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Abstract—Side-channel attacks exploit information leaked
through non-primary channels, such as power consumption,
electromagnetic emissions, or timing, to extract sensitive data
from cryptographic devices. Over the past three decades, side-
channel analysis has evolved into a mature research field with well-
established methodologies for analyzing standard cryptographic
algorithms like the Advanced Encryption Standard (AES).
However, the integration of side-channel analysis with formal
methods remains relatively unexplored. In this paper, we present
a hybrid attack on AES that combines side-channel analysis with
SAT. We model AES as a SAT problem and leverage hints of
the input and output values of the S-boxes, extracted via profiled
deep learning-based power analysis, to solve it. Experimental
results on an ATXmega128D4 MCU implementation of AES-128
demonstrate that the SAT-assisted approach consistently recovers
the full encryption key from a single trace, captured from devices
different from those used for profiling, within one hour. In contrast,
without SAT assistance, the success rate remains below 80% after
26 hours of key enumeration.

I. INTRODUCTION

SAT solvers are software tools specifically designed to
address the Boolean satisfiability (SAT) problem [1]. By
utilizing various heuristics for variable and value selection,
clause learning, restart, backtracking, etc., they navigate the
exponential search space of possible values of variables in
search of a satisfying assignment. Despite the NP-completeness
of the SAT problem [1], contemporary SAT solvers can
typically handle problem instances involving hundreds of
variables. Practical applications of SAT solvers include formal
verification [2], automatic test pattern generation [3], and logic
synthesis [4].

SAT solvers have been used in cryptanalysis in the past, in-
cluding finding preimages and collisions for hash functions [5],
[6], forging RSA signatures [7], identifying weak keys [8]
and short cycles [9], guess-and-determine attacks [10], and
algebraic attacks [11]–[13]. The concept of logical cryptanal-
ysis, introduced by Massacci and Marraro [14], provided a
general framework for encoding the low-level properties of
cryptographic algorithms as a SAT instance in order to analyze
them using SAT solvers and other formal methods such as
theorem proving. This methodology has been followed in [15]–
[17]. Nonetheless, mounting a practical attack on a full, non-
reduced version of a (secure) cryptographic algorithms is
typically difficult.

The idea to use SAT solvers an their variants in physical
attacks on implementations of cryptogrphic algorithms was first

explored in the context of cold boot attacks [18]–[22]. A cold
boot attack extracts data from a non-powered random access
memory (RAM) by cooling down the RAM [23]. The cooling
significantly increases the data retention time, e.g. to 10 hours
at -50◦C as opposed to 10 seconds at the room temperature for
some static RAMs [24]. SAT-assisted cold boot attacks attempts
to recover secret keys from from decayed RAM images of
expanded round keys by exploiting redundancy of the key
scheduling algorithms.

Potlapally et al. [25] first proposed the use of SAT solvers
in side-channel attacks on software implementations of cryp-
tographic algorithms. Side-channel attacks exploit informa-
tion extracted through physically measurable, non-primary
channels such as timing [26], power [27], or electromagnetic
radiation [28] emitted by the device running the algorithm.
The recovered intermediate variables are used to constrain
values of the corresponding literals in the SAT representation
of the algorithm, thus making the SAT problem easier to
solve. Using simulated data, it is demonstrated in [29] that
secret keys of DES and 3DES can be extracted from their
software implementations using a SAT-assisted side-channel
attack, provided the intermediate variables recovered via side
channels are separated by fewer than five DES rounds. Similar
ideas were explored using simulated data in [30]–[32].

An essential difference between a SAT-assisted cold boot
attack and a SAT-assisted side-channel attack lies in the scope of
the SAT modeling. In the former, only the key schedule needs to
be modeled as a SAT problem, whereas in the latter, the entire
cryptographic algorithm must be described. Consequently, the
model becomes significantly larger, making the SAT problem
harder to solve.
Contributions: This paper demonstrates a practical attack on
an ATXmega128D4 MCU implementation of AES-128 that
combines profiled deep learning-based side-channel analysis
with SAT.

We first model AES-128 as a SAT problem using 9,152
literals and 188,664 clauses. Then we simplify the SAT problem
by adding clauses that incorporate hints of the input and output
values of the S-boxes extracted via power analysis. Unlike
traditional power analysis, which typically uses S-boxes in the
first or the last round of AES, the SAT-assisted power analysis
can utilize S-boxes in any intermediate round. Our experiments
show that the SAT-assisted approach can consistently recover
the full encryption key from a single power trace, captured



from devices different from those used for profiling, within
one hour. Without SAT assistance, the success rate is at most
62.6% within one hour and at most 79.3% after 26 hours of
key enumeration.

We would like to stress the importance of using real rather
than simulated data, employing different devices for profiling
and attacks, and recovering the full key for a comprehensive
evaluation of side-channel attacks.

Simulated data often fail to account for factors such as
temperature fluctuations, power supply instability, limitations
in the precision and resolution of measurement instruments,
correlated noise, or imperfect timing synchronization. These
factors can make it significantly harder to extract exploitable
side-channel information from actual devices. Thus, studies
relying solely on simulation may overstate the ease with which
cryptographic implementations can be compromised in practice.

Similarly, studies that use the same physical device for both
profiling and attacks may reach overly optimistic conclusions,
as they neglect inter-chip variations that cause side-channel
profiles to be device-specific.

Finally, studies that recover only a part of the key and assume
the remaining parts can be recovered with the same probability
may draw incorrect conclusions. The difficulty of recovering
different subkeys can vary significantly.

The rest of the paper is organized as follows. Section II
provides the background information. Section III describes the
adversary model. Section IV present the SAT-assisted side-
channel analysis method. Section V describes the experimental
results. Section VI concludes the paper and discusses future
work.

II. BACKGROUND

A. AES algorithm

AES [33] is a symmetric encryption algorithm standardized
by the NIST in FIPS 197 and included in ISO/IEC 18033-3.
AES takes a 128-bit block of plaintext and an n-bit key, K,
as input, and produces a 128-bit block of ciphertext as output.
AES supports key sizes of n = 128, 192, and 256 bits, with
128 bits being the most commonly used. In this paper, we
focus on this case, referred to as AES-128.

The number of rounds in AES depends on the key size. AES
with a 128-bit, 192-bit, or 256-bit key performs k = 10, 12,
and 14 rounds, respectively. Each round, except the last one,
executes the following four steps:

1) Non-linear substitution, SubBytes,
2) Transposition of rows, ShiftRows,
3) Mixing of columns, MixColumns,
4) Round key addition, AddRoundKey,

Each round uses a different round key, RKi, for i ∈ 1, . . . , k,
derived from the original key K. The last round skips the
MixColumns step.

Like any block cipher, AES can be used in several modes
of operation. In this paper, we assume the electronic codebook
(ECB) mode, where the message is divided into blocks and
each block is encrypted separately.

B. The Boolean satisfiability problem

1) Problem formulation: The Boolean satisfiability (SAT)
problem [34] is defined as follows: Given a propositional
Boolean formula, decide if there exists an assignment of true
or false values of the variables such that the formula evaluates
to true. If such an assignment exists, the formula is satisfiable;
otherwise, it is unsatisfiable. For a Boolean formula with n
variables, there are 2n possible assignments of variables.

To represent the SAT problem, propositional Boolean formu-
las are typically written in Conjunctive Normal Form (CNF).
In a CNF, each variable symbol, x or x, is called a literal. A
clause is a disjunction (Boolean OR) of literals, and the CNF
itself is a conjunction (Boolean AND) of clauses.

2) SAT Solvers: While the SAT problem is known to be
NP-complete [1], contemporary SAT solvers can efficiently
handle SAT instances containing hundreds of variables. Most of
today’s SAT solvers are based on the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [35], an improvement of the
Davis-Putnam algorithm [36]. Well-known DPLL-based SAT
solvers include GRASP [37], which introduced a robust conflict
analysis method, and Chaff [38], known for its efficient Boolean
constraint propagation and novel decision strategy with minimal
overhead. SAT solvers that utilize these strategies are referred
to as conflict-driven.

In our experiments, we use MiniSat [39], a conflict-driven
SAT solver recognized for its adaptability across various
domains. We selected MiniSat because of its competitive per-
formance, open-source availability, and its ability to incorporate
arbitrary Boolean constraints.

3) MiniSat: MiniSat [39] employs a depth-first search
algorithm with backtracking to find a satisfying assignment of
variables for a given set of clauses. The algorithm heuristically
selects a variable, guesses its value as true or false, and
evaluates whether the values of other variables are influenced
by this assumption. Based on this assessment, the affected
variables are assigned, and the search continues until further
assignments become unfeasible.

During the propagation phase, the algorithm may encounter
a conflict, meaning that a clause is found to be unsatisfiable
due to all its literals being false. In such cases, a learned
clause is generated and added to the SAT problem. This clause
describes the erroneous guess that led to the conflict.

To resolve conflicts, the algorithm backtracks until the
learned clause simplifies to a unit clause. Once this is achieved,
the clause is propagated, and the search process resumes.
The learned clauses guide the backtracking process, helping
the algorithm make more informed guesses and accelerating
subsequent conflict resolutions by identifying the root cause
of the conflict.

Eventually, MiniSat either finds a satisfiable assignment or
determines that no such assignment exists.

4) DIMACS Format: The DIMACS format is a standard
format for representing a propositional Boolean formula in
CNF. Many SAT solvers, including MiniSat, use DIMACS as
a standard interface.



A file in the DIMACS format starts with a header line
of the form p cnf <variables> <clauses>, where
<variables> and <clauses> represent the number of
variables and clauses in the CNF, respectively. Each line that
begins with the c character is interpreted as a comment. Lines
that do not begin with p or c are interpreted as CNF clauses
consisting of the Boolean OR of literals.

To describe literals x and x, a unique integer is assigned to
each variable of the CNF. A positive integer represents x and
a negative one represents x. The symbol 0 is used to denote
the end of a clause. The Boolean AND of all the clauses in
the file defines the CNF.

For example, a CNF for the two-variable Boolean XOR
function a⊕ b = c is represented by the following four clauses:

¬a ∧ ¬b ∧ ¬c
¬a ∧ b ∧ c
a ∧ ¬b ∧ c
a ∧ b ∧ ¬c

Note that both cases, when the function evaluates to 1
and to 0, are included in the CNF. The corresponding
DIMACS representation, assuming the variables are assigned
as a = 1, b = 2, c = 3 is:

p cnf 3 4

−1 −2 −3 0
−1 2 3 0
1 −2 3 0
1 2 −3 0

C. Profiled side-channel attacks

Side-channel attacks can be classified into two main types:
profiled and non-profiled attacks.

Profiled attacks first model the information leakage of the
target implementation using one or more devices similar to
the device under attack, called profiling devices. The modeling
can be done either by creating templates [40], or by training
neural networks [41]. The resulting models are then used to
recover the secret variable (e.g., the key) from the cryptographic
algorithm executed on the device under attack.

Non-profiled attacks, on the other hand, are applied di-
rectly, without the need to model the leakage of the target
implementation beforehand [42]. These attacks may involve
statistical methods such as correlation power analysis [43], or
unsupervised machine learning algorithms such as k-means.

III. ADVERSARY MODEL

This section defines the three main components of an
adversary model in accordance with [44]: adversary goals,
assumptions, and capabilities.
Assumptions: We assume that the adversary has physical
access to the device under attack which runs the AES algorithm.
Additionally, the adversary is assumed to have fully controllable
profiling devices that are similar to the device under attack.
Capabilities: The adversary is equipped with power analysis
tools and has expertise in side-channel attacks, AES, and deep
learning. The adversary is capable of capturing power traces

from the device under attack during the execution of the AES
algorithm.
Goals: The adversary’s goal is to obtain the encryption key
of AES. To achieve this, the adversary first attempts to
extract partial information about intermediate variables from
the implementation of AES running on the device under attack
via side-channel analysis. The adversary then applies SAT
techniques to recover the full key.

IV. SAT-ASSISTED SIDE-CHANNEL ATTACK METHOD

A. Expressing AES in CNF

Expressing AES as a SAT problem involves representing
its four main steps—SubBytes, ShiftRows, MixColumns, Ad-
dRoundKey—along with the key schedule algorithm in CNF.
This requires breaking down each operation into Boolean
functions defined in terms of binary variables and then
converting the resulting sum-of-products expressions of these
functions into CNF clauses.

a) SubBytes: The SubBytes step substitutes each byte
in the AES state with another byte using the AES S-box
permutation, which is a Boolean function of type fS-box :
{0, 1}8 → {0, 1}8. A logic minimizer such as Espresso can be
used to find a minimal sum-of-products form of fS-box, which
is then translated into CNF clauses.

b) ShiftRows: The ShiftRows step cyclically shifts the
bytes in each row of the 4×4 AES state matrix. Each byte in the
ith row is shifted i positions to the left, for i ∈ {0, 1, 2, 3}. To
encode this operation into CNF, the mapping of the bytes from
their original positions to their shifted positions is translated
into CNF clauses.

c) MixColumns: The MixColumns step combines the
four bytes of each column of the 4 × 4 AES state matrix
using an invertible linear transformation involving a matrix
multiplication over GF(28), modulo the irreducible polynomial
x8+x4+x3+x1. The Boolean function defining MixColumns
is of type {0, 1}32 → {0, 1}32 since each of the four input
bytes affects all four output bytes. To represent this in CNF,
auxiliary variables are typically introduced to split complex
functions into smaller ones.

d) AddRoundKey: The AddRoundKey step performs a
bitwise XOR between the AES state and the round key. To
convert this operation into CNF, each XOR operation between
corresponding bits of the state matrix and the round key is
expressed as CNF clauses.

e) Key Schedule Algorithm: The key schedule algorithm
generates round keys RK1, . . . , RKk from the original key
K. This process involves a combination of byte substitutions
using the S-box, one-byte left circular shifts, XOR operations,
and the application of round constants.

To convert the key schedule algorithm into CNF, binary vari-
ables representing the key K and round keys RK1, . . . , RKk

are first introduced. The S-box substitution used in the key
expansion is encoded in the same way as the SubBytes
step, through CNF clauses derived from its minimal sum-
of-products representation. The cyclic shifts of bytes are
defined using binary relationships between input and output



TABLE I: Profiling stage duration.

Time to capture 10K traces # Devices Total time

1 hr 2 2 hrs

Time to train one NN # NNs Total time

3 hrs 10 30 hrs

positions, similar to the ShiftRows encoding. Finally, the XOR
operations combining intermediate states and round constants
are expressed and converted into CNF.

There are tools available for automating CNF generation. For
instance, we used https://github.com/meelgroup/
aes-cnf-gen/.

B. Equipment

In the experiments, we use a software implementation of
AES-128 running on an ATXmega128D4 MCU. Two devices
are used for profiling, while three other devices are used
for the attacks. Power consumption is measured using a
ChipWhisperer-Lite, which also controls the communication
between the device and the computer.

C. Profiling details

At the profiling stage, we capture 10,000 power traces from
each profiling device for neural network training. Each trace
is captured during the execution of the AES encryption for
messages and keys selected at random. We then identify the
segments corresponding to each S-box in every round.

We extract the segments for all S-boxes from the rounds,
starting from the first, R1, to the ninth, R9, and take their
union. This increases the total size of the training set to 20,000
× 9×16 = 2, 880, 000. The last round is not included because
its traces differ from those of other rounds1.

Table I shows that it takes 2 hours to capture 20,000 traces.
In contrast, it would require 12 days to capture a training set
containing 2.88 million traces without applying the expansion
technique described above.

Using the expanded training set, we train five neural networks
using the S-box input byte value as a label, and five neural
networks using the S-box output byte value as a label. In all
cases, a multilayer perceptron (MLP) architecture with three
dense layers is used.

From Table I, one can see that training one neural network
takes 3 hours on a PC with an Intel Core i7-1370P CPU and
64GB of RAM. As a result, the total profiling time amounts
to 32 hours.

V. EXPERIMENTAL RESULTS

A. Key recovery by power analysis only

For this experiment, we capture from each device under
attack 1,000 power traces during the execution of the AES

1Since the last round does not mix columns, in the C implementation of
AES, its code is outside the for-loop executing other rounds. Consequently, a
compiler may optimize it differently.

encryption for random messages and a fixed key (different for
each device). Using ensembles consisting of five neural network
models trained during the profiling stage, we recover S-box
input and output byte values in rounds R1-R9. The predictions
from individual models are aggregated by computing the
cumulative probability of their score vectors.

Table II lists the empirical probabilities of recovering an
S-box input value from a single trace in rounds R1 to R9.
Each probability is computed as the mean over 1,000 tests.
Table III presents similar results for the S-box outputs.

From Tables II and III we can see that success probabilities
vary among different devices. This may due to differences
in physical characteristics of device’s components such as
transistors, capacitors, etc, caused by manufacturing process
variation. This may also due to differences in device age of
wear-off level. Hardware aging and wear-off effects such as
transistor degradation or increased leakage current can affect
power consumption profile of a device.

Next, we quantify the likelihood of recovering the full key
from a single trace using power analysis alone. It is known
that such attacks are feasible for the ATXmega128D4 MCU
implementation of AES-128 [45]. An attacker typically employs
a divide-and-conquer strategy with a subkey size of one byte,
focusing on the S-boxes in either the first or the last round
of AES, as S-boxes in other rounds depend on multiple key
bytes.

Table IV shows the empirical probability to recover at least
n out of the 16 possible S-box input/output values in the first
round from a single trace. We can see that the probability
of recovering all 16 bytes is at most 14.4%. If the attack is
unsuccessful, the attacker may attempt to search through the(
16
k

)
possible combinations of k out of 16 bytes and enumerate

the 28k possible subkeys. The last column of Table IV shows
the time required for such an enumeration, calculated based
on the estimate that 100,000 encryptions can be performed per
second. We can see that the probability of recovering the full
key is at most 79.3% after 26.1 hours of enumeration.

B. Key recovery by SAT-assisted power analysis

The SAT-assisted side-channel analysis can utilize S-box
input and output values in any round of AES. Table V shows
the likelihood of recovering at least n of out of 144 possible
S-box input/output values in rounds R1-R9 from a single trace.
The same set of traces as in the tests of Table IV is used.
The fourth column shows the SAT solver runtime for the case
when n S-box input and output values in rounds R1-R9 are
known. Each entry represents the mean of 100 tests in which
the positions of known S-boxes are selected at random. We can
see that, if 60 or more S-box input and output values are known,
finding a satisfying assignment takes less than one second. The
likelihood of this is 0.831/0.784 for S-box inputs/outputs.

Finally, we perform 30 end-to-end SAT-assisted single-trace
attacks (10 for each target device). In each case, we first predict
all 144 S-box input and output values in rounds R1-R9 using
ensembles of five models trained at the profiling stage, Then,
we sort the predicted bytes in the descending order based



TABLE II: The empirical probability to recover an S-box input value from a single trace (mean for 1,000 tests).

Device Round Avg.
1 2 3 4 5 6 7 8 9

D1 0.913 0.921 0.934 0.941 0.953 0.938 0.939 0.934 0.947 0.936
D2 0.783 0.968 0.975 0.979 0.887 0.965 0.977 0.970 0.978 0.943
D3 0.853 0.822 0.847 0.870 0.892 0.878 0.888 0.875 0.895 0.869

TABLE III: The empirical probability to recover an S-box output value from a single trace (mean for 1,000 tests).

Device Round Avg.
1 2 3 4 5 6 7 8 9

D1 0.910 0.917 0.931 0.941 0.951 0.936 0.933 0.933 0.946 0.933
D2 0.790 0.967 0.973 0.978 0.892 0.961 0.974 0.969 0.976 0.942
D3 0.852 0.812 0.833 0.861 0.885 0.869 0.876 0.868 0.889 0.861

TABLE IV: The empirical probability to recover at least n out
of 16 S-box input/output values in R1 from a single trace.

n
Mean probability to recover

≥ n bytes in R1

Estimated
time for key
enumeration

inputs outputs

12 0.884 0.885 1.89 years
13 0.793 0.790 26.1 hrs
14 0.626 0.626 1.31 min
15 0.393 0.383 0.04 sec
16 0.142 0.144 0 sec

TABLE V: The empirical probability to recover at least n out
of 144 S-box input/output values in R1-R9 from a single trace.

n
Mean probability to recover

≥ n bytes in R1-R9

Mean SAT solver
runtime for n
known bytes

# Timeouts
for 1 hour

timeout
inputs outputs

40 0.946 0.917 19.9 min 31
50 0.898 0.857 5.25 min 5
60 0.831 0.784 0.68 sec 0
70 0.744 0.693 0.24 sec 0

TABLE VI: The results of SAT-assisted single trace attacks
using S-boxes in R1-R9. The SAT solver timeout is 1 min.

Rounds % Recovered Mean time for Guess
keys full key recovery range

R1 60% 53.3 sec [14:16]
R1-R2 80% 99.1 sec [15:25]
R1-R3 90% 5.7 min (20:30]
R1-R4 90% 11.3 min (25:35]
R1-R5 90% 17.6 min (30:40]
R1-R6 90% 14.6 min (40:50]
R1-R7 96.7% 6.85 min (45:55]
R1-R8 96.7% 20.2 min (50:60]
R1-R9 96.7% 20.2 min (55:65]

on the probabilities of their score vectors. We add the top
m predictions as clauses constraining S-boxes in the CNF
of the AES and run MiniSAT solver [39] to find a satisfying
assignment within a given time. If either an UNSAT is returned,
or a timeout is reached, m is decremented and the attack is
repeated.

Table VI summarizes the results. The ”guess range” column
indicates the number m of top predictions used to constrain the
CNF. The results show that SAT-assisted side-channel analysis
can recover the full key from a single power trace in 96.7% of
cases (29 out of 30) within a one-minute SAT solver runtime.
Extending the timeout to one hour allows recovery of the
remaining key, resulting in a total attack time of 8.9 hours. This
is a significant improvement over pure power analysis, where
the success rates for one-minute and one-hour key enumeration
time are at most 39.3% and 62.6%, respectively (see Table IV).

VI. CONCLUSION

We presented an attack on AES that combines profiled deep
learning-based side-channel analysis with SAT. To the best
of our knowledge, this is the first work to comprehensively
evaluate the difficulty of solving the AES-SAT problem using
real side-channel data, incorporating different devices for
profiling and attacks, and successfully recovering the full key.

Our experimental results demonstrate that integration of a
SAT solver is particularly advantageous when the device under
attack has aging or wear-out characteristics different from the
profiling devices. Information about these characteristics is
typically unavailable in a real attack scenario.

Future work includes investigating the possibility of more
efficient modeling of AES as an MV-SAT problem [46],
applying advanced spectral techniques [47] to side-channel
analysis, and exploring the use of additional redundant values
as a potential countermeasure against side-channel attacks.
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