot1S(i) , com-r(i)R , ot(i)1 , c(i)R }i∈[m]), e)
and Hk ← H.

30

We know that this is not possible, because by the definition of approximate average case
programmability (Def. 10) the two distributions are statistically indistinguishable. Therefore
event bad3 cannot occur with probability greater than negl(λ).

Thus we have that each badi occurs with probability at most negl(λ), and have shown
that Hyb0 and Hyb1 are indistinguishable.

Lemma 8. If (OTR, OTS, OTD) is a secure semi-honest oblivious transfer protocol (Def. 1), E =
(KeyGen,Enc,Dec) is a CPA-secure encryption scheme, and COM is a computationally hiding com-
mitment scheme, then Hyb1 is indistinguishable from Hyb2

Proof. Recall the difference between Hyb1 and Hyb2 is that the ciphertexts are computed
using a randomly sampled k̂(i)

1−b(i)
.

The proof proceeds by a series of hybrids. For an index j ∈ [m], consider the hybrid
Hyb1,j where for all values b(i) ∈ Bits where i ≤ j the ciphertext ct(i)

1−b(i)
= k(i)

1−b(i)
⊕ s(i)

1−b̂(i)

and for i > j we have ct
(i)
1−b(i)

= k̂(i)
1−b(i)

⊕ s(i)
1−b̂(i)

where k̂(i)
1−b(i)

$←− {0, 1}λ.

Note that Hyb1,0 is equivalent to Hyb2, since k̂(i)
1−b(i)

is used for all b(i) ∈ Bits and Hyb1,m

is equivalent to Hyb1 since k(i)
1−b(i)

is used for all b(i) ∈ Bits.
Suppose towards a contradiction that R∗ can distinguish between Hyb1,j−1 and Hyb1,j

by determining that the value committed in com-rS was not used to compute the key k(j)
1−b(j) .

We then construct a reduction B that can violate the hiding of COM. Define B as follows:

B(1λ) :

1. Activate R∗ and simulate as in Hyb1,j−1 up to round 1

2. Query the challenger with (0, r-ot2(j)) and receive com∗

3. Continue to simulate Hyb1,j−1, except:

(a) Abort if ctr = c ·m · Hm + 1

(b) Use com∗ in place of com-r(j)
S

(c) If j ∈ A ∪ B, abort

4. Output whatever R∗ outputs

B aborts when j ∈ A ∪ B, however this only happens with probability 2/3. Further B
aborts if ctr = c · m · Hm + 1, where c is a constant and Hm is the mth harmonic number,
however this occurs with probability at most 1/c. If com∗ is a commitment to r-ot2(j), then
this is exactly Hyb1,j, as the value committed is used to compute the key k(j)

1−b(j) . If instead
com∗ is a commitment to 0, then this is exactly Hyb1,j−1, as the value committed in com∗

is independent of the key k̂(j)
1−b(j) . Therefore we have found an adversary that violates the

hiding of COM with non-negligible probability and have a contradiction.
By the same argument, R∗ cannot distinguish through com-key(j)

S in CRSS or com-r-key(j)
S

in com-crs-prvrS, else we would have a nearly identical reduction.

31

Suppose instead that R∗ can distinguish through c(j)
S ∈ πS. We can then construct a

reductionA that violates the CPA security of the encryption scheme E = (KeyGen,Enc,Dec).
Define A as follows:

A(1λ):

1. Activate R∗(1λ) and simulate as in Hyb1,j−1 until the key key(j) is computed

2. Query the challenger with (0, ((k(j)
0 , k(j)

1 , ot(j)
1 , r-ot2∗(j)), r-ot2(j), γ

(j)
S)) and receive c∗

3. Continue simulating as in Hyb1,j−1, except use c∗ in place of c∗S and abort if ctr =
c ·m · Hm + 1

4. Abort if j ∈ A ∪ B

5. Output whatever R∗ outputs

Again note that although A aborts when j ∈ A ∪ B, this only happens with probabil-
ity 2/3 and ctr = c · m · Hm + 1 with probability at most 1/c. If c∗ is an encryption of
((k(j)

0 , k(j)
1 , ot(j)

1 , r-ot2∗(j)), r-ot2(j), γ
(j)
S), then this is exactly Hyb1,j−1 as k(j)

1−b(j) is encrypted. If

c∗ is an encryption of 0, then this is exactly Hyb1,j, as the key k̂(j)
1−b(j) used to encrypt the

ciphertext ct(j)
1−b(j) is independent from the value encrypted in c∗. Therefore we have found

an adversary A that violates the CPA security of E and have reached our contradiction.
Now consider the event where B (determined by eS) is chosen such that j /∈ A ∪ B (that

is, the jth session is not chosen to be opened) and the bit b(j) observed in the rewinding is in
the set Bits. Note that if this is not true, then Hyb1,j−1 and Hyb1,j are identical, as ct

(j)
1−b(j) is

not part of the final message and therefore not in the view of the adversary. This means an
adversary can only distinguish between Hyb1,j−1 and Hyb1,j when j /∈ A ∪ B occurs. That
is, for any distinguisher D∗:

|Pr[D∗(Hyb1,j−1(λ, s0, s1, b)) = 1]− Pr[D∗(Hyb1,j(λ, s0, s1, b)) = 1]|
= |Pr[D∗(Hyb1,j−1(λ, s0, s1, b)) = 1∧ j /∈ B ∪ A]

−Pr[D∗(Hyb1,j(λ, s0, s1, b)) = 1∧ j /∈ B ∪ A]|

Towards a contradiction, assume that there exists an index j ∈ [m] and a PPT adversary
R∗ such that R∗ can distinguish between Hyb1,j−1 and Hyb1,j with non-negligible proba-
bility p(λ). We construct an adversary R′ such that R′ breaks privacy of the semi-honest
two-round OT protocol (OTR, OTS, OTD).

Define R′ as follows:

32

R′(r-ot1∗(j)):

1. Activate R∗ and execute Hyb1,j−1 honestly until receiving (CRSR, πR, crs-vr f rS,

{ot(i)1 }i∈[m], {d(i)}i∈[m]\A)

2. If j ∈ A: abort.

3. Else, in the rewind thread:

(a) Sample a random eR. If eR[j] = 1, continue, else sample a different eR.

(b) Compute HR
k ← Samp((OTR, {com-key(i), r-ot1(i)S , com-r(i)R , ot(i)1 ,

c(i)R }i∈[m]), eR) where {c(i)R }i∈[m] ∈ πR and use HR
k when computing crs-vr f rS.

(c) Receive the opening r-ot1(j)
R to com-r(j)

R

(d) Sample a random eR such that eR[j] = 0. If not, sample again. Rewind and
compute HR

k ← Samp((OTR, {com-key(i), r-ot1(i)S , com-r(i)R , ot(i)1 ,

c(i)R }i∈[m]), eR) where {c(i)}i∈[m] ∈ πR and use HR
k when computing crs-vr f rS.

(e) Use r-ot1∗(j)
S = r-ot1(j)

R ⊕ r-ot1∗(j)

(f) Upon receiving (CRSR, πR, crs-vr f rS, {ot(i)1 }i∈[m], {d(i)}i∈[m]\A)

(g) Use this thread as the main thread and continue rewinding as in Hyb1,j−1, but
abort if ctr = c ·m · Hm + 1

4. Forward ot(j)
1 to the challenger and receive ot∗2

5. Compute k∗ = OTD(b(j), r-ot1(j), ot∗2), where b(j) is learned through rewinding as in
Hyb1,j−1

6. If j ∈ A ∪ B abort

7. Compute ct
(j)
1−b(j) = k∗ ⊕ s(j)

1−b̂(j) and send the final message to R∗

8. Output whatever R∗ outputs

In the first rewind, R′ is able to force R∗ to use r-ot1∗(j) to compute ot(j)
1 , which is the

randomness expected by the challenger. If j ∈ B ∪ A, then R′ aborts. However, this only
happens with probability 2/3.

In the case where j ∈ Alive (that is, j /∈ A ∪ B), then the string k∗ is either k(j)
1−b(j) or

random k̂(j)
1−b(j) by the definition of semi-honest OT (Def. 1). Therefore, R′ perfectly imitates

Hyb1,j−1 in the case where k∗ = k(j)
1−b(j) and perfectly imitates Hyb1,j in the case where

k∗ = k̂(j)
1−b(j) and shares the same advantage.

So we have constructed a receiver R′ that can violate the privacy of semi-honest OT with
non-negligible probability 1

3 · p(λ). This contradicts our assumption that (OTR, OTS, OTD) is a
semi-honest secure OT protocol, and therefore Hyb1,j−1 and Hyb1,j are indistinguishable.

33

Since Hyb1,0 is equivalent to Hyb2 and Hyb1,m is equivalent to Hyb1, and we have
shown that adjacent hybrids Hyb1,j−1 and Hyb1,j are indistinguishable, we know that Hyb2
is indistinguishable from Hyb1.

Lemma 9. If (Share, Reconstruct) is a statistically private secret sharing scheme, then Hyb2 is
indistinguishable from Hyb3

Proof. The two hybrids only differ in how the ciphertexts ct
(i)
1−b(i)

encrypting s1−b are com-
puted for the last message. Now we consider two cases:

1. Both 0 and 1 appear more than τ/2 times among the b̂(i)

2. Bit b appears more than τ/2 times among the ˆb(i), and bit 1− b appears at most τ/2
times

Case 1 We show that in this case, R∗ cannot reconstruct either s0 or s1. This proves that the
two hybrids are indistinguishable, as R∗ does not learn either string.

Assume that 0 appears τ/2 + n0 times and 1 appears τ/2 + n1 times. Assume the worst
case, where R∗ learns both shares for every other session. That is, for m/3− (τ/2 + n0)−
(τ/2 + n1) sessions, R∗ learns both s(i)0 and s(i)1 .

So we have (τ/2 + n0) + m/3− (τ/2 + n0)− (τ/2 + n1) = m/3− τ/2− n1 shares of s0
and (τ/2+ n1) + m/3− (τ/2+ n0)− (τ/2+ n1) = m/3− τ/2− n0 shares of s1. Recall that
τ, the threshold of our secret sharing scheme, is 2m/9. Therefore we have 2m/9− n1 shares
of s0 and 2m/9− n0 shares of s1, and R∗ cannot reconstruct either string.

Case 2 Let τ/2 + nb be the number of times the bit b appears, and n1−b ∈ [1, τ/2] be the
number of times the bit 1− b appears. Again assume the worst case where R∗ learns both
shares in every other session. So for m/3− (τ/2 + nb)− n1−b sessions, R∗ learns both s(i)0

and s(i)1 .
Therefore R∗ learns τ/2 + nb + m/3− (τ/2 + nb)− n1−b = m/3− n1− b shares of sb,

and n1−b + m/3− (τ/2 + nb)− n1−b = m/3− τ/2− nb = 2m/9− nb shares of s1−b. As in
case 1, 2m/9− nb is less than our secret sharing threshold, and not enough shares for R∗ to
learn s1−b.

We have shown that in both cases, R∗ either learns neither string, or only sb. Therefore
Hyb3 is indistinguishable from Hyb2.

5.3 Simulation for malicious senders

Next, in Fig. 11 we present our simulator SimS∗ for the case of a malicious sender.
The simulator computes the first round message as an honest receiver and sends it to

the sender. Upon receiving the second round message from the sender, the simulator then
computes the CRSR and the proof πR as an honest receiver would. Note that at this point,
the simulator knows which indices (denoted A) are to be opened on behalf of the receiver.
The simulator then randomly samples adjustment bits d(i) for i ∈ [m] \ A. This is in contrast

34

Main Thread:

• Compute (com-crs-prvrR, crs-prvrR)← P0(λ) as an honest receiver would:

– Sample randomness r-ot1(i)R
$←− {0, 1}λ for i ∈ [m]

– Compute com-r(i)R ← COM(r-ot1(i)R ; γ
(i)
R) for i ∈ [m]

• Send (com-crs-prvrR, com-r(i)R }i∈[m]) to S∗, and receive (crs-vr f rR, com-crs-prvrS,

{r-ot1(i)S , com-r(i)S }i∈[m])

– Compute CRSR, {ot(i)1 }i∈[m], πR, crs-vr f rS as an honest receiver would

– Sample d(i) $←− {0, 1} for i ∈ [m]

Send (CRSR, πR, crs-vr f rS, {ot(i)1 }i∈[m], {d(i)}i∈[m]\A) to S∗ and receive

({ot(i)2 }i∈Alive, CRSS, πS, {ct(i)0 , ct(i)1 }i∈Alive)

– If V1(CRSS, πS) ̸= 1, abort

– Else, set Keys = ∅ and ctr = 0 and Alive = [m] \ (B ∪ A)

Rewind Thread

–
Choose eS

$←− {0, 1}m and HS ← Samp((OTS, {r-ot2(i)R , com-r(i)S , ot2}i∈[m],

{c(i)S }i∈[m]\A), eS) and use HS to compute crs-vr f rS

– Send (CRSR, πR, crs-vr f rS, {ot(i)1 }i∈[m], {d(i)}i∈[m]\A) to S∗ and receive

({ot(i)2 }i∈Alive, CRSS, πS, {ct(i)0 , ct(i)1 }i∈Alive)

– If V1(CRSS, πS) ̸= 1, abort

– For every i ∈ Alive that was not observed in a previous rewind where
ot(i)2 = OTS(k(i)0 , k(i)1 , ot(i)1 ; r-ot2(i)), add (k(i)0 , k(i)1) to Keys

– Set ctr = ctr + 1. If ctr = 2λ abort, else if |Keys| < 2m/9 go to beginning
of rewind thread, else proceed

• For each pair of shares (k(i)0 , k(i)1) ∈ Keys

– Compute s(i)0 = k0⊕d(i) ⊕ ct
(i)
0⊕d(i)

and s(i)1 = k1⊕d(i) ⊕ ct
(i)
1⊕d(i)

for (k(i)0 , k(i)1) ∈ Keys

– Compute s0 = Reconstruct(s(i)0) and s1 = Reconstruct(s(i)1)

• Forward (s0, s1) to FOT and output whatever S∗ outputs

Figure 11: SimS∗ The Simulation of Π for a Malicious Sender S∗. Hyb1 , Hyb2

35

with the real-world receiver where the receiver knows its input bit b and computes d(i) =

b(i) ⊕ b, where b(i) are the inputs used in the computed ot(i)1 messages.
The simulator sends CRSR, the proof πR, the ot(i)1 messages, and the corresponding ad-

justment bits d(i) to the sender and receives back the ot(i)2 messages, the CRSS, the proof
πS which includes openings to some of the ot(i)2 messages (the corresponding indices are
denoted as B), and ciphertexts that encrypt shares of the inputs of the sender. The simulator
first checks that the proofs verify, and aborts if this is not the case.

Now the simulator’s objective is to extract the inputs of the ot(i)2 messages that corre-
spond to the Alive = [m] \ (A∪ B) indices. To this end, the simulator starts a rewind thread
where the simulator rewinds the sender to the beginning of round 3. In each rewind itera-

tion the simulator samples a random bit string eS
$←− {0, 1}λ such that m/3 of the bits are 1.

Recall that this bit string eS indicates the set B which is the set of indices for which the sender
sends the inputs to the corresponding ot(i)2 messages. Using the approximate average-case
programmability (Def. 10) of the hash family the simulator samples a hash function HS such
that on input the sender’s input from the main thread, the hash function outputs eS. The
simulator then sends the round 3 message with the sampled hash function and receives
back the round 4 message from the simulator.

Now for each index i in Alive from the main thread that was not observed before, if
eS[i] = 1, the simulator receives the inputs to the ot(i)2 messages, which includes the keys
used to encrypt the shares of input strings s0, s1. The simulator first checks if the received
openings are valid and stores them in a set Keys. The simulator rewinds the sender and
continues until it receives 2m/9 valid inputs to the ot(i)2 messages. At this point, the simu-
lator has extracted the keys with which the sender encrypted the shares of OT input strings
in the main thread. The simulator then exits the rewind thread and computes the shares of
the secret inputs denoted s(i)0 and s(i)1 . The simulator then reconstructs s0 and s1 from these
shares and sends s0, s1 to the FOT functionality then outputs whatever the malicious sender
outputs. This ends the simulation.

First we prove that SimS∗ runs in polynomial time.

Lemma 10. SimS∗ runs in expected time polynomial in λ and m

Proof. All the steps of the simulator before and after the rewinding take place in strict poly-
nomial time. And within the rewinding thread the only difference is how the hash function
is sampled. Therefore an analysis similar to Lem. 5 shows that the number of rewind itera-
tions just corresponds to sampling m/3 indices from [m] \ A until 2m/9 keys for the sessions
in Alive are retrieved. As before we can assume that the simulator aborts with probability
p in the main thread, implying the total number of rewind iterations is O(m ln m)/p which
implies the expected running time for the simulator is poly(λ, m).

We make use of a helper lemma that the generation of the CRS preserves soundness in
the case of a malicious sender.

Definition 12. Let badS ⊂ Alive be the set of indices for which CheckOTS((ot(i)1 ,
r-ot2(i)R), r-ot2(i)S , (k(i)0 , k(i)1 , r-ot2(i))) ̸= 1

Lemma 11. If ΣNIP is a sound proof system, then Pr[|badS| > m/9] ≤ negl(λ)

36

Proof. This proof is very similar to the proof of Lem. 6. Towards a contradiction, assume that
there exists an adversary S∗ such that SimS∗ does not abort and |badS| > m/9. We can then
construct a reduction B such that B can violate the soundness of ΣNIP. Define B as follows:

B(CRSS, {key(i)S , ρ
(i)
S }i∈[m]) :

1. Activate S∗(1λ)

2. Simulate as in SimR∗ until receiving the round 4 message (CRS∗S, πS, crs-vr f rR,
{ot(i)2 }i∈[m], {ct

(i)
0 , ct(i)1 }i∈Alive)).

3. Rewind to set CRS

(a) Rewind to the beginning of round 3

(b) For every (key∗(i)S , ρ
∗(i)
S) ∈ z(i)S ∈ πS that has not been observed, compute the

corresponding r-key∗(i)S .

(c) Set r-key(i)R = (key(i)S ∥ρ
(i)
S)⊕ r-key∗(i)S and store r-key(i)R in CRSKeys

(d) If |CRSKeys| < m go to step (1).

4. Rewind to the beginning of Round 2, and use CRSKeys as {r-key(i)R }i∈[m] to compute
crs-vr f rR.

5. Simulate the rest of the protocol as in SimS∗ but abort if ctr = c ·m ·Hm + 1. If during
the rewind thread we have |badS| > m/9, output (x, πS) to the challenger

6. Else, abort.

We first show that the reduction runs in strictly polynomial time and proceeds with non-
negligible probability. We know by the proof of Lemma 5 that c ·m · Hm + 1 is polynomial.
Further, by the coupon collectors problem, we have that B aborts during the rewind thread
of SimS∗ with probability at most 1/c.

Since CheckOTS(ot(i)1 , r-ot2(i), (k(i)0 , k(i)1 , ot(i)1 , r-ot2∗(i))) ̸= 1 for more than m/9 of i, we
know that x /∈ L. However, πS must verify, else SimS∗ must have aborted. We have then
constructed a reduction that breaks the soundness of ΣNIP with non-negligible probability,
and Pr[[|bad| > m/9] ≤ negl(λ).

We prove indistinguishability through a series of hybrids, beginning from the real-world
protocol, and making small changes until we reach the simulated protocol. Our hybrids are
as follows:

• Hyb0 The real world protocol

• Hyb1 This is the same as Hyb0, except we rewind as in SimS∗

• Hyb2 This is the same as Hyb1, except d(i) is sampled randomly instead of being

computed as d(i) = b⊕ b(i)

37

Lemma 12. Hyb0 is indistinguishable from Hyb1

Proof. The only difference between these two hybrids is that in Hyb1, we rewind as in SimS∗

and abort if there are 2λ rewinds. We consider the following two events, which are the only
events that could cause this:

• bad4 : The proof πS verifies, but CheckOTS(ot(i)1 , r-ot2(i), (k(i)0 , k(i)1 , ot(i)1 ,
r-ot2∗(i))) ̸= 1 for more than m/9 of the opened values in the rewind thread

• bad5 : |Keys| < |Alive| −m/9 after poly(λ) rewinds

If neither event occurs, the hybrids are indistinguishable, as the simulator rewinds <
2λ times and the proof is valid. By Lem. 11 we know that bad4 happens with negligible
probability.

Suppose instead that bad5 occurs. Since SimS∗ runs in polynomial time, we know that
this occurs with negligible probability.

Therefore Hyb1 is indistinguishable from Hyb0.

Lemma 13. If (OTR, OTS, OTD) is a semi-honest secure OT protocol, COM is a computationally hiding
commitment scheme, COMstat-hide is a statistically hiding commitment scheme, and E = (KeyGen,Enc,Dec)
is a CPA secure symmetric key encryption scheme with pseudorandom keys, then Hyb1 is indistin-
guishable from Hyb2

Proof. We proceed through a series of hybrids. For an index j ∈ [m], consider the hybrid

Hyb1,j where for i ≤ j, d(i) = b(i) ⊕ b and for i > j, d(i) $←− {0, 1}. Note that Hyb1,m

is equivalent to Hyb1 as all d(i) = b(i) ⊕ b. Likewise, Hyb1,0 is equivalent to Hyb2 as all

d(i) $←− {0, 1}.
Towards a contradiction, suppose that there exists a PPT adversary S∗ such that S∗ can

distinguish between the two hybrids. Consider the event where j /∈ A, where A is deter-
mined by the output of the CIH Hk. If j ∈ A, then the hybrids are indstinguishable as d(i) is
never sent to S∗. Therefore the adversary can only distinguish when j /∈ A.

Suppose S∗ can distinguish using the message ot(j)
1 . Then, we can construct a reduction S′

that breaks the semi-honest privacy of (OTR, OTS, OTD). Note that Madathil et al. proved that
any OT protocol secure against a semi-honest sender is already secure against a malicious
sender (see proof of Lem. 1 [MOSV22]). Therefore, we consider S′ to be malicious. Define S′

as follows:

38

S′(1λ):

1. Upon receiving message ot∗1 from the challenger, run S∗ and simulate as in Hyb1,j−1

using ot∗1 in the place of ot(j)
1 and abort if ctr = c ·m · Hm + 1

2. If j ∈ A ∪ B, abort.

3. Upon receiving ({ot(i)2 }i∈Alive, CRSS, πS, {ct(i)0 , ct(i)1 }i∈Alive) from S∗

(a) Forward ot(j)
2 to the challenger

(b) Receive challenge b∗

(c) Rewind to round 3, and send S∗ the same message, except replace d(j) with
b⊕ b∗

(d) Receive ({ot(i)2 }i∈Alive, CRSS, πS, {ct(i)0 , ct(i)1 }i∈Alive) from S∗ and output what-
ever S∗ outputs

Since c · m · Hm is polynomial, we know that S′ runs in strictly polynomial time. There
are three cases:

• If j ∈ A ∪ B, S′ aborts. However, this only happens with probability 2/3

• S′ exceeds c ·m ·Hm rewinds and aborts. However this occurs with probability at most
1/c

• If j /∈ A ∪ B, then either b∗ = b(j) or b∗ $←− {0, 1}

– If b∗ = b(j), then we are in Hyb1,j, as d(j) is computed as b(j) ⊕ b

– Else if b∗ $←− {0, 1}, then we are in Hyb1,j−1, as d(j) is the XOR of a random bit
with b, which means d(j) is indistinguishable from a random value itself

Therefore, we have found a receiver that violates the semi-honest privacy of (OTR, OTS, OTD)
with non-negligible probability and have a contradiction.

Suppose instead that S∗ distinguishes using com-r(j)
R by learning the randomness used to

compute ot(j)
1 . We can then build a reduction B that violates the hiding of the commitment

COM. Define B as follows:

39

B(1λ):

1. Query the challenger with (0, r-ot1(j)
R) and receive commitment com∗

2. Activate S∗ and simulate as in Hyb1,j−1 except:

(a) Abort if ctr = c ·m · Hm + 1

(b) Use com∗ in the place of com-r(j)
R

(c) If j ∈ A ∪ B, abort

3. Output whatever S∗ outputs

We note again that B aborts in the case where j ∈ A ∪ B, however this only happens
with probability 2/3. Further B aborts if more than c · m · Hm rewinds occur, but this hap-
pens with probability at most 1/c. If com∗ is a commitment to r-ot1(j)

R , then this is exactly
Hyb1,j as we commit to the randomness used to compute d(j). If, however, com∗ is a com-
mitment to 0, then we are in Hyb1,j−1, as d(j) is computed independently of the randomness
committed. Therefore we have found an adversary that breaks the hiding of COM, and have
a contradiction.

By the same argument, we know that S∗ cannot distinguish by learning the randomness
committed in com-r-key(j)

R , or the key committed in com-key(i)R .
Finally, suppose that S∗ is able to distinguish through c(j)

R ∈ πR. We then construct a
reductionA that violates the CPA security of the encryption scheme E = (KeyGen,Enc,Dec).
Define A as follows:

A(1λ):

1. Activate S∗ and simulate as in Hyb1,j−1 until the key key(j) is computed, but abort
if ctr = c ·m · Hm + 1

2. Query the challenger with (0, (r-ot1(j), r-ot1(j)
R , γ

(j)
R)) and receive challenge c∗

3. Continue simulating as in Hyb1,j−1, except use c∗ in place of c(j)
R and abort if ctr =

c ·m · Hm + 1

4. Abort if j ∈ A ∪ B

5. Output whatever S∗ outputs

Again, note that A aborts in the case where j ∈ A ∪ B, however, this only happens with
probability 2/3. Further, A aborts if the number of rewinds exceeds c · m · Hm, but this
occurs with probability at most 1/c. If c∗ is an encryption of (r-ot1(j), r-ot1(j)

R , γ
(j)
R), then this

is exactly Hyb1,j, as d(j) is computed using the randomness encrypted in c(j)
R . If c∗ is an

encryption of 0, then this is exactly Hyb1,j−1, as d(j) is computed independently of the value
encrypted in c(j). Therefore we have found an adversary A that violates the CPA security of

40

E and have reached a contradiction.
Therefore, in every case, Hyb1,j is indistinguishable from Hyb1,j−1. As we noted, Hyb1,m

is equivalent to Hyb1 and Hyb1,0 is equivalent to Hyb2. Thus Hyb1 is indistinguishable
from Hyb2

References

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communica-
tion, computation and interaction via threshold FHE. In David Pointcheval
and Thomas Johansson, editors, Advances in Cryptology - EUROCRYPT 2012
- 31st Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of
Lecture Notes in Computer Science, pages 483–501. Springer, 2012.

[BFJ+20] Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain, Dakshita Khurana,
and Amit Sahai. Statistical ZAP arguments. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croa-
tia, May 10-14, 2020, Proceedings, Part III, volume 12107 of Lecture Notes in Com-
puter Science, pages 642–667. Springer, 2020.

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and trap-
door hash via correlation intractability for approximable relations. In Daniele
Micciancio and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO
2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Bar-
bara, CA, USA, August 17-21, 2020, Proceedings, Part III, volume 12172 of Lecture
Notes in Computer Science, pages 738–767. Springer, 2020.

[BLV06] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower bounds for non-black-
box zero knowledge. J. Comput. Syst. Sci., 72(2):321–391, 2006.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, CCS ’93, Proceedings of the
1st ACM Conference on Computer and Communications Security, Fairfax, Virginia,
USA, November 3-5, 1993, pages 62–73. ACM, 1993.

[CCG+21] Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and Rafail
Ostrovsky. Oblivious transfer from trapdoor permutations in minimal rounds.
In Kobbi Nissim and Brent Waters, editors, Theory of Cryptography - 19th Inter-
national Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceed-
ings, Part II, volume 13043 of Lecture Notes in Computer Science, pages 518–549.
Springer, 2021.

[CCH+18] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum,
and Ron D. Rothblum. Fiat-shamir from simpler assumptions. IACR Cryptol.
ePrint Arch., page 1004, 2018.

41

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum,
Ron D. Rothblum, and Daniel Wichs. Fiat-shamir: from practice to theory. In
Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June
23-26, 2019, pages 1082–1090. ACM, 2019.

[CCR16] Ran Canetti, Yilei Chen, and Leonid Reyzin. On the correlation intractability
of obfuscated pseudorandom functions. In Eyal Kushilevitz and Tal Malkin,
editors, Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel
Aviv, Israel, January 10-13, 2016, Proceedings, Part I, volume 9562 of Lecture Notes
in Computer Science, pages 389–415. Springer, 2016.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-shamir and
correlation intractability from strong kdm-secure encryption. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I,
volume 10820 of Lecture Notes in Computer Science, pages 91–122. Springer, 2018.

[CDMW09] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Sim-
ple, black-box constructions of adaptively secure protocols. In Omer Reingold,
editor, Theory of Cryptography, 6th Theory of Cryptography Conference, TCC 2009,
San Francisco, CA, USA, March 15-17, 2009. Proceedings, volume 5444 of Lecture
Notes in Computer Science, pages 387–402. Springer, 2009.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodol-
ogy, revisited (preliminary version). In Jeffrey Scott Vitter, editor, Proceedings of
the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas,
USA, May 23-26, 1998, pages 209–218. ACM, 1998.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodol-
ogy, revisited. J. ACM, 51(4):557–594, 2004.

[CGJ+23] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jia-
heng Zhang. Correlation intractability and snargs from sub-exponential DDH.
In Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology -
CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023,
Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part IV, volume 14084
of Lecture Notes in Computer Science, pages 635–668. Springer, 2023.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive
batch arguments for NP from standard assumptions. In Tal Malkin and Chris
Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st Annual Interna-
tional Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021,
Proceedings, Part IV, volume 12828 of Lecture Notes in Computer Science, pages
394–423. Springer, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Snargs for
\mathcal{P} from LWE. In 62nd IEEE Annual Symposium on Foundations of

42

Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 68–
79. IEEE, 2021.

[COSW23] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Hendrik Waldner. List
oblivious transfer and applications to round-optimal black-box multiparty coin
tossing. In Helena Handschuh and Anna Lysyanskaya, editors, Advances in
Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference,
CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part
I, volume 14081 of Lecture Notes in Computer Science, pages 459–488. Springer,
2023.

[DGH+20] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and Daniel
Wichs. Two-round oblivious transfer from CDH or LPN. In Anne Canteaut and
Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II, volume 12106 of Lecture
Notes in Computer Science, pages 768–797. Springer, 2020.

[FMV19] Daniele Friolo, Daniel Masny, and Daniele Venturi. A black-box construction
of fully-simulatable, round-optimal oblivious transfer from strongly uniform
key agreement. In Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptog-
raphy - 17th International Conference, TCC 2019, Nuremberg, Germany, December
1-5, 2019, Proceedings, Part I, volume 11891 of Lecture Notes in Computer Science,
pages 111–130. Springer, 2019.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, vol-
ume 263 of Lecture Notes in Computer Science, pages 186–194. Springer, 1986.

[GJJM20] Vipul Goyal, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Statisti-
cal zaps and new oblivious transfer protocols. In Anne Canteaut and Yuval
Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, May 10-14, 2020, Proceedings, Part III, volume 12107 of Lecture Notes
in Computer Science, pages 668–699. Springer, 2020.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir
paradigm. In 44th Symposium on Foundations of Computer Science (FOCS 2003),
11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 102–113. IEEE Com-
puter Society, 2003.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating com-
putation: interactive proofs for muggles. In Cynthia Dwork, editor, Proceed-
ings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 113–122. ACM, 2008.

43

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing
non-malleable commitments: A black-box approach. In 53rd Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA,
October 20-23, 2012, pages 51–60. IEEE Computer Society, 2012.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In Al-
fred V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, New York, USA, pages 218–229. ACM, 1987.

[GOSV14] Vipul Goyal, Rafail Ostrovsky, Alessandra Scafuro, and Ivan Visconti. Black-
box non-black-box zero knowledge. In David B. Shmoys, editor, Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014,
pages 515–524. ACM, 2014.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions.
In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Sym-
posium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011,
pages 695–704. ACM, 2011.

[Hai08] Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way.
In Ran Canetti, editor, Theory of Cryptography, Fifth Theory of Cryptography Con-
ference, TCC 2008, New York, USA, March 19-21, 2008, volume 4948 of Lecture
Notes in Computer Science, pages 412–426. Springer, 2008.

[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank.
Black-box constructions of protocols for secure computation. SIAM J. Comput.,
40(2):225–266, 2011.

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-
way functions (or: One-way product functions and their applications). In
Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 850–858. IEEE Com-
puter Society, 2018.

[HLR21] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. Fiat-shamir via list-
recoverable codes (or: parallel repetition of GMW is not zero-knowledge). In
Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd An-
nual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June
21-25, 2021, pages 750–760. ACM, 2021.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box
constructions for secure computation. In Jon M. Kleinberg, editor, Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA,
May 21-23, 2006, pages 99–108. ACM, 2006.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In David S. Johnson and Uriel
Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory of Com-
puting, San Diego, California, USA, June 11-13, 2007, pages 21–30. ACM, 2007.

44

[IKSS21] Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan. On
the round complexity of black-box secure MPC. In Tal Malkin and Chris Peik-
ert, editors, Advances in Cryptology - CRYPTO 2021 - 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceed-
ings, Part II, volume 12826 of Lecture Notes in Computer Science, pages 214–243.
Springer, 2021.

[IKSS22a] Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan.
Round-optimal black-box protocol compilers. In Orr Dunkelman and Stefan
Dziembowski, editors, Advances in Cryptology - EUROCRYPT 2022 - 41st Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part I, volume 13275 of
Lecture Notes in Computer Science, pages 210–240. Springer, 2022.

[IKSS22b] Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan.
Round-optimal black-box secure computation from two-round malicious OT.
In Eike Kiltz and Vinod Vaikuntanathan, editors, Theory of Cryptography - 20th
International Conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, Pro-
ceedings, Part II, volume 13748 of Lecture Notes in Computer Science, pages 441–
469. Springer, 2022.

[IKSS23] Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan.
Round-optimal black-box MPC in the plain model. In Helena Handschuh and
Anna Lysyanskaya, editors, Advances in Cryptology - CRYPTO 2023 - 43rd An-
nual International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA,
August 20-24, 2023, Proceedings, Part I, volume 14081 of Lecture Notes in Computer
Science, pages 393–426. Springer, 2023.

[JJ21] Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from sub-
exponential DDH. In Anne Canteaut and François-Xavier Standaert, editors,
Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
October 17-21, 2021, Proceedings, Part I, volume 12696 of Lecture Notes in Com-
puter Science, pages 3–32. Springer, 2021.

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang.
Snargs for bounded depth computations and PPAD hardness from sub-
exponential LWE. In Samir Khuller and Virginia Vassilevska Williams, editors,
STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, pages 708–721. ACM, 2021.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Janos Simon, edi-
tor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May
2-4, 1988, Chicago, Illinois, USA, pages 20–31. ACM, 1988.

[KMO14] Susumu Kiyoshima, Yoshifumi Manabe, and Tatsuaki Okamoto. Constant-
round black-box construction of composable multi-party computation proto-
col. In Yehuda Lindell, editor, Theory of Cryptography - 11th Theory of Cryptogra-

45

phy Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings,
volume 8349 of Lecture Notes in Computer Science, pages 343–367. Springer, 2014.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party compu-
tation. In Matthew K. Franklin, editor, Advances in Cryptology - CRYPTO 2004,
24th Annual International CryptologyConference, Santa Barbara, California, USA,
August 15-19, 2004, Proceedings, volume 3152 of Lecture Notes in Computer Sci-
ence, pages 335–354. Springer, 2004.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation
to the security of fiat-shamir for proofs. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part
II, volume 10402 of Lecture Notes in Computer Science, pages 224–251. Springer,
2017.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert
adversaries. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology
- CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 1–17. Springer, 2013.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party
computation in the presence of malicious adversaries. In Moni Naor, editor,
Advances in Cryptology - EUROCRYPT 2007, 26th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Barcelona, Spain, May
20-24, 2007, Proceedings, volume 4515 of Lecture Notes in Computer Science, pages
52–78. Springer, 2007.

[LP12] Huijia Lin and Rafael Pass. Black-box constructions of composable protocols
without set-up. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances
in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in
Computer Science, pages 461–478. Springer, 2012.

[LV22] Alex Lombardi and Vinod Vaikuntanathan. Correlation-intractable hash func-
tions via shift-hiding. In Mark Braverman, editor, 13th Innovations in Theoretical
Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley,
CA, USA, volume 215 of LIPIcs, pages 102:1–102:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022.

[MOSV22] Varun Madathil, Chris Orsini, Alessandra Scafuro, and Daniele Venturi.
From privacy-only to simulatable OT: black-box, round-optimal, information-
theoretic. In Dana Dachman-Soled, editor, 3rd Conference on Information-
Theoretic Cryptography, ITC 2022, July 5-7, 2022, Cambridge, MA, USA, volume
230 of LIPIcs, pages 5:1–5:20. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2022.

46

[ORS15] Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal
black-box two-party computation. In Rosario Gennaro and Matthew Robshaw,
editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume
9216 of Lecture Notes in Computer Science, pages 339–358. Springer, 2015.

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and programming prfs,
the LWE way. In Michel Abdalla and Ricardo Dahab, editors, Public-Key Cryp-
tography - PKC 2018 - 21st IACR International Conference on Practice and Theory
of Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018, Proceed-
ings, Part II, volume 10770 of Lecture Notes in Computer Science, pages 675–701.
Springer, 2018.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from
(plain) learning with errors. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I,
volume 11692 of Lecture Notes in Computer Science, pages 89–114. Springer, 2019.

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols
from one-way functions. In Omer Reingold, editor, Theory of Cryptography, 6th
Theory of Cryptography Conference, TCC 2009, San Francisco, CA, USA, March 15-
17, 2009. Proceedings, volume 5444 of Lecture Notes in Computer Science, pages
403–418. Springer, 2009.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. IACR Cryp-
tol. ePrint Arch., page 187, 2005.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-
malleability amplification. In 51th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages
531–540. IEEE Computer Society, 2010.

47

	Introduction
	Our Contribution
	Our Techniques

	Related Work
	Preliminaries
	Oblivious Transfer
	Commitment Scheme
	Symmetric Key Encryption
	Correlation Intractability

	Proof of Correct Function Evaluation
	Four-Round Malicious OT from Semi-Honest OT
	Protocol Description
	Simulator for malicious receivers
	Simulation for malicious senders

