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Abstract

Cryptography based on the presumed hardness of decoding codes
– i.e., code-based cryptography – has recently seen increased interest
due to its plausible security against quantum attackers. Notably, of
the four proposals for the NIST post-quantum standardization process
that were advanced to their fourth round for further review, two were
code-based. The most efficient proposals – including HQC and BIKE,
the NIST submissions alluded to above – in fact rely on the presumed
hardness of decoding structured codes. Of particular relevance to our
work, HQC is based on quasi-cyclic codes, which are codes generated
by matrices consisting of two cyclic blocks.

In particular, the security analysis of HQC requires a precise un-
derstanding of the Decryption Failure Rate (DFR), whose analysis
relies on the following heuristic: given random “sparse” vectors e1, e2
(say, each coordinate is i.i.d. Bernoulli) multiplied by fixed “sparse”
quasi-cyclic matrices A1, A2, the weight of resulting vector e1A1+ e2A2

is very concentrated around its expectation. In the documentation, the
authors model the distribution of e1A1 + e2A2 as a vector with inde-
pendent coordinates (and correct marginal distribution). However, we
uncover cases where this modeling fails. While this does not invalidate
the (empirically verified) heuristic that the weight of e1A1 + e2A2 is
concentrated, it does suggest that the behavior of the noise is a bit more
subtle than previously predicted. Lastly, we also discuss implications
of our result for potential worst-case to average-case reductions for
quasi-cyclic codes.
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1 Introduction

In light of recent calls for post-quantum secure cryptography – i.e., cryp-
tography that is secure in a world with quantum computers – code-based
cryptography has recently seen a growth in interest as a prominent candidate
for quantum-safe cryptography. In particular, all three remaining finalists
in the 4th round of NIST competition are code-based [Agu+22a; Agu+22b;
Alb+22]. Informally, code-based cryptographic schemes are those whose
security can be reduced to the conjectured hardness of decoding linear codes
under the Hamming metric.

More concretely, the quintessential hard problem for code-based cryptography
is the decoding problem (also sometimes called learning parity with noise
(LPN)), which asks one to recover s from the input (A, sA + e),1 where
A ← Fn×m

2 and s ← Fn
2 are uniformly distributed, and e ∈ Fm

2 is a noise
vector where each ei is an independent Bernoulli variable (i.e., it is 1 with
probability p and 0 with probability 1− p).2

This problem inspired the closely related learning with errors (LWE) problem,
which is at the core of lattice-based cryptography. Here, the noise e is sampled
differently, typically as a (rounding of) a Gaussian random variable (one is
also required to work over a large field).

When constructing public-key cryptography from either LPN or LWE, the
matrix A always forms (a part of) the public key. Thus, one is required to
publish at least nk field elements: this quadratic lower bound on the public-
key size often renders these schemes uncompetitive in terms of efficiency.
To remedy this situation, it has been proposed to instead sample structured
matrices A: for such matrices, it is still plausible (and widely believed) that
(quantum) algorithms cannot efficiently solve the relevant decoding problem;
however, their structure allows for a much more succinct representation,
ideally with only n field elements. This is precisely the approach taken by
many NIST submissions [Agu+22a; Agu+22b]. In particular, these schemes
are based on quasi-cyclic codes, which we now introduce.

Quasi-cyclic codes. A quasi-cyclic code is a code that is generated by a
matrix composed of multiple blocks of circulant submatrices, i.e., matrices
such that each row is a circular shift of its first row. Consequently, each

1Technically, we are describing the search version of LPN. For cryptographic purposes
a decision variant is often required, which states that given A distinguishing sA+ e from
a uniformly random vector is hard. However, due to a search-to-decision reduction [FS96],
they are polynomially equivalent.

2In fact, for technical reasons, it is often easier to consider LPN as an oracle problem,
as we do later. The complexity of the two variants are polynomially related, so they are
interchangeable for our purposes.
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submatrix can be represented by storing only its first row. For instance, in
quasi-cyclic codes of rate 1/2, only 2n field elements need to be stored.

One important advantage of quasi-cyclic codes in cryptographic applications
is their polynomial representation. Specifically, let R def

= Fq[X]/(Xn − 1). A
circulant matrix of the form

Ma
def
=

⎛⎜⎜⎜⎜⎜⎜⎝
a0 a1 . . . . . . an−1

an−1 a0 . . . . . . an−2
...

. . . . . .
...

...
. . . . . .

...
a1 a2 . . . an−1 a0

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Fn×n
q

represents the endomorphism P (X) ∈ R ↦→ a(X)·P (X) ∈ R in the monomial
basis, where a(X) =

∑︁n−1
i=0 aiX

i.

For example, an instance (A, sA+ e) where A is of the form

A
def
=

⎛⎜⎝Ma1,1 . . . Ma1,r
...

. . .
...

Maℓ,1 . . . Maℓ,r

⎞⎟⎠
can be compactly represented by a collection of r samples of the form
(a, ⟨s,a⟩ + e), where a is a vector of ℓ polynomials in R, and ⟨s,a⟩ =∑︁ℓ−1

i=0 si(X) · ai(X). For cryptographic applications, it is common to consider
the case where ℓ = 1, resulting in samples of the form (a, a · s+ e), where
a ∈ R.

Such quasi-cyclic codes are employed in the NIST submissions HQC [Agu+22b]
and BIKE [Agu+22a], both of which have advanced to the fourth round of
the post-quantum cryptography standardization process.

Analysis of noise In the analysis of error vector distribution of HQC
[Agu+22b, par. 2.4], one requires an understanding of the product of polyno-
mials t(X) and R(X), where t(X) ∈ F2[X]/(Xn − 1) is a fixed polynomial
and R(X) is a polynomial whose coefficients are independently Bernoulli
distributed. In fact, they require the analysis of two independent copies of
such products e(X)

def
= t1(X)R1(X) + t2(X)R2(X). To make the analysis

tracetable, the authors make the simplifying assumption that the coefficients
of this e(X) are independent.

In this work we reconsider this assumption. To set up our result, we quickly
introduce some notation. We write X ← Ber(ω) to denote a F2-valued
random variable such that Pr[X = b] = 1+(−1)b2−ω

2 .3

3Below, we justify this parametrization for the Bernoulli random variable.
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Theorem 1.1 (Main Theorem (Informal); see Theorem 3.4). Let t(X) ∈
F2[X]/(Xn − 1) be a fixed polynomial with τ nonzero coefficients, and
let R(X) =

∑︁n−1
i=0 RiX

i be such that each Ri ← Ber(ω) independently.
Let I(X) =

∑︁n−1
i=0 IiX

i where each Ii ← Ber(τω) independently. Assum-
ing ω ≥ Ω(log n), the statistical distance between t(X)R(X) and I(X) is
Ω(
√
n2−2ω).

We note that, by an application of the Piling-up lemma (Lemma 2.1), it
follows that t(X)R(X) and I(X) share the same marginal distribution for
each coordinate: i.e.,, for each 0 ≤ i ≤ n− 1 and b ∈ F2 we have Pr[(tR)i =

b] = 1+(−1)b2−ω

2 = Pr[Ii = b]. Hence, the “source” of the statistical distance is
the lack of independence between the coordinates of t(X)R(X). Furthermore,
we remark that [Agu+22b, par 2.4] considers (in our parametrization) ω =
Θ(log n), i.e., the lower bound is indeed met.

Now, note that this does not directly invalidate the modelling of HQC: there,
they consider two independent polynomials t1(X)R1(X) and t2(X)R2(X),
and then model their sum. While we cannot invalidate this modelling (and
in fact, we suspect it might in most cases be valid), we do point out some
cases where the modelling fails:

• Suppose ⟨t1, t2⟩ ⊊ F2[X]/(Xn − 1), that is the ideal generated by the
noise does not span the entire space. Then t1(X)R1(X) + t2(X)R2(X)
can never be statistically close to a Cartesian product of Bernoulli
polynomials, as they do span the entire space. Under some reasonable
assumptions polynomials of odd weight are invertible, so in practice
this case is easy to avoid.

• As an extreme case, if t1(X) = t2(X) =: t(X), then t1(X)R1(X) +
t2(X)R2(X) = t(X)(R1(X) +R2(X)), and since R1 +R2 can again be
modelled by an independent Bernoulli polynomial, Theorem 3.4 applies.

• Suppose now that the support sets of t1 and t2 (i.e., the indices of
the nonzero coefficients) are both in arithmetic progressions – i.e., sets
of the form {ax+ b (mod n) : x ∈ {0, 1, . . . , τ − 1}} – with the same
common difference a. Then we can still show a nontrivial lower bound
on the statistical distance.

For less “structured” cases of t1, t2 (or even, say, t1, . . . , ts with s ≥ 2) we
conjecture that such a gap in the statistical distance does not persist.

Related independence heuristic in cryptography The question of the
independence of marginals of the distribution of a product of polynomials
is not restricted to the analysis of code-based cryptosystems. In particular,
a similar assumption has also been made in lattice-based cryptography to
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analyse the growth of the noise in the context of fully hommomorphic en-
cryption (FHE) [Chi+20, Assumption 3.11]. Nevertheless, recent works have
began to suggest that this did not actually hold [Bia+23; MP24], which led to
underestimating this noise growth. Our results align with those observation.

1.1 Overview of Techniques

In order to lower bound the statistical distance, we in fact find it easier to
work with the Kullback-Leibler (KL) divergence between the two distributions.
Pinsker’s inequality shows that these two quantities are intimately related;
however, as we are seeking a lower bound on the statistical distance, this
inequality is not directly applicable for our purposes. Fortunately, under
mild “regularity” conditions (namely, the ratio between the two considered
probability distributions is never too large nor too small), we can apply a
“reverse” Pinsker’s inequality [Bin19]. As these regularity conditions hold
for our distributions of interest (see Section 3.2), we can focus on the KL
divergence.

We begin with a convenient lemma that may be folklore, but for lack of a
suitable reference (and because we believe it might be of independent interest)
we provide a proof (Lemma 3.4): namely, that if Q and P are distributions
over an n-fold Cartesian product with matching marginal distributions and
Q follows a product distribution (i.e., its coordinates are independent), then
the KL-divergence D(P∥Q) = H(Q)−H(P ), where H(·) is the (Shannon)
entropy of the distributions. For our purposes, P denotes the distribution of
t(X)R(X) and Q denotes the distribution of I(X), where we identify their
support F2[X]/(Xn−1) with Fn

2 via the natural isomorphism. Hence, as H(Q)
is easy to compute (being a Cartesian product of Bernoulli distributions), we
focus on upper bounding H(P ).

Here, we can consider two cases. Firstly, if t(X) happens to not be invert-
ible, then already t(X)R(X) ∈ ⟨t(X)⟩ ⫋ F2[X]/(Xn − 1), where ⟨t(X)⟩ =
{t(X)a(X) : a(X) ∈ F2[X]/(Xn−1)} is the ideal generated by t(X). That is,
P is distributed over a strict subset of F2[X]/(Xn−1) size at most 2n−1; this
already guarantees a H(P ) ≤ n− 1≪ H(Q) for our parameters of interest.

Otherwise, t(X) is invertible. Then, it naturally follows that H(P ) =
H(R(X)), i.e., just the distribution of R(X). Indeed, multiplying by t(X)
is then a bijection from F2[X]/(Xn − 1) to itself, so it does not affect the
entropy. And we can again easily compute H(R(X)): it is again a Cartesian
product of Bernoulli distributions! That is, we can conclude

H(Q)−H(P ) = n(h̃(τω)− h̃(ω)) ,

where h̃(x) is the entropy of a Ber(x) random variable, and we recall τ is the
number of nonzero coefficients of t(X). To conclude our desired theorem, it
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suffices to lower bound h̃(τω)− h̃(ω), which we do by expanding the Taylor
series representation of h̃.

Next, we consider cases where we can understand the entropy of t1R1 + · · ·+
tsRs, where t1, . . . , ts are fixed polynomials and R1, . . . , Rs are independent
Bernoulli polynomials (i.e., their coefficients are sampled independently). To
make progress in this case, we write t1R1 + · · ·+ tsRs =

∑︁
iCiX

i and bound
the entropy via a sum over roughly n/2 pairwise entropies H(Ci, Cj). The
formula for the joint distribution of Ci and Cj is not too difficult to obtain
(and in fact has been obtained by prior work [PGS16]), and one can observe
that the joint entropies H(Ci, Cj) are small if for many of the tℓ’s, many of
its nonzero coefficients overlap with many nonzero coefficients of Xj−itℓ. If
t1, . . . , ts are all of the form

∑︁τ−1
i=0 Xa·i+b where a ∈ Z∗

n and b ∈ Zn (i.e., the
nonzero coefficients form an arithmetic progression) we can show that the
entropy bound will indeed be quite small.

1.2 Future Directions

We conclude the introduction with some directions that we leave open for
future work.

Concentration of noise weight. In this work, we provided an analysis
of t(X)R(X) – the product of a fixed polynomial and an i.i.d. Bernoulli
polynomial – and showed that it is “far” from the distribution of an i.i.d.
Bernoulli polynomial. As discussed above, this has implications for code-based
cryptosystems such as HQC, where in order to allow for successful decoding
it is important that the weight of the noise t1(X)R1(X) + t2(X)R2(X) be
tightly concentrated around its expected value. While such a concentration
naturally follows if the coordinates were indeed independent, but as we
showed here in some cases that does not hold. However, this does not itself
disprove the assertion that the weight is concentrated, and indeed empirical
evidence suggests that the weight is sufficiently concentrated. Additionally,
prior work [Kaw24] already gave some concentration bounds (in this case, via
Chebyshev’s inequality). We leave it as an open problem to provide further
theoretical evidence for the concentration of this weight.

Potential for worst-case to average-case reduction? For cryptographic
purposes, it is of course vital that the hardness assumptions hold for average-
case problems : namely, it is hard to solve some computational problem (such
as the decoding problem) when the instances are sampled randomly. However,
from a complexity-theoretic perspective we have a much firmer theory of the
hardness of worst-case problems. That is, we have a more mature theory of
which problems are hard when the instances for a given algorithm are chosen
adversarially.
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In the case of LWE, Regev [Reg05; Bra+13] famously showed that the average-
case LWE problem can be reduced to certain worst-case problems on lattices.
Inspired by this, Brakerski et al. [Bra+19] recently introduced a worst-case to
average-case reduction for codes: namely, a reduction from the classic worst-
case decoding problem where A, s and e are adversarially chosen, with the
promise that e has Hamming weight at most τ . One can imagine generalizing
this to the quasi-cyclic case, as was successfully done in the case of lattices
(the analogous problem there is typically termed Ring-LWE). Here, if one
works with a rate 1/s quasi-cyclic code the natural reduction strategy takes
as input a noisy codeword (a1(X)m(X) + t1(X), . . . , as(X)m(X) + ts(X))
(with the sum of the weights of the noise vectors ti being at most τ), and
then produces “Ring-LPN” like samples by sampling a “smoothing” vector
(R1(X), . . . , Rs(X)) and considering(︄

s∑︂
i=1

ai(X)Ri(X),

(︄
s∑︂

i=1

ai(X)Ri(X)

)︄
m(X) +

s∑︂
i=1

ti(X)Ri(X)

)︄
.

At the very least, this requires us to analyze the distribution
∑︁s

i=1 ti(X)Ri(X),
as we undertake in this work.4 Furthermore, for the standard Ring-LPN as-
sumption, one must have

∑︁s
i=1 ti(X)Ri(X) close to an independent Bernoulli

polynomial. Our work points out that at least some structural assumptions
must be made on the vectors t1, . . . , ts: for example, if they are all equal, then
this reduction is doomed to fail as

∑︁s
i=1 ti(X)Ri(X) is necessarily far from

an independent Bernoulli polynomial. Furthermore, if each vector t1, . . . , ts
form an arithmetic progression with the same common difference, we can also
show that

∑︁s
i=1 ti(X)Ri(X) is far from an independent Bernoulli polynomial.

When is statistical distance small? We suspect that, given appropri-
ate assumptions,

∑︁s
i=1 ti(X)Ri(X) is statistically close to an independent

Bernoulli polynomial. Recall these assumptions are equivalent to the condi-
tions such that the entropy

H

(︄
s∑︂

i=1

ti(X)Ri(X)

)︄

is sufficiently high. While we have found conditions on the noise that ensure
that this entropy is low, we currently do not know any conditions that yield
a high entropy. In general, computing the entropy of the sum independent
random variables is hard, refer for example to [Tao10; GMT24]. To the best
of our knowledge, computing the entropy of this polynomial in general is an
open problem.

4More precisely, we make a step assuming one is choosing the Bernoulli distribution to
smooth. Other choices could be made, but we view this as a natural first step.
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The conditions for which the entropy H(
∑︁s

i=1 ti(X)Ri(X)) is known to be
small have an important caveat: the relevant worst case decoding problem

(a1(X)m(X) + t1(X), . . . , as(X)m(X) + ts(X))

is in fact easy. If all noise vector vectors are identical, then we can de-
code (a1(X)m(X) + t(X), a2(X)m(X) + t(X)). By computing the difference
((a1(X) + a2(X))m(X)) it is easy to decode to m(X), if a1(X) + a2(X) is
invertible. Decoding is also easy when the noise is guaranteed to be an arith-
metic progression. As the number of arithmetic progressing noise vectors is
polynomial (when s is fixed), it is easy to brute force all possible noise vectors.
We remain especially interested in finding the entropy H(

∑︁s
i=1 ti(X)Ri(X))

for cases where the worst-case problem is assumed to be hard.

2 Preliminaries

General notation. For positive integer n, we write [n] = {1, 2, . . . , n}.

We choose a (somewhat) nonstandard definition for the Bernoulli random
variable: for ω ∈ [0,+∞], we say x← Ber(ω) if x ∈ F2 and

Pr[x = b] =

{︄
1−2−ω

2 b = 1
1+2−ω

2 b = 0

In other words, ω is the log of the bias of the Bernoulli. For positive integer
n we let Ber(ω)⊗n to denote a vector (x1, . . . , xn), where each xi ← Ber(ω)
independently. We sometimes abuse notation and write R(X)← Ber(ω)⊗n

to mean that R(X) =
∑︁n−1

i=0 RiX
i and each Ri ← Ber(ω). We choose this

parametrization as the statement of the piling-up lemma – which determines
the distribution of the sum modulo 2 of Bernoulli random variables – becomes
very simple.

Lemma 2.1 (Piling-up lemma). Let X ← Ber(ωx) and Y ← Ber(ωy) be
independent random variables. Then X + Y ← Ber(ωx + ωy).

For distributions P and Q over Ω, we use the following notation for information-
theoretic quantities:

H(P )
def
=
∑︂
x∈Ω

P (x) log(1/P (x)) (entropy)

D(P∥Q)
def
=
∑︂
x∈ω

P (x) log(P (x)/Q(x)) (Kullback-Leibler divergence)

∆tv(P,Q)
def
=

1

2

∑︂
x∈ω
|P (x)−Q(x)| (statistical distance)
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For convenience, we abuse notation by writing random variables instead of
the distribution of these random variables. For example, when X ← P , we
write H(X) instead of H(P ).

For the binary entropy we write h(x)
def
= −x log(x) − (1 − x) log(1 − x) for

the binary entropy. We additionally write h̃(ω) for the entropy of a Ber(ω)
random variable, so

h̃(ω)
def
= h

(︃
1− 2−ω

2

)︃
.

Furthermore, we write

p(ω)
def
=

1− 2−ω

2
,

for the probability of sampling 1 in the distribution Ber(ω).

3 Analysis

The general goal of this article is to analyze the distribution of t(X)R(X).
Here t(X) is some fixed polynomial in F2[X]/(Xn−1), and R(X)← Ber(ω)⊗n.
Specifically, we want to know when the coefficients of this polynomial are close
to independent. First, we give the marginal distribution of these coefficients,
which is certainly folklore, but we state as a lemma for future convenience.

Lemma 3.1. Let Pn := F2[X]/(Xn − 1) be the polynomial quotient ring.
Let t ∈ Pn be a fixed polynomial, let R← Ber(ω)⊗n be a random variable.

Write (tR)i for the coefficient before Xi so

tR =

n−1∑︂
i=0

(tR)iX
i.

Then for all k in {0, . . . , n− 1}

(tR)k =

n−1∑︂
j∈{0,...,n−1}

tk−j=1

Rj ,

where for convenience, computations in the indices are modulo n.

Proof. The lemma follows from a simple rewriting of the polynomial

9



tR =

n−1∑︂
i=0

n−1∑︂
j=0

tiRjX
i+j

=
n−1∑︂
k=0

(
n−1∑︂
j=0

tk−jRj)X
k (let k = i+ j)

=
n−1∑︂
k=0

⎛⎜⎜⎝ n−1∑︂
j∈{0,...,n−1}

tk−j=1

Rj

⎞⎟⎟⎠Xk.

From this lemma we can easily compute the marginal distributions of each
coefficient.

Lemma 3.2. Let R and t as in Lemma 3.1. Then

(tR)k ← Ber(∥t∥ω)

Proof. From Lemma 3.1 it follows for all k ∈ {0, . . . , n− 1} that

(tR)k =
n−1∑︂

j∈{0,...,n−1}
tk−j=1

Rj .

Therefore, (tR)k is the sum mod 2 of ∥t∥ independent Bernoulli variables.
The piling-up lemma (Lemma 2.1) gives us that (tR)k ← Ber(∥t∥ω).

Now Lemma 3.2 perfectly characterizes the marginal distribution of the
coefficients Rt. However, this lemma does not imply that Rt← Ber(∥t∥ω)⊗n.
This statement would hold if all the coefficients of Rt were independent.
Unfortunately, the coefficients are not independent. Different coefficients of
Rt depend on the same coefficients in R. Specifically the intersection between

{j ∈ {0, . . . , n− 1} | tk−j = 1} ∩
{︁
j ∈ {0, . . . , n− 1} | tk′−j = 1

}︁
coefficients in R may very well be non-empty creating a dependence between
(Rt)k and (Rt)k′ .

One property we can immediately infer from the marginal distribution is the
expectation.

Lemma 3.3 (Expectation of |tR|). Let t, R ∈ F2[X]/(Xn−1) with t fixed
and R← Ber(ω)⊗n, then

E[|tR|] = n · 1− 2−∥t∥ω

2
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Proof. The weight |tR| is the sum of the coefficients of tR. Then we can
use the linearity of the expectation to compute the sum of the expectations
in Z. Note the addition here is defined over R, different from the previous
computations where addition was defined over F2. Because every (tR)i ←
Ber(∥t∥ω)

E[|tR|] = E

[︄
n−1∑︂
i=0

(tR)i

]︄

=
n−1∑︂
i=0

E[(tR)i]

= n · 1− 2−∥t∥ω

2
.

Because the coefficients are dependent, many common methods to analyze
the probability that the weight |tR| is close to the expectation do not apply.
In [Kaw24] an analysis is provided showing that the |tR| is indeed somewhat
concentrated around its mean (essentially by analyzing the variance of |tR|
and then applying Chebyshev’s inequality).

However, this dependence between the coefficients (tR)i turns out to be
significant, at least in the sense that the statistical distance between tR and a
Bernoulli distribution will be non-negligible. First let us give some necessary
conditions for tR to look like a Bernoulli distribution. A Bernoulli distribution
will reach every polynomial with non-zero probability. Specifically there is a
non-zero probability that (tR)(X) = 1, so t must be invertible in Pn.

So it is necessary for t(X) to be invertible, if t(X)R(X) should look like a
Bernoulli distribution. If R(X) is unbiased enough, then t(X)R(X) will look
like a Bernoulli distribution. In the extreme case: if R(X) is uniform over
F2[X]/(Xn− 1), then t(X)R(X) will also be uniform. In Theorem 3.1 below,
we discuss how low the bias of R(X) can be for t(X)R(X) to look like a
Bernoulli distribution.

In order to analyze the statistical distance between t(X)R(X) and a inde-
pendent Bernoulli polynomial, as mentioned in the introduction we prefer
to analyze the KL-divergence, which the following lemma states has a rela-
tively simple form. This result is quite likely folklore, but for lack of a good
reference, we provide a proof.

Lemma 3.4. Let P : X → [0, 1] be a discrete distribution over X = X1 ×
. . .×Xn, with P1, . . . Pn the marginal distributions. Define

Q
def
= P1 ⊗ . . .⊗ Pn
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the distribution, such that the marginal distributions of Q and P agree (so
Qi = Pi), and the marginal distributions of Q are independent. Then

D(P∥Q) = H(Q)−H(P ).

Proof. It is a well-known fact that we can write the KL-divergence as

D(P∥Q) =
∑︂
x∈X

P (x) log(P (x)/Q(x))

=
∑︂
x∈X

P (x) log(P (x))−
∑︂
x∈X

P (x) log(Q(x))

= H(P : Q)−H(P ).

Where H(P : Q) is defined to be the cross-entropy −
∑︁

x∈X P (x) log(Q(x)).
We only need to show the equality H(P : Q) = H(Q). To demonstrate this,
it is convenient to introduce a random vector X = (X1, . . . , Xn) such that
Pr[X = x] = P (x) for all x ∈ X . We also write X̸=k := X1 × · · · × Xk−1 ×
Xk+1× · · · ×Xn, i.e., it is the cartesian product of all the Xi’s except Xk. We
then define the notation

P ̸=k|k(x ̸=k|xk) := Pr[X̸=k = x ̸=k|Xk = xk]

where X̸=k = (X1, . . . , Xk−1, Xk+1, . . . , Xn), x ̸=k ∈ X̸=k and xk ∈ Xk.

We can now derive

H(P : Q)

=
∑︂
x∈X

P (x1, . . . , xn) log(1/Q(x1, . . . xn))

=
∑︂
x∈X

P (x1, . . . , xn)
n∑︂

k=1

log(1/Qk(xk)) (as Q1, . . . Qn independent)

=
n∑︂

k=1

∑︂
xk∈Xk

Pk(xk) log(1/Qk(xk))
∑︂

x ̸=k∈X ̸=k

P ̸=k|k(x ̸=k | xk) (def. conditional prob.)

=
n∑︂

k=1

∑︂
xk∈X

Pk(xk) log(1/Qk(xk)) (sum prob. is 1)

=

n∑︂
k=1

∑︂
xk∈X

Qk(xk) log(1/Qk(xk)) (as Pk = Qk)

=
n∑︂

k=1

H(Qk) (def. entropy)

= H(Q) (as Q1, . . . Qn independent)

12



The following theorem is now a simple consequence of the above lemma.

Theorem 3.1 (Dependence of tR). Let t(X), R(X) ∈ F2[X]/(Xn − 1)
with an invertible t fixed and R ← Ber(ω)⊗n. Define I ∈ Fq[X]/(Xn − 1)
with I ← Ber(∥t∥ω). In other words the coefficients of I are independent,
and have the same marginal distribution as the coefficients of (tR)(X). Then

D(tR∥I) = n
(︂
h̃(∥t∥ω)− h̃(ω)

)︂
.

Proof. This statement is a simple consequence of Lemma 3.4. The entropy
H(Ber(ω)) = h̃(ω). So, the entropy of copies is H(I) = nh̃(∥t∥ω). As t is
invertible we now that H(tR) = H(R) = nh̃(ω). In total

D(tR∥I) = H(I)−H(tR).

This theorem gives an exact analysis of the KL-divergence between tR and n
independent Bernoulli variables. Recall that for the purpose of our reduction
tR needs to look like a Bernoulli distribution for some parameters. So the
main question is: what parameters can we pick such that this divergence
D(tR∥I) is negligible?

As a sanity-check, we discuss the application of this theorem to some simple
cases. Suppose ω →∞, then the distribution R will converge to the uniform
distribution. Furthermore, tR will also be uniform, so all the coefficients will
be independent. In the theorem we will have h̃(ω) ≈ h̃(∥t∥ω) ≈ 1. So

D(tR∥I) = n(h̃(∥t∥ω)− h̃(ω)) ≈ 0.

Another extreme case is ∥t∥ = 1, so t = Xk for some k ∈ {0, . . . , n − 1}.
Then multiplying by t would be equivalent to shifting the coefficients. The
shift of independent Bernoulli variables still results in independent Bernoulli
variables. As R← Ber(ω) then tR← (Ber(ω)) with all the (tR)i coefficients
completely independent. In the theorem D(tR∥I) = n(h̃(1ω)− h̃(ω)) = 0.

When ∥t∥ is small or ω is big, the approximation Rt← Ber(∥t∥ω) is reasonable.
On the other hand when ω is small but ∥t∥ is quite big then h̃(∥t∥ω)− h̃(ω)
becomes big. This case is exactly when there is not enough entropy in R for
all the (tR)i coefficients to be independent.

In practice, the noise is the sum of s copies of tR, so we need to analyze s
copies of this product

t1R1 + . . .+ tsRs,

with R1, . . . , Rs ← Ber(ω)n independently. Here the total error weight
relevant for the decoding problem is

τ = ∥t1∥+ . . .+ ∥ts∥.

For simplicity, we will first focus on the analysis of one copy, D(tR∥I).

13



3.1 Approximation for divergence of one product

To give a stricter bound on when the divergence D(tR∥I) is small we need a
lemma to approximate h̃(ω). This approximation follows from a standard use
of Taylor’s theorem and may be folklore, but for lack of a suitable citation
we provide a proof.

Lemma 3.5 (Approximation of h̃(ω)). Let ω > 0 we have that

h̃(ω) = 1− 2−2ω

ln(2)
+O(2−4ω).

Proof. The proof follows from expanding the definition of h̃, and performing
a Taylor expansion on the logarithm.

h̃(ω) = h

(︃
1− 2−ω

2

)︃
= −1− 2−ω

2
log

(︃
1− 2−ω

2

)︃
− 1 + 2−ω

2
log

(︃
1 + 2−ω

2

)︃
= −1− 2−ω

2
(log(1− 2−ω)− 1)− 1 + 2−ω

2
(log(1 + 2−ω)− 1)

= 1− 1

2

(︃
(1− 2−ω) log(1− 2−ω)− (1 + 2−ω) log(1 + 2−ω)

)︃
.

We compute the Taylor expansion of (1 ± x) log(1 ± x). Because of the
convention of using log base 2, we get an additional factor of 1/ ln(2) in front
of the usual Taylor series of the natural logarithm.

(1 + x) log(1 + x) =
1

ln(2)

(︃
+x+

x2

2
− x3

6

)︃
+O(x4)

(1− x) log(1− x) =
1

ln(2)

(︃
−x+

x2

2
+

x3

6

)︃
+O(x4)

Rather than just the asymptotic behavior, we would also like to get an explicit
lower bound on h̃(ω). Using Taylor’s theorem we can compute an explicit
formula for approximation error.

Note that the fourth derivatives of (1 + x) log(1 + x) and (1− x) log(1− x)
are

d4

dx4
(1 + x) log(1 + x) =

2

ln(2)(x+ 1)3

d4

dx4
(1− x) log(1− x) = − 2

ln(2)(x− 1)3

14



Filling in Taylor’s theorem gives that for some ξ+, ξ− ∈ [0, 2−ω], the errors
are of form

ε+ := (1 + x) log(1 + x)− 1

ln(2)

(︃
+x+

x2

2
− x3

6

)︃
=

ξ4+
12 ln(2)(1 + ξ+)3

= O(2−4ω)

ε− := (1− x) log(1− x)− 1

ln(2)

(︃
−x+

x2

2
+

x3

6

)︃
= −

ξ4−
12 ln(2)(1− ξ−)3

= O(2−4ω).

Filling in the Taylor expansion yields

h̃(ω) = 1− 1

2 ln(2)

(︃
− 2−ω +

2−2ω

2
+

2−3ω

6
+ ln(2)ε−

+ 2−ω +
2−2ω

2
− 2−3ω

6
+ ln(2)ε+

)︃
= 1− 2−2ω

2 ln 2
+ ε+/2 + ε−/2.

Using ε+, ε− ∈ O(2−4ω), we can immediately conclude

h̃(ω) = 1− 2−2ω

2 ln(2)
+O(2−4ω)

as required.

Filling in the approximation tells us when D(tR∥I) is negligible.

Corollary 3.1. Let t, R, I ∈ F2[X]/(Xn − 1), with t fixed and invertible
and R← Ber(ω)⊗n, and I ← Ber(∥t∥ω)⊗n. Then

D(tR∥I) = nΘ(2−2ω).

Proof. From Theorem 3.1 we get D(tR∥I) = n(h̃(∥t∥ω)− h̃(ω)). Filling in
Lemma 3.5 gives

D(tR∥I) = n (h̃(∥t∥ω)− h̃(ω))

= n

(︄
1− 2−2∥t∥ω

2 ln(2)
+O(2−4ω)− (1− 2−2ω

2 ln(2)
+O(2−4ω))

)︄
= n ·Θ(2−2ω)

as required.
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When ω is small Corollary 3.1 does not tell us much about the quantity.
However, even assuming that h̃(∥t∥ω)−h̃(ω) remains constant, D(tR∥I)→∞
when n→∞. Notably, if we want D(tR∥I)→ 0, then we need ω →∞.

This theorem is also relevant for the post-quantum scheme HQC. [Agu+22b]
In Proposition 2.4.2, the noise vector e′ has a very similar structure as we
analyzed here, of a product of a polynomial with a Bernoulli distribution with
some other polynomial. In the paper e′ is analyzed as a vector of independent
entries. Theorem 3.1 and Corollary 3.1 seem to suggest that making this
independence assumption is too optimistic. On the other hand the required
properties which should have followed from independence, can still hold. For
example, for partial analysis on the Hamming weight of e′, refer to [Kaw24].

3.2 Statistical distance

Theorem 3.1 and Corollary 3.1 tell us when the Kullback-Leibler divergence
is small. Still, we would also like to give a bound on the statistical distance.
To get an upper bound on the statistical distance, we can use the well-known
Pinsker’s inequality [Kem69, Sec. 6].

Theorem 3.2 (Pinsker’s inequality). For P and Q distributions

∆tv(P,Q) ≤
√︃

1

2
D(P∥Q).

Pinsker’s inequality immediately tells us that

∆tv(tR, I) ≤
√︃

1

2
D(tR∥I) =

√︃
n

2
·
(︂
h̃(∥t∥ω)− h̃(ω)

)︂
,

and alternatively
∆tv(tR, I) ≤

√
n · O(2−ω).

Still we would also like to get a lower bound on the statistical distance.
This other direction is harder, because given a certain statistical distance
δ = ∆tv(P,Q) the Kullback-Leibler divergence D(P∥Q) can be infinitely
large, specifically when there is an x such that P (x) > 0, and Q(x) = 0. As
P (x) can be arbitrarily small, a lower bound on the statistical distance based
on the Kullback-Leibler divergence is not possible in general.

In our case, we are working with Bernoulli variables that span the entire
outcome space F2[X]/(Xn − 1). Therefore, we know that this extreme case
cannot occur. Therefore, we can use the results in [Bin19] to get a range on
the statistical distance. The paper was about arbitrary random variables.
Because we just deal with discrete random variables, we produce their results
for the discrete case.
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Theorem 3.3 (Reverse Pinsker Inequalities [Bin19]). Let P,Q : X →
[0, 1] be distinct discrete probability distributions over X . Let

m = min
x∈X

P (x)

Q(x)
, M = max

x∈X

P (x)

Q(x)
.

Then
D(P∥Q) ≤ ∆tv(P,Q)

m log(m)

1−m
+

M log(M)

M − 1
.

Proof. Filling in f(x) = x log(x) in [Bin19, Th. 1] gives

D(P∥Q) ≤ ∆tv(P,Q)

(︃
m log(m)

1−m
+

M log(M)

M − 1

)︃
.

Now we can apply this bound to D(tR∥I).

Theorem 3.4. For n ≥ 3 and ω ≥ log(n), the statistical distance has a
lower bound

∆tv(tR∥I) ≥ 1/3 ·D(tR∥I).

Theorem 3.4 is a special case of Theorem 3.5 where s = 1. We defer the proof
to the generic theorem.

The constant 1/3 could have been bigger. First the approximation ∥t∥ω ≥ 2ω
is very rough. Furthermore, picking a value n > 3 would have yielded a
slightly bigger constant than 1/3. However, we mostly care about the linear
relation between the statistical distance and the divergence, so the current
bound is good enough.

Corollary 3.2. Assuming ω ≥ log(n) the statistical distance ∆tv(tR, I) can
be bounded to the range

∆tv(tR, I) ∈
[︁
n ·Θ(2−2ω),

√
n ·Θ(2−ω)

]︁
.

3.3 Divergence for sum of products

As discussed in practice we would like to analyze the independence of the
coefficients of t1R1 + . . .+ tsRs for s ≥ 2. If we want to apply Lemma 3.4,
we need to compute the entropy H(t1R1 + . . .+ tsRs). Unfortunately, the
entropy of this sum is quite hard to compute in general. For some related
work on the entropy of sums see [GMT24].

We can easily reason about one special case though. Suppose t
def
= t1 =

. . . = ts. Then t1R1 + . . . + tsRs = t(R1 + . . . + Rs), is invertible. As
R1+ . . .+Rs Ber(sω)⊗n, we return to our analysis of tR. Now the coefficients
of t(R1+. . .+Rs) are marginally distributed according to Ber(∥t∥sω). On the
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other hand H(t(R1+ . . .+Rs)) = nh̃(sω). Therefore, for Is ← Ber(∥t∥sω)⊗n,
we have

D(t(R1 + . . .+Rs)∥Is) = n(h̃(∥t∥sω)− h̃(sω)).

For the general case, it seems much harder to compute this entropy. We can
use the bound

H(t1R1 + . . .+ tsRs) ≤ H(R1) + . . .+H(Rs) = snh̃(ω).

Unfortunately, this bound is (for parameters of interest) weaker than the
trivial upper bound

H(t1R1 + . . .+ tsRs) ≤ n,

as we have a distribution over n bits.

Instead, we can analyze the entropy based on the distribution of the coeffi-
cients. If we write

C0 + C1X + . . .+ Cn−1X
n−1 def

= t1R1 + . . .+ tsRs,

then H(t1R1 + . . . + tsRs) = H(C0, C1, . . . , Cn−1). Recall that for τ
def
=

∥t1∥ + . . . + ∥ts∥ the marginal distributions are C0, . . . , Cn−1 ← Ber(τω).
Applying again the subadditivity of entropy to these variables only yields the
trivial upper bound

H(C0, . . . Cn−1) ≤ H(C0) + . . .+H(Cn−1) = nh̃(τω).

Recall that we are explicitly trying to compare the entropy of H(t1R1 + · · ·+
tsRs) to this value, so this bound yields nothing of interest.

Another possible approach is to compute the upper bound

H(C0, . . . Cn−1) ≤ H(C0, C1)+H(C2, C3)+ · · ·+H(Cn−3, Cn−2)+H(Cn−1).

Recall, that we choose n to be an odd prime, so “splitting up” the entropy
this way requires us to deal with H(Cn−1) separately. Note that for each
1 ≤ i < j ≤ n − 2, (Ci, Cj) is distributed over 2 bits, and – while this is a
bit cumbersome – we can explicitly compute this distribution. We will base
our analysis on [PGS16]. This paper is about the weight distribution of the
syndrome under Bernoulli noise, i.e. the distribution of RT for T ∈ Fsn×n

2

a parity-check matrix and R ← Ber(ω)⊗sn. Write Ti ∈ Fn×n
2 for the cyclic

matrix that represents multiplying with ti(X). Then define

T
def
=

⎛⎝ T1 . . . Ts

⎞⎠
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which one can view as a parity-check matrix. Furthermore, define R for the
concatenation of R1, . . . , Rs

R = (R1| . . . |Rs).

Then

RT = t1(X)R1(X) + . . .+ ts(X)Rs(X) = (C0, . . . , Cn−1).

It will now be important for us to view elements of Fn
2 , or Pn, as elements

of Rn, where we naturally map 0 ∈ F2 to 0 ∈ R and 1 ∈ F2 to 1 ∈ R. For
a vector v ∈ Fn

2 (respectively, a polynomial P ∈ Pn), we denote by v̂ ∈ Rn

(respectively, P̂ ∈ Rn) the resulting values in Euclidean space. We also use
the same notation for matrices.

The distribution of (Ci, Cj) depends on the symmetric matrix Λ ∈ Rn×n

defined as
Λ

def
= T̂⊤T̂

Above, we emphasize that the multiplication is defined over the real numbers.
Write λij for the coefficients of Λ. Based on the polynomials t1, . . . , ts, the
value of λij is easy to compute. By definition, λij is the inner product (over
the reals) of the i’th and j’th row of the matrix T . Equivalently

λij =
⟨︂
ˆ︂Xi · t1, ˆ︂Xj · t1

⟩︂
R
+ . . .+

⟨︂
ˆ︂Xi · ts, ˆ︂Xj · ts

⟩︂
R
,

where ⟨·, ·⟩R is defined as the usual inner product as vector over the reals,
and recall further that the hat notation means that we view the elements
as lying in {0, 1}n ⊆ Rn. As the multiplication by Xi is just a shift of the
vector by i positions, we can replace two shifts by just one shift, so

λij =
⟨︂
t̂1, ˆ︂Xi−j · t1

⟩︂
R
+ . . .+

⟨︂
t̂s, ˆ︂Xi−j · ts

⟩︂
R
. (1)

Notably, the value of λij only depends on the difference between the coeffi-
cients i− j.

Alternatively, one can note that for each ℓ ∈ [s],⟨︂
t̂ℓ, ˆ︂Xi−j · tℓ

⟩︂
R
= |supp(tℓ) ∩ supp(Xi−jtℓ)| ,

where for a polynomial P (X) =
∑︁n−1

i=0 PiX
i ∈ F2[X]/(Xn − 1) we have

defined supp(P ) = {i ∈ [n] : Pi = 1}.

Recall that p(ω) = (1− 2−ω)/2. Following [PGS16, Eq. (14)], we can obtain
the following joint distribution table for each Ci and Cj :
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Ci \ Cj 0 1
0 1− p(τω)− 1

2p(2(τ − λij)ω)
1
2p(2(τ − λij)ω)

1 1
2p(2(τ − λij)ω) p(τω)− 1

2p(2(τ − λij)ω)

Table 1: Distribution for Ci, Cj

To give a sense of how these quantities can be determined, we provide an
example computation. Recall that (C1, . . . , Cn) are determined by i.i.d.
Ber(ω) random variables Ru,t for u ∈ [n] and t ∈ [s]. Fix sets Si and Sj such
that Ci =

∑︁
(u,t)∈Si

Ru,t (read modulo 2) and Cj =
∑︁

(u,t)∈Sj
Ru,t. Then

|Si| = |Sj | = τ and Sij := Si ∩ Sj has |Sij | = λij . Denote by Eij the
event that

∑︁
(u,t)∈Sij

Ru,t ≡ 0 (mod 2), and note that conditioned on E we
have that Ci = 0 iff

∑︁
(u,t)∈Si\Sj

Ru,t = 0 (mod 2), and similarly for the
probability Cj = 1. Similarly, conditioned on Eij = 1 we consider the event
that this sum modulo 2 takes on the opposite value. Due to Lemma 2.1, we
therefore have

Pr[Ci = 0 ∧ Cj = 1] = Pr[Ci = 0 ∧ Cj = 1|Eij ] Pr[Eij ]

+ Pr[Ci = 0 ∧ Cj = 1|¬Eij ] Pr[¬Eij ]

= (1− p(ω(τ − λij)))p(ω(t− λij))(1− p(ωλij))

+ p(ω(τ − λij))(1− p(ω(τ − λij)))p(ωλij)

=
1

2
p(2ω(τ − λij)),

where in the last line we used the identity p(x)(1− p(x)) = 1
2p(2x).

This distribution (Table 1) yields the entropy

H(Ci, Cj) = H(Ci) +H(Cj | Ci)

= h̃(τω) + p(τω)H(Cj | Ci = 1) + (1− p(τω))H(Cj | Ci = 0)

= h̃(τω) + p(τω)h

(︃
p(2(τ − λij)ω)

2p(τω)

)︃
+ (1− p(τω))h

(︃
p(2(τ − λij)ω)

2(1− p(τω))

)︃
.

≤ h̃(τω) + h

(︃
p(τω)

p(2(τ − λij)ω)

2p(τω)
+ (1− p(τω))

p(2(τ − λij)ω)

2(1− p(τω))

)︃
.

= h̃(τω) + h̃(2(τ − λij)ω) ,

where the inequality applies the fact that h(·) is concave. Let’s compare this
to the entropy of H(Ci) +H(Cj) = 2h̃(τω) for the idealized case where Ci

and Cj are independent. Note that if λij > τ/2, then the above establishes

H(Ci, Cj) ≤ h̃(τω) + h̃(2(τ − λij)ω) < 2h̃(τω) = H(Ci) +H(Cj).

Thus, to make thisgap large we would like λij to be large. Recalling (1), to
have λij large we need pairs i, j for which shifting by j − i leads to another
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coefficient vector with large overlap. We now consider a specific case where
we have such large overlap.

Arithmetic progression If the support of the noise vectors is sufficiently
structured, then we can find cases such that the λij ’s are big. By big we
mean λij ≈ τ . Suppose that the support of the noise vector is an arithmetic
progression: so

supp(tk) = {ax+ bk | x ∈ {0, . . . , ∥tk∥ − 1}}

for all k ∈ [s]. Then⟨︂
t̂k, ˆ︁Xatk

⟩︂
R
= |supp(tk) ∩ supp(Xa tk)| ≥ ∥tk∥ − 1.

Thus, for each i, we have

λi,i+a =
⟨︂
t̂1, ˆ︁Xat1

⟩︂
R
+ . . .+

⟨︂
t̂s, ˆ︁Xats

⟩︂
R
≥ τ − s,

yielding
H(Ci, Ci+a) ≤ h̃(τω) + h̃(2sω).

If n is odd, and a and n are coprime, then we can upper bound the total
entropy by

H(C0, . . . , Cn−1) ≤ H(C0, Ca) +H(C2a, C3a) + . . .+H(C(n−3)a, C(n−2)a) +H(C(n−1)a)

≤ n− 1

2

(︃
h̃(τω) + h̃(2sω)

)︃
+ h̃(τω)

where the indices i in Ci are read modulo n, and using that 0, a, . . . , (n− 1)a
are distinct values mod n when a and n are coprime.

In total using Lemma 3.4 we get

D(t1R1 + . . .+ tsRs∥Ber(τω)⊗n) = H(Ber(τω)⊗n)−H(C0, . . . , Cn−1)

≥ n− 1

2

(︃
h̃(τω)− h̃(2sω)

)︃
.

Using the approximation for h̃(ω), we can characterize the divergence asymp-
totically.

Corollary 3.3. Let ω ≤ log(n), and τ ≥ 2s, and t1(X), . . . , ts(X) be vectors
that have an arithmetic progression with the same common difference. Then
the divergence to I

def
= Ber(τω)⊗n can be bounded to the range

D(t1R1 + . . .+ tsRs, I) = Θ(n2−4sω).

Notably, this value is negligible when sω ≥ log(n)2.

21



Proof. The proof is a generalization of Corollary 3.1. Using the approximation
h̃ = 1− 2−2ω +O(2−4ω) (see Lemma 3.5), we know that

D(t1R1 + . . .+ tsRs, I) = H(I)−H(t1R1 + . . .+ tsRs)

≥ n− 1

2
(h̃(τω)− h̃(2sω))

=
n− 1

2

(︁
Θ(2−4sω)−Θ(2−τω)

)︁
= Θ(n2−4sω),

as required.

Statistical distance Similar to the case s = 1 (see Section 3.2), we can use
the reverse Pinsker inequality to relate the KL-divergence to the statistical
distance. To achieve the bound we proof the generalization of Theorem 3.4.

Theorem 3.5. Let t1, . . . , ts ∈ F2[X]/(Xn − 1) polynomials span the entire
space, i.e. ⟨t1, . . . , ts⟩ = F2[X]/(Xn − 1), and R1, . . . , Rs ← Ber(ω)⊗n i.i.d.
Furthermore, let I ← Ber(τω)⊗n. For n ≥ 3 and ω ≥ log(n), the statistical
distance has a lower bound

∆tv(t1R1 + . . .+ tsRs∥I) ≥ 1/(3s) ·D(t1R1 + · · ·+ tsRs∥I).

Proof. In the proof we bound Pr[t1R1+. . .+tsRs = x]/Pr[I = x] ∈ [1/8s, 8s].
Then, we apply Theorem 3.3. We can achieve these bounds, finding lower/up-
per bound on the enumerator and the denominator separately. Both probabil-
ities can be bounded using the distributions Ber(ω), and Ber(∥t∥ω). For any
x ∈ F2[X]/(Xn − 1) there are at exactly 2sn−n possible tuples (r1, . . . , rs)
such that t1R1 + . . .+ tsRs = x. Then, we can bound the probability of each
tuple Pr[(R1, . . . , Rs) = (r1, . . . , rs)] ∈ [((1− 2−ω)/2)sn, ((1 + 2−ω)/2)sn].

Pr[t1R1 + . . .+ tsRs = x]

Pr[I = x]
≤ maxx∈Pn Pr[t1R1 + . . .+ tsRs = x]

minx∈Pn Pr[I = x]

≤ 2sn−n((1 + 2−ω)/2)sn

((1− 2−∥t∥ω)/2)n

=
(1 + 2−ω)sn

(1− 2−∥t∥ω)n

≤ (1 + 2−ω)sn

(1− 2−∥t∥ω)sn

≤ (1 + 2−ω)sn

(1− 2−ω)sn
(using ∥t∥ ≥ 1)

≤
(︃
1 + 1/n

1− 1/n

)︃ns

(using ω ≥ log(n)),
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where we use that ω ≥ log(n). Define un
def
= (1+1/n)n

(1−1/n)n . The upper bound is
to this ratio is equal to (un)

s. We claim that un is decreasing, and u3 ≤ 8,
which yields an upper bound of 8s.

To prove this claim we compute the derivative of un. As ln(·) is monotonically
increasing, if f(x) = ln

(︂(︂
1+1/x
1−1/x

)︂x)︂
has a negative derivative, then un is

indeed decreasing. For x > 1 we can give an upper bound for derivative by

f ′(x) = ln

(︃
x+ 1

x− 1

)︃
− 2x

x2 − 1
< ln

(︃
1 +

1

x

)︃
− 2

x
≤ 1

x
− 2

x
= −1

x
< 0

which is indeed negative.

Using that un is decreasing, filling in a value for n = 3 gives u3 = 8 so

Pr[t1R1 + . . .+ tsRs = x]

Pr[I = x]
≤ (un)

s ≤ (u3)
s = 8s.

Notably, the upper bound on this ratio independent of n.

For a lower bound on the probability ratio we can apply a similar approach

Pr[t1R1 + . . .+ tsRs = x]

Pr[I = x]
≥ minx∈Ps Pr[t1R1 + . . .+ tsRs = x]

maxx∈Pn Pr[I = x]

≥ 2sn−n((1− 2−ω)/2)sn

((1 + 2−∥t∥ω)/2)n

=
(1− 2−ω)sn

((1 + 2−∥t∥ω))n

≥ ((1− 2−ω))sn

((1 + 2−∥t∥ω))sn

≥
(︃
(1− 1/n)n

(1 + 1/n)n

)︃s

(using ω ≥ log(n))

= (1/un)
s

≥ (1/8)s

Where we use that 1/un is monotonically increasing. In total, we achieve the
required bounds

(1/8)s ≤ Pr[t1R1 + . . .+ tsRs = x]

Pr[I = x]
≤ 8s.

To finish the proof we need to apply Theorem 3.3. Note that for x > 0

d

dx

(︃
x log(x)

x− 1

)︃
= ln(2) · x− log(x)− 1

(x− 1)2
≥ 0
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Because the derivative is strictly positive, x log(x)/(x− 1) is monotonically
increasing. On the other hand x log(x)/(1− x) is monotonically decreasing.
Therefore, using our bound M ≤ 8, and m ≥ 1/8, we can give an upper
bound on quantity from Theorem 3.3

m log(m)

1−m
+

M log(M)

M − 1
≤ (1/8s) · log(1/8s)

1− (1/8s)
+

8s log(8s)

8s − 1

= 3s
(︂ 8s

8s − 1
− 8−s

1− 8−s

)︂
= 3s.

We can conclude by Theorem 3.3 that

D(t1R1 + . . .+ tsRs∥I) ≤ 3s ·∆tv(t1R1 + . . .+ tsRs, I),

so
∆tv(t1R1 + . . .+ tsRs, I) ≥ 1/(3s) ·D(t1R1 + . . .+ tsRs∥I).

The theorem follows.
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