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Abstract. The Fluid multiparty computation (MPC) model, introduced in (Choud-
huri et al. CRYPTO 2021), addresses dynamic scenarios where participants can join
or leave computations between rounds. Communication complexity initially stood at
Ω(n2) elements per gate, where n is the number of parties in a committee online at
a time. This held for both statistical security (honest majority) and computational
security (dishonest majority) in (Choudhuri et al. CRYPTO’21) and (Rachuri and
Scholl, CRYPTO’22), respectively. The work of (Bienstock et al. CRYPTO’23)
improved communication to O(n) elements per gate. However, it’s important to
note that the perfectly secure setting with one-third corruptions per committee has
only recently been addressed in the work of (David et al. CRYPTO’23). Notably,
their contribution marked a significant advancement in the Fluid MPC literature by
introducing guaranteed output delivery. However, this achievement comes at the cost
of prohibitively expensive communication, which scales to Ω(n9) elements per gate.

In this work, we study the realm of perfectly secure Fluid MPC under one-
third active corruptions. Our primary focus lies in proposing efficient protocols that
embrace the concept of security with abort. Towards this, we design a protocol for
perfectly secure Fluid MPC that requires only linear communication of O(n) elements
per gate, matching the communication of the non-Fluid setting. Our results show
that, as in the case of computational and statistical security, perfect security with
abort for Fluid MPC comes “for free” (asymptotically linear in n) with respect to
traditional non-Fluid MPC, marking a substantial leap forward in large scale dynamic
computations, such as Fluid MPC.

1 Introduction
In the setting of secure multiparty computation (MPC), multiple parties collaborate to
compute a function on secret inputs, ensuring that only the output is revealed, even
when an adversary corrupts an unknown subset of parties of a certain size. Over the past
four decades, the field of MPC has undergone remarkable evolution, leading to highly
efficient protocols. What’s even more compelling is that MPC has been successfully
applied to to address privacy and security concerns across various real-world applications.
For a view of these practical implementations, see several real-world deployments at
https://mpc.cs.berkeley.edu/.

MPC protocols are intricate in design and typically demand a high degree of reliability
from the honest parties. These parties are expected to maintain continuous online presence
without disruptions or crashes, and the set of parties should remain constant throughout
the process. In certain scenarios, the set of parties is more dynamic, with individual
parties being more susceptible to connection drops or crashes. A prime illustration of
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such cases is found in permissionless blockchains, where parties may ephemerally join a
given execution, but may leave, crash or drop arbitrarily, either voluntarily or because of
adverse conditions. Furthermore, this should not be considered adversarial behavior: truly
corrupt parties may send incorrect messages and try to cheat in the protocol, while actions
like dropping or crashing can happen even to a genuinely honest party. Just as in the
cases mentioned, MPC applications can also foresee dynamic participant sets where honest
parties might experience disruptions, like drops or crashes. For instance, in computations
with a large number of participants using commodity hardware, such disruptions can be
expected. Moreover, within these highly distributed scenarios with numerous geographically
dispersed participants, MPC protocols for even moderately complex tasks, such as federated
learning [BIK+17; BBG+20; MWA+23], consume substantial resources. In such cases,
parties, even if considered stable, may prefer to participate only during specific computation
phases. This underscores the necessity to accommodate dynamic settings, where parties
join or depart at will, whether by choice or circumstance, such as in the model of Fluid
MPC [CGG+21]. See Section B of [BEP23] for an overview of other dynamic settings in
MPC [FHM98; GPS19; BJMS20; GHK+21; DEP21].

In the fluid model, there is a “global pool” of parties willing to participate in the
computation, and each party is assigned to one or more committees which take care of
executing a given step of the computation. Ideally, each committee should only be in charge
of performing a small portion of the computation, in order to avoid committing to resources
for a long period of time. This is captured by the concept of fluidity, which corresponds to
the amount of rounds that each committee runs. In the maximal fluidity setting, which is
the one studied by previous works, each committee is only required to execute one round:
they only need to receive some messages from the previous committee, perform some local
computation, and send messages to the next committee in line. This models the most
fatalistic case in terms of parties’ dynamics: a party can belong to only one committee,
joining only to receive messages from the previous committee and dropping after sending
messages to the next, and a maximally Fluid MPC protocol still guarantees security in this
setting. Let n be the number of parties in each committee (which can be variable across
committees, but we restrict to same-size committees for simplicity), and let t be the number
of corrupted parties in each committee. The three common settings in traditional MPC
are computational security (for arbitrary t < n), statistical security (for honest majority
t < n/2) and perfect security (for t < n/3). The same taxonomy exists in the Fluid
context. For arbitrary t < n and computational security with abort, the work of [RS22]
introduces a Fluid protocol with quadratic communication O(n2) per multiplication,
which is improved to linear O(n) by [BEP23]. The work [BEP23] also achieves linear
communication for statistical security with abort and t < n/2, improving over the quadratic
costs from [CGG+21] in this setting. Note that both for computational and statistical
security in traditional (i.e. non-fluid) MPC, protocols with linear communication are
known [GSZ20; DPSZ12], so the work [BEP23] effectively shows that the fluid model in
these security settings does not add communication overhead, asymptotically.

For perfect security and t < n/3, the work by [DDG+23] introduces a perfectly secure
Fluid MPC protocol based on the BGW paradigm with verifiable secret sharing. Their focus
is on guaranteed output delivery (G.O.D.),1 where the adversary cannot prevent honest
parties from getting the correct output, and in that setting they obtained an impractically
high communication cost of Ω(n9) per multiplication gate. In contrast, in the non-fluid
regime, MPC with such guarantees is achievable with linear communication [BH08], which
shows that for perfect security the current gap in terms of efficiency between the Fluid
and non-fluid worlds is too high. Hence, the natural question that remains open and needs
to be addressed is the following:

1GOD is also possible for statistical security in non-fluid MPC [GSZ20], although it remains unclear
how to adapt existing protocols to the Fluid setting. All previous statistically secure Fluid protocols
satisfy security with abort. More on this difficulty in Remark 1.
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Table 1: Existing works in the Fluid setting and their communication complexity.

Protocol Comm. complexity Threshold Security Output
guarantees

[RS22] Θ(n2|C|)
t < n comp. w. abort[BEP23] Θ(n|C| + depth(C)n2)

[CGG+21] Θ(n2|C|)
t < n/2 stat. w. abort[BEP23] Θ(n|C| + depth(C)n2)

[DDG+23] Θ(n9|C|)
t < n/3 perfect G.O.D.

Ours Θ(n|C| + depth(C)n2) w. abort

Is it possible to obtain perfectly secure maximally-fluid MPC protocols for t < n/3, with
linear communication complexity per gate?

1.1 Our Contribution
In our work we address precisely this question, providing an answer in the affirmative.
We show that, by adopting the notion of security with abort instead of GOD (which
is the property achieved by all previous fluid MPC protocols, except [DDG+23]), it is
possible indeed to design perfectly secure maximally-fluid protocols for t < n/3 with
linear communication, hence matching the asymptotic communication of the non-fluid
setting. For a comprehensive view of our contributions in relation to existing works in the
Fluid MPC domain, please refer to Table 1, where we provide a comparative overview
of the literature landscape. Our work shows that, even under the stringent conditions of
maximal fluidity, it is possible to achieve perfectly secure MPC without giving up on linear
communication.

In the following, we let C be a layered arithmetic cicuit over a finite field F with |C|
multiplication gates and depth depth(C). A layered circuit is a type of arithmetic circuit
comprised of input, output, addition, multiplication, and identity gates, where all output
wires of a given layer go only to the immediately next layer. As is common in MPC
protocols that achieve linear communication complexity (e.g., [DN07; DIK10]), we assume
that |C|/depth(C) = Ω(n), so that the term depth(C)n2 is absorbed by n|C|. One way
this is satisfied is if the circuit has uniform width Ω(n). We summarize our result below.

Theorem 1. (Informal) Let n be a positive integer. For a layered arithmetic circuit
C that computes an n-ary functionality F, there exists an n-party Fluid protocol with
maximal fluidity that securely computes C with perfect security against an active adversary
who can control up to t < n/3 corrupted parties. The protocol has total communication
O(n|C|+ depth(C)n2) elements.

Similar to the work achieving linear communication efficiency in the fluid setting
with statistical and computational security [BEP23], our protocol operates by harnessing
multiplication triples (without preprocessing) to manage multiplication gates. Additionally,
we adopt the “king idea” from [DN07] to facilitate the reconstructions within Beaver-based
multiplication. These are the methods typically used in the non-fluid setting to achieve
linear communication complexity, and they serve as a good starting point for the fluid
case. However, in the fluid protocol from [BEP23] cheating is handled by transfering, from
committee to committee, some form of accumulator that attests to the correctness of the
computation. This “accumulator” is succinct (which is crucial for the efficiency claims),
and if the adversary misbehaves in at least one multiplication gate, then this will be
reflected in the accumulator with overwhelming probability. Unfortunately, for the perfectly
secure case we cannot afford non-zero error probability, so the ideas in [BEP23] are of no
use to us. Instead, we design new methods to ensure that either multiplications are carried
out correctly, or parties abort. To achieve this we employ ideas from error-correcting
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codes, particularly parity-check matrices, in a novel way in the context of Fluid MPC.
Interestingly, we rely on packed secret-sharing to transfer the state of the computation
from one committee to the next, which is a technique that was not used in any prior Fluid
MPC work and turns out to be pivotal for our complexity claim. This resharing protocol
can be of independent interest. We provide a detailed technical overview in Section 1.2,
which outlines the core ideas behind our construction, and further explains the inadequacy
of the techniques of [BEP23] for the perfect setting.

Remark 1 (On GOD and identifiable abort in the maximally-Fluid setting.). In the non-
fluid context, GOD is possible for t < n/2, hence particularly for t < n/3. However, the
most common design pattern to obtain efficient protocols (cf. [BH08; GSZ20]) involves
somehow identifying cheating parties, and falling back to a previous protocol state that is
“safe”. This recovery-based approach is not suitable for (maximally) Fluid MPC, where
parties are possibly gone after performing one single computation step. Instead, a different
approach that does not require “looking back” in the protocol execution is needed. One
such approach is the one initiated in BGW [WOG88] for the non-fluid setting, which
achieves high O(n6) communication, but avoids this “recovery” paradigm. This is precisely
what the work of [DDG+23] exploits: by basing their approach on BGW, they manage
to obtain GOD for Fluid MPC with t < n/3, at the expense of very high communication
overhead Ω(n9) that is even orders of magnitude higher than BGW in the non-fluid setting.

Only recently, after a long and fruitful series of works [AAY21; AAPP23], a highly
non-trivial protocol in the non-fluid regime with linear communication was designed, which
satisfies GOD while avoiding “recoveries”. Adapting these ideas to the fluid setting in order
to achieve GOD with better communication than [DDG+23] is interesting and challenging
future work. Indeed, simply reducing the high communication overhead with respect to the
non-fluid setting introduced by the fluid work of [DDG+23] has many remaining barriers.

For similar reasons, namely that parties are possibly gone after a single round, so
conflicts are hard to resolve, we believe that even achieving security with identifiable abort
efficiently in the maximally-fluid setting is challenging.

1.2 Technical Overview

Let C1, C2, . . . be the committees involved, each having n parties and t corruptions, with
n = 3t+1, and let [x]Ci

d denote a Shamir secret sharing of value x over a finite field F, using
degree d, among the parties of committee Ci. In our work, we will mostly work with degree
d = 2t. As previous works in Fluid MPC, we assume that the circuit is layered, meaning
that the multiplication gates in a given layer can only depend on the outputs of the layer
inmediately before it. The resulting circuit has addition, multiplication, and identity gates
for relaying values from one layer to the next one. First each client, who provides input
x ∈ F to the computation, secret-shares their input towards the first committee C1 as [x]C1

2t .
At this point, the parties in C1 have sharings of the first layer of the computation, and the
goal now is to let them evaluate the first layer of the circuit so that parties in a future
committee get sharings of the outputs of this layer. This is then continued for each layer,
until a certain committee obtains shares of the output layer, which can be reconstructed to
the clients. From this general template, the core question becomes the following: design a
protocol so that, starting from a committee Ci holding shares of two values [x]Ci

2t and [y]Ci
2t ,

a future committee Cj with j > i can learn the product [xy]Ci+1
2t . Such protocol enables

processing multiplication gates, and our overview focuses mostly on illustrating how this
is done in our work. Handling identity gates (and in fact also addition gates) boils down
to one committee Ci holding [x]Ci

2t , transfering this to Cj so that they obtain [x]Cj

2t . This is
a strictly easier task than multiplication and it is approached via a simplification of our
multiplication protocol.
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1.2.1 Challenges of our multiplication protocol.

For notational convenience let us relabel the committee who holds the initial sharings from
Ci to Ci+1, that is, committee Ci+1 has two sharings [x]Ci+1

2t and [y]Ci+1
2t , and the goal is to

multiply each x with y. The general structure of our protocol is the following. At a high
level, the idea is to let committee Ci+1 use a multiplication triple ([a]Ci+1

2t , [b]Ci+1
2t , [c]Ci+1

2t )
where c = ab to compute the product between x and y, as standard in Beaver-based
multiplication. This consists of first computing locally the sharings [d]Ci+1

2t = [x]Ci+1
2t +[a]Ci+1

2t

and [e]Ci+1
2t = [y]Ci+1

2t + [b]Ci+1
2t , reconstructing d and e, and taking the linear combination

[xy]∗2t = de−e[a]∗2t−d[b]∗2t +[c]∗2t. However, there are two complications with this approach.
The first is that, because we are in the maximal fluidity setting, reconstruction cannot
be done among the members of Ci+1 themselves, but rather, towards the next committee.
To make matters worse, reconstructing in one round (i.e. towards the immediate next
committee Ci+2) would involve quadratic communication (since this requires every party
in Ci+1 to send a share to every party in Ci+2), which we cannot afford. To obtain linear
communication we make use of the “multiple king idea” from [DN07] (explained in more
detail later in the section), but this results in committee Ci+3 learning the reconstructions of
d and e, not Ci+2. The second complication arises from the fact that the linear combination
leading to xy described above must be computed by the committee that knows d and
e, Ci+3, but this committee must also have the triple ([a]Ci+3

2t , [b]Ci+3
2t , [c]Ci+3

2t ), which is
currently held by committee Ci+1 (this is why we put asterisks ∗ in the sharings when
describing the linear combination). Solving this issue requires designing a method for
committee Ci+1 to transfer sharings to committee Ci+3.

Finally, another aspect we have overlooked is the generation of the multiplication triple:
committee Ci+1 needs to obtain ([a]Ci+1

2t , [b]Ci+1
2t , [c]Ci+1

2t ) in a first place. For this, we will
let committee Ci+1 first get [a]Ci+1

t and [b]Ci+1
t (notice the degree t instead of 2t), from

which the parties in Ci+1 can derive locally [ab]Ci+1
2t = [a]Ci+1

t · [b]Ci+1
t . Since any degree-t

sharing is also a degree-2t sharing, the parties in Ci+1 interpret [a]Ci+1
t as [a]Ci+1

2t (and
similarly for b). This way, the parties have obtained the required triple. An avid reader
may note that the computed [ab]Ci+1

2t is not a random degree-2t sharing of c = a ·b, since the
underlying polynomial is not random but rather the product of two degree-t polynomials.
Also, [a]Ci+1

2t (and same for b) is not a random degree-2t sharing, since the underlying
polynomial has degree t. However, as we will see, this turns out to not be a problem, and
the randomization involved when re-sharing helps us prevent leakage from this underlying
structure.

One final question left is how committee Ci+1 gets [a]Ci+1
t (and [b]Ci+1

t ) in a first place.
For this, we use committee Ci: the parties in Ci execute the random sharing generation
protocol from [BH08], except with the receivers in Ci+1. We provide more details below.

1.2.2 On the inefficacy of the techniques of [BEP23] in the perfect setting.

The statistically-secure Fluid MPC protocol of [BEP23] faces a similar challenge as above
in that a committee Ci+1 holding sharings of a beaver triple ([a]Ci+1

2t , [b]Ci+1
2t , [c]Ci+1

2t ) must
somehow transfer them to committee Ci+3. To do so, they develop a technique which
allows committee Ci+1 to efficiently reshare any sharing [x]Ci+1

2t to committee Ci+3. For
this, each party Pj in committee Ci+1 sends (a rerandomized version of) their share
to the corresponding j-th party in committee Ci+2, who then sends (a rerandomized
version of) their share to the corresponding j-th party in committee Ci+3 (which achieves
linear communication). As will be the case for the perfect setting, the adversary can
introduce errors in their protocol. However, as discussed above, their protocol uses a kind
of accumulator that attests to the correctness of the resharing to catch cheating. This
accumulator is succinct (which is crucial for the efficiency claims), and if the adversary
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misbehaves, then they will be caught with overwhelming probability.
One would hope that we could borrow the above techniques for the perfect security

setting, but it turns out that we cannot for a few reasons. First, we cannot use such a
compressed accumulator to catch the adversary with all-but-negligible probability, since
we need perfect security. Second, we cannot use any kind of error detection guaranteed by
Shamir secret sharing to catch the adversary cheating, since the adversary gets to control
parties in multiple committees, and thus it gets to control as many as 2t shares at a time.
Also note that if the degree were lower than 2t, then privacy would be violated, since the
adversary can learn 2t shares. This is why we design our own resharing mechanism with
linear communication, that we will present below.

1.2.3 Parties in Ci generate random sharings towards Ci+1.

Our multiplication protocol operates in batches: t + 1 products are handled simultaneously.
Committee Ci+1 has multiple sharings [x1]Ci+1

2t , . . . , [xt+1]Ci+1
2t and [y1]Ci+1

2t , . . . , [yt+1]Ci+1
2t ,

and the goal is to multiply each xα with yα for α ∈ [t + 1].
For the multiplication, committee Ci+1 needs random sharings {[aα]Ci+1

t , [bα]Ci+1
t }α∈[t+1]

which will be used for producing multiplication triples. For this, we use the standard
approach from [BH08] in which each party samples and distributes some random sharings,
which are then combined with an appropriate matrix to obtain truly random sharings.
However, since parties in Ci+1 cannot communicate with each other, they must receive
these sharings from Ci. In more detail, to generate a set of t+1 random sharings [aα]Ci+1

t

for α ∈ [t+1], each party Pj ∈ Ci samples a random sj ∈ F and distributes [sj ]Ci+1
t towards

Ci+1.
The next step is for the parties in Ci+1 to locally apply a hyper-invertible matrix to

([s1]Ci+1
t , . . . , [sn]Ci+1

t ), obtaining ([a1]Ci+1
t , . . . , [an]Ci+1

t ). These matrices, defined in [BH08],
have several important properties that simultaneously help with randomness extraction
(since 2t + 1 random sharings are input, just as many can be extracted) and cheating
verification, which is used to handle the fact that the parties in Ci may distribute incorrect
random sharings (e.g. using incorrect degree); for the latter, a check similar to [BH08]
is performed (see more below). The sharings that the parties in Ci+1 will finally use are
the first t + 1 sharings ([a1]Ci+1

t , . . . , [at+1]Ci+1
t ), and ([b1]Ci+1

t , . . . , [bt+1]Ci+1
t ) produced in a

similar way.

1.2.4 Parties in Ci+1 use the random sharings.

These sharings are used to obtain Beaver triples: [aα]Ci+1
t and [bα]Ci+1

t can be locally
multiplied to obtain [cα]Ci+1

2t . From now on [aα]Ci+1
t and [bα]Ci+1

t are interpreted as [aα]Ci+1
2t

and [bα]Ci+1
2t , respectively. Then the parties in Ci+1 execute the first step of Beaver-

based multiplication: they add locally [dα]Ci+1
2t ← [xα]Ci+1

2t + [aα]Ci+1
2t and [eα]Ci+1

2t ←
[yα]Ci+1

2t + [bα]Ci+1
2t , and then the goal is to reconstruct these values. Of course, since the

members in committee Ci+1 cannot talk to each other in the maximal fluidity setting,
these parties would reconstruct these values towards committee Ci+2. This is done via
the standard efficient reconstruction procedure from [DN07], which consists of the parties
first expanding the sharings {[dα]Ci+1

2t }α∈[t+1] with an error correcting code, instantiated
by multiplication with a super-invertible matrix (by definition, a linear operation), to
obtain {[d′

β ]Ci+1
2t }β∈[n] (and similarly {[e′

β ]Ci+1
2t }β∈[n]); this is followed by all parties in Ci+1

sending their shares of [d′
k]Ci+1

2t and [e′
k]Ci+1

2t to each Pk ∈ Ci+2, who reconstruct them.
At this point the parties in Ci+2 have “shares” (d′

1, . . . , d′
n) and (e′

1, . . . , e′
n), which

together make up codewords encoding (d1, . . . , dt+1) and (e1, . . . , et+1) respectively. These
need to be “reconstructed”, so these “sharings” are sent to committee Ci+3, who can decode
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them to learn (d1, . . . , dt+1) and (e1, . . . , et+1). Committee Ci+3 will execute Beaver-based
multiplication, which works by taking the local linear combination

[xαyα]Ci+3
2t = dαeα − dα[bα]Ci+3

2t − eα[aα]Ci+3
2t + [cα]Ci+3

2t . (1)

However, in order to do this the parties in Ci+3 need the sharings of the triple ([aα]Ci+3
2t , [bα]Ci+3

2t ,

[cα]Ci+3
2t ).

1.2.5 Committee Ci+3 gets the triple - Resharing protocol based on packed
secret sharing.

Recall that the parties in Ci+1 have ([aα]Ci+1
2t , [bα]Ci+1

2t , [cα]Ci+1
2t ). These sharings will be

transferred to committee Ci+3 via a resharing protocol. This is done in two steps where
parties in Ci+1 send packed secret sharings of their shares. Next, the parties in Ci+2 can
combine these packed sharings of shares into one packed sharing and then Shamir sharings
of their packed shares are sent to Ci+3 to get non-packed shares of the original secrets. See
details below.

Committee Ci+2 obtains (JaKCi+2
2t , JbKCi+2

2t , JcKCi+2
2t ). We denote a packed secret sharing

value of vector x = (x1, . . . , xℓ) ∈ Fℓ with degree d among the parties of Ci as JxKCi

d . For
committee Ci+1 to send the triples to committee Ci+3, these sharings have to pass through
Ci+2 first. Towards this, parties in Ci+1 transfer these sharings to Ci+2, but they do so
with packed secret-sharing, which is crucial for efficiency. We focus on how to transfer
{[aα]Ci+1

2t } so that committee Ci+2 gets JaKCi+2
2t , with the other sharings handled in the

same way.
Let us denote the j-th share of each [aα]Ci+1

2t by aj
α, which satisfy

∑2t+1
j=1 Lj(0)aj

α =
aα, where Lj(X) are the Lagrange polynomials. Party Pj ∈ Ci+1, having aj

[1,t+1] =
(aj

1, . . . , aj
t+1), distributes sharings Jaj

[1,t+1]K
Ci+2
2t to committee Ci+2. At this point each

party in this committee can compute locally

2t+1∑
j=1

Lj(0)Jaj
[1,t+1]K

Ci+2
2t = J

2t+1∑
j=1

Lj(0) · aj
[1,t+1]K

Ci+2
2t = JaKCi+2

2t ,

where a = (a1, . . . , at+1). Notice that a corrupt party Pj ∈ Ci+1 may distribute Jaj
[1,t+1]K

Ci+2
2t

incorrectly. For example, the underlying secret may not correspond to aj
[1,t+1]. We discuss

how to address this later in the section but for now, let us hint that this is prevented by
leveraging the fact that each row of the “matrix” [a1

[1,t+1]∥ · · · ∥a
n
[1,t+1]] has to be consistent

with a polynomial of degree ≤ 2t, and this bounds the adversary to use the correct secrets.

Committee Ci+3 obtains ([aα]Ci+3
2t , [bα]Ci+3

2t , [cα]Ci+3
2t ). Here, the sharings (JaKCi+2

2t , JbKCi+2
2t ,

JcKCi+2
2t ) held by committee Ci+2 are “unpacked” towards committee Ci+3. As before, we

focus on JaKCi+2
2t for the sake of exposition. Let us denote the share of party Pj ∈ Ci+2 of

JaKCi+2
2t by aj ∈ F, which satisfy aα =

∑2t+1
j=1 Lj(−α) · aj . Each of these parties secret-

shares their share as [aj ]Ci+3
2t towards committee Ci+3. Due to the observation above, we

have that
2t+1∑
j=1

Lj(−α) · [aj ]Ci+3
2t = [

2t+1∑
j=1

Lj(−α) · aj ]Ci+3
2t = [aα]Ci+3

2t ,

so the parties in Ci+3 can obtain the desired shares. A similar approach is followed to
obtain [bα]Ci+3

2t and [cα]Ci+3
2t .



8 Perfectly Secure Fluid MPC with Abort and Linear Communication Complexity

1.2.6 Achieving active security.

The protocol sketched so far can be attacked by an active adversary at the following places:

1. The generation of the random sharings by committee Ci may be done inconsistently.

2. The parties in Ci+1 may send incorrect shares of [d′
k]Ci+1

2t or [e′
k]Ci+1

2t to some Pk ∈ Ci+2,
or Pk may send an incorrect d′

k to Ci+3.

3. A corrupt party Pj ∈ Ci+1 may reshare Jaj
[1,t+1]K

Ci+2
2t (or Jbj

[1,t+1]K
Ci+2
2t , or Jcj

[1,t+1]K
Ci+2
2t )

inconsistently to committee Ci+2.

4. A corrupt party Pj ∈ Ci+2 may reshare [aj ]Ci+3
2t (or [bj ]Ci+3

2t , or [cj ]Ci+3
2t ) inconsistently

to committee Ci+3.

The first item is addressed by using the hyper-invertible matrix verification from [BH08],
where the last 2t mapped sharings ([at+2]Ci+1

t,2t , . . . , [an]Ci+1
t,2t ), held by the receiving Ci+1,

are opened (note that after this, the first t + 1 mapped sharings are still random, since
the adversary only sees at most t out of 2t + 1 random sharings that can be extracted).
In our case, these are opened towards the last 2t parties in committee Ci+2, who perform
the check in [BH08]. Intuitively, as argued in [BH08], due to the invertibility properties of
hyper-invertible matrices, the t sharings that are opened to honest parties of committee
Ci+2 have a one-to-one relationship with the t original sharings [sj ]Ci+1

t,2t shared by the
corrupted parties of committee Ci. Thus, there is an inconsistency in the latter if and only
if there is an inconsistency in the former, which can be detected. We present our random
sharings protocol in Section 3.1. On the other hand, the second item is easily handled by
performing error detection.

Items (3) and (4) require more care, and we provide an overview on these below.

Ensuring consistency of Jaj
[1,t+1]K

Ci+2
2t . A party Pj ∈ Ci+1 may cheat by sending

Jaj
[1,t+1] + δjKCi+2

2t , where δj ̸= 0.2 First, let H be the (n− 2t− 1)× n parity-check matrix
such that H · x = 0 if and only if x ∈ Fn are valid shares of a polynomial of degree ≤ 2t.
The intuitive idea behind our check is simple. Let A be the n× (t + 1) matrix whose j-th
row is aj

[1,t+1]. We have that for any index α ∈ [t + 1], the α-th column is a degree-2t

sharings. This means the matrix satisfies H · A = 0 ∈ F(n−2t−1)×(t+1). Let D be the
n× (t + 1) matrix whose j-th row is δj (we define δj = 0 for an honest party Pj ∈ Ci+1).
Since the parties in Ci+2 allegedly have sharings of each row Jaj

[1,t+1] + δjKCi+2
2t of A + D,

the parties can locally compute shares of each row of H · (A + D) = H ·A + H ·D = H ·D.
Then the parties in Ci+2 reconstruct these sharings towards committee Ci+3, and check
that the corresponding secrets are all 0. It is possible to verify that, given that D only
contains at most t non-zero rows, the only way in which H ·D can equal zero is if D = 0,
so this check indeed ensures that no cheating occurred.

A detail we have neglected is that, simply reconstructing all rows of H ·D towards
all members of Ci+3 is too expensive since it requires n2 communication. Instead, the
parties in Ci+2 apply an error correcting code simultaneously to each column of the matrix,
instantiated with multiplication by a super-invertible matrix, that expands these n− 2t− 1
rows to n rows. Then, the j-th new row is reconstructed only towards Pj ∈ Ci+3. This
ensures that if there is at least one row in H ·D that is not zero, then at least one honest
party in Ci+3 receives a non-zero row. This party signals this to the parties in Ci+4, who
learn at that point whether there was an error in the original sharings or not.

2The “worst-case degree” for an inconsistent sharing is 2t, since the shares of the n − t = 2t + 1 honest
parties uniquely define a polynomial of degree ≤ 2t. Hence, a corrupt party cannot cheat on the degree,
and at worst can cheat by changing the secret.
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The downside of this approach is that some honest parties in Ci+3 may not know yet
that an error took place. This is an important and subtle issue, since some honest parties
in Ci+3 may not know yet that some Jaj

[1,t+1]K
Ci+2
2t is inconsistent, and yet they would

proceed with the protocol specification. This could be a problem if the steps that follow
leak sensitive information when they are executed on inconsistent shares, as noted for
example in [GLS19]. However, this is not a problem in our case. At a high level, compared
to [GLS19], we use degree-2t, while they use degree-t (which are important for G.O.D.).
This removes all “extra redundancy” that the honest parties’ shares may carry, which is
what causes privacy issues in [GLS19].

Ensuring consistency of [aj ]Ci+3
2t . Recall that each aj ∈ F is a share of the degree-2t

packed sharing JaKCi+2
2t . As it turns out, the consistency of [aj ]Ci+3

2t is verified in a similar
manner as above. This is thanks to the observation that (a1, . . . , an) is a consistent
degree-2t sharing (it equals JaKCi+2

2t ), so it should equal 0 when multiplied by the matrix
H. Furthermore, since the parties in Ci+3 have sharings of each [aj ]Ci+3

2t , they can compute
shares of this matrix product. As before, instead of sending these shares to all parties
in Ci+4, the parties in Ci+3 first apply a super-invertible matrix and reconstruct the j-th
entry to the j-th party in Ci+4, who checks the underlying secret is 0. If one party finds
an error, this is reported to all parties in Ci+5.

1.2.7 Final remarks

Communication complexity. Notice that communication of all the steps described
above involves each party from one committee sending a constant amount of field elements
to the parties in the next committee. This leads to a communication of O(n2). However,
recall that this is to process a batch of t + 1 = Ω(n) multiplication gates, which means
that the amortized cost per gate is O(n), as desired.

Input and addition gates. We also point out that similar techniques as sketched above
are used to handle input and addition gates: the parties somehow reshare the values, and
some checks are performed to ensure consistency. This is done as the resharing of the
triples, essentially.

1.3 Outline of this Document

Section 2 introduces multiple preliminaries. Then we introduce and instantiate three core
functionalities we need for our protocol in Section 3: the generation of random sharings,
and the input and output protocols. Section 4 contains the most technically challenging
contribution of our work, which is our resharing protocols to transfer a set of sharings from
one committee to the next with linear communication and perfect security (with abort).
Finally, Section 5 puts together the building blocks discussed in previous sections and
presents our end-to-end perfectly secure Fluid MPC protocol with linear communication.

2 Security Model and Preliminaries
We present some of the preliminaries required in our work. First we discuss the fluid
model in Section 2.1, and then in Section 2.2 we present our security model. We utilize
the universal composability framework of [Can01].
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2.1 Modelling Fluid MPC
We first recall at a high level the modelling of Fluid MPC from [RS22; CGG+21]. A more
detailed description is given in Section A. We consider the client-server model, where there
is a universe U of parties, that includes both the clients, who provide inputs, and servers,
who perform computation. Computation is composed of an optional preprocessing stage
among all clients and parties, an input phase where clients provide inputs, an execution
stage where the parties compute the function, and an output phase where the clients
receive output. The execution step is itself divided into epochs, where each epoch i runs
among a fixed set of servers, or Committee Ci. For simplicity, we will assume throughout
that n = ni = |Ci|, for every Committee Ci. An epoch contains two parts, the computation
phase, where the committee performs some computation local to itself, followed by a
hand-off phase, where the current committee securely transfers some current state to the
next committee. We assume that all parties have access to only point-to-point channels.

• Fluidity. This is defined as the minimum number of rounds in any given epoch of
the execution stage. We say a protocol achieves maximal fluidity if each epoch i only
lasts for one total round. In this paper, as in [RS22; CGG+21; DDG+23; BEP23],
we only consider maximal fluidity.

• Committee formation. The committees used in each epoch are chosen on-the-fly
throughout the execution stage. See [CGG+21] for more motivation and details on
committee selection. The model of [CGG+21] specifies the formation process via an
ideal functionality that samples and broadcasts committees according to the desired
mechanism. However, as in [RS22], we desire to divorce the study of committee
selection from the actual MPC and simply require that all parties of the current
committee Ci somehow agree on the next committee Ci+1. Specifically, the parties of
committee Ci during the hand-off phase of epoch i (and not before) are informed
by the environment Z of its choice of committee Ci+1 (i.e., it is a worst-case choice
by Z). We make no assumptions or restrictions on the size of committees nor the
overlap between committees. In particular, committees may consist of a large number
(possibly constant fraction) of parties in the entire universe, U .

• Corruptions. We study the case in which the number of corrupted parties is at most
one third of the size of the committee, that is, 3t + 1 = n. We will sometimes refer
to the honest parties of committee Ci as HCi

, and its corrupt parties as TCi
.

We consider a malicious R-adaptive adversary from [CGG+21] and used in [RS22;
BEP23]. In short, the adversary statically chooses a set of clients to corrupt. During
each epoch i of the execution phase, after learning which servers are in committee Ci,
the adversary adaptively chooses a subset of Ci to corrupt. Upon such a corruption, the
adversary learns the server’s entire past state and can send messages on its behalf in
epoch i. Therefore, when counting the number of corruptions for some epoch i, we must
retroactively include those servers in committee Ci that are corrupted in some later epoch
j > i. Furthermore, if there is a preprocessing stage, we count a server in committee Ci as
corrupted also if they were corrupted during the preprocessing phase.

2.2 Security Model
To model Fluid MPC, we adapt the dynamic arithmetic black box (DABB) ideal func-
tionality FDABB of [RS22]. First, we note that our protocols, as written, achieve security
with selective abort (same as [RS22; CGG+21; BEP23]), where the adversary can prevent
any clients of his or her choice from receiving output. However, similar to the protocols
of [CGG+21] (c.f. Appendix A) and [BEP23], our protocols can easily achieve unanimous
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abort (in which honest clients either all receive the output or all abort) if the clients have
access to a broadcast channel in the last round or if they implement a broadcast over their
point-to-point channels. The same applies to the protocol of [RS22]. Functionality FDABB,
presented below, is parameterized by a finite field Fp, and supports addition and multipli-
cation operations over the field. It keeps track of the current epoch number in a variable
i and the committee of the current epoch i in a variable Ci. The functionality receives
the identity of the first committee from the clients via input Init. During the execution
stage, where the current committee may change, the functionality receives the identity of
the next committee from the currently active parties via input Next-Committee (if it
receives inconsistent committees for either of these two inputs, we assume it aborts).

Functionality 1: FDABB

Parameters: Finite field Fp, universe U of parties, and set of clients Cclnt ⊆ U . The
functionality assumes that all parties have agreed upon public identifiers idx, for each
variable x used in the computation.

Init: On input (Init, C) from every party Pj ∈ Cclnt, where each Pj sends the same set
C ⊆ U , initialize i = 1, C1 = C as the first active committee. Send (Init, C1) to the
adversary.

Input: On input (Input, idx, x) from some Pj ∈ Cclnt, and (Input, idx) from all other parties
in Cclnt, store the pair (idx, x). Send (Input, idx) to the adversary.

Next-Committee: On input (Next-Committee, C) from every party Pj ∈ Ci, where each
Pj sends the same set C ⊆ U , update i = i + 1, Ci = C. Send (Next-Committee, Ci) to the
adversary.

Add: On input (Add, idz, idx, idy) from every party Pj ∈ Ci, compute z = x + y and store
(idz, z). Send (Add, idz, idx, idy) to the adversary.

Multiply: On input (Mult, idz, idx, idy) from every party Pj ∈ Ci, compute z = x · y and
store (idz, z). Send (Mult, idz, idx, idy) to the adversary.

Output: On input (Output, {idzm}) from every party Pj ∈ Cclnt ∪Ci, where a value zm for
each idzm has been stored previously, retrieve {(idzm , zm)} and send (Output, {(idzm , zm)})
to the adversary. Wait for input from the adversary, and if it is Deliver, send the output
to every Pi ∈ Cclnt. Otherwise, abort.

For simplicity, we omit committee selection and tracking from the description of the
ideal functionalities presented in the rest of the paper. However, these components are
(implicitly) exactly as presented in FDABB.

2.3 Preliminaries

Notation. We first note that we will often use l ∈ Ci as shorthand to refer to some party
Pl ∈ Ci+1, and same for some party Pl ∈ HCi+1 or Pl ∈ TCi+1 . We use x←$ X to denote
sampling x randomly from distribution X .

Functionalities, protocols and procedures. In this work we denote functionalities by
F and some subscript, and protocols by Π and some subscript. We also consider procedures,
denoted by π and some subscript. These are similar to protocols except that (1) they act
like “macros” that can be called within actual protocols and (2) they are not intended to
instantiate a given functionality. Instead, security is proven in the protocol where they are
used.
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Layered circuits. We refer the reader to [CGG+21] for a more precise description on
layered circuits. In short, these are arithmetic circuits composed of addition, multiplication
and identity gates. The circuit is divided in layers, and for each such layer, the inputs
to each gate on the layer come directly from the layer above. Every circuit can be made
layered by adding enough identity gates.

Secret Sharing. We first let [x]Ci

d denote a Shamir secret sharing of value x with degree
d among the parties of Ci. We let xj be the j-th share of a Shamir secret sharing [x]Ci

d

(typically held by party Pj of committee Ci). As a special case, our protocol will sometimes
have a party create a Shamir secret sharing of a share they hold. In this case, we denote
that Shamir secret sharing of xj with degree d among the parties of Ci as [xj ]Ci

d .
We also use the packed secret sharing technique introduced by Franklin and Yung [FY92].

This is similar to Shamir secret sharing, except a vector of ℓ different values x = (x1, . . . , xℓ)
are shared at once using a polynomial that evaluates to x1, . . . , xℓ at ℓ distinct points
(w.l.o.g., −1, . . . ,−ℓ)3. For privacy, if t players are corrupted, the polynomial must be
random of degree at most d = t + ℓ − 1. Throughout this paper, we will use ℓ = t + 1,
and thus d = 2t. In this case, similar to standard Shamir secret sharing of degree d = 2t,
from a set of n shares where at most t < n/3 shares are corrupt, their is an algorithm that
efficiently either determines the correct vector of secrets, or outputs ⊥ (denoting an error).
We denote a packed secret sharing value of vector x = (x1, . . . , xℓ) with degree d among
the parties of Ci as JxKCi

d . We let xj be the j-th share of a packed secret sharing JxKCi

d

(typically held by party Pj of committee Ci).
As a special case, our protocol will sometimes have a party create a packed secret

sharing of a vector of shares, each from different Shamir secret sharings, that they hold. In
this case, we denote the vector of shares corresponding to sharings ([x1]Ci

d , . . . , [xℓ]Ci

d ) that
Party Pj in Committee Ci holds as xj

[1,ℓ] = (xj
1, . . . , xj

ℓ) and their packed secret sharing of
the vector with degree d among the parties of Ci as Jxj

[1,ℓ]K
Ci

d .

Parity Check Matrices. Given a vector x = (x1, . . . , xn) ∈ Fn, we say that x is d-
consistent if there exists a polynomial f of degree ≤ d such that f(i) = xi for i ∈ [n]. That
is, x constitutes valid sharings of some secret x = f(0). Testing if a vector x is d-consistent
can be done by interpolating a polynomial of degree ≤ d from the first d + 1 entries, and
checking that the remaining n− (d + 1) entries are consistent with this polynomial. This
can be expressed as a matrix product (xd+2, . . . , xn)⊺ = H ′ · (x1, . . . , xd+1), which can
itself be written as 0 = H · x, where H is a (n− d− 1)× n matrix. More formally, H is
the parity check matrix of the Reed-Solomon code of length n and dimension d + 1, and it
satisfies that a vector x ∈ Fn is d-consistent if and only if 0 = H · x ∈ Fn−(d+1). We will
make use of this matrix throughout our work.

Super-Invertible and Hyper-Invertible Matrices. In our work we make use of
super-invertible matrices, which satisfy that every square submatrix of maximal size is
invertible, and also hyper-invertible matrices [BH08], which satisfy that every square
submatrix of any size is invertible. Given a (n×m) matrix M , and given sets C ⊆ [m] and
R ⊆ [n], we use MC

R to denote the |R| × |C| matrix consistent of the rows of M indexed
by the set R, and the columns of M indexed by C.

3 Basic Functionalities
This section discusses three crucial functionalities for our final protocol, whose instantiations
are somewhat direct adaptations of previous non-fluid works. The first is a functionality

3The underlying field size therefore must be at least ℓ + n.
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for generating sharings of uniformly random values, which recall from the overview in
Section 1.2 is one of the ingredients needed to generate multiplication triples, which are
used to process multiplication gates. The other two functionalities are concerned with how
the clients provide inputs, and how they get outputs once the computation is done.

3.1 Random Sharings Generation [BH08]

We define the functionality for random sharing generation Frand below. It first generates
random sharings [r1]Ci+1

t , . . . , [rt+1]Ci+1
t consistent with t shares received from the adversary

corresponding to corrupted parties for each. It then distributes to the honest parties of
committee Ci+1 their shares of these sharings, summed with their shares of error-sharings
[e1]Ci+1

t′ , . . . , [et+1]Ci+1
t′ , respectively, received from the adversary, where t′ ≤ 2t. Finally, if

any such sharing [e1]Ci+1
t′ is not equal to the all-0 sharing, then Frand sends abort to the

honest parties of Ci+3.

Functionality 2: Frand

1. Frand receives from the adversary the set of shares(
{rk

1}k∈TCi+1
, . . . , {rk

t+1, }k∈TCi+1

)
and sharings ([e1]Ci+1

t′ , . . . , [et+1]Ci+1
t′ ), where

t′ ≤ 2t.
2. Frand then samples r1, r2, . . . , rn−2t randomly, and generates [r1]Ci+1

t , . . . , [rt+1]Ci+1
t

such that for every j ∈ [t + 1] and k ∈ TCi+1 , the k-th shares of [rj ]Ci+1
t are rk

j .

3. Next, for every j ∈ [t + 1], l ∈ HCi+1 , Frand sends the l-th shares of [rj ]Ci+1
t + [ej ]Ci+1

t′

to Pl.
4. Finally, if any [ej ]Ci+1

t′ is not equal to [0]Ci+1
0 , i.e., the all-0 sharing, then Frand sends

abort to the honest parties of Ci+3. Otherwise, Frand asks the adversary whether
to continue, and if the adversary replies (abort, A) for A ⊆ HCi+3 , then Frand sends
abort to the honest parties A of Ci+3.

Functionality Frand is instantiated by Protocol Πrand in Section C.1 in the Supplementary
Material. Our protocol is a simple adaptation of the random sharing generation protocol
by [BH08], except messages are sent from one committee to the next. The communication
complexity is amortized linear per random sharing. We state the following Lemma whose
proof appears in Section C.1 in the Supplementary Material.

Lemma 1. Protocol Πrand UC-realizes Frand.

3.2 Input and Output

Functionality Finput below models how clients provide inputs to the computation, and it
is instantiated by Protocol Πinput, which is appears in Section C.2 in the Supplementary
Material. The instantiation is quite standard: clients learn a random value that they can
use to mask their input, sending this masked value to the parties in the committee that
initiates the computation, who can unmask this element using secret-sharing. Here, we
assume the client committee Cclnt is the first two committees, or in other words, clients
have fluidity 2. This can be easily removed by placing one committee before Cclnt which
send the random sharings to Cclnt, but this would require us to use our resharing protocol,
which we present later in Section 4.
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Functionality 3: Finput

1. Let x be the input associated with the input gate belonging to the client.
2. If the client is corrupted:

(a) Finput first receives the sharing [x]Cclnt
2t or (abort, A) for A ⊆ HCclnts from the

adversary.
(b) In the former case Finput forwards to the honest parties their shares.
(c) In the latter case, Finput outputs abort to the honest clients A of Cclnt.

3. If the client is honest:

(a) Finput first receives x from the client, then it receives from the adversary a set
of shares {xj}j∈TCclnts

or abort.

(b) In the former case, Finput then samples a sharing [x]Cclnt
2t based on the t shares

xj from the adversary, the value x, and t other randomly sampled shares, then
sends to the honest parties their shares.

(c) In the latter case, Finput outputs abort to the honest clients.

We prove the following in Section C.2 in the Supplementary Material.

Lemma 2. Πinput UC-realizes Finput in the Frand-hybrid model.

Finally, Foutput models how the clients get output, and its instantiation, Πoutput, is given
in Section C.3 in the Supplementary Material. The protocol is quite simple: the parties
from the committee holding shares of the output send their shares to the receiving client,
who performs error detection to reconstruct the correct output (or abort).

Functionality 4: Foutput

1. Let [z]Cℓ
2t be the sharing associated with the output gate which belongs to the client,

held by the final committee Cℓ.
2. Foutput first receives the shares of [z]Cℓ

2t from the honest parties HCℓ and uses them
to reconstruct all of [z]Cℓ

2t .
3. Depending on whether the client is honest or not, there are two cases:

(a) If the client is corrupted, Foutput sends the whole sharing [z]Cℓ
2t to the adversary.

If the adversary replies (abort, A) for A ⊆ HCclnts , Foutput sends abort to all
honest clients A of Cclnt.

(b) If the client is honest, Foutput sends just the corrupt parties’ shares of [z]Cℓ
2t to

the adversary. Then, Foutput asks the adversary whether it should continue. If
the adversary replies abort, Foutput sends abort to all honest parties. Otherwise,
Foutput sends z to the client.

The proof of the following is given in Section C.3 in the Supplementary Material.

Lemma 3. Πoutput UC-realizes Foutput.

4 Robust Linear-Overhead Resharing
A central building block needed for Fluid MPC protocols consists of transferring secret-
shared values from one committee to the next. This is needed at least to transfer the
“state” of the computation itself, but in our case, as in [BEP23], it is also used to transfer
other information such as multiplication triples, in order to get efficient multiplication. In
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this section we present efficient resharing protocols for the case of perfect security with
abort. In more detail, consider a committee Ci that holds sharings [x]Ci

2t . Ideally, we would
design a protocol such that committee Ci+1 receives sharings [x]Ci+1

2t . Unfortunately, one
can easily hint why such primitive is hard to instantiate with linear communication: there
have to be at least t honest parties in Ci+1 who derive their shares from more than t
messages from Ci, since otherwise, the adversary corrupting t parties in Ci could learn
these t receivers’ messages and hence their shares. Instead, we design a protocol with
linear communication that lets committee Ci+2 obtain shares [x]Ci

2t , instead of Ci+1. This
is sufficient for our main protocol.

Our protocol operates in batches, resharing a group of t + 1 = Ω(n) sharings with
communication O(n2), which is linear amortized. The description of our protocol is divided
into two steps. First, the parties in Ci reshare the t + 1 secrets into an intermediate
packed version of them towards committee Ci+1. This is described in Section 4.1 below.
Next, parties in Ci+1 somehow “unpack” these sharings so that the parties in Ci+2 obtain
standard Shamir sharings of the original batch. This second part appears in Section 4.2.

4.1 Robust Resharing from Standard to Packed
Consider t + 1 sharings ([x1]Ci

2t , . . . , [xt+1]Ci
2t) held by a committee Ci. We first present a

protocol in which the parties in Ci+1 can obtain packed secret-sharings JxKCi+1
2t , where

x = (x1, . . . , xt+1). The formal functionality is described below as Frobust-packed-reshare.
Notice that there are some technicalities involved in the definition of the functionality.
First, corrupt parties in Ci can cheat in this protocol and cause the parties in Ci+1 to
obtain incorrect sharings Jx + eKCi+1

2t , where e is some error vector chosen by the adversary.
Our protocol guarantees that such error will be caught by the parties in Ci+3, so the
functionality models this fact by sending abort to the parties in this committee. In
addition, the adversary may cause some of the parties in Ci+3 to abort (selectively), and
the functionality also accounts for this.

Functionality 5: Frobust-packed-reshare

1. Let ([x1]Ci
2t , . . . , [xt+1]Ci

2t ) be sharings held by the parties of Ci, corresponding to the
vector of values x = (x1, . . . , xt+1).

2. Frobust-packed-reshare first receives from the honest parties of Ci their shares of
([x1]Ci

2t , . . . , [xt+1]Ci
2t ) (at least 2t + 1 for each of them).

3. Frobust-packed-reshare then reconstructs all of ([x1]Ci
2t , . . . , [xt+1]Ci

2t ) and sends the shares
of corrupted parties to the adversary.

4. Frobust-packed-reshare then receives from the adversary a set of shares {xk}k∈TCi+1
, and

error vector e.
5. Next, Frobust-packed-reshare computes the sharing Jx + eKCi+1

2t based on the t shares xk

from the adversary and the vector x + e, then sends to the honest parties their
shares.

6. Finally, if e ̸= (0, . . . , 0), Frobust-packed-reshare sends abort to the honest parties of Ci+3.
Otherwise, Frobust-packed-reshare asks the adversary whether to continue, and if the
adversary replies (abort, A) for A ⊆ HCi+3 , then Frobust-packed-reshare sends abort to the
honest parties A of Ci+3.

Our protocol is conceptually simple: the parties in Ci each collect their shares of
the batch of secrets, and distribute random packed sharings of these. The receiving
parties in Ci+1 can then take an appropriate linear combination of these sharings (using
Lagrange coefficients) to derive packed sharings of the underlying vector of secrets. To
prevent a corrupt party from sending shares of an incorrect vector, we use the parity-
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check matrix defined in Section 2.3: we let H denote the (t + 1) × n matrix such that
H · (x1, . . . , xn)⊺ = (0, . . . , 0)⊺ if and only if (x1, . . . , xn) are 2t-consistent. Via H, checking
if a group of values is 2t-consistent reduces to applying a linear combination on these
and checking that the result is zero. The parties in Ci+1 can apply such combination to
their received packed sharings, which can be checked by the parties in a future committee.
Instead of reconstructing this linear combination to the parties in Ci+2, which would be
too expensive, the parties perform the linear reconstruction from [DN07] that reconstructs
these sharings to the parties in committee Ci+3, who check that the results are zero.

Our protocol is presented formally as Protocol Πrobust-packed-reshare below. We note here
that Πrobust-packed-reshare can successfully be used on input sharings ([x1]Ci

t , . . . , [xt+1]Ci
t ) of

degree-t instead of degree-2t. Indeed, the only property that is required of the original
sharings [xα]Ci

t for α ∈ [t + 1] is that their shares lie on a polynomial of degree at most 2t,
which is of course true. We will use this fact in our main Fluid MPC protocol.

Protocol 1: Πrobust-packed-reshare

Usage: Committee Ci holds standard sharings ([x1]Ci
2t , . . . , [xt+1]Ci

2t ) corresponding to the
vector of values x = (x1, . . . , xt+1) and committee Ci+1 outputs a single packed sharing
JxKCi+1

2t , using committees Ci+2 and Ci+3 to ensure its correctness.

1. Every party Pj in committee Ci distributes degree-2t packed sharings Jxj
[1,t+1]K

Ci+1
2t

to committee Ci+1 of its shares xj
[1,t+1] = (xj

1, . . . , xj
t+1) of the sharings

([x1]Ci
2t , . . . , [xt+1]Ci

2t ) of the values in x.
2. While the Verification phase (below) executes, the parties of committee Ci+1 compute

and output fresh packed shares JxKCi+1
2t =

∑2t+1
j=1 Lj(0) · Jxj

[1,t+1]K
Ci+1
2t , where Lj(0)

are Lagrange interpolation coefficients.
Verification Phase:

1. The parties Pk of committee Ci+1 apply the parity check matrix H to get
(Jy1KCi+1

2t , . . . , Jyn−2t−1KCi+1
2t )⊺ ← H · (Jx1

[1,t+1]K
Ci+1
2t , . . . , Jxn

[1,t+1]K
Ci+1
2t )⊺.

2. Next, they apply super-invertible matrix M to get (Jz1KCi+1
2t , . . . , JznKCi+1

2t )⊺ ←
M · (Jy1KCi+1

2t , . . . , Jyn−2t−1KCi+1
2t )⊺, and open JzlK

Ci+1
2t to party Pl of committee

Ci+2.

3. Finally, each party Pl of committee Ci+2 checks that the shares of JzlK
Ci+1
2t are

2t-consistent and that they correspond to zl = 0ℓ.
4. If either of the checks fail, they send abort to the parties of committee Ci+3.

The communication complexity of Πrobust-packed-reshare is n · n = O(n2) sharings in
step 1, plus n · n = O(n2) sharings from second step in the verification, for a total of
O(n2/(t + 1)) = O(n) per value being reshared. The proof of the following is given in
Section D in the Supplementary Material.

Lemma 4. Πrobust-packed-reshare UC-realizes Frobust-packed-reshare.

4.2 Robust Resharing from Packed to Standard
Now we turn our attention to the second part of our 2-hop resharing protocol in which the
parties in Ci+1 can “unpack” the sharings they have received from Ci. In order to make this
section independent of the previous one, however, we relabel the committees and assume
that the committee that starts with the packed sharings is Ci, instead of Ci+1. In this case,
the context is the following: Ci holds packed sharings JxKCi

2t , and the goal is for committee
Ci+1 to obtain unpacked Shamir sharings ([x1]Ci+1

2t , . . . , [xt+1]Ci+1
2t ). We model this with
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Functionality Frobust-standard-reshare below. As before, the main complication in modeling
this approach is that the adversary can introduce errors in the sharings distributed, which
will be caught by a future committee Ci+3.

Functionality 6: Frobust-standard-reshare

1. Let JxKCi
2t be the packing held by the parties of Ci, corresponding to the vector of

values x = (x1, . . . , xt+1).
2. Frobust-standard-reshare first receives from the honest parties of Ci their shares of JxKCi

2t

(at least 2t + 1 of them).
3. Frobust-standard-reshare then reconstructs all of JxKCi

2t and sends the shares of corrupted
parties to the adversary.

4. Frobust-standard-reshare then receives from the adversary a set of shares
{(xk

1 , . . . , xk
t+1)}k∈TCi+1

, and errors (e1, . . . , et+1).

5. Next, Frobust-standard-reshare computes the sharings ([x1 + e1]Ci+1
2t , . . . , [xt+1 + et+1]Ci+1

2t )
based on the t shares xk

α from the adversary, the value xα +eα, and t other randomly
sampled shares, for each α ∈ [t + 1], then sends to the honest parties their shares.

6. Finally, if any eα ̸= 0, Frobust-standard-reshare sends abort to the honest parties of Ci+3.
Otherwise, Frobust-standard-reshare asks the adversary whether to continue, and if the
adversary replies (abort, A) for A ⊆ HCi+3 , then Frobust-standard-reshare sends abort to
the honest parties A of Ci+3.

Our protocol to instantiate Frobust-standard-reshare, Protocol Πrobust-standard-reshare, proceeds
as follows. First, each party in Ci, the committee holding the packed sharings, secret-shares
using standard Shamir secret-sharing their own share. At this point, the parties in Ci+1
can take multiple linear combinations using Lagrange coefficients on these Shamir shares to
compute shares of each one of the secrets in the original vector. As with Πrobust-packed-reshare,
corrupt parties may attempt to change their shares when resharing. This once again
is caught by employing the matrix H from Section 4.1, and the committee Ci+3 learns
whether the distributed values are consistent or not. The protocol is described below.

Protocol 2: Πrobust-standard-reshare

Usage: Committee Ci holds a packed sharing JxKCi
2t and committee Ci+1 outputs standard

sharings ([x1]Ci+1
2t , . . . , [xt+1]Ci+1

2t ) corresponding to the vector of values x = (x1, . . . , xt+1),
using committees Ci+2 and Ci+3 to ensure its correctness.

1. Every party Pj in committee Ci distributes degree-2t standard sharings [xj ]Ci+1
2t to

committee Ci+1 of its share xj of the packed sharing JxKCi
2t .

2. While the Verification phase (below) executes, the parties of committee Ci+1 compute
and output fresh shares for every α ∈ [t + 1]: [xα]Ci+1

2t =
∑2t+1

j=1 Lj(−α) · [xj ]Ci+1
2t ,

where Lj(−α) are Lagrange interpolation coefficients.
Verification Phase:

1. The parties Pk of committee Ci+1 apply the parity check matrix H to get
([y1]Ci+1

2t , . . . , [yn−2t−1]Ci+1
2t )⊺ ← H · ([x1]Ci+1

2t , . . . , [xn]Ci+1
2t )⊺.

2. Next, they apply super-invertible matrix M to get ([z1]Ci+1
2t , . . . , [zn]Ci+1

2t )⊺ ←M ·
([y1]Ci+1

2t , . . . , [yn−2t−1]Ci+1
2t )⊺, and open [zl]

Ci+1
2t to party Pl of committee Ci+2.

3. Finally, each party Pl of committee Ci+2 checks that the shares of [zl]
Ci+1
2t are

2t-consistent and that they correspond to zl = 0.
4. If either of the checks fail, they send abort to the parties of committee Ci+3.
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As with Πrobust-packed-reshare, the communication complexity of Πrobust-standard-reshare is
n · n = O(n2) sharings in step 1, plus n · n = O(n2) sharings from second step in the
verification, for a total of O(n2/(t + 1)) = O(n) per value being reshared. Security is given
in the following lemma, which is proved in Section D in the Supplementary Material.

Lemma 5. Πrobust-standard-reshare UC-realizes Frobust-standard-reshare.

5 Linear-Overhead Perfect Fluid MPC with Abort
With our core construction for linear communication resharing at hand, given by protocols
Πrobust-packed-reshare and Πrobust-standard-reshare from Section 4, we are ready to present in detail
our end-to-end Fluid MPC protocol with linear communication, for perfect security with
abort. First, in Section 5.1 we describe how multiplications are handled. Then, in
Section 5.2 we present our actual Fluid MPC protocol.

5.1 Linear-Overhead Multiplication Procedure
In our MPC protocol Πmain from Section 5.2, the parties in a committee Ci+1 will hold two
groups of sharings ([x1]Ci+1

2t , , . . . , [xt+1]Ci+1
2t ) and ([y1]Ci+1

2t , . . . , [yt+1]Ci+1
2t ), and the goal will

be for the parties in Ci+3 to obtain sharings ([x1y1]Ci+3
2t , . . . , [xt+1yt+1]Ci+3

2t ). This specific
step in the protocol is addressed by Procedure πmult, which we describe below, and is caled
from within Protocol Πmain.

At a high-level, committees Ci+1 through committees Ci+3 will execute beaver multipli-
cation [Bea92], using multiple kings in Ci+2, as specified by the standard technique
from [DN07]. To do this, committee Ci first invokes Frand to output random shar-
ings [aα]Ci+1

t , [bα]Ci+1
t , for α ∈ [t + 1] to committee Ci+1. Committee Ci+1 then locally

computes for each α ∈ [t + 1], [cα]Ci+1
2t ← [aα]Ci+1

t · [bα]Ci+1
t . Then, committee Ci+1

invokes Frobust-packed-reshare on these sharings so that committee Ci+2 receives packing
JaKCi+2

2t for vector a = (a1, . . . , at+1), and the same for JbKCi+2
2t , JcKCi+2

2t . Finally, commit-
tee Ci+2 invokes Frobust-standard-reshare on these packings, so that committee Ci+3 receives
[aα]Ci+3

2t , [bα]Ci+3
2t , [cα]Ci+3

2t for α ∈ [t + 1], where (aα, bα, cα) are the same triples that
committee Ci+1 had.

Note that the beaver triple used by the parties in committee Ci+1 is ([aα]Ci+1
t , [bα]Ci+1

t ,

[aα]Ci+1
t · [bα]Ci+1

t ), which is not a truly random triple of degree-2t since (1) the first two
entries are random of degree-t, not 2t, and (2) the the underlying polynomial in the last
entry is not random as it is the product of two degree-t polynomials. However, this is
acceptable in our context since these sharings will be reshared with Frobust-packed-reshare
and Frobust-standard-reshare, which are agnostic to the distribution of the input sharings, and
guarantee the output sharings are freshly random, as required.

Procedure 3: πmult

Usage: Multiply [xα]Ci+1
2t and [yα]Ci+1

2t held by committee Ci+1 so that committee Ci+3

outputs [xαyα]Ci+1
2t , for α ∈ [t + 1].

1. Committee Ci first invokes Frand to output random sharings [aα]Ci+1
t , [bα]Ci+1

t , for
α ∈ [t + 1] to committee Ci+1 (using committees Ci+2 and Ci+3 for verification,
which aborts if needed).

2. The parties Pj in Ci+1 next multiply for each α ∈ [t+1], [cα]Ci+1
2t ← [aα]Ci+1

t ·[bα]Ci+1
t .

3. Committee Ci+1 then computes [dα]Ci+1
2t ← [xα]Ci+1

2t + [aα]Ci+1
t and [eα]Ci+1

2t ←
[yα]Ci+1

2t + [bα]Ci+1
t for every α ∈ [t + 1].
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4. Committee Ci+1 next applies super-invertible matrix M to ([d1]Ci+1
2t , . . . , [dt+1]Ci+1

2t )
to get ([d′

1]Ci+1
2t , . . . , [d′

n]Ci+1
2t ), and ([e1]Ci+1

2t , . . . , [et+1]Ci+1
2t to get

([e′
1]Ci+1

2t , . . . , [e′
n]Ci+1

2t ) and opens [d′
k]Ci+1

2t , [e′
k]Ci+1

2t to party Pk of committee
Ci+2.

5. Simultaneously, the parties Pj in Ci+1 then invoke Frobust-packed-reshare towards com-
mittee Ci+2 on input standard sharings ([a1]Ci+2

t , . . . , [at+1]Ci+2
t ), so that Ci+2 gets

the packing JaKCi+2
2t for vector a = (a1, . . . , at+1) (using committees Ci+3 and Ci+4

for verification, which aborts if needed).

6. They do the same for ([b1]Ci+2
t , . . . , [bt+1]Ci+2

t ) and ([c1]Ci+2
2t , . . . , [ct+1]Ci+2

2t ) to get
packings JbKCi+2

2t and JcKCi+2
2t for vectors b = (b1, . . . , bt+1) and c = (c1, . . . , ct+1),

respectively.
7. The parties Pk of Ci+2 then reconstruct d′

k, e′
k (or abort if unsuccessful) and send

them to all parties of committee Ci+3.

8. Simultaneously, they run Frobust-standard-reshare towards committee Ci+3 on input JaKCi+2
2t

so that Ci+3 gets the standard sharings ([a1]Ci+3
2t , . . . , [at+1]Ci+3

2t ) (using committees
Ci+4 and Ci+5 for verification, which aborts if needed). They do the same with
JbKCi+2

2t and JcKCi+2
2t .

9. The parties of Ci+3 run Berlekamp-Welch on (d′
1, . . . , d′

n) and (e′
1, . . . , e′

n) to get
{dα}α∈[t+1] and {eα}α∈[t+1], respectively.

10. Finally, committee Ci+3 outputs [xαyα]Ci+3
2t = dα · eα − dα · [bα]Ci+3

2t − eα · [aα]Ci+3
2t +

[cα]Ci+3
2t , for each α ∈ [t + 1].

Procedure πmult has communication complexity O(n2/(t+1)) = O(n) per multiplication.
The main properties of Procedure πmult that we will use are summarized in Lemmas 6 and
7 below, whose proofs are given in Section D in the Supplementary Material. We will use
these Lemmas in the proof of Theorem 2, the security proof of MPC protocol Πmain.

Lemma 6. Let it be the case that for every α ∈ [t + 1], either the adversary completely
knows the sharing [xα]Ci+1

2t , or the first t honest parties’ shares are distributed randomly
to the adversary. If given in addition to the adversary’s known shares: random a∗

α for
α ∈ [t + 1], and also for those α ∈ [t + 1] satisfying the latter case, random x1

α, . . . , xt
α, then

values distributed identically to the adversary as honest parties’ shares of [d′
k]Ci+1

2t received
by Pk of Ci+2, for k ∈ TCi+2 , in πmult can be determined. Moreover, values distributed
identically to the adversary to d′

k sent from honest party Pk of Ci+2, for k ∈ HCi+2 , in
πmult can be determined. The same holds for the corresponding values and sharings of e′

k

for k ∈ [n].

Lemma 7. If no parties of committee Ci+3 receive abort in πmult, then they always correctly
determine the values (x1 + a1, . . . , xt+1 + at+1) and (y1 + b1, . . . , yt+1 + bt+1).

5.2 Main Protocol
At this point we are finally ready to present our main Fluid MPC protocol with linear
communication overhead and perfect security with abort, Πmain. For each input x ∈ F
to the computation, the clients simply invoke Finput on x. Then, for the execution phase,
for every batch of multiplication gates at a given layer, the current committee Ci runs
πmult, so that committee Ci+2 receives sharings of the products. For every batch of identity
gates at the layer, committee Ci invokes Frobust-packed-reshare on the input sharings, and then
committee Ci+1 invokes Frobust-standard-reshare on the packed secret sharing received from
Frobust-packed-reshare, so that Ci+2 receives standard sharings of the inputs to the identity
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gates. For every batch of addition gates, committee Ci first adds the sharings for each gate
together, then proceeds exactly as described for identity gates above. Finally, for each
output z, the parties of the last committee Cℓ and the clients Cclnt together invoke Foutput
on the sharing [z]Cℓ

2t . The protocol is described in detail below.

Protocol 4: Πmain

Input Phase:
1. The clients invoke Finput on each input x and receive back either abort or shares of

[x]Cclnt
2t .

Execution Phase: Every other committee (with the help of the others) will compute
the gates at each layer of the circuit as below:

Identity Gates: To forward ([x1]Ci
2t , . . . , [xt+1]Ci

2t ):
1. The parties of committee Ci invoke Frobust-packed-reshare towards committee Ci+1 on the

above sharings, so that Ci+1 gets the packing JxKCi
2t for vector x = (x1, . . . , xt+1)

(using committees Ci+2 and Ci+3 for verification, which aborts if needed).
2. Then, the parties of committee Ci+1 invoke Frobust-standard-reshare towards committee
Ci+2 on input JxKCi

2t , so that Ci+2 gets the standard sharings ([x1]Ci+2
2t , . . . , [xt+1]Ci+2

2t )
(using committees Ci+3 and Ci+4 for verification, which aborts if needed).

Addition: To component-wise add (and forward) ([x1]Ci
2t , . . . , [xt+1]Ci

2t ) and
([y1]Ci

2t , . . . , [yt+1]Ci
2t ), the parties of committee Ci first directly compute

([x1]Ci
2t + [y1]Ci

2t , . . . , [xt+1]Ci
2t + [yt+1]Ci

2t ),

then run the identity gate procedure on these sharings.

Multiplication: To component-wise multiply ([x1]Ci
2t , . . . , [xt+1]Ci

2t ) and ([y1]Ci
2t , . . . , [yt+1]Ci

2t ),
the parties of Committee Ci run πmult on them so that the parties of committee Ci+2

receive ([x1y1]Ci+2
2t , . . . , [xt+1yt+1]Ci+2

2t ).

Output Phase:
1. For each output gate belonging to a client, the parties of committee Cℓ invoke Foutput

on the corresponding sharing [z]Cℓ
2t .

2. If the client receives abort from Foutput, then it sends abort to all other clients and
aborts itself.

3. The clients then wait until the verification phases of the procedures of the execution
phase have ended to output their values z received from Foutput.

Per group of t + 1 multiplication gates, the communication complexity of Πmain is that
of πmult, which is O(n2), for a total of O(n2/(t + 1)) = O(n) per multiplication gate. If
there are o(n) multiplication gates for a given layer, the communication complexity for
that layer is Ω(n2). Before we prove the security of our protocol, we consider the following
simple Lemma that will prove handy.

Lemma 8. If Frobust-packed-reshare sends the parties of committee Ci+4 abort, then they abort.
Similarly, if Frobust-standard-reshare sends the parties of committee Ci+5 abort, then they abort.

Proof. This is immediate from the definitions of Frobust-packed-reshare and
Frobust-standard-reshare.

Theorem 2 below states that Protocol Πmain instantiates the ideal Fluid MPC functionality
FDABB. The proof appears in Section D in the Supplementary Material.
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Theorem 2. Protocol Πmain UC-securely computes FDABB in the presence of an R-
adaptive adversary A in the (Finput,Frobust-packed-reshare,Frobust-standard-reshare,Frand,Foutput)-
hybrid model.
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of the Research Department of JP Morgan. JP Morgan makes no representation and
warranty whatsoever and disclaims all liability, for the completeness, accuracy or reliability
of the information contained herein. This document is not intended as investment research
or investment advice, or a recommendation, offer or solicitation for the purchase or sale
of any security, financial instrument, financial product or service, or to be used in any
way for evaluating the merits of participating in any transaction, and shall not constitute
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Supplementary Material

A Modelling Fluid MPC
We first recall the modelling of Fluid MPC from [RS22; CGG+21]. As in the above works,
we consider the client-server model, where there is a universe U of parties, that includes
both the clients and servers. The goal of these clients is to privately compute a function
over their inputs. The clients delegate this computation to a set of servers in U that can
volunteer their computational resources for part of the computation and then potentially
go offline. That is, the set of servers is not fixed in advance, and can change from time to
time.

Computation proceeds in three or four stages: preprocessing (optional), input, execution,
and output. Preprocessing is optional and typically only required to have a statistically-
secure execution phase for the dishonest majority setting (see below). In the preprocessing
stage, all clients and servers in U interact to generate information that will be used in
the execution stage, but that is independent of the actual inputs and the function to be
computed (it may be required that enough information is generated for some particular
function). After the preprocessing stage, servers can go offline until the clients wish to
perform the computation. In the input stage, clients process their inputs and hand these
(private) versions to the servers for computation. In the execution stage, only the servers
participate to compute the function. The execution stage proceeds in epochs, where
each epoch i runs among a fixed set of servers, or committee Ci. An epoch contains two
parts, the computation phase, where the committee performs some computation local to
itself, followed by a hand-off phase, where the current committee securely transfers some
current state to the next committee. Finally, in the output stage, the last server committee
transfers some final state to the clients, who then interact to reconstruct the output of the
function. We stress that there is only one output stage, i.e., the clients get some final state
from the servers once that allows them to reconstruct the entire output all at that time.

Fluidity. Both the computation phase and hand-off phase of each epoch in the execution
stage may require multiple rounds of interaction. Fluidity is defined as the minimum
number of rounds in any given epoch of the execution stage. We say a protocol achieves
maximal fluidity if each epoch i only lasts for one total round. I.e., the computation
phase only consists of local computation by the parties in committee Ci, and the hand-off
phase consists of only some local computation by the parties in Ci, plus communication
from Ci to Ci+1. In this paper, we only consider maximal fluidity, as it is the optimal
setting to consider and it is the setting considered in the previous works [RS22; CGG+21].
However, we stress that in our modelling for maximal fluidity (as well as that of [RS22;
CGG+21]) the clients in the output stage may interact for a constant number of rounds
(i.e., independent of the circuit depth) to reconstruct the output.

Committee formation. The committees used in each epoch may either be fixed ahead of
time, or chosen on-the-fly throughout the execution stage. While fixing committees ahead
of time may result in a simpler, more efficient protocol, we focus on the less restrictive,
more realistic setting where committees are chosen on-the-fly. This model is more suitable
for the goal of making MPC protocols adequate for use over unsable networks since,
intuitively, a given committee has better chances of guaranteeing a stable connection if
they do not need to commit to a specific online time far in advance. See [CGG+21] for
more motivation and details on committee selection.

As in [CGG+21], the formation process can be modelled with an ideal functionality
that samples and broadcasts committees according to the desired mechanism. In our
formalization, we simply require that all parties (both honest and adversarial) of committee
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Ci somehow agree on the next committee Ci+1. Formally, it is important to note that
committee Ci+1 for epoch i + 1 is only determined and conveyed to everyone at the start
of the hand-off phase of epoch i, not before. We make no assumptions or restrictions on
the size of committees nor the overlap between committees.

Corruptions. We study the case in which the number of corrupted parties is at most
one third of the size of the committee, that is, 3t + 1 = n, where n is the size of each
committee.

More formally, we consider a malicious R-adaptive adversary from [CGG+21] and used
in [RS22]. When the clients are chosen, the adversary statically corrupts a set TCclnts ⊆ Cclnt
of clients (at the start of the protocol). Then, the adversary corrupts the servers of the
committees in an adaptive manner with retroactive effect. More specifically, in each epoch i,
the adversary can adaptively choose to corrupt a set of servers TCi ⊆ Ci. Upon corrupting
a server (resp. client), A learns its entire past state and can send messages on its behalf
in epoch i (resp. the input and output stages). Therefore, when counting the number of
corruptions for some epoch i, we must retroactively include those servers in committee Ci

that are corrupted in some later epoch j > i.

B Other Related Work
We already have surveyed in the introduction all relevant related work on the direction
of Fluid MPC specifically. However, in the more broad direction of MPC in dynamic
settings, several other references exist. In this section a survey of some of these works is
provided [BEP23, Section B].

Fail-stop adversaries. A series of works have studied the setting of MPC, where the
adversary is allowed to not only corrupt some parties passively/actively, but also cause
some parties to fail (e.g. [FHM98] and subsequent works). This can be seen as similar to
the Fluid setting, where parties who participate in one committee may never participate
again in another committee. However, one main difference is that unlike in the committee
approach of Fluid, the set of parties that fail and thus exit the computation are not known
to the rest of the parties. Second, and most crucially, once a party is set to fail by the
adversary, it does not return to the computation, whereas parties in Fluid can arbitrarily
be placed in several non-consecutive committees.

LazyMPC. The work of [BJMS20] considers an adversary that can set parties to be
offline in any round (called “honest but lazy” in that work). This work differs from ours in
several places. First, the authors focus only on the case of computational security, making
use of rather strong techniques such as multi-key fully homomorphic encryption. Second,
the parties that are chosen to be “lazy” are not known to the other parties. Third, once a
party becomes offline, or “lazy”, in their model it is assumed not to come back.

Synchronous but with partition tolerance. Recently, the work of [GPS19] designed
MPC protocol in the so-called “sleepy model”, which enables some of the parties to lag
behind the protocol execution, while not being marked as corrupt. This could be achieved
with an asynchronous protocol,n naturally, but the main result of [GPS19] is obtaining
such protocols without the strong threshold assumptions required to obtain asynchronous
protocols. In particular, the authors obtain computationally secure constant-round pro-
tocols, assuming that the set of “fast”-and-honest parties in every round constitutes as
majority, an assumption that is shown to be necessary.
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Phoenix. The work of [DEP21] proposes a model that is similar to the one in [GPS19]
in that parties can go offline for momentaneous periods of time, but unlike [GPS19], the
parties are not assumed to receive messages while they are offline ([GPS19] considers
unstable parties as “slow”, meaning they still receive messages but they might not do so on
time; in contrast, [DEP21] considers these parties to be potentially entirely offline). The
work proposes solutions in their “Phoenix” model for MPC with perfect, statistical and
computational security, and prove exact conditions on the adversary under which these
are possible.

YOSO. In the recent work of Gentry et al. [GHK+21], the “You Only Speak Once”
model for MPC is introduced. In this model, the basic assumption is that the adversary
is able to take a party down as soon as that party sends a message - using, say, a denial
of service attack. Although some number of parties are assumed to be alive and can
receive messages, no particular party is guaranteed to come back (which is the major
difference to our model). Instead, the YOSO model breaks the computation into small
atomic pieces called roles where a role can be executed by sending only one message. The
responsibility of executing each role is assigned to a physical party in a randomized fashion.
The assumption is that this will prevent the adversary from targeting the relevant party
until it sends its (single) message. This means that one should think of the entire set of
parties as one “community” which as a whole is able to provide secure computation as a
service. In a sense, YOSO aims to make progress and keep the computation alive without
any guarantees for particular physical parties such as contributing inputs and receiving the
output, This makes good sense in the context of a blockchain, for instance. On the other
hand, the demand that the MPC protocol must be broken down into roles makes protocol
design considerably harder, particularly for information theoretically secure protocols. An
additional caveat with the YOSO model is that one can only have information theoretically
or statistically secure protocols assuming that the role assignment mechanism is given as
an ideal functionality, and an implementation of such a mechanism must inherently be
only computationally secure. In comparison, our model assumes a somewhat less powerful
adversary who must allow a physical party to come back after being offline. This allows for
much easier protocol design, information theoretic security based only on point-to-point
secure channels, and allows termination such that all parties can provide input and get
output.

C Supplementary Material for Section 3
C.1 Instantiating Frand

As we discussed in the overview, this is an adaptation of the random sharing generation
protocol by [BH08], except messages are sent from one committee to the next.

Protocol 5: Πrand

Usage: With help from committee Ci, committee Ci+1 outputs t + 1 random sharings
[r]Ci+1

t , and uses committees Ci+2 and Ci+3 to ensure their t-consistency.
1. All parties Pj in Ci sample random sj and share it to the parties of Ci+1 using

degree t.
2. The parties of Ci+1 first locally apply (n × n) hyper-invertible matrix M to the

sharings from Ci to obtain

([r1]Ci+1
t , . . . , [rn]Ci+1

t )⊺ ←M · ([s1]Ci+1
t , . . . , [sn]Ci+1

t )⊺.
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3. While the Verification Phase (below) is executed, committee Ci+1 outputs random
sharings ([r1]Ci+1

t , . . . , [rt+1]Ci+1
t ).

Verification Phase:
1. Then, the parties of Ci+1 open the last 2t sharings [rt+2]Ci+1

t , . . . , [rn]Ci+1
t to the

last 2t parties of Ci+2, respectively.

2. The last 2t parties Pl of Ci+2 then check that indeed [rl]
Ci+1
t is t-consistent.

3. If this check fails for some Pj , they send abort to the parties of Ci+3.

The communication complexity of Πrand is n · n = O(n2) sharings in step 1, plus
2t ·n = O(n2) sharings from the verification, for a total of O(n2/(t+1)) = O(n) per random
sharing. The proof of the following Lemma is given in Section C in the Supplementary
Material.

Lemma 9 (Lemma 1, re-stated). Protocol Πrand UC-realizes Frand.

Proof. First we define the simulator S:

1. S for j ∈ HCi
first samples random sharings [sj ]Ci+1

t , then sends the committee Ci+1
corrupted parties’ shares, {sk

j }k∈TCi+1
to the adversary.

2. S then receives from the adversary on behalf of the committee Ci+1 honest parties,
{sk

j }k∈HCi+1
, for j ∈ TCi .

3. For each j ∈ TCi
, S uses the first t + 1 honest parties’ shares k ∈ HCi+1 , sk

j , to
reconstruct [sj ]Ci+1

t .

4. Then, for each j ∈ TCi
, letting sk

j,t be the k-th share of [sj ]Ci+1
t just reconstructed,

S uses for the first t + 1 honest parties in HCi+1 , share 0, and for the remaining t

parties k ∈ HCi+1 , sk
j − sk

j,t to reconstruct [dj ]Ci+1
t′

j
, where t′

j ≤ 2t is the smallest value
that defines a consistent sharing with the above 2t + 1 shares.

5. S then computes ([r1]Ci+1
t , . . . , [rn]Ci+1

t )⊺ ← M · ([s1]Ci+1
t , . . . , [sn]Ci+1

t )⊺ and
([e1]Ci+1

t′ , . . . , [en]Ci+1
t′ )⊺ ←M ·

(
0, . . . , 0, [d2t+2]Ci+1

t′
2t+2

, . . . , [dn]Ci+1
t′

n

)⊺
on behalf of all of

the honest parties of committee Ci+1, where t′ = max{t′
j}j∈TCi

.

6. Using the 2t + 1 honest parties’ shares of the sharings ([r1]Ci+1
t , . . . , [rt+1]Ci+1

t ), S
reconstructs the whole sharings, and sends the corrupted parties’ shares to Frand,
along with ([e1]Ci+1

t′ , . . . , [et+1]Ci+1
t′ ).

7. Then for j ∈ [2t + 2, n] ∩ TCi+2 , S sends to the corresponding corrupted party of
committee Ci+2, the honest parties’ shares of [rj ]Ci+1

t + [ej ]Ci+1
t′ .

8. S next receives from the adversary, for j ∈ [t + 2, n] ∩HCi+2 , the corrupted parties’
shares of [rj ]Ci+1

t + [ej ]Ci+1
t′ , for the corresponding honest party of committee Ci+2.

Together with the honest parties’ shares of these sharings, S checks that [rj ]Ci+1
t +

[ej ]Ci+1
t′ indeed defines a t-consistent sharing. If not, then S sends on behalf of Pj ,

abort to the corrupted parties of committee Ci+3.

9. Finally, if S sent any abort in the above step, it sets A = HCi+3 ; otherwise it sets A
to be those honest parties that receive from some corrupt party abort. Then, when
Frand asks S whether to continue, it replies with (abort, A).
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Now we argue that the real world and ideal world are distributed identically to the
adversary. In Step 1 of Πrand, the adversary receives the t committee Ci+1 corrupted
parties’ shares of the committee Ci honest parties’ sharings [sj ]Ci+1

t . Indeed, Step 1 of
S is to sample random sharings in the same way for each honest party, and send the
corrupted committee Ci+1 parties their shares. Thus, the view of the adversary is identical
in the real and ideal worlds for this step. For these degree-t sharings, there are t + 1 total
(random) degrees of freedom in defining the underlying polynomial, and thus the t shares
that the adversary sees are uniformly random, while leaving 1 remaining (random) degree
of freedom for each sharing, or 2t + 1 in total.

In Step 3 of Πrand, the honest parties output their shares of ([r1]Ci+1
t′ , . . . , [rt+1]Ci+1

t′ ).
Let us examine what honest parties output for their shares of the degree-t′ sharings in the
ideal world. In Step 3 of S, for j ∈ TCi

, it uses the underlying first t + 1 honest parties’
shares sk

j received from the adversary to reconstruct [sj ]Ci+1
t . Then, in Step 4, S uses the

differences between all of the 2t + 1 shares sk
j , k ∈ HCi+1 received from the adversary and

those defined by [sj ]Ci+1
t reconstructed above, to reconstruct sharings [dj ]Ci+1

t′
j

(of course,
for the first t + 1, the difference will be 0). Next, in Step 5, S computes

([r1]Ci+1
t , . . . , [rn]Ci+1

t )⊺ ←M · ([s1]Ci+1
t , . . . , [sn]Ci+1

t )⊺

and
([e1]Ci+1

t′ , . . . , [en]Ci+1
t′ )⊺ ←M ·

(
0, . . . , 0, [d2t+2]Ci+1

t′
2t+2

, . . . , [dn]Ci+1
t′

n

)⊺
.

Finally, in Step 6, S sends to Frand the corrupted parties’ shares of ([r1]Ci+1
t , . . . , [rt+1]Ci+1

t ),
along with ([e1]Ci+1

t′ , . . . , [et+1]Ci+1
t′ ). Frand then for each j ∈ [t + 1], samples random

rj and degree-t sharing consistent with this value and the t corrupted parties’ shares
of [rj ]Ci+1

t received from S, reconstructs the corresponding sharing, and sends to the
honest parties of Ci+1 their shares of this sharing, plus their share of [ej ]Ci+1

t′ . Now, let
HCi

= {h1, . . . , h2t+1}, H1 = {h1, . . . , ht+1}, C = [n] \ H1 = {c1, . . . , c2t}, and TCi
=

{τ1, . . . , τt} (all ordered). For each k ∈ HCi+1 , let us look at honest party Pk’s computation
of (rk

1 , . . . , rk
t+1)⊺ ← MH1

[t+1] · (sk
h1

. . . sk
ht+1

)⊺ + MC
[t+1] · (sk

c1
. . . sk

c2t
)⊺. Since M is hyper-

invertible, MH1
[t+1] is invertible, which means that the t + 1 values rk

j have a one-to-one
correspondence with sk

hj
, for j ∈ [t + 1]. Since for each sharing [shj ]Ci+1

t , j ∈ [t + 1] there
is 1 remaining (random) degree of freedom, we can for the first honest party, conclude
that r1

j is random. Since Frand only needs to sample 1 random value for each of the t + 1
random sharings ([r1]Ci+1

t , . . . , [rt+1]Ci+1
t ), the real world and ideal world are distributed

identically in determining these sharings. Note also that [sht+2 ]Ci+1
t , . . . , [sh2t+1 ]Ci+1

t still
have 1 remaining (random) degrees of freedom, each, at this point. Furthermore, observe
that for k ∈ HCi+1 , j ∈ TCi

the k-th share of [sj ]Ci+1
t added to that of [dj ]Ci+1

t′
j

, will be
exactly that sk

j received from the adversary. Moreover, by linearity, the k-th shares of
M · ([s1]Ci+1

t , . . . , [sn]Ci+1
t )⊺ + M · (0, . . . , 0, [d2t+2]Ci+1

t′
j

, . . . , [dn]Ci+1
t′

j
)⊺ will thus be exactly

M · (sk
1 , . . . , sk

n)⊺. Therefore, the values output by the honest parties in the ideal world
are distributed identically to those output in the real world.

In Step 1 of the Verification Phase of Πrand, for each member of υj ∈ [t + 2, n] ∩
TCi+1 = T = {υ1, . . . , υm}, the adversary receives on behalf of the corresponding corrupted
party of Ci+2: the honest parties’ shares of [rυj

]Ci+1
t′ . Let H ′ = {ht+2, . . . , ht+m+1} and

C ′ = [n] \H ′ = {σ1, . . . , σn−m}. For these sharings, for k ∈ H1, let us look at honest party
Pk’s computation of (rk

υ1
, . . . , rk

υm
)⊺ ←MH′

T · (sk
ht+2

. . . sk
ht+m+1

)⊺ + MC′

T · (sk
σ1

. . . sk
σn−m

)⊺.
Since M is hyper-invertible, MH′

T is invertible, which means that the m values rk
υ1

, . . . , rk
υm

have a one-to-one correspondence with sk
hl

, for l ∈ [t + 2, t + m + 1]. Since for each sharing
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[shl
]Ci+1
t , l ∈ [t + 2, t + m + 1] there is 1 remaining (random) degree of freedom, we can for

j ∈ T , conclude that the share of the first honest party rh1
j is random. S in Step 7 computes

and sends the simulated shares of honest parties of [rυj
]Ci+1
t′ by separating [rυj

]Ci+1
t′ into

[rυj
]Ci+1
t + [eυj

]Ci+1
t′ . For [rυj

]Ci+1
t , since the first honest party share is random using the

same argument as above, and the last t are consistent with the first, and the adversary’s t
shares, the ideal world is identically distributed to the real world at this point.

When S receives from the adversary, for j ∈ [t + 2, n] ∩HCi+1 , the corrupted parties’
shares of [rj ]Ci+1

t′ , it performs the same consistency check on behalf of the honest parties as
they do in the real world. Thus, the distribution of abort messages from the honest parties
of Ci+2 to the corrupt parties of Ci+3, and whether the honest parties of Ci+3 abort, are
identical in the real and ideal worlds.

Finally, we need to show that if for some j ∈ [t + 1], [ej ]Ci+1
t′ ̸= [0]Ci+1

0 (i.e., the all-0
sharing) in the real world, then the honest parties of committee Ci+3 abort (as they are
forced to in the ideal world). We do so by proving the contrapositive; i.e., if the honest
parties do not abort, then for every j ∈ [t + 1], [ej ]Ci+1

t′ = [0]Ci+1
0 . For this, we again use the

power of hyper-invertible matrix M . Let H ′′ = {η1, . . . , ηt} be the first t honest parties of
[t + 2, n] ∩HCi+2 . For each k ∈ [n], party Pk of committee Ci+1 computes

(rk
η1

, . . . , rk
ηt

)⊺ ←M
TCi

H′′ · (sk
τ1

. . . sk
τt

)⊺ + M
HCi

H′′ · (sk
h1

. . . sk
h2t+1

)⊺.

Since M is hyper-invertible, M
TCi

H′′ is invertible, so we can write

(sk
τ1

. . . sk
τt

)⊺ =
(

M
TCi

H′′

)−1
·(rk

η1
, . . . , rk

ηt
)⊺−(

M
TCi

H′′

)−1
·MHCi

H′′ · (sk
h1

. . . sk
h2t+1

)⊺.

Now, since the honest parties did not abort, their checks passed, which means that
for j ∈ [t], the shares r1

ηj
, . . . , rn

ηj
are t-consistent. In particular, this means that for each

j′ ∈ [t], the vector of the τj′-th elements of
(

M
TCi

H′′

)−1
· (rk

η1
, . . . , rk

ηt
)⊺ across k ∈ [n] are

t-consistent. Similarly, for hl ∈ HCi
, s1

hl
, . . . , sn

hl
are generated by honest parties and

thus are t-consistent. Therefore, for each j′ ∈ [t], the vector of the j′-th elements of(
M

TCi

H′′

)−1
·MHCi

H′′ · (sk
h1

. . . sk
h2t+1

)⊺ across k ∈ [n] are t-consistent. Putting together the
observations above, we have that for each j′ ∈ [t], the vector of the j′-th elements of
(sk

τ1
. . . sk

τt
)⊺ across k ∈ [n] are t-consistent.

Finally, since for k ∈ [n]:

(rk
1 , . . . , rk

t+1)⊺ ←M
TCi

[t+1] · (s
k
τ1

. . . sk
τt

)⊺ + M
HCi

[t+1] · (s
k
h1

. . . sk
h2t+1

)⊺,

we see that for j ∈ [t + 1], (r1
j , . . . , rn

j ) are t-consistent. Thus, every [ej ]Ci+1
t′ = [0]Ci+1

0 , as
required.

In conclusion, we have proved that the real and ideal worlds are distributed identically
and thus Πrand UC-realizes Frand.
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C.2 Instantiating Finput

Protocol 6: Πinput

Usage: A client in the client set Cclnt distributes a sharing [x]Cclnt
2t of their circuit input x

to the other clients.
1. The clients Pj of Cclnt first invoke Frand to get random sharing [r]Cclnt

t (where Cclnt
acts as all committees used in Frand).

2. The clients then open [r]Cclnt
t to the input client, who then (if [r]Cclnt

t is a correct
degree-t sharing) computes x + r, samples [x + r]Cclnt

2t and distributes to all other
clients in Cclnt their shares.

3. Each party in Cclnt then computes and outputs their sharing of x as [x]Cclnt
2t =

[x + r]Cclnt
2t − [r]Cclnt

t .

Lemma 10 (Lemma 2 re-stated). Πinput UC-realizes Finput in the Frand-hybrid model.

Proof. First, we define the simulator S:

1. S first emulates Frand. That is, it receives from the adversary shares rj for j ∈ TCclnts

and sharing [e]Cclnt
t′ , then samples r uniformly at random, generates random sharing

[r]Cclnt
t such that each j-th share is rj , aborts if [e]Cclnt

t′ ̸= [0]Cclnt
0 and finally asks the

adversary whether to continue. If the adversary responds with abort, then S sends
abort to Finput.

2. Then, if the input client is corrupt:

(a) S sends the honest clients’ shares of [r]Cclnt
t to the adversary.

(b) If the client responds with abort to honest clients A ∈ HCclnts , S forwards it
(abort, A) to Finput.

(c) Otherwise, the client responds with the honest parties’ shares of [x + r]Cclnt
2t

(2t+1 of them), from which S reconstructs the whole sharing and then forwards
the sharing of [x]Cclnt

2t = [x + r]Cclnt
2t − [r]Cclnt

t to Finput.

3. Otherwise, if the input client is honest:

(a) S receives from the adversary the corrupt parties’ shares of [r]Cclnt
t .

(b) If any of the shares it receives are not equal to rj received above, S sends abort
to Finput.

(c) Otherwise, S sends random sj for j ∈ TCclnts to the adversary and on behalf of
the corrupt parties, computes their shares sj − rj and forwards them to Finput.

Now we argue that the real world and ideal world are distributed identically to the
adversary. It is clear that S emulates Frand exactly. If the input client is corrupt, then in
both the real world and ideal world, the adversary first receives from the honest clients their
shares of [r]Cclnt

t (in the latter case, via the simulator S). Then, based on the adversary’s
sharing [x + r]Cclnt

2t , the honest clients in both worlds output [x + r]Cclnt
2t − [r]Cclnt

t . Therefore,
the two worlds are distributed identically in this case.

If the client is honest, then in the real world, the client first checks if the shares of [r]Cclnt
t

it receives are t-consistent. In the ideal world, since the only corrupt party shares that are
t-consistent with the honest parties’ shares are those that S received from the adversary
originally, S properly aborts if it does not receive these shares from the adversary. Then,
in the real world, the corrupt parties receive from the honest client their shares of fresh
sharing [x + r]Cclnt

2t . Since this is a fresh sharing, by the properties of Shamir secret sharing,
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the corrupt parties’ shares are uniformly random, which is what S sends to the adversary
in the ideal world. Finally, based on the sharing [x + r]Cclnt

2t , the honest clients in the real
world output [x + r]Cclnt

2t − [r]Cclnt
t . Note that the adversary only has t shares of [x + r]Cclnt

2t ,
and thus, there are at least t random degrees of freedom left in it. Therefore, since S
computes the corrupt parties’ shares of [x + r]Cclnt

2t − [r]Cclnt
t exactly as in the real world,

as sj − rj , then Finput computes [x]Cclnt
2t based on these t shares, the value x, and t other

randomly sampled shares; the shares of [x]Cclnt
2t output by honest clients in the ideal world

are distributed identically to those of the real world.
Therefore, the real and ideal worlds are distributed identically.

C.3 Instantiating Foutput

Protocol 7: Πoutput

Usage: The last committee Cℓ reconstructs to a client the sharing [z]Cℓ
2t of their output z.

1. The last committee Cℓ simply opens output [z]Cℓ
2t to the client, Pj of Cclnt.

2. The client Pj then checks if [z]Cℓ
2t is a correct degree-2t sharing. If so, it outputs z;

otherwise, it sends abort to all other clients in Cclnt.

Lemma 11 (Lemma 3 re-stated). Πoutput UC-realizes Foutput.

Proof. First, we define the simulator S:

1. If the client is corrupted:

(a) S receives from Foutput the whole sharing [z]Cℓ
2t and forwards to the adversary

the honest parties’ shares.
(b) Finally, if S receives on behalf of the honest clients A ⊆ HCclnts , abort, from the

adversary, S sends (abort, A) to Foutput.

2. If the client is honest:

(a) S first receives from Foutput the corrupt parties’ shares {zj}j∈TCℓ
of [z]Cℓ

2t .
(b) Then, S receives on behalf of the honest client {z′

j}j∈TCℓ
from the adversary.

(c) If any z′
j ̸= zj , then S sends abort to the corrupt clients of TCclnts and then also

to Foutput.

Now we show that the real and ideal world are identically distributed to the adversary.
If the client is corrupted, it is clear that in both worlds, the adversary receives the honest
parties’ shares of [z]Cℓ

2t . Thus, the two worlds are identically distributed in this case.
If the client is honest, in the real world they receive all of the committee Cℓ parties’

shares of [z]Cℓ
2t and if the shares are not 2t-consistent, then the client sends abort to all

other clients; otherwise, they output z. In the ideal world S receives from Foutput the
shares of the corrupt parties of Cℓ that are (the only shares that are) 2t-consistent with
the honest parties. Therefore, since S aborts if and only if any shares it receives from the
adversary are different from those received from Foutput, the simulation is perfect in this
case.

D Missing Proofs
Lemma 12 (Lemma 4 re-stated). Πrobust-packed-reshare UC-realizes Frobust-packed-reshare.
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Proof. First, we define the simulator S:

1. S first receives from Frobust-packed-reshare the shares of the corrupted parties of
([x1]Ci

2t , . . . , [xt+1]Ci
2t): (xj

1, . . . , xj
t+1)j∈TCi

2. For each j′ ∈ HCi
and k′ ∈ TCi+1 , S samples random xj′k′ and sends it to the

adversary, to emulate Pk′ ’s share of Pj′ ’s packed sharing Jxj′

[1,t+1]K
Ci+1
2t in Step 1 of

Πrobust-packed-reshare.

3. S then receives from the adversary for each j ∈ TCi
and k ∈ HCi+1 , value xjk,

corresponding to Pk’s share of Pj ’s packed sharing Jx̂j
[1,t+1]K

Ci+1
2t . For each j, S uses

the 2t + 1 values xjk to compute the sharing Jx̂j
[1,t+1]K

Ci+1
2t = (xj1, . . . , xjn), and the

underlying block of secrets x̂j
[1,t+1] = (x̂j

1, . . . , x̂j
t+1).

4. Next, S computes for each j ∈ TCi , their error vector

ej = (ej,1, . . . , ej,t+1)← (x̂j
1 − xj

1, . . . , x̂j
t+1 − xj

t+1),

and then the overall error vector

e =
∑

j∈TCi
∩[2t+1]

Lj(0) · ej .

5. S then computes for k′ ∈ TCi+1 , xk′ =
∑2t+1

j=1 Lj(0) · xjk′ and sends these values,
along with e to Frobust-packed-reshare.

6. Next, S computes for each α ∈ [t + 2], the matrix-vector product

(y1,α, . . . , yn−2t−1,α)⊺ ← H · (e1,α, . . . , en,α)⊺,

where ej,α = 0 for all j ∈ HCi , α ∈ [t+1], and defines the vector yµ = (yµ,1, . . . , yµ,t+1)
for µ ∈ [n− 2t− 1].

7. S also computes for each k′ ∈ TCi+1 :

(yk′

1 , . . . , yk′

n−2t−1)⊺ ← H · (x1k′ , . . . , xnk′)⊺.

8. For each µ ∈ [n− 2t− 1], using the blocks yµ and the shares yk′

µ of k′ ∈ TCi+1 (i.e.,
2t + 1 total degrees of freedom), S computes the sharing JyµKCi+1

2t .

9. Next, S computes (Jz1K
Ci+1
2t , . . . , JznKCi+1

2t )←M · (Jy1K
Ci+1
2t , . . . , Jyn−2t−1K

Ci+1
2t ), and

sends the honest parties’ shares of JzlK
Ci+1
2t to each corrupted party Pl of committee

Ci+2.

10. For each honest party Pl of committee Ci+2, S receives from the adversary: committee
Ci+1 corrupted parties’ shares of JzlK

Ci+1
2t . If these shares do not match what S had

already computed, or the underlying computed value zl ≠ (0, . . . , 0), S sends abort
on behalf of Pl to all corrupted parties of committee Ci+3.

11. Finally, if S sent any abort in the above step it sets A = HCi+3 ; otherwise, it sets A
to be those honest parties that receive abort from any corrupt party abort. Then,
when Frobust-packed-reshare asks S whether to continue, it replies with abort.
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Now we show that the real world and ideal world are identically distributed to the
adversary. In Step 1 of Πrobust-packed-reshare, the adversary receives the t committee Ci+1

corrupted parties’ shares of the committee Ci honest parties’ packed sharings Jxj
[1,t+1]K

Ci+1
2t .

Since these are degree-2t packed sharings that share t + 1 underlying values, there are t
remaining degrees of freedom in defining the underlying polynomial, and thus the shares
that the adversary sees are uniformly random. Indeed, Step 2 of S is to send uniformly
random shares to the adversary, corresponding to the packed sharings, and thus the view
of the adversary is identical in the real and ideal worlds for this step.

In Step 2 of Πrobust-packed-reshare, the honest parties output their shares JxKCi+1
2t =∑2t+1

j=1 Lj(0) · Jxj
[1,t+1]K

Ci+1
2t based on their own as well as possibly some corrupted sharings

Jxj
[1,t+1]K

Ci+1
2t . The honest parties’ shares uniquely define a degree-2t polynomial, where

for α ∈ [t + 1] the polynomial evaluated on −α gives

∑
k∈HCi+1

Lk(−α)
2t+1∑
j=1

Lj(0) · xjk =
2t+1∑
j=1

Lj(0)
∑

k∈HCi+1

Lk(−α)xjk =
2t+1∑
j=1

Lj(0)x̂j
α

=
∑

j∈HCi+1 ∩[2t+1]

Lj(0)xj
α +

∑
j∈TCi+1 ∩[2t+1]

Lj(0) ·(xj
α +ej,α) = xα +

∑
j∈TCi+1 ∩[2t+1]

Lj(0) ·ej,α,

where ej,α is some error injected by the adversary for corrupt party Pj . Similarly, for
k′ ∈ TCi+1 , the polynomial evaluated on k′, i.e., Pk′ ’s share, gives

2t+1∑
j=1

Lj(0)
∑

k∈HCi+1

Lk(k′)xjk =
2t+1∑
j=1

Lj(0)xjk′ ,

where xjk′ is the corrupted party Pk′ ’s share of Jxj
[1,t+1]K

Ci+1
2t . In the ideal world, S in

Step 3 for j ∈ TCi
reconstructs the entire packed sharings Jxj

[1,t+1]K
Ci+1
2t . This allows S to

reconstruct the corresponding corrupted party Pk′ ’s shares of each of these packed sharings,
xjk′ , as well as the underlying (x̂j

1, . . . , x̂j
t+1), which are supposed to be Pj ’s shares of the

original (t+1) standard sharings. The former allows it to, along with the corrupted party’s
shares of honest party’s sharings Jxj

[1,t+1]K
Ci+1
2t , compute the corrupted parties’ shares of

JxKCi+1
2t , which correspond to exactly those in the real world, as computed above. The

latter allows it to compute the error ej of these shares, as compared to those received from
Frobust-packed-reshare in Step 1, and from this, the overall error e, which is exactly the error
in the real world, as computed above. Finally, S, gives to Frobust-packed-reshare, the corrupted
party’s shares of JxKCi+1

2t , and the error e, from which Frobust-packed-reshare further computes
the perturbed underlying vector x + e. This gives Frobust-packed-reshare 2t + 1 points on a
degree-2t polynomial, which are exactly the same in the real world, and based on this
Frobust-packed-reshare reconstructs JxKCi+1

2t and gives honest parties their shares. Thus, the
shares output by the honest parties in the real and ideal world are distributed identically.

In Step 2 of the Verification Phase of Πrobust-packed-reshare, the adversary receives on
behalf of corrupt party Pl of committee Ci+2, the honest parties’ shares of JzlK

Ci+1
2t . These

shares come from them computing

M ·H ·
(
Jx̂1

[1,t+1]K
Ci+1
2t , . . . , Jx̂n

[1,t+1]K
Ci+1
2t

)⊺
=

M ·H ·
((

Jx1
[1,t+1]K

Ci+1
2t , . . . , Jxn

[1,t+1]K
Ci+1
2t

)⊺
+

(
Je1K

Ci+1
2t , . . . , JenKCi+1

2t

)⊺)
, 4

4Such decomposition of the maliciously shared Jx̂j
[1,t+1]K

Ci+1
2t is always possible since we can define

some canonical packed sharing Jxj
[1,t+1]K

Ci+1
2t := (xj1, . . . , xjn), and JejKCi+1

2t as the rest.
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where JejK
Ci+1
2t = 0 for j ∈ HCi ,

= (J0KCi+1
2t , . . . , J0KCi+1

2t )⊺ + M ·H ·
(
Je1K

Ci+1
2t , . . . , JenKCi+1

2t

)⊺
,

where the identity of the first term is due to the fact that the underlying shares x1
α, . . . , xn

α

that are packed into the α-th slot of the respective packed sharings Jxj
[1,t+1]K

Ci+1
2t , for

α ∈ [t + 1] indeed correspond to valid points of a polynomial of degree ≤ 2t, and therefore
applying H to them results in zeroes in the α-th slot of each element of the output vector.

In the ideal world, S computes H · (e1, . . . , en)⊺, where ej = 0 for j ∈ HCi , and the cor-
rupted parties’ shares of (Jy1K

Ci+1
2t , . . . , Jyn−2t−1K

Ci+1
2t )⊺ ← H·

(
Jx̂1

[1,t+1]K
Ci+1
2t , . . . , Jx̂n

[1,t+1]K
Ci+1
2t

)⊺
.

This gives S: 2t+1 evaluations of the polynomials underlying (Jy1K
Ci+1
2t , . . . , Jyn−2t−1K

Ci+1
2t );

from which it can reconstruct the whole sharings. It can then compute

(Jz1K
Ci+1
2t , . . . , JznKCi+1

2t )⊺ ←M · (Jy1K
Ci+1
2t , . . . , Jyn−2t−1K

Ci+1
2t )⊺,

from which it can send the corrupted parties Pl all of the honest parties’ shares of JzlK
Ci+1
2t .

Thus, the real world and ideal world are identically distributed at this step.
In step 2 of the Verification Phase of Πrobust-packed-reshare, if the corrupted parties’

shares of JzlK
Ci+1
2t are not consistent with those of the honest parties, then we know from

the error-detection properties of packed sharings that honest party Pl will send abort to
the parties of committee Ci+3, and similarly if zl ≠ 0t+1. In the ideal world, S in Step 10,
first checks if the corrupted parties’ shares of JzlK

Ci+1
2t , for honest party Pl of Ci+2, match

that which it had already computed (i.e., are consistent with those of honest parties), and
then also if zl = (0, . . . , 0). If either of these checks fail, S sends abort on behalf of Pl to all
corrupted parties of committee Ci+3. Thus, the real world and ideal world are identically
distributed at this step.

Finally, we need to show that if e ̸= 0t+1, then the honest parties abort in the real
world (as they are forced to in the ideal world). We do so by showing the contrapositive:
i.e., if the honest parties in the real world do not abort, then e = 0. If the honest parties do
not abort, then it must be that for each of the 2t + 1 honest parties Pl in committee Ci+2,
JzlK

Ci+1
2t are 2t-consistent and correspond to zl = 0t+1. By the error-correction properties of

super-invertible matrix M , this must also mean that y1 = · · · = yn−2t−1 = 0t+1 (because
any n− 2t− 1 ≤ 2t + 1 of the honest codeword symbols can be multiplied by the inverse
of the corresponding submatrix of M to get back the original message, which therefore
must be all zeroes). As written above, we have that (Jy1K

Ci+1
2t , . . . , Jyn−2t−1K

Ci+1
2t )⊺ =

H ·
((

Jx1
[1,t+1]K

Ci+1
2t , . . . , Jxn

[1,t+1]K
Ci+1
2t

)⊺
+

(
Je1K

Ci+1
2t , . . . , JenKCi+1

2t

)⊺)

= (J0KCi+1
2t , . . . , J0KCi+1

2t )⊺ + H ·
(
Je1K

Ci+1
2t , . . . , JenKCi+1

2t

)⊺
,

where JejK
Ci+1
2t = 0 for j ∈ HCi

. Let TCi
= {τ1, . . . , τt}; E be the n×n matrix in which the

rows corresponding to indices τ ∈ TCi
are the shares of Jeτ KCi+1

2t , and the rows corresponding
to indices j ∈ HCi

are the shares of JejK
Ci+1
2t (i.e., all 0’s); and the matrix of shares of the

sharings (Jy1K
Ci+1
2t , . . . , Jyn−2t−1K

Ci+1
2t ) be Y (each column is the set of shares held by each
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party). Then,

Y =

 y1
1 · · · yn

1
... . . . ...

y1
n−2t−1 · · · yn

n−2t−1

 =

 01
1 · · · 0n

1
... . . . ...

01
n−2t−1 · · · 0n

n−2t−1

 + H · E

=

 01
1 · · · 0n

1
... . . . ...

01
n−2t−1 · · · 0n

n−2t−1

 + HHCi ·

0 · · · 0
... . . . ...
0 · · · 0

 + HTCi ·

e1
τ1
· · · en

τ1
... . . . ...

e1
τt
· · · en

τt

 .

Testing if a vector x ∈ F2t+1 corresponds to a degree-2t packed sharing of 0 ∈ Ft+1 can
be done by interpolating a polynomial f of degree ≤ 2t from the 2t + 1 entries, and
checking that f(−α) = 0 for each α ∈ [t + 1]. This can be directly expressed as a matrix
product 0 = G · x, where G is a (n − 2t) × (2t + 1) matrix (since n − 2t = t + 1). Let
HCi+1 = {h1, . . . , h2t+1}, TCi+1 = {η1, . . . , ηt}, and G′ be the (n− 2t)× n matrix in which
the columns corresponding to indices in HCi+1 are the 2t + 1 columns of G, and all other
entries are 0. Since each yj is equal to 0 ∈ Ft+1, the honest entries of each row of Y ,
multiplied by G⊺, gives zero, or in other words:

0 =

 y1
1 · · · yn

1
... . . . ...

y1
n−2t−1 · · · yn

n−2t−1

 · (G′)⊺ =

0︷ ︸︸ ︷ 0h1
1 · · · 0h2t+1

1
... . . . ...

0h1
n−2t−1 · · · 0h2t+1

n−2t−1

 ·G⊺

+

0︷ ︸︸ ︷ 0η1
1 · · · 0ηt

1
... . . . ...

0η1
n−2t−1 · · · 0ηt

n−2t−1

 · 0 +H · E · (G′)⊺

= H · E · (G′)⊺.

= HHCi ·

0 · · · 0
... . . . ...
0 · · · 0

 · (G′)⊺ + HTCi ·

e1
τ1
· · · en

τ1
... . . . ...

e1
τt
· · · en

τt

 · (G′)⊺

= HTCi ·


eh1

τ1
· · · e

h2t+1
τ1

... . . . ...
eh1

τt
· · · e

h2t+1
τt

 ·G⊺ +

eη1
τ1
· · · eηt

τ1
... . . . ...

eη1
τt
· · · eηt

τt

 · 0


However, denoting

E′ =

eh1
τ1
· · · e

h2t+1
τ1

... . . . ...
eh1

τt
· · · e

h2t+1
τt

 ,

which is the t × (2t + 1) matrix whose rows correspond to the honest parties’ shares of
the errors, this is not possible unless E′ ·G⊺ = 0. Otherwise, E · (G′)⊺ would contain one
non-zero column of weight at most t that maps to zero under H, or in other words, this
column is consistent with a polynomial of degree at most 2t. This is not possible since
this vector has at least 2t + 1 zero entries. As a result, we see that E′ · G⊺ = 0, so the
shares JejK

Ci+1
2t (of the honest parties) indeed are shares J0KCi+1

2t , as desired.

Lemma 13 (Lemma 5 re-stated). Πrobust-standard-reshare UC-realizes Frobust-standard-reshare.
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Proof. First, we define the simulator S:

1. S first receives from Frobust-standard-reshare the shares of the corrupted parties of JxKCi
2t :

(xj)j∈TCi

2. For each j′ ∈ HCi and k′ ∈ TCi+1 , S samples random xj′k′ and sends it to the
adversary.

3. S then receives from the adversary for each j ∈ TCi
and k ∈ HCi+1 , value xjk. For

each j, S uses the 2t + 1 values xjk to compute the sharing [x̂j ]Ci+1
2t = (xj1, . . . , xjn),

and the underlying secret x̂j (which is a share of a packed sharing).

4. Next, S computes for each j ∈ TCi
, their error

ej ← x̂j − xj ,

and then for α ∈ [t + 1], the overall errors

eα ←
∑

j∈TCi
∩[2t+1]

Lj(−α) · ej .

5. S then computes for α ∈ [2t + 1], k′ ∈ TCi+1 , xk′

α =
∑2t+1

j=1 Lj(−α) · xjk′ and sends
these values along with e1, . . . , et+1 to Frobust-standard-reshare.

6. Next, S computes the matrix-vector product

(y1, . . . , yn−2t−1)⊺ ← H · (e1, . . . , en)⊺,

where ej = 0 for j ∈ HCi

7. S also computes for each k′ ∈ TCi+1 :

(yk′

1 , . . . , yk′

n−2t−1)⊺ ← H · (x1k′ , . . . , xnk′)⊺.

8. Additionally, S for the first t parties k ∈ HCi+1 samples random (yk
1 , . . . , yk

n−2t−1).

9. For each µ ∈ [n− 2t− 1], using yµ and the shares yk′

µ of k′ ∈ TCi+1 and yk
µ of the first

t parties k ∈ HCi+1 (i.e., 2t + 1 total degrees of freedom), S computes the sharing
[yµ]Ci+1

2t .

10. Next, S computes ([z1]Ci+1
2t , . . . , [zn]Ci+1

2t ) ← M · ([y1]Ci+1
2t , . . . , [yn−2t−1]Ci+1

2t ), and
sends the honest parties’ shares of [zl]Ci+1

2t to each corrupted party Pl of committee
Ci+2.

11. For each honest party Pl of committee Ci+2, S receives from the adversary: committee
Ci+1 corrupted parties’ shares of [zl]Ci+1

2t . If these shares do not match what S had
already computed, or the underlying computed value zl ̸= 0, S sends abort on behalf
of Pl to all corrupted parties of committee Ci+3.

12. Finally, if S sent any abort in the above step, it sets A← HCi+3 ; otherwise, it sets A
to be those honest parties that receive from any corrupt party abort. Then, when
Frobust-standard-reshare asks S whether to continue, it replies with (abort, A).
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Now we show that the real world and ideal world are identically distributed to the
adversary. In Step 1 of Πrobust-standard-reshare, the adversary receives the t committee Ci+1
corrupted parties’ shares of the committee Ci honest parties’ sharings [xj ]Ci+1

2t . Since
these are degree-2t standard Shamir sharings, there are 2t remaining (random) degrees of
freedom in defining the underlying polynomial, and thus the t shares that the adversary
sees are uniformly random, while leaving t remaining (random) degrees of freedom for each
sharing, or t · (2t + 1) in total. Indeed, Step 2 of S is to send uniformly random shares
to the adversary, corresponding to the sharings, and thus the view of the adversary is
identical in the real and ideal worlds for this step.

In Step 2 of Πrobust-standard-reshare, the honest parties output for α ∈ [t + 1] their shares
[xα]Ci+1

2t =
∑2t+1

j=1 Lj(−α) · [xj ]Ci+1
2t based on their own as well as possibly some corrupted

sharings [xj ]Ci+1
2t . The honest parties’ shares uniquely define a degree-2t polynomial for

α ∈ [t + 1], which evaluated on 0 gives

∑
k∈HCi+1

Lk(0)
2t+1∑
j=1

Lj(−α) · xjk =
2t+1∑
j=1

Lj(−α)
∑

k∈HCi+1

Lk(0)xjk =
2t+1∑
j=1

Lj(−α)x̂j

=
∑

j∈HCi+1 ∩[2t+1]

Lj(−α)·xj+
∑

j∈TCi+1 ∩[2t+1]

Lj(−α)·(xj+ej) = xα+
∑

j∈TCi+1 ∩[2t+1]

Lj(−α)·ej ,

where ej is some error injected by the adversary for corrupt party Pj . Similarly, for
k′ ∈ TCi+1 , the polynomial evaluated on k′, i.e., Pk′ ’s share, gives

2t+1∑
j=1

Lj(−α)
∑

k∈HCi+1

Lk(k′)xjk =
2t+1∑
j=1

Lj(−α)xjk′ ,

where xjk′ is the corrupted party Pk′ ’s share of [xj ]Ci+1
2t . In the ideal world, S in Step 3

for j ∈ TCi
reconstructs the entire sharings [xj ]Ci+1

2t . This allows S to reconstruct the
corresponding corrupted party Pk′ ’s shares of each of these sharings, xjk′ , as well as the
underlying x̂j , which is supposed to be Pj ’s share of the original packed sharing. The
former allows it to, along with the corrupted party’s shares of honest party’s sharings
[xj ]Ci+1

2t , compute the corrupted parties’ shares of [xα]Ci+1
2t , for α ∈ [t + 1] which correspond

to exactly those in the real world, as computed above. The latter allows it to compute the
error ej of these shares, as compared to those received from Frobust-standard-reshare in Step 1,
and from this, the overall errors e1, . . . , et+1, which is exactly the error in the real world,
as computed above. Finally, S, gives to Frobust-standard-reshare, for α ∈ [t + 1], the corrupted
party’s shares of [xα]Ci+1

2t , and the error eα, from which Frobust-standard-reshare further computes
the perturbed underlying values xα + eα. This gives Frobust-standard-reshare t + 1 points on
degree-2t polynomials, which are distributed the same as in the real world, and based
on this and t other randomly sampled points on each polynomial, Frobust-standard-reshare
reconstructs [xα]Ci+1

2t and gives honest parties their shares. Note that we had 2t2 + t total
degrees of freedom above and this uses up only t · (t + 1) of them. Thus, the shares
output by the honest parties in the real and ideal world are distributed identically. Indeed,
for the first t + 1 honest parties α ∈ HCi , we can use the t remaining random shares of
[xα]Ci+1

2t , xα1, . . . , xαt to randomly perturb the shares of [xα]Ci+1
2t of the first t + 1 honest

parties of HCi+1 , as desired. Moreover, we have t2 remaining (random) degrees of freedom,
corresponding to the t remaining random shares of [xj ]Ci+1

2t , for the last t + 1 honest parties
j ∈ HCi

.
In Step 2 of the Verification Phase of Πrobust-standard-reshare, the adversary receives on

behalf of corrupt party Pl of committee Ci+2, the honest parties’ shares of [zl]Ci+1
2t . These
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shares come from them computing

M ·H ·
(

[x̂1]Ci+1
2t , . . . , [x̂n]Ci+1

2t

)⊺
=

M ·H ·
((

[x1]Ci+1
2t , . . . , [xn]Ci+1

2t

)⊺
+

(
[e1]Ci+1

2t , . . . , [en]Ci+1
2t

)⊺)
, 5

where [ej ]Ci+1
2t = 0 for j ∈ HCi

= ([0]Ci+1
2t , . . . , [0]Ci+1

2t )⊺ + M ·H ·
(

[e1]Ci+1
2t , . . . , [en]Ci+1

2t

)⊺
,

where the identity of the first term is due to the fact that the underlying shares x1, . . . , xn

of the respective sharings [xj ]Ci+1
2t indeed correspond to valid points of a polynomial of

degree ≤ 2t, and therefore applying H to them results in zeroes in each element of the
output vector.

In the ideal world, S computes H · (e1, . . . , en)⊺ and the corrupted parties’ shares of
([y1]Ci+1

2t , . . . , [yn−2t−1]Ci+1
2t )⊺ ← H ·

(
[x̂1]Ci+1

2t , . . . , [x̂n]Ci+1
2t

)⊺
. This gives S: t+1 evaluations

of the polynomials underlying ([y1]Ci+1
2t , . . . , [yn−2t−1]Ci+1

2t ); from which, with t more random
evaluations, it can reconstruct the whole sharings. Recall that we had t2 remaining degrees
of freedom, and this is exactly t2 random values, since n− 2t− 1 = t, so this results in an
identical distribution as the real world. Indeed, for the last t + 1 honest parties j ∈ HCi

,
we can use the t remaining random shares of [xj ]Ci+1

2t , xj1, . . . , xjt to randomly perturb
the first t shares of [yj ]Ci+1

2t , respectively, as desired. It can then compute

([z1]Ci+1
2t , . . . , [zn]Ci+1

2t )⊺ ←M · ([y1]Ci+1
2t , . . . , [yn−2t−1]Ci+1

2t )⊺,

from which it can send the corrupted parties Pl all of the honest parties’ shares of [zl]Ci+1
2t .

Thus, the real world and ideal world are identically distributed at this step.
In step 2 of the Verification Phase of Πrobust-standard-reshare, if the corrupted parties’

shares of [zl]Ci+1
2t are not consistent with those of the honest parties, then we know from

the error-detection properties of packed sharings that honest party Pl will send abort to
the parties of committee Ci+3, and similarly if zl ̸= 0. In the ideal world, S in Step 11, first
checks if the corrupted parties’ shares of [zl]Ci+1

2t , for honest party Pl of Ci+2, match that
which it had already computed (i.e., are consistent with those of honest parties), and then
also if zl = 0. If either of these checks fail, S sends abort on behalf of Pl to all corrupted
parties of committee Ci+3. Thus, the real world and ideal world are identically distributed
at this step.

Finally, we need to show that if any eα ̸= 0, then the honest parties abort in the real
world (as they are forced to in the ideal world). We do so by showing the contrapositive: i.e.,
if the honest parties in the real world do not abort, then each eα = 0. If the honest parties
do not abort, then it must be that for each of the 2t + 1 honest parties Pl in committee
Ci+2, [zl]Ci+1

2t are 2t-consistent and correspond to zl = 0. By the error-correction properties
of super-invertible matrix M , this must also mean that y1 = · · · = yn−2t−1 = 0 (because
any n− 2t− 1 ≤ 2t + 1 of the honest codeword symbols can be multiplied by the inverse
of the corresponding submatrix of M to get back the original message, which therefore
must be all zeroes). As written above, we have that ([y1]Ci+1

2t , . . . , [yn−2t−1]Ci+1
2t )⊺ =

H ·
((

[x1]Ci+1
2t , . . . , [xn]Ci+1

2t

)⊺
+

(
[e1]Ci+1

2t , . . . , [en]Ci+1
2t

)⊺)
5Such decomposition of the maliciously shared [x̂j ]Ci+1

2t is always possible since we can define some
canonical packed sharing [xj ]Ci+1

2t := (xj1, . . . , xjn), and [ej ]Ci+1
2t as the rest.
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= ([0]Ci+1
2t , . . . , [0]Ci+1

2t )⊺ + H ·
(

[e1]Ci+1
2t , . . . , [en]Ci+1

2t

)⊺
,

where [ej ]Ci+1
2t = 0 for j ∈ HCi

. Let TCi
= {τ1, . . . , τt}; E be the n× n matrix in which the

rows corresponding to indices τ ∈ TCi
are the shares of [eτ ]Ci+1

2t , and the rows corresponding
to indices j ∈ HCi

are the shares of [ej ]Ci+1
2t (i.e., all 0’s); and the matrix of shares of the

sharings ([y1]Ci+1
2t , . . . , [yn−2t−1]Ci+1

2t ) be Y (each column is the set of shares held by each
party). Then,

Y =

 y1
1 · · · yn

1
... . . . ...

y1
n−2t−1 · · · yn

n−2t−1

 =

 01
1 · · · 0n

1
... . . . ...

01
n−2t−1 · · · 0n

n−2t−1

 + H · E

=

 01
1 · · · 0n

1
... . . . ...

01
n−2t−1 · · · 0n

n−2t−1

 + HHCi ·

0 · · · 0
... . . . ...
0 · · · 0

 + HTCi ·

e1
τ1
· · · en

τ1
... . . . ...

e1
τt
· · · en

τt

 .

Testing if a vector x ∈ F2t+1 corresponds to a degree-2t sharing of 0 can be done by
interpolating a polynomial f of degree ≤ 2t from the 2t + 1 entries, and checking that
f(0) = 0. This can be directly expressed as an inner product 0 = g⊺ · x, where g is a
(2t + 1)-dimensional vector. Let HCi+1 = {h1, . . . , h2t+1}, TCi+1 = {η1, . . . , ηt}, and g′ be
the n-dimensional vector in which the elements corresponding to indices in HCi+1 are the
2t + 1 elements of g and all other entries are 0. Since each yj is equal to 0, the honest
entries of each row of Y , multiplied by g, gives zero, or in other words:

0 =

 y1
1 · · · yn

1
... . . . ...

y1
n−2t−1 · · · yn

n−2t−1

 · g′ =

0︷ ︸︸ ︷ 0h1
1 · · · 0h2t+1

1
... . . . ...

0h1
n−2t−1 · · · 0h2t+1

n−2t−1

 · g

+

0︷ ︸︸ ︷ 0η1
1 · · · 0ηt

1
... . . . ...

0η1
n−2t−1 · · · 0ηt

n−2t−1

 · 0 H · E · g′

= HHCi ·

0 · · · 0
... . . . ...
0 · · · 0

 · g′ + HTCi ·

e1
τ1
· · · en

τ1
... . . . ...

e1
τt
· · · en

τt

 · g′

= HTCi ·


eh1

τ1
· · · e

h2t+1
τ1

... . . . ...
eh1

τt
· · · e

h2t+1
τt

 · g +

eη1
τ1
· · · eηt

τ1
... . . . ...

eη1
τt
· · · eηt

τt

 · 0


However, denoting

E′ =

eh1
τ1
· · · e

h2t+1
τ1

... . . . ...
eh1

τt
· · · e

h2t+1
τt

 ,

which is the t× (2t + 1) matrix whose rows correspond to the honest parties’ shares of the
errors, this is not possible unless E′ · g = 0, otherwise, E · g′ would contain one non-zero
column of weight at most t that maps to zero under H, or in other words, this column is
consistent with a polynomial of degree at most 2t. This is not possible since this vector
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has at least 2t + 1 zero entries. As a result, we see that E′ · g = 0, so the shares [ej ]Ci+1
2t

(of the honest parties) indeed are shares [0]Ci+1
2t , as desired.

Lemma 14 (Lemma 6, re-stated). Let it be the case that for every α ∈ [t + 1], either the
adversary completely knows the sharing [xα]Ci+1

2t , or the first t honest parties’ shares are
distributed randomly to the adversary. If given in addition to the adversary’s known shares:
random a∗

α for α ∈ [t + 1], and also for those α ∈ [t + 1] satisfying the latter case, random
x1

α, . . . , xt
α, then values distributed identically to the adversary to honest parties’ shares

of [d′
k]Ci+1

2t received by Pk of Ci+2, for k ∈ TCi+2 , in πmult can be determined. Moreover,
values distributed identically to the adversary to d′

k sent from honest party Pk of Ci+2, for
k ∈ HCi+2 , in πmult can be determined. The same holds for the corresponding values and
sharings of e′

k for k ∈ [n].

Proof. Let HCi+1 = {h1, . . . , h2t+1}. From the definition of Frand, we can conclude that
the shares (ah2t+1

1 , . . . , a
h2t+1
t+1 ) = (a∗

1, . . . , a∗
t+1) of the last honest party Ph2t+1 of sharings

([a1]Ci+1
t , . . . , [at+1]Ci+1

t ), respectively, received in Step 1 of πmult are distributed uniformly
at random to the adversary. Now, let us analyze the first case that for some xα, α ∈ [t + 1],
sharing [xα]Ci+1

2t is completely known to the adversary. Then, given random a
h2t+1
α , the t

corrupted parties’ shares of [aα]Ci+1
t , and the error sharing [eα]Ci+1

t′ ; the first 2t + 1 honest
parties’ shares ah1

α + eh1
α , . . . , a

h2t+1
α + e

h2t+1
α can be determined. Therefore, given random

a
h2t+1
α , and the shares xh1

α , . . . , x
h2t+1
α that the adversary knows, xh1

α +ah1
α +eh1

α , . . . , x
h2t+1
α +

a
h2t+1
α + e

h2t+1
α can all be determined.

The other case is that for xα, the adversary only knows the corrupted parties’ shares of
sharing [xα]Ci+1

2t . This means that xh1
α , . . . , xht

α are distributed randomly to the adversary,
in addition to a2t+1

α . Therefore, all of xh1
α + ah1

α , . . . , xht
α + aht

α and x
h2t+1
α + a

h2t+1
α are

distributed randomly to the adversary. Given these t+1 random shares and the t corrupted
parties’ shares of [xα + aα]Ci+1

t , the remaining shares x
ht+1
α + a

ht+1
α , . . . , xh2t

α + ah2t
α can be

determined.
Putting the observations of the above two cases together, for all α ∈ [t + 1], given

some values that are uniformly random to the adversary, the shares of [xα + aα]Ci+1
2t of the

honest parties can be determined. Therefore, so too can the honest parties’ shares of

([d′
1]Ci+1

2t , . . . , [d′
n]Ci+1

2t )⊺ ←M · ([x1 + a1]Ci+1
2t , . . . , [xt+1 + at+1]Ci+1

2t )⊺.

It then also trivially follows that the values d′
1, . . . , d′

n can be determined.
It is clear that the same argument can be applied for the values and sharings of

e′
1, . . . , e′

n.

Lemma 15 (Lemma 7, re-stated). If no parties of committee Ci+3 receive abort in
πmult, then they always correctly determine the values (x1 + a1, . . . , xt+1 + at+1) and
(y1 + b1, . . . , yt+1 + bt+1).

Proof. This follows directly from the error-detection of reconstructions and linearity
of degree-2t Shamir secret sharings, as well as the the error-correcting properties of
super-invertible matrix M . In particular, if none of the parties abort, then by the
aforementioned properties of Shamir secret sharings, the honest parties of committee Ci+2
reconstruct the k-th symbol d′

k of the codeword (d′
1, . . . , d′

n), for k ∈ HCi+2 , of message
(d1, . . . , dt+1) = (x1 + a1, . . . , xt+1 + at+1), and forward them to the parties of committee
Ci+3. The parties of committee Ci+3 then receive the whole codeword, of which up to
t symbols (received from the corrupted parties) are erroneous. Therefore, by the error-
correcting properties of super-invertible matrix M , the Berlekamp-Welch algorithm will
recover the correct original message (d1, . . . , dt+1) for the parties. The same clearly applies
for (e1, . . . , et+1).



Alexander Bienstock, Daniel Escudero, Antigoni Polychroniadou 41

Theorem 3 (Theorem 2, restated). Protocol Πmain UC-securely computes FDABB in the pres-
ence of an R-adaptive adversary A in the (Finput,Frobust-packed-reshare,Frobust-standard-reshare,Frand,
Foutput)-hybrid model.

Proof. First, we define simulator S:

1. For each input x, S emulates Finput – in case the client is corrupted, S gets from the
adversary the sharing [x]Cclnt

2t , reconstructs x and sends it to FDABB; otherwise, S gets
from the adversary the t corrupted clients’ shares of [x]Cclnt

2t .

2. During the execution phase, for each wire value x, the corresponding sharing [x]Ci
2t

might have some additive error εx (for the first layer, each εx = 0). S will maintain
the invariant of computing the corrupted parties’ shares of [x + εx]Ci

2t for every wire
value x – as a base case, it already has these for all circuit inputs.

3. For identity gates:

(a) S first emulates Frobust-packed-reshare – S sends to the adversary the corrupted
parties’ shares of [x1 + εx1 ]Ci

2t , . . . , [xt+1 + εxt+1 ]Ci
2t that it has already computed,

then receives back a set of shares {xk}k∈TCi+1
and error vector ∆.

(b) Then S emulates Frobust-standard-reshare – S sends to the adversary the just received
shares {xk}k∈TCi+1

and receives back set of shares {(xk
1 , . . . , xk

t+1)}k∈TCi+2
(thus

it has all of the corrupted parties’ shares of the gates’ output wires) and errors
(δ1, . . . , δt+1).

(c) S next computes the new error ε′
xα
← ∆α + δα on the output wire of the gate,

for α ∈ [t + 1].
(d) Finally, if ∆ ̸= 0 then S aborts for committee Ci+3 and if (δ1, . . . , δt+1) ̸=

(0, . . . , 0), then S aborts for committee Ci+4.

4. Addition gates proceed similarly.

5. For multiplication gates:

(a) S first emulates Frand – it receives from the adversary the set of shares
{(ak

1 , bk
1 , . . . , ak

t+1, bk
t+1)}k∈TCi

and sharings ([η1]Ci

t′ , . . . , [ηt+1]Ci

t′ ).
(b) Then, S samples random a∗

1, . . . , a∗
t+1 and for each α ∈ [t + 1] s.t. xα was not

input by a corrupted party, x1
α, . . . , xt

α, and similarly random b∗
1, . . . , b∗

t+1 and
for each α ∈ [t + 1] s.t. yα was not input by a corrupted party, y1

α, . . . , yt
α.

(c) Based on these and the corrupted parties’ shares of the inputs [x1+εx1 ]Ci
2t , . . . , [xt+1+

εxt+1 ]Ci
2t and [y1 + εy1 ]Ci

2t , . . . , [yt+1 + εyt+1 ]Ci
2t that S has already computed (or

all such shares for those xα, yα input by corrupted parties), S computes the
honest parties’ shares of [d′

k]Ci
2t and [e′

k]Ci
2t for k ∈ TCi+1 , as well as values d′

k, e′
k

for k ∈ HCi+1 , according to the proof of Lemma 6.

(d) S then sends to the adversary the honest parties’ shares of [d′
k]Ci

2t and [e′
k]Ci

2t just
computed.

(e) Then, S emulates Frobust-packed-reshare three independent times – S sends to the
adversary the above received corrupted parties’ shares {(ak

1 , . . . , ak
t+1)}TCi

and
{(bk

1 , . . . , bk
t+1)}TCi

, as well as {(ak
1 · bk

1 , . . . , ak
t+1 · bk

t+1)}TCi
.

(f) It receives back a set of shares {ak}k∈TCi+1
, {bk}k∈TCi+1

, and {ck}k∈TCi+1
, as

well as error vectors ∆a, ∆b, and ∆c.
(g) S then sends to the adversary the values d′

k, e′
k for k ∈ HCi+1 , computed above.
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(h) Next, S emulates Frobust-standard-reshare three independent times – S sends to the
adversary the just received shares {ak}k∈TCi+1

, {bk}k∈i+1, and {ck}k∈TCi+1
.

(i) It then receives back sets of shares {(ak
1 , . . . , ak

t+1)}k∈TCi+2
, {(bk

1 , . . . , bk
t+1)}k∈TCi+2

,
and {(ck

1 , . . . , ck
t+1)}k∈TCi+2

as well as errors (δa1 , . . . , δat+1), (δb1 , . . . , δbt+1), and
(δc1 , . . . , δct+1).

(j) Then S computes {dα ·eα−dα ·bk
α−eα ·ak

α +ck
α}α∈[t+1],k∈TCi+2

as the corrupted
parties’ shares of the gates’ output wires (d1, e1, . . . , dt+1, et+1 can be directly
computed from d′

1, e′
1, . . . , d′

t+1, e′
t+1).

(k) S next computes the new error εzα
← dα ·(∆bα

+δbα
)−eα ·(∆aα

+δaα
)+∆cα

+δcα

on the output wire of the gate, for α ∈ [t + 1].
(l) Finally, if any of ∆a, ∆v, ∆c are not 0 then S aborts for committee Ci+3 and

if any of (δa1 , . . . , δat+1), (δb1 , . . . , δbt+1), (δc1 , . . . , δct+1) are not (0, . . . , 0), then
S aborts for committee Ci+4.

6. Finally, for each output z, S emulates Foutput:

(a) If the client is corrupted, S receives z from FDABB, and using the above computed
error εz, the corrupted parties’ shares of [z + εz]Cℓ

2t that it has computed, and
t more random values for the first t honest parties shares, reconstructs all of
[z + εz]Cℓ

2t then sends it to the adversary.
(b) Otherwise, if the client is honest S sends the corrupted parties’ shares of outputs

[z + εz]Cℓ
2t that it has computed to the adversary.

Now we argue that the real world and ideal world are distributed identically to the
adversary. It is clear that S correctly reconstructs the corrupted parties’ inputs x in the
ideal world. Therefore all outputs received from FDABB by S will be consistent with the
adversary’s inputs. Additionally, it is clear that S has the corrupted parties’ shares of
the input sharings corresponding to the real world. We will show that S maintains the
invariant of computing the corrupted parties’ shares for every wire. Furthermore, it is
clear that for all inputs that do not come from corrupted clients, the first t honest parties’
shares are distributed randomly to the real world adversary. We will furthermore show
that this invariant is maintained for all wires that are not corrupted clients’ inputs.

For identity and addition gates, assuming the invariant, S clearly sends to the adversary
the same corrupted parties’ shares that it would receive in the real world. S additionally
aborts when the parties in the real world would (according to Lemma 8). It is also clear
that S maintains the invariant of computing the corrupted parties’ shares for every wire.
Furthermore, from the definition of Frobust-standard-reshare it is clear that the invariant that
the first t honest parties’ shares are distributed randomly to the real world adversary for
every wire is maintained.

For multiplication gates, because of the invariant that the first t honest parties’ shares
are distributed randomly to the real world adversary for every wire, we know that the
assumption on which Lemma 6 is based is true. Therefore using the lemma, we know
that S computes and sends to the adversary honest parties’ shares of [d′

k]Ci
2t and [e′

k]Ci
2t for

k ∈ TCi+1 , as well as values d′
k, e′

k for k ∈ HCi+1 , that are distributed identically to those
in the real world. It is also clear that S sends to the adversary the same corrupted parties’
shares when emulating Frobust-packed-reshare and Frobust-standard-reshare that it would receive in
the real world. S additionally aborts when the parties in the real world would (according
to Lemma 8). Finally, S also maintains the invariant of computing the corrupted parties’
shares for every wire, as it can compute d1, e1, . . . , dt+1, et+1 directly and receives from the
adversary the corrupted parties’ shares of the reshared multiplication triples. Furthermore,
from the definition of Frobust-standard-reshare, it is clear that the first t honest parties’ shares
of the multiplication triple are distributed randomly to the real world adversary, and thus
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the invariant that the first t honest parties’ shares are distributed randomly to the real
world adversary for every wire is maintained.

Thus the execution phase is simulated perfectly and all that remains to show is that the
output phase is simulated perfectly. First, we recall that from Lemma 7 that during every
run of πmult of the execution phase, the parties of committee Ci+2 always correctly determine
the values of (x1 + εx1 + a1, y1 + εy1 + b1, . . . , xt+1 + εxt+1 + at+1, yt+1 + εyt+1 + bt+1).
Now, for any circuit layer starting with committee Ci, observe that if the adversary injects
any error via Frobust-packed-reshare or Frobust-standard-reshare, then in the real world, at the latest,
the honest parties of committee Ci+4 will abort. Since for the next layer, the shares
of the output wires of the gates are not computed until Ci+4, that means that if the
parties do not abort at the end of computing a layer, then the errors on the output wires
from Frobust-packed-reshare and Frobust-standard-reshare can only come from the computation of
that layer, and not any previous layers. Similarly, if the adversary injects any error via
Frand, then in the real world, at the latest, the honest parties of committee Ci+2 will
abort, which means that the errors on the output wires for any layer can only come from
Frobust-packed-reshare and Frobust-standard-reshare for that layer. Therefore, S properly computes
the errors on the wires of the output gates. Based on these, and since the invariant that the
first t honest parties’ shares are distributed randomly to the real world adversary for every
wire holds, it is clear that S simulates the output phase perfectly. Indeed, when emulating
Foutput, S uses the same underlying secret z + εz as in the real world, the corrupted parties’
t shares and t random values for the first t honest parties shares to reconstruct the sharing
[z + εz]Cℓ

2t to the adversary. This concludes the proof.
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