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Abstract—Secure multi-party computation (MPC) is a crucial
tool for privacy-preserving computation, but it is getting in-
creasingly complicated due to recent advancements and opti-
mizations. Programming tools for MPC allow programmers to
develop MPC applications without mastering all cryptography.
However, most existing MPC programming tools fail to attract
real users due to the lack of documentation, maintenance, and
the ability to compose with legacy codebases. In this work,
we build Smaug, a modular extension of LLVM. Smaug
seamlessly brings all LLVM support to MPC programmers,
including error messaging, documentation, code optimization,
and frontend support to compile from various languages to
LLVM intermediate representation (IR). Smaug can efficiently
convert non-oblivious LLVM IR to their oblivious counterparts
while applying popular optimizations as LLVM code trans-
formations. With benchmarks written in C++ and Rust and
backends for Yao and GMW protocols, we observe that Smaug
performs as well as (and sometimes much better than) prior
tools using domain-specific languages with similar backends.
Finally, we use Smaug to compile open-source projects that
implement Minesweeper and Blackjack, producing usable two-
party games with ease.

1. Introduction
Secure multi-party computation (MPC) allows multiple

parties to jointly evaluate a function while keeping their
individual inputs private. Due to the complexity of MPC
protocols, one important task is to build tools that can
facilitate the development of MPC-based applications. This
is often a complicated task. First, programs executed in MPC
must be trace and data oblivious, meaning that the program
counter and data access shall not reveal parties’ private
information. Second, the cost model of MPC differs from
standard hardware, e.g., x86; thus, different optimizations
are needed to enjoy the state-of-the-art MPC optimizations.
There have been various approaches to reduce programmers’
burden when handling these difficulties.
1) Bring Your Own Machine (BYOM). The most generic

approach is to work at the assembly level. These works
implement backends that can securely emulate the execu-
tion of assembly code directly [WGMK16], [SZD+16],
[Kel19], [YPHK23]. In this approach, the programmer
can use any existing language and compiler to obtain
the assembly code of the program, and then execute it on
MPC-emulated backends. The overhead for programmers

is minimal — they do not even need to know that the
code will be executed over MPC. However, the execution
overhead is often high because the backend must hide
the instruction type and data access in each cycle. In
particular, this approach requires using oblivious RAM
(ORAM) to emulate every instruction, leading to high
overhead.

2) Bring Your Own Compiler (BYOC). There are also
works that implement their own compilers but use
syntax from existing languages [HFKV12], [BDK+18],
[HST+21], [LIS+23], [CZO+23]. Such an approach al-
lows the programmer to keep using their favorite lan-
guages; the custom-built compiler would transform the
source program to something the MPC backends can
use, bypassing legacy compiler toolchains and machine
abstractions altogether. This approach is often more ef-
ficient than BYOM, as the compiler can use program
structures to optimize the MPC execution. However, it
has some other drawbacks. First, many compilers can
only handle toy examples rather than large projects and
do not emit any error messages/hints about compilation
errors. This is because most academic-built compilers do
not have the resources to support a compiler toolchain.
In addition, it is challenging to integrate MPC code with
cleartext code, even if they are in the same language.
The MPC code is compiled to cryptographic backends,
while cleartext code is compiled normally.

3) Bring Your Own Language (BYOL). Many prior
works focus on designing a domain-specific lan-
guage [ARG+21], [MGC+16], [YD23], [CGR+19],
[Kel20] or additional language syntax [ZSB13], [ZE15],
[LWN+15], and an associated toolchain such that the
programmers can learn and use. This approach has the
best flexibility in designing annotations and syntax to
capture the program’s structure. However, the program-
mers have to learn new language features, and it also has
drawbacks similar to BYOC since existing compilers and
machine abstractions are bypassed in this case as well.

There are also other frameworks [WMK16], [HEKM11],
[SHS+15], [BDST22] that build “libraries” for programmers
to use, but they push even more burden on programmers
to figure out how to convert the program to something
in the library calls while ensuring obliviousness and high
efficiency.

What About LLVM? As the most popular compiler infras-
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tructure, LLVM appears to be a great candidate for building
a compiler toolchain for MPC. Indeed, it has been discussed
by multiple prior works but only on why LLVM is not suit-
able. It turns out that directly reusing the LLVM framework
is challenging. For example, COMBINE [LIS+23] argued
that important information is missing for ϕ instruction,
something in the LLVM control flow graph (CFG) to handle
conditional statements. They also argued that the complexity
of LLVM makes it challenging to perform control-dependent
analysis. Heldmann et al. [HST+21] adapted LLVM to
output circuits for MPC applications but requires that all
conditional statements be independent of any private infor-
mation, bypassing the ϕ instruction issue mentioned above.
Keller [Kel19] uses LLVM to parse the source language but
adopts the BYOM method to execute the LLVM-IR. In this
paper, we defy this common belief by presenting Smaug, an
augmentation of LLVM for integrated programming support
of MPC applications.

1.1. Features of Smaug
Smaug is implemented completely as a set of modules

of LLVM — when MPC flags are disabled, the tool compiles
normal programs as usual. This is achieved by collecting
MPC-related information and performing MPC-related code
transformation as “LLVM passes” on the code. Smaug
achieves a trifecta of key features by extending LLVM in a
modular way rather than building an independent compiler.
1) Inheriting support for LLVM toolchain. The core

of LLVM focuses on optimizing LLVM-IR itself, but
many industry-grade compiler frontends can compile
to LLVM-IR, most notably clang and rustc. By
working on top of LLVM-IR directly, Smaug inher-
its from existing LLVM frontends to support almost
any language. At the same time, Smaug can produce
meaningful compile-error messages/hints just like other
industry-grade compilers.

2) Modular integration of MPC and legacy libraries. By
producing valid LLVM-IR, where crypto operations are
LLVM function calls, Smaug allows linking these func-
tions to MPC implementations using an existing linker
(e.g., GNU ld). Similarly, any custom optimizations,
e.g., table lookups, can be integrated seamlessly. This
also means that the dynamic interpretation of the MPC
program is done at the native-code level. An additional
benefit of extending LLVM is that we allow program-
mers to use legacy libraries (e.g., sqlite) with MPC
components seamlessly in one executable. This was only
possible with a library-based approach.

3) Repurposing LLVM optimization for MPC. Since
Smaug is an LLVM module, we have access to exist-
ing LLVM optimization modules, many of which are
beneficial to MPC. This includes dead-code elimina-
tion, CFG simplification, optimizations for vectorization,
which minimizes circuit depth, and analysis passes like
memory dependence analysis and loop analysis, which
help minimize the effort of writing custom optimiza-
tion passes. Although some prior works manually im-
plemented a subset of them, no framework implements

all since they don’t build on top of each other. Basing
Smaug on LLVM means we can support all of them
simultaneously and enjoy all careful optimizations from
the LLVM code base. We plan to open source Smaug
so that other researchers can add more optimizations;
LLVM helps with this goal as it provides a modular
infrastructure for extension.

1.2. Technical Contributions
Fully integrating with LLVM is challenging, and we

make the following contributions to achieve the best MPC
efficiency without burdening the programmers.

Toolchain overview. The core principle of our approach is
to use the LLVM-IR as the only intermediate representation
throughout the compilation and execution. This way, we
can fully enjoy all the benefits of the LLVM toolchain. A
program in an existing language will first be converted to
LLVM-IR using any compiler frontend. From this, we run
some code transformations provided by LLVM and ones
provided by Smaug to make the program oblivious and
optimized towards MPC (e.g., depth reduction). Finally, we
have a valid LLVM IR that contains both cleartext and
private computation. From here, we use existing compiler
linkers to link cleartext function/library calls to their object
files and link MPC operations to existing libraries.

Supporting mixed branching. The LLVM optimization
passes can extensively alter the CFG, resulting in CFGs with
goto statements under private branches, which cannot be
easily handled by prior approaches. We design an efficient
transformation that can handle such cases even within nested
branches, where some have public conditions and some
have private conditions. Since all loop syntax (i.e., for,
while, do-while loops) are the same within LLVM-IR,
as a by-product, we are able to efficiently support all loops
recognized by LLVM as long as the number of iterations
does not depend on the private values.

MPC optimizations as LLVM passes. To demonstrate the
generality of LLVM in the context of MPC, we implement
a variety of optimizations that are suitable for MPC. These
optimizations either do not require any extra annotation
from programmers or only require adding annotations that
already appear in existing compilers. In particular, we im-
plement several optimizations from prior works [BHWK16],
[GF95], [LIS+23] for circuit size and depth minimization.
We demonstrate that by utilizing the extensive analysis
modules provided by LLVM, we can implement these op-
timizations with reduced effort and achieve comparable or
better performance. Further, this shows that any future work
on circuit optimization for MPC can seamlessly add custom
transformation modules to Smaug and use the existing
analysis modules in order to minimize development effort.

Comparison with prior works. We compare the per-
formance of Smaug with COMBINE [LIS+23], CBMC-
GC [HFKV12], MP-SPDZ [Kel20], and Obliv-C [ZE15].
During the compilation of the benchmarks, Smaug uses
computational resources comparable to Obliv-C (which fully
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relies on the programmers in optimizing the circuit) and or-
ders of magnitude less time and memory than the other prior
works. Additionally, the resulting programs for Smaug
either outperform prior works or have comparable perfor-
mance. For instance, when computing convex hull over
a polygon with 256 vertices, Smaug is 111× and 28×
faster than COMBINE and MP-SPDZ, respectively, with
GMW backends, and performs comparably to Obliv-C with
a garbled-circuit backend. Section 7.1 and Section 7.2 show
a detailed comparison over a rich set of programs.
Real-World Programs. We show that Smaug can compile
programs written in both Rust and C/C++. Section 7.3 shows
an example program and briefly compares the resulting
programs for both languages. Furthermore, we adapt several
open-sourced programs with minimal additions to enable se-
cure computation. For instance, we build a K-Means library
using an open-sourced plaintext computation implementa-
tion in C without any change using Smaug. We use the
resulting library to classify data shared among two parties
in a MySQL database using the standard C++ MySQL
library. We also adapt public Minesweeper and Blackjack
implementations to a two-party setting and are able to use
Smaug for secure computation without additional effort.
The average response time for the blackjack implementation,
where the dealer runs on 2-pc, and one of the parties is the
player, is 3 ms. We describe the detailed examples and their
performance in Section 7.4.

1.3. Outline of the Paper
Section 2 presents the preliminary definitions and es-

sential background on LLVM. In Section 3, we provide an
in-depth discussion of the design of Smaug. Section 4 and
Section 5 describe our transformation algorithms and their
implementation. Section 6 explains how Smaug integrates
with an MPC backend. Finally, in Section 7, we present the
evaluation, including the comparison with prior works and
real-world examples.

2. Preliminaries
2.1. Control Flow Graph

A control flow graph (CFG) [All70] is a directed graph,
G = (B,E) where B = {b1, b2, ..., bn} is the set of nodes,
and E is the set of directed edges, each represented by
an ordered pair (bi, bj) of nodes. Each node in a CFG
represents a basic block, i.e., a sequence of instructions
with one and only one entry point (first instruction) and
exit point (last instruction). The edges in a CFG represent
the control flow between basic blocks: an edge from block
A to block B indicates that execution can pass from the last
instruction in A to the first instruction in B. This can happen
due to conditional or unconditional branches or the natural
fall-through from one block to another.
(Post-)Dominator Trees. Block A dominates B if every path
from the entry point of the CFG to B passes through A.
The immediate dominator of block B is the last dominator
on the path from entry to B. A dominator tree is a directed
acyclic graph with an edge from node A to B if A is the

Source (C) LLVM IR LLVM IR

LLVM OptimizerFrontend (Clang)

Object file

Code Generator

Figure 1: Overview of the LLVM Compiler Flow. Frontend
(Clang frontend for C) parses the source code and transforms it
to LLVM IR. LLVM core libraries are used in the middle end for
optimization. LLVM provides libraries for converting the LLVM
IR to machine code for several targets.

immediate dominator of B in the CFG. Similarly, A post-
dominates B if every path from B to the exit node of the
CFG passes through A. A post-dominator tree is a directed
acyclic graph with an edge from node A to B if A is the
immediate post-dominator of B.

2.2. LLVM
LLVM [LA04] is a collection of compiler and toolchain

technologies that are modular, reusable, and source/target-
agnostic. A significant advantage of LLVM is its adapt-
ability, serving as the backbone for various compilers and
language front ends, most notably C, C++, and Rust. The
backend of LLVM features a target-independent code gener-
ator that can create output for several types of target CPUs,
including X86, PowerPC, ARM, and SPARC. Figure 1
provides an overview of the LLVM compiler workflow.

The LLVM intermediate representation (IIVL-IR) is
a strongly-typed assembly-like intermediate representation
that serves as a platform-independent way of representing
code. It has infinite virtual registers and is a static single
assignment (SSA) based representation.

The LLVM optimizer provides various modules for pro-
gram analysis and transformations to optimize the IR. Its
modular structure also allows developers to add their own
analysis and transformation modules.
Static Single Assignment (SSA) form. SSA [CFR+91]
is a way of structuring a program where each variable is
assigned exactly once. This makes the data flow in the
program more explicit and simplifies certain optimizations,
as it is easier for the compiler to reason about the lifetimes
and usages of variables. Figure 3 shows an example program
in its non-SSA and SSA-based representation, where x is
assigned twice in Figure 3a in b2 and b3 but once in
Figure 3b in b4.
Phi (Φ) instruction. When transforming code into the SSA
form, compilers face the challenge of which variable to
use when a variable can be assigned in multiple paths of
a program, especially within loops or conditional blocks.
To resolve this, SSA introduces ϕ instructions, a conceptual
tool used in the IR to merge different incoming values into a
single SSA variable. The ϕ instructions in LLVM IR contain
pairs of variables and incoming basic block labels. The
variable is chosen by matching the last executed basic block
label with the incoming basic block label in the instruction
operand. For the program in Figure 3b, x = x1 if b2 is
executed before b4 and x = x2 if b3 is executed before b4.
LLVM loop-vectorizer. The LLVM optimizer includes
modules that enable vectorization for optimal perfor-
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Oblivious program
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Figure 2: Overview of Smaug. The front end (Clang) converts the source (C) to LLVM IR. The IR can be optimized, for instance, by
using -O1 with Clang. We transform the program (LLVM IR) given the specification for private function parameters for each function in a
module into an oblivious program. Further, we optimize the program using the LLVM optimizer and the custom transformation passes we
add that are specific for MPC circuit optimization. Finally, we replace the instructions where the input is private with the corresponding
MPC function calls. Now, we use the LLVM code generator to compile the program to object code for the respective target.

br c 2 3b1

x = 3
br 4

x = 4
br 4

y = x + 5

b2 b3

b4

(a) Non-SSA representation.

br c 2 3b1

x1 = 3
br 4

x2 = 4
br 4b2 b3

b4
x= Φ[x1,b2][x2,b3]

y = x + 5

(b) SSA-based representation.

Figure 3: Example of SSA form. Figure 3a shows a program
that branches based on a conditional block and assigns x, then
depending on the path taken, y is computed. Figure 3b shows that
in SSA-based representation, both branches use different variables,
and the joining block (b4) has a Φ instruction that chooses from
the variables depending on the last executed block.

mance in plaintext computation. The LLVM loop vector-
izer [TSS+17] first checks if it is legal to vectorize a loop.
Then, it makes vectorization plans and analyses the cost after
vectorization. It further updates those plans using several
factors like uniform branches, interleaving, etc. Finally, it
chooses the best vectorization plan using the cost model.
The vectorization plan is executed if it is beneficial against
the scalar cost. The vectorization plan uses scalable or fixed-
width instructions based on the target support.

2.3. Oblivious Algorithm
Oblivious algorithms are ones whose program execu-

tion trace, i.e., the movement of the program counter, is
independent of the private inputs. Oblivious algorithms pro-
tect side-channel information related to program execution
and have found applications in cryptography [GKK+12],
constant-time programming [RLT15], and cloud comput-
ing [SZE+16]. Once a program is represented in a trace-
oblivious manner, producing a circuit that computes the
same function is straightforward. The circuit size can be
captured by the complexity of the oblivious algorithm. Thus,
many works in optimizing circuits for MPC boil down
to finding better oblivious algorithms. Any program can
be compiled to its oblivious counterpart using oblivious
RAM, but one could obtain better efficiency through more
optimizations.

3. Smaug Design
Most MPC compilers design their own language/IR, thus

suffering from various drawbacks, like lack of maintenance,
difficulty in integrating MPC code with cleartext code, etc.

To fill this gap, we propose Smaug. Smaug is built on
top of the LLVM toolchain and works by adding custom
transformation modules to the LLVM optimizer. Therefore,
our framework can compile source code written in any
language that can be compiled into the LLVM IR. Figure 2
shows a brief overview of our compiler, which we explain
below.

3.1. Support Non-Oblivious Programs
As the first step, we use existing off-the-shelf tools (e.g.,

clang) to compile the source code to LLVM IR and then
use the LLVM optimizer to perform optimizations that are
useful for MPC, including dead-code elimination, combin-
ing redundant instructions, etc. Then, we need to transform
the program to be oblivious. There are several approaches
to handling non-oblivious programs: 1) obliviously emulate
every instruction in the program using ORAMs [WGMK16],
[SZD+16], [YPHK23]; 2) assume some restricted behavior
of the source code and perform more efficient transformation
of the code. Such restrictions may assume that the program
is branchless [HST+21] or assume that all the branches
are based on private conditions and all the loop bounds
are known at compile time [LIS+23], [HFKV12]. In prac-
tice, these restrictions are captured using customized lan-
guage features [LWN+15], [ZE15], [ZSB13], [MGC+16],
[CGR+19] or by simply reporting an error when the as-
sumption is not met. The goal of Smaug is to work on top
of unmodified LLVM-IR and embrace its generic CFG as
much as possible with minimal assumptions on the input
programs.

Firstly, to identify the private variables, we input a
specification that specifies the nature of input parameters
and the output for each function. Using this specification
and the program compiled to LLVM IR, we analyze the
LLVM IR to identify if the control flow depends on some
private variable and then transform it into an oblivious
program. The basic idea for the transformation is to execute
a basic block regardless of the private condition expression
associated with it and nullify the effect of this execution
over the program if the corresponding condition expression
evaluates to false. So far, it is similar to prior works, but
one unique challenge in our case is supporting arbitrary
CFG. Traditionally, DSLs restrict the source language so that
the CFGs are nicely structured. However, we take as input
unmodified LLVM-IR, potentially after some optimizations,
including CFG simplification, and thus cannot assume much
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structure. For instance, a code block may be reachable from
two paths, one with a public condition and one with a private
condition. In this case, the execution condition of this block
is a disjunction of public and private variables. One could
assume that all conditions are private and transform the pro-
gram accordingly, but this would produce suboptimal results.
In Smaug, we design a new code transformation module
to convert generic mix-condition LLVM-IR to its oblivious
counterpart efficiently. We discuss details in Section 4.

We note that LLVM does not recognize irreducible loops
as loops because they are unsuitable for specific transfor-
mations and optimizations due to the non-trivial dominance
relationship among the blocks in the irreducible loop. Thus,
we omit any discussion for CFGs that contain irreducible
loops and assume that the dominance relationship among
all the basic blocks in the CFG is trivial. Furthermore, we
describe how to handle private loops without any addition
to the parser of the high-level language in Appendix A.6.

3.2. Circuit Optimization for MPC
Once we have an oblivious program, we can opti-

mize it further while maintaining the obliviousness. Sev-
eral works deal with circuit size optimization for MPC,
including loop vectorization [LIS+23], depth reduction us-
ing parallelization techniques [BHWK16], and loop coa-
lescing [GF95]. Each of these works only implements one
or two optimizations, and it is impossible to enjoy all
of them without reimplementing everything. The goal of
LLVM is to modularize optimizations for ease of extension,
and we observe that it can also serve MPC applications
in two aspects. First, many LLVM optimizations can be
applied directly to MPC programs to reduce the size of
the functions. This includes Dead Code Elimination (dce),
Combine Redundant Instructions (instcombine), Sparse
Conditional Constant Propagation (sccp), etc. Prior works
implement some of them, but Smaug is equipped with
these optimizations for free. Second, we add our own code
transformations to optimize the code further. LLVM has
been viewed as overly complex for MPC, but in this paper,
we show that the existing LLVM code analysis framework
can actually help implement optimizations. We show how
three important optimizations proposed in prior works can
be easily implemented in LLVM in Smaug. We further
show that we achieve comparable performance to special-
purpose compilers. Below, we describe these optimizations
and our approach in brief.

Vectorization. Some MPC protocols like GMW [GMW87]
require one or more rounds of communication for each layer
of circuits. Therefore, MPC libraries implementing these
protocols usually offer an interface to use SIMD gates to
allow the most effective use of the protocol. To fully utilize
such protocols, one would need to identify the blocks of
code that can be made SIMD and potentially rewrite the
program for optimality. In prior works, it is achieved by
writing their own optimizations. We observe that LLVM
already provides the core optimization modules for this task,
which can be used seamlessly in conjunction with other

optimizations.
In particular, the LLVM optimizer includes modules to

identify as many vectorization opportunities as possible,
using Loop Vectorizer and Superword-Level Parallelism
Vectorizer to fully use SSE-type instructions and instruction
pipelining. The vectorizer takes into account the cost of
instructions before and after vectorization. By having the
MPC protocols in valid LLVM IR, we are able to use these
modules directly. To maximize the level of vectorization, we
make the following changes: First, we force the vectorizer to
use scalable width vector instructions for loops with MPC
instructions. Second, we write a transformation pass that
splits a loop containing vectorizable and non-vectorizable
operations into multiple loops, potentially with increased
memory. This is needed because LLVM, by default, does not
vectorize such mixed loops due to memory concerns. Fortu-
nately, LLVM already provides analysis modules, including
loop access analysis and scalar evolution analysis, to obtain
simple information about the loop, like loop count and in-
duction, to complex information about memory dependence,
all of which help identify vectorizable operations in a loop
and write the loop splitting transformation pass. By compre-
hensive LLVM-based vectorizer, we find that Smaug can
capture almost all SIMD opportunities. Section 5.1 describes
the LLVM vectorizer and the modifications we do in detail.

Parallelization of reduction patterns. Reduction patterns
in a program are computational patterns that combine mul-
tiple values into a single result, like adding all elements
in an array or finding the maximum value in an array.
These computational patterns can typically be parallelized
by computing the operation in a tree-based fashion, where
the operations at each level of the tree can be vectorized.
In [BHWK16], the authors implement this optimization as
part of CBMC-GC [HFKV12] to produce low-depth circuits.

We find that the vectorization passes of LLVM find such
reduction patterns in vectorizable loops and even outside of
loops (SLP vectorizer) and replace the computation with
vector.reduce intrinsic function calls. Thus, in our loop-
splitting transformation pass, we use the LLVM vectorizer’s
analysis to identify the reduction patterns and separate the
reduction instructions from any non-vectorizable instruc-
tions. Now, to parallelize the reduction operations, we sim-
ply need to add a gadget in the MPC library that uses a tree-
like structure to compute the result and replace the intrinsic
call with a call to the corresponding gadget function.

Loop coalescing. Loop coalescing is a transformation pass
that is useful when dealing with nested loops where the inner
loop’s count is private, but the total number of iterations is
known and public. For example, when using an adjacency
list as input to Dijkstra’s algorithm, we do not know the
out-degree of each vertex, but the total number of edges is
public. ObliVM [LWN+15] proposes a DSL that allows a
programmer to specify the max loop count. This information
is used to transform a nested loop into a single loop for
optimal performance, such that if the outer loop is executed
at most n times and the inner loop is executed at most
m times, then the resulting program achieves O(n + m)
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performance.
Our work adapts this transformation for LLVM-IR,

achieving it without the need for additional syntax. To
avoid introducing a new pragma in Clang, we use loop
unroll count to obtain the max loop count for nested loops
where the innermost loop has a private exit. We describe
how we implement our adaptation in ≈ 500 lines of code
with the help of LLVM’s utility functionalities in Section 5.3

3.3. End-to-End Integration
MPC compilers typically compile the input program into

a specific circuit format, like the Bristol format, which the
MPC backend libraries can interpret. In [BHK+23], Braun
et al. describe that these formats often lack one or more fea-
tures like vector instructions, loops, and function calls and
propose FUSE-IR to bridge the gap. However, the proposed
format, FUSE-IR, does not support control flow elements
like branch instructions or loops where the loop bound is
determined at runtime. Furthermore, their framework lacks
the extensive program analysis and optimization modules
offered by LLVM. Note that a constant loop bound allows
loop unrolling, and the program, in turn, does not have any
control flow elements. The lack of support for loops requires
the programmer to recompile the program every time the
number of elements changes, such as in biometric matching
over n data samples.

Smaug works on top of LLVM; thus, it supports
control-flow elements and allows the program to be dy-
namic. This dynamism is not supported by any of the final
circuit formats used in MPC. Thus, to hook the program
with an MPC backend, we create an MPC interface similar
to the LLVM instructions and replace the instructions that
operate on private inputs with the corresponding function
calls to this interface. We define a mapping of the instruction
code and input data type with the corresponding MPC
function signatures to determine the function to call. Given
the mapping of the instruction code and corresponding MPC
function signatures, this allows us to hook the program with
any MPC library. Section 6 describes how we use the MPC
library for the required secure computation.

4. Transformation To Oblivious Programs
This section presents our algorithm that transforms non-

oblivious programs into oblivious ones. The source program
typically includes constructs like goto, if else, and
for loops, resulting in a control flow dependent on the
runtime values of variables. These variables can be public
or private, depending on the condition variable of the if
else constructs or the loop-exit condition. In prior works,
this is resolved either by BYOM, which completely hides the
program trace with high cost, or BYOC(L), which restricts
the behavior of conditional constructs to only well-behaved
ones, e.g., no goto. Such an assumption may no longer
hold, especially after LLVM optimizations. Therefore, we
propose a generic approach to compiling a non-oblivious
program into an oblivious program, covering essentially all
common cases.

As mentioned earlier, our transformation algorithm takes
as input a specification for each function to determine the
associated private parameters and the nature of the function
output. Using this specification and the input program, we
perform a simple taint analysis to label the instructions that
are dependent on some private information. The terminator
instruction in the LLVM IR determines the control flow. We
assume the terminator instructions can only be return (ret)
or branch (br) instructions. When analyzing the CFG at
the function level, ret is the terminator of the exit block,
and all other blocks have either conditional or unconditional
br instructions as the terminator. The conditional br in-
structions can depend on a public (known to all parties
at runtime) or a private variable. Formally, the CFG of a
function is a graph G where each block has a maximum
out-degree of two, and the edge (bi, bj) from block bi to bj
can be private or public depending on the branch condition
of bi. If the branch condition at the terminator of block b is
private, then the choice of the next block to execute leaks the
value of the condition variable at runtime. Thus, we need to
transform the program so that it does not contain any private
edges while maintaining correctness.

Here, we assume that all loops in the program have
a public loop-bound and defer how to handle loops with
private loop-bound to Appendix A.6. We first show an
example transformation and then describe each step in detail.
The proof of correctness is deferred to Appendix A.5.

The obvious idea for transformation is to assume all
branch conditions are private and transform it into a straight-
line program. To maintain the dominance relationship of
each value from its users, the straight-line program must
preserve the topological order of the basic blocks. However,
undesirable execution of a basic block can lead to incorrect
output. Given that LLVM IR is SSA-based, the undesirable
execution of a basic block only affects the program state
because of its store instructions and the values propa-
gated via ϕ instructions. Thus, we describe in detail how
to update the store and ϕ instructions in Appendix A.3
and Section 4.2, respectively. Note that topological order is
defined for directed acyclic graphs, but a CFG might contain
cycles; thus, we discuss how to obtain the reverse post order
to handle loops in Appendix A.2. Furthermore, simply trans-
forming into a straight-line program results in suboptimal
performance. Section 4.1 presents a brief example program
showing how to produce an optimal transformation of the
original program.

4.1. High-level Idea
Here, we illustrate an example program that contains

mixed-branch conditions and discuss its transformation into
an oblivious program w.r.t. any private variables.

1 void test(bool v2, bool v1) {
2 if (v1) {
3 foo1();
4 if (v2) foo2();
5 else foo3();
6 }
7 else {
8 foo4();
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9 foo3();
10 }
11 }

In the above program, v2 is private, while v1 is public.
After certain preliminary optimizations of LLVM, the fol-
lowing CFGs could be the result, where red instructions
indicate that it is dependent on a private value.

1

2 3

4 5

6

call foo4
br 5

br v1 2 3

call foo1
br v2 4 5

call foo2
br 6

call foo3
br 6

ret

In practice, the CFG could be more complicated for
complex programs, but we use this to illustrate our main
idea. In the final CFG, we want all the branch instructions
to be independent of private variables (v2 here).
Find the condition expression for each block. To
determine the condition expression for each basic block,
we note that the entry block always has the condition
true. For all other blocks, the condition is chosen from
a set of conjunctions of the branch condition and the
condition expressions of its predecessor blocks depending
on the predecessor block executed last. The table below
summarizes the condition expressions for each basic block:

Block Condition Expression Block Condition Expression
1 true 4 v1 & v2
2 v1 5 {(v1 & !v2), !v1}
3 !v1 6 true

To find the most compact expression, as in the above table,
one would need to perform more analysis, as shown in
Appendix A.1. Once we find the expression corresponding
to each block, we can add instructions to the program to
obtain a variable corresponding to each expression. The
resulting program is as follows:

1

2 3

4 5

6

call foo4
br 5

br v1 2 3c51 = and v1,!v2
c4 = and v1 v2

call foo1
br v2 4 5

c5 = ϕ[c51,2],[!v1,3]
call foo3
br 6

call foo2
br 6

ret
Naive method. The naive method discussed
earlier, where the transformed program executes
each block in the topological order, regardless
of its condition, results in the following CFG:

1 2 64 3 5

However, this approach is not optimal. For instance, given
that the variable v1 is public, we know that if v1 is false,
blocks 2 and 4 do not need to be executed. Nonetheless,
the method described above requires the execution of every
basic block. Furthermore, there can be deep programs with
one of the branch conditions being private; the current
method leads to an avoidable exponential blowup. To evade
this, instead of using a single condition variable per block,
we maintain both a public and a private condition variable
to manage block execution better.

Map {public, private} condition variables for each
block. For optimal results, we associate two condition vari-
ables with each expression: one for public and one for
private conditions. The final condition for a block is the
logical AND of both variables.

1

2 3

4 5

6

call foo4
br 5

br v1 2 3

call foo1
br v2 4 5

s5 = ϕ[!v2,2],[true,3]
p5 = ϕ[v1,2],[!v1,3]

call foo3
br 6

call foo2
br 6

ret

For instance, for block 5, where the condition is chosen
from the set {(v1 & !v2), !v1}, we add two ϕ
instructions (p5,s5) for public and private conditions.
Using two separate ϕ instructions preserves correctness, as
the ϕ instruction selects the value from the last executed
block. Appendix A.1 describes how to find the condition
expression with the corresponding variables for each basic
block and how to add instructions to create a map for the
corresponding conditions.
Update store and ϕ instructions. As discussed earlier,
unnecessary execution of a basic block only impacts the pro-
gram state due to ϕ and store instructions. Appendix A.3
shows how to update the store instructions such that
they only impact the program state if the private condition
corresponding to the basic block is true. We first load from
the pointer and then use a mux to select based on the
condition variable associated with the basic block between
the value defined in this block and the value already written
at the pointer. Finally, we store the output of mux.

Additionally, we replace all the ϕ instructions in the
CFG with select instructions. For instance, in the fi-
nal CFG of the example program, the instruction p5 =
ϕ[v1,2],[!v1,3] is transformed into p5 = select
v1 v1 !v1. It is important to note that a ϕ instruction
selects a value based on the last executed block, not just
checking which predecessor block was executed. Therefore,
when converting ϕ instructions to a series of select in-
structions, we must account for the dominance relationships
between predecessor blocks. Section 4.2 describes how to
do this transformation correctly.
Update CFG. Instead of executing each basic block regard-
less of its execution condition, we execute it based on the
associated public condition. Starting from the entry block,
we branch to the next block in topological order, depending
on its public condition. For the example program, we create
a new empty basic block 2′ and branch from block 1 to
block 2 if v1 is true, or to block 2′ if v1 is false. Now, in
block 2′, we insert ϕ instructions for any values defined in
block 2 that are used outside the block 2 and replace the
uses outside the block to refer to the ϕ instruction in 2′.

1

2

2’

br v1 2 2’

v2’ = ϕ[v2,2][false,1]
br v2’ 4 4’

call foo1
br 2’
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This process is repeated for all blocks in topological
order. Note that when we branch from 3′ to 5, the branch
instruction is br p5 5 5’. However, p5 is defined in
block 5. Thus, when replacing the ϕ instructions in block
b to select instructions, we check if the ϕ instruction is the
private or public condition variable for b. If yes, we move
it before the terminator of the predecessor of parent block
of b after the CFG has been updated to remove the private
edges, i.e., p5,s5 are moved from block 5 to block 3′ in
the final CFG as shown below:

1

2call foo1
br 2’

2’

4call foo2
br 4’

4’

3call foo4
br 3’

3’

5call foo3
br 5’

5’

6

br v1 2 2’

br v1 4 4’
v2’ = ϕ[v2,2][false,1]

br !v1 3 3’

br p5 5 5’

p5 = select v1 v1 !v1
s5 = select v1 v2’ false

br 6

Updating the terminators by the above-described method
for loops can result in incorrect execution. Section 4.3
describes handling CFGs containing loops. Note that topo-
logical order is only defined for directed-acyclic graphs;
thus, we show how to obtain a reverse post-order for CFGs
with loops in Appendix A.2.

4.2. Update PHI (ϕ) Instructions

To replace a ϕ instruction with a sequence of select
instructions, we first need to determine the order in which
selections will occur based on the dominance relationships
between the incoming basic blocks. We describe a step-by-
step approach to the transformation as follows:

1) Group incoming basic blocks: We group all incoming
basic blocks of the ϕ instruction according to their private
condition and create a map where the key is the private
condition, and the value is a list of all incoming blocks
that share the same private condition.

2) Order the blocks: For each entry in the map, we arrange
the basic blocks according to their post-order traversal.
This ensures that the selections are processed in the
correct order of execution.

3) Select values for each private condition: Once the
blocks are ordered, we obtain values for each private
condition as follows:
a) We start by selecting the value from the first block

in the list and use that as the initial value.
b) For each subsequent block, first retrieve the value it

passes into the ϕ instruction. Then, for each block,
add a select instruction that chooses between this
value and the previously selected value based on the
public condition of the current block.

4) Final value: Once values have been assigned for each
private condition in the map, we repeat the process for
all private conditions using the order of the last blocks
corresponding to each condition. This gives us a final
selected value.

5) Replace the ϕ instruction: We replace all uses of the
original ϕ instruction with the final value from the se-
quence of select instructions and remove the original
ϕ instruction from the code.

6) Maintain dominance from users: We collect all the
corresponding select instructions in a list for each ba-
sic block’s ϕ instruction related to its condition variable.
Once the control flow graph (CFG) has been updated,
we move all these instructions to the predecessor of the
parent block.

4.3. Update CFG
The entry block remains unchanged. We use lastBB to

denote the last visited basic block in the CFG.
For simplicity, let us say that the CFG has no loops.

When visiting a basic block b, there are two possible cases:
• Public condition is constant true: If the public condition

of b is a constant true, we replace the terminator of
the lastBB with an unconditional branch instruction that
jumps to b, then set lastBB to b.

• Public condition is variable: If the public condition
of b is a variable var, then we create an empty basic
block b’ and set the terminator of the lastBB to a branch
instruction with condition var that branches to b when
true and b’ when false. Next, we clone the terminator
of b as the terminator of b’ and then set the terminator
of b to unconditional branch instruction to b’. Then, for
every instruction in b that is used outside this basic block,
we add ϕ instruction to b’ such that it has two incoming
values, one from b and a default constant value from
lastBB. Now, set lastBB to b’.

Now, consider there are loops in the CFG, and let us say
we are visiting a basic block b, which is a loop latch (b has
an edge to a block that dominates b). Note that when we visit
this block, the terminator is maintained because we either
do not change it or copy the terminator in b’. However,
when we visit the next block in the order, the terminator
of lastBB is lost. Thus, the loop no longer exists in the
program. To address this, if lastBB is a loop latch, we create
a new basic block lastBB’ and replace the other successor
(not loop header) to lastBB’. Further, when visiting b, if we
create b’ where b is a loop latch, then for the ϕ instructions
in the corresponding loop header, we update the incoming
block from b to b’.

Another issue with loops in the CFG is that if b is a
loop header (first block in a loop) with a variable public
condition, then the resulting program has a loop with two
entry points, b, and b’. This renders the dominator relation-
ships within the loop non-trivial to determine. Thus, instead
of updating the terminator of b to b’, we store b’ as the new
loop exit block corresponding to the header b and set lastBB
= b. When we find that lastBB is a loop latch, we check if
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we have a new exit block for the corresponding loop header.
If we find an exit block, then we use this as lastBB’ instead
of creating a new empty basic block. Since we have created
a new loop exit, for every value defined in the loop and
used outside the loop, we add ϕ instructions to the loop exit
block, such that v = ϕ[val,latch][default,loop
preheader].

We defer the formal algorithm description and its proof
of correctness to the Appendix A.4 and A.5, respectively.

5. Optimization Passes for MPC
After program transformation, we use the LLVM opti-

mizer to perform all the optimizations other than vectoriza-
tion passes. We write several custom optimization modules
to ensure maximum vectorization of the operations that
need MPC library functionalities. Below, we discuss the
optimization functionalities and their implementations.

5.1. Vectorization
As discussed in section 3.2, secure computation pro-

tocols typically benefit from SIMD operations. Below, we
describe in detail how we update the LLVM loop-vectorizer
to suit MPC requirements, as well as the additional trans-
formation passes we implement to fully exploit the SIMD
opportunities in the program.

Recall from section 2.2 that the LLVM loop-vectorizer
supports scalable-width instructions if the target supports
them. However, the instructions that require secure compu-
tation always benefit from scalable-width instructions. Thus,
we update the loop vectorizer to use scalable-width vector
instructions for the loops with instructions handling private
data. The vectorizer executes the plan with the lowest cost
based on cleartext instruction costs. In MPC, vector instruc-
tions for non-linear operations cost significantly less than
their scalar counterparts. Thus, we update the cost model of
the loop vectorizer such that the non-linear operations that
are to be computed using the MPC library have the mini-
mum cost if they are vectorized using a scalable width and
the maximum cost if they are scalar. These modifications are
sufficient to vectorize simple loops like one that computes
the sum of elements of two arrays. However, for more
complex loops like cases where only partial vectorization
is legal, the vectorizer avoids vectorization entirely.

Thus, we propose a solution to identify such patterns
and split the loop into multiple parts so that the loop
vectorizer can vectorize where advantageous. The first step
is to flatten nested loops into loops with minimum possible
depth without unrolling. Then, for the innermost loops, we
identify the patterns that prevent their vectorization and split
the loop into multiple parts so that some are vectorizable.
Subsequently, we reconstruct the nested loop if the non-
vectorizable parts are flattened loops. Lastly, we introduce
a memory alignment pass since the LLVM vectorizer can-
not vectorize operations involving non-contiguous memory.
Before executing these passes, we use the LLVM utility to
simplify the loops and transform them into LCSSA (loop
closed SSA, where loop-defined values are only used within
the loop, including uses in ϕ instructions in the loop exit

block). Below, we discuss the more straightforward case,i.e.,
non-nested/innermost loop, and defer the loop flattening and
reconstruction passes useful for nested loops to Appendix B.

Loop splitting. We focus exclusively on loops with a
straight-line control flow, i.e., only one basic block. First,
we use the LLVM memory dependence checker to detect
any memory dependencies in the loop that prevent the vec-
torization of the loop. If dependencies are present, we apply
the LLVM loop-distribute pass, which distributes the loop
to resolve dependencies that inhibit vectorization whenever
feasible. Thus, our transformation pass does not handle
loops with unresolved memory dependencies.

A critical observation is that, since there is no memory
dependence across iterations, the dependencies arise only
from the ϕ instructions in the loop header. Thus, the first
step is to categorize ϕ instructions into sets, such that the
instructions within the same set do not depend on each other
and order the sets according to the dependence. Using these
ordered ϕ instruction sets, we identify the distinct sections
(or parts) of the loop.

We create a part for each set that includes instructions
dependent on prior sets but independent of the current
set under consideration. Furthermore, if the set contains
reduction ϕ instructions, we create a separate part to par-
allelize the private reduction operations. For any remaining
ϕ instructions, we create an additional part with these in-
structions, along with any dependent instructions not already
assigned to previous parts. We note whether the last part is
vectorizable and contains private instructions to minimize
unnecessary partitioning. If the first part for the current set
contains no private instructions, we merge it into the last
part. Next, we merge the last part corresponding to the set
into the previously created part if it is not vectorizable.

Once we have a sequence of ordered parts, we identify
the instructions used outside the part for each part. For
each such instruction, we allocate space according to the
instruction type and the number of loop iterations. We then
create a new loop for each part and add store instructions
for each value to the corresponding pointer used outside the
new loop. We add a load instruction for any value used
from the prior parts and replace the uses within the part
with the loaded value. Finally, we deallocate each newly
allocated pointer after its last use. Note that instructions that
only require local computation can be duplicated instead of
storing the intermediate results in memory.

Memory alignment. We utilize LLVM’s loop vectoriza-
tion legality analysis to detect any non-consecutive pointer
accesses (either load or store) that may hinder loop
vectorization. When such accesses are identified, we allocate
memory based on the loop’s iteration count for the relevant
load and store instructions. For load instructions, we
create a new loop preceding the original loop, move the
identified load instructions to this new loop, and store the
loaded values in the corresponding allocated space. In the
original loop, replace each load instruction with a new one
that accesses the allocated memory at the computed address
(the base pointer plus the induction variable).
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Similarly, we replace the store instructions in the
original loop with store instructions at the corresponding
pointer plus induction. We create a new loop following the
original loop. We then move the non-consecutive store
instructions to this post-loop, and the values to be stored
are loaded from the corresponding pointer plus induction.

5.2. Parallelization of Reductions
Parallelization of reduction patterns is a standard

optimization implemented and used in prior
works [BHWK16], [Kel20]. We observe that the
vectorization modules in LLVM can already detect reduction
operations and replace them with intrinsic function calls like
llvm.vector.reduce.add.<type>, these intrinsic
functions are usually replaced by the target-specific optimal
implementation for the respective reduction operation.
Furthermore, the loop-splitting transformation described
in Section 5.1 separates reduction operations from any
non-vectorizable computation to enable the above-described
LLVM optimization. Thus, to finally parallelize, we
implement an interface for reduction operations that takes
a pointer to the array, the size of the elements, and the
opcode for the operation and uses a tree-like structure to
compute the result. We replace the intrinsic function calls
with function calls to this interface. Section 6 describes
how to obtain the pointer to the input array given the input
vector virtual register and how this interface is implemented
and linked to the output program.

5.3. Loop Coalescing
ObliVM [LWN+15] introduces Java-like DSL and pro-

poses an optimization technique that transforms a nested
loop with depth two into a single loop with an overall
iteration count O(n+m) instead of O(n∗m), where n, m are
the maximum iteration counts for the outer and inner loops
respectively. We implement their technique for LLVM-IR,
which involves handling the ϕ instructions in the headers of
the loops, maintaining the dominance relationship between
the instructions and their uses after loop coalescing and
cases where the loop latch is not the block that exits the
loop. We use the LLVM metadata unroll_count to get
the max loop count and the condition analysis described
in Appendix A.1 to find if the loop has a private latch.
Additionally, we use the LLVM loop analysis to determine
the components of a loop, i.e., preheader, header, latch,
and exit blocks. This helps us implement the transformation
in ≈ 500 lines of code. The transformation algorithm is
described in Appendix C.

6. End-to-End Integration
As discussed earlier, the input program is essentially

the same as that for plaintext computation, and the user
provides an input JSON file to our compiler to identify
the nature of the input parameters and output value for
each function to be analyzed. An example program and
the corresponding JSON are shown in Figures 4 and 5,
respectively. First, we use a general-purpose compiler (e.g.,
Clang) to obtain the corresponding LLVM-IR and run some

1 void histogram(int *A, int *B, int length,
2 int *ret, int bins) {
3 memset(ret, 0, bins * sizeof(int));
4 for (int j = 0; j < bins; ++j)
5 for (int i = 0; i < length; ++i)
6 if (A[i] == j)
7 ret[j] += B[i];
8 }

Figure 4: The code for histogram, same as the cleartext program.

{"histogram": {
"input": [priv, priv, pub, priv, pub],
"output": pub

}}

Figure 5: JSON specification. Specification for private (priv)
and public (pub) parameters of function described in Figure 4.

non-aggressive LLVM optimizations (e.g., all optimizations
in the O1 pipeline). Then, we use the JSON and the LLVM-
IR to analyze the program and identify whether each instruc-
tion depends on a private value. Subsequently, we apply the
LLVM optimizer, and our custom transformation passes to
produce an optimized and oblivious version of the original
program in LLVM IR. Finally, we transform the IR by re-
placing the instructions that require secure computation with
function calls to the MPC library and adding declarations for
the respective functions to the IR. The definitions of these
functions need not be known at the time of transformation.
When compiling the IR to an object file, one needs to add
linker flags to the library that implements the MPC interface.

6.1. Handle Instructions for Private Values
As we know, after the analysis of the program given the

JSON, each instruction is labeled private if any of its input
variables are private. For all the following discussions, we
assume that the MPC backend uses the same data type for
private values as cleartext computing and defer the use of
custom MPC data types to Appendix D. We do not need to
replace instructions that are linear operations on the private
values depending on the type of sharing. However, non-
linear operations like mul of two private values must be
replaced with the corresponding MPC function call. Let us
assume we have the following instruction:
%c = mul i32 %a, %b

then we use a corresponding MPC function interface for
mul over i32 data type:
int32_t mulI32(int32_t a, int32_t b)

After identifying the instruction, we add a declaration for
the corresponding function to the program if it doesn’t exist
already and then replace the instruction as follows:
%c = call i32 @mulI32(i32 %a, i32 %b)

Vector instructions of scalable width. Let us start with an
example of a vector instruction with scalable width:
%c = mul <vscale x 1 x i32> a, b

where vscale depends on the target architecture and a
and b are previously defined vector virtual registers. The
corresponding function for the MPC interface takes pointers
for the input pointers, the output pointer, and the number of
values, for instance:
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void mul(int32_t *a, int32_t *b, int32_t *c,
int n)

such that for i ∈ [0, n− 1]: c[i] = a[i] ∗ b[i].
The first step is to determine the pointers for the output

and input registers to pass as function arguments. If the
output instruction is used within a vector store instruction
at the pointer c.ptr (a scalar value), then we use c.ptr;
otherwise, we allocate space for c, and free it after all uses
of c. After finalizing the output pointer, we store it in a map
to replace references to c in its uses later. Similarly, if the
instruction corresponding to the input virtual register is a
load instruction from the pointer a.ptr, we use a.ptr;
however, if it points to another instruction, we must retrieve
the corresponding pointer for the input instruction from the
instruction-to-pointer map.

Another challenge we have yet to discuss is obtaining
n, as vscale is a target-dependent value and may not be
supported on all targets. Ideally, we want n to be the original
loop count (i.e., the number of times the non-vectorized
loop executes). When vectorizing a loop using scalable-
width vector instructions, the loop vectorizer transforms the
original loop into two loops: the first loop (vectorized loop)
iterates n // vscale times, and the scalar loop iterates n
% vscale times, assuming the maximum possible vector
width is vscale. Additionally, metadata is added to the
loop to indicate that it has been vectorized without requir-
ing any new analysis. We use this pattern to identify the
corresponding value n, ensuring the scalar loop becomes
unreachable once we replace all vector instructions with
MPC function calls.
Linking to the MPC library. As discussed earlier, Smaug
only knows the mapping of instruction code, data type and
the corresponding function names. The user can implement
the MPC interface functions using their choice of library
and protocols. We implement the GC-based interface using
EMP-toolkit [WMK16] (built as libgc.so) and an inter-
face using a GMW-based circuit evaluation [GYKW24] and
the circuits generated by EMP-toolkit to evaluate primary
operations,e.g., addition, multiplication (as libgmw.so).
When using the code-generator to build an object file, we
pass a linker flag to the library with the interface we want
to use, -lgc (resp. -lgmw) for the GC (resp. GMW)
interface.

7. Evaluation
We summarize the key findings from our evaluation

below:
1) Performance of Compilation Phase: We find that

Smaug outperforms COMBINE, CBMC-GC, and MP-
SPDZ by orders of magnitude and has a performance
comparable to Obliv-C.

2) Performance of Result Programs: The resulting pro-
grams either outperform or perform comparably to those
implemented using other compilers for both GC and
GMW-based interfaces.

3) Adaptability for multiple languages: Smaug can com-
pile programs written in languages that support LLVM-
IR, including C/C++ and Rust.
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Figure 6: Comparison of average time and memory usage.
Note that we are unable to compile some programs with CBMC-
GC, and thus, they are omitted from their average.

4) Real-world programs: We compile several open-source
programs with minimal changes to enable secure com-
putation.
All experiments are conducted on AWS instance type

c5.2xlarge. We use the standard benchmark suite from
[LIS+23] to compare with prior works. It is described in Ap-
pendix E.1. For prior works, we use COMBINE [LIS+23],
CBMC-GC-2 [HFKV12] from the BYOC group of com-
pilers and Obliv-C [ZE15], MP-SPDZ [Kel20] from the
BYOL group. Note that [YPHK23] achieves the state-of-
the-art performance in the BYOM group; however, they do
not provide a tool to compile a high-level program into their
ISA.

7.1. Performance of the Compilation Phase
We benchmark the time and average memory required

to compile the high-level programs into an executable by
the prior works and Smaug. Figure 6, shows a comparison
of the average time and memory used by the compilers for
compiling all the programs in the benchmark suite. We note
that CBMC-GC is unable to compile several programs as
it generates a circuit during compile time, thus requiring
significant RAM usage. We observe that Obliv-C performs
slightly better than Smaug; however, it does not optimize
the program and only supports garbled-circuits.
Compilation Time. Figure 6 shows that the compilation
time for Smaug is significantly better than COMBINE,
CBMC-GC, and MP-SPDZ (this order of prior works is
used for all the following comparisons). On average, Smaug
performs 44×, 1240×, and 420× better than the prior works.
Obliv-C and Smaug have comparable performance, where
Obliv-C slightly outperforms Smaug by a factor of 1.4×.
Table 6 shows a detailed comparison of the time taken
to compile each program in the benchmark suite. For in-
stance, when compiling the histogram benchmark (Figure 4),
Smaug outperforms prior works by a factor of 48×, 1293×,
and 187×.
Peak Memory Used by the Compiler. Figure 6 shows
a similar conclusion for the peak memory usage averaged
over all the benchmarks, where Smaug outperforms COM-
BINE, CBMC-GC, and MP-SPDZ and has a comparable
performance to Obliv-C. Smaug uses 16×, 63×, and 65×
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Program
GMW GC

Circuit Size Depth Circuit Size

Smaug COMBINE CBMC-GC MP-SPDZ Smaug COMBINE CBMC-GC MP-SPDZ Smaug Obliv-C

Biometric 17.8M 23.9M - 24.6M 270K 753K - 1.26M 18.3M 17.9M
Convex Hull 4.35M 16.0M 11.8M 10.5M 389 2.51K 263 1.97M 4.35M 4.41M

Count10* 393K 1.04M 734K 802K 12.7K 1.32M 8.27K 16.4K 401K 1.03M
Count10*2 520K 10.4M 755K 802K 12.7K 1.32M 8.27K 16.4K 532K 647K

DB Variance 4.44M 6.53M - 5.76M 2.10K 2.62M - 16.7K 4.57M 4.44M
Histogram 3.21M 3.91M 4.11M 3.31M 2.33K 1.33M 4.18K 614K 3.23M -

Inner Product 4.19M 5.23M - 5.00M 403 1.31M - 8.43K 4.32M 4.19M
k-Means 4.98M 6.81M 5.06M 7.63M 191K 261K 983 239K 5.11M 157M

Longest10*2 1.04M 1.42M 1.13M 1.32M 286K 2.06M 28.6K 65.5K 1.06M 1.04M
Max Dist. 778K 1.15M 1.20M 1.05M 270K 2.03M 32.7K 65.5K 782K 778K

Minimal Points 274K 737K 729K 528K 131 872 70 114K 274K 274K
MNIST ReLU 262K 368K - 294K 33 12.4K - 15 262K 131K

PSI 33.5M 33.5M - 66.0M 1.05K 4.16K - 12.5M 34.6M 33.5M

TABLE 1: Circuit size and depth comparison. CBMC-GC cannot compile the missing benchmarks due to high memory usage.
Histogram compiled with Obliv-C does not terminate for the input size used.

Compiler 512 1024 4096

Compile Time (s)

Smaug 0.53 0.53 0.53
COMBINE 28.35 27.98 27.20
MP-SPDZ 13.2 27.29 104.81
CBMC-GC 628.69 644.17 741.00

Obliv-C 0.87 0.87 0.87

Compilation Memory

Smaug 81.51 81.51 81.51
COMBINE 1,408.43 1,408.43 1,323.96
MP-SPDZ 407.92 246.48 1,795.37
CBMC-GC 3,857.13 4,216.55 8,063.34

Obliv-C 43.17 43.17 43.17

Run-time

Smaug (GMW) 0.15 0.3 1.25
COMBINE 155.34 316.01 1292.59
MP-SPDZ 1.14 2.27 8.96

Smaug (GC) 0.23 0.34 2.44
Obliv-C 0.25 - -

TABLE 2: Comparison with prior works w.r.t. input size
for Histogram with 5 bars. The Obliv-C benchmark does not
terminate for input sizes 1024 and 4096.

less memory when compared to the prior works. Table 7
shows a detailed comparison of the peak memory used by
the compiler for each program. Prior works require 16×,
100×, and 37× more memory than Smaug for compiling
the histogram benchmark.
Comparison for different input sizes. Table 2 compares
Smaug with prior works, varying the size of the dataset
input to compute a histogram with 5 bars. It can be seen that
for MP-SPDZ and CBMC-GC, the computational resources
required for compiling a program increase with the input
size, while for others, it is independent of the input size.

7.2. Performance of the Result Programs
We compare the circuit size and depth of Smaug’s

output programs with those of all the prior works. Fur-
thermore, we compare the execution time of the compiled
programs. We use a GC-based interface when comparing
with Obliv-C and a GMW-based interface when comparing
with COMBINE, CBMC-GC and MP-SPDZ. For a fair
comparison, we use MOTION [BDST22] as the backend
for COMBINE [LIS+23] because it does not perform any
additional optimizations.
Circuit Statistics Comparison. Table 1, shows a detailed

Program No
Vector-
ization

Split. +
Vect.

Flatten +
Split. +

Vect.

Flatten + Split.
+ Recon. +

Vect.

Biometric 1794048 778240 778302 270522
Histogram 1945600 2180 635007 127103

Minimal Points 270464 8384 4163 131

TABLE 3: Circuit depth comparison with respect to our
transformation passes.
comparison of circuit size and depth. For the garbled-
circuits-based backend, we can see that the number of gates
is similar to that of Obliv-C and sometimes even better (3×
smaller for k-Means). In terms of circuit size for GMW,
Smaug outperforms the other compilers or has a compa-
rable circuit size. The depth of the circuit is significantly
better than both COMBINE and MP-SPDZ; namely, for
the histogram benchmark when compiled with Smaug, the
circuit has 570× (, resp. 263×) lower depth in comparison
to COMBINE (resp. MP-SPDZ). CBMC-GC optimizes the
circuit at low-level, thus the resulting circuits have lower
depth than those of Smaug; however, for most cases, the
difference is not as significant, and the resources used during
compilation are orders of magnitude higher than Smaug.
Runtime Comparison. Figure 7 compares the execution
time of all programs in the benchmark suite compiled by
Smaug, COMBINE, MP-SPDZ, and Obliv-C. We observe
that the programs with GMW-based backend compiled with
Smaug consistently outperform those compiled with COM-
BINE and, in most cases, have comparable performance to
those compiled with MP-SPDZ. For instance, for biomet-
ric matching, Smaug results in a program that is 157×
faster than COMBINE and 2× faster than MP-SPDZ. The
programs with a GC-based backend compiled with Smaug
outperform those compiled using Obliv-C, ranging from
1.5× for convex hull to 250× for k-Means.
Ablation Study. Table 3 shows how the depth of the circuit
changes with the transformation passes used. For biometric
and minimal points we see that the program is optimal
when all three transformation passes, i.e., loop splitting, loop
flattening, and loop reconstruction are used. We note that
histogram does not see this improvement, and instead, the
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Figure 7: Runtime improvement for programs compiled by COMBINE, MP-SPDZ, and Obliv-C vs Smaug. DB-Variance,
Longest10*2, and maximum distance compiled by COMBINE are killed before the process finishes. Histogram does not terminate
when compiled with Obliv-C for the input size.

Program Rust C++
Depth Size Depth Size

Histogram 657220 1924965 2180 2580325
MNIST Relu 262144 33 262144 33

TABLE 4: Rust vs C++ benchmarks. Comparison of circuit size
and depth for the programs when written in Rust and C++.

performance worsens because of the choice to prefer vector-
ization over parallelization in the loop reconstruction pass.
As shown in Figure 4, bins is much smaller than the size
of the dataset (n), thus reduction is beneficial in comparison
to n SIMD operations. Hence, we see that the loop flattening
and reconstruction passes might be counterproductive when
the inner loop has reduction operations, and the outer loop
count is smaller than the inner loop count.

7.3. Adaptability for Multiple Languages
Smaug can compile programs written in any language

that can be compiled into LLVM-IR. All the prior bench-
marks use C++ implementation of the programs; thus, we
compile a subset of the benchmarks in Rust, to demonstrate
the frontend-agnostic property. Below is an example of Rust
implementation for histogram:
fn histogram(a: &[i32], b: &[i32], ret: &mut

[i32]) {
let n = a.len();
let d = ret.len();
for j in 0..d {

ret[j] = 0;
for i in 0..n

if a[i] == j as i32
ret[j] += b[i];

}
}

Table 4 shows a comparison of the circuit size and depth
for programs using Rust and C++. We observe that the
circuit size and depth can sometimes differ for Rust pro-
grams because of the additional checks involved or other
differences in the frontend of both languages. We note that
rust programs include panics; however, we need the CFG to
have only br and ret instructions for our transformation
to the non-oblivious algorithm. Thus, if the CFG for a
function is non-oblivious, we first remove the panics from

Program GC-time (s) GMW-time (s)

kmeans 23 28
Minesweeper 0.19 0.21

Blackjack 0.007 0.003

TABLE 5: Real-world programs. For k-Means, the time shown
to run it on a dataset of length 150 with 2 features and 3 clusters.
For Minesweeper, the time shown is the average response time
after each move when played over an 8× 8 grid.

the function. In future engineering efforts, we aim to extend
the transformation algorithm to support all the terminators
in LLVM-IR.

7.4. Real-World Programs

We use Smaug to build several real-world open-sourced
programs with minimal changes to enable secure computa-
tion. We test the following three programs and show their
performance in Table 5:

• K-Means1: We build an open-source K-Means imple-
mentation with minimal changes. We use this library to
classify secret-shared data among two parties in a MySQL
database and use the standard MySQL library in C++ to
get the input data.

• Minesweeper2: We first update a public Minesweeper
implementation such that the location of mines is known
to the dealer and the player’s move remains hidden from
the dealer. We build it using Smaug to enable secure
computation and benchmark the average time taken by
the player to obtain the board after making its move.

• Blackjack3: This is a single-player blackjack game where
the computer is the dealer and the player bets on getting
a certain combination of cards. On each turn, the player
can choose between two moves. We update this game so
that randomness is shared among two parties, one being
the dealer and the other being the player. We then build it
using Smaug and benchmark the average response time
after each move.

1. https://github.com/KlimentLagrangiewicz/k-means-in-C
2. https://www.geeksforgeeks.org/cpp-implementation-minesweeper-game
3. https://github.com/ineshbose/Blackjack CPP
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8. Conclusion
In this work, we showed that LLVM can be extended

to incorporate most MPC optimizations and achieve perfor-
mance competitive to, often better than, prior tools relying
on custom languages and/or compilers. This is a new way
toward maintainable and reusable cryptography compilers
that can potentially be applicable to many other protocols,
including zero-knowledge proofs and fully homomorphic
encryptions. Future works also include extending Smaug
to support secure RAM accesses and mix-mode operations.
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Appendix A.
Transformation to Oblivious Programs
A.1. Find Condition for Basic Block

We first find an expression corresponding to the execu-
tion condition of each basic block. For the entry block, the
condition is always true. The execution condition of a basic
block is determined by the combination of the condition
expressions and branch conditions of its predecessors (not
dominated by the block), along with the conditions for all
its direct descendants in the post-dominator tree. Using the
post-dominator analysis helps simplify and minimize the
overall condition expression. For the example program, the
condition for execution of block 6 obtained without the post-
dominator analysis is the condition for block 4 or 5. Block
6 post-dominates 1, 2, 3, 4, and 5, and we know that block
1 dominates 2, 3, 4, and 5. Thus, the condition expression
for block 6 is the same as that of block 1. This way we can
eliminate the predecessor blocks and simplify the condition.

Given the condition expression corresponding to each
basic block, we insert instructions in the IR to obtain
variables for the execution condition. We keep track of two
variables, one for private and another for public conditions,
such that the expression evaluates to the logical and of
both variables. The expression can be viewed as a tree,
where and nodes have two children, and or nodes (i.e.,
sets) have more than one. For and nodes in the tree, we
add two and instructions to get the corresponding private
and public condition variables. The private (public respec-
tively) condition variable is the and of the private (public
respectively) condition variables of the left and right child.
Similarly, for condition sets, we insert ϕ instructions for pri-
vate and public condition variables. These ϕ instructions are
eventually transformed into a series of select instructions
as described in Section 4.2 and moved to the predecessor
block.

A.2. Post Order
We first identify all the strongly connected components

(SCCs) of the CFG in the post order using Tarjan’s DFS
algorithm. If an SCC has more than one basic block, we find
the loop defined by the header as the last node in the SCC.
For each loop, we consider the subgraph for the innermost
loop without the latches (back-edges). If this is an innermost
loop, we get a DAG. We use this DAG to obtain the post
order for nodes in the SCC. If this is not the innermost loop,
we consider the subgraph for the outermost loop without the
edges and use the same method until we obtain an order for
the nodes in this SCC.

A.3. Handle Store Instructions
The store instructions in any basic block with a vari-

able private condition should only affect the program state if
the variable evaluates to true at runtime. We use a sequence

of load, select, and store instructions for every such
store instruction. For a store instruction store v, ptr in
a basic block with private condition c, we use the sequence
of instructions:

%x = load <type> %ptr
%sel = select i1 %c, %x, %v
store <type> %sel, %ptr

A.4. Update CFG
Algorithm 1 describes how to update a CFG after we

update the ϕ and store instructions.

Algorithm 1 Update CFG

1: order: vector of basic blocks in F in reverse post order
2: lastBB = order[0]
3: newLoopExits: map of <loop header, new loop exit>
4: oldNewBB: map of <BB’, BB>
5: pub: map of <BB, public condition var>
6: priv: map of <BB, private condition var>
7: for BB in order[1:] do
8: if lastBB is loop latch then
9: LH = Loop header corresponding to lastBB

10: if newLoopExits[LH] then
11: exit = newLoopExits[LH]
12: else
13: exit = new empty basic block
14: update the other successor with exit
15: if oldNewBB[lastBB] then
16: lastBB: replace successors ϕ uses with old-

NewBB[lastBB]
17: lastBB = exit
18: if pub[BB] = true then
19: update terminator of lastBB to br BB
20: else
21: create empty basic block: BB’
22: update terminator to lastBB to br pub[BB] BB

BB’
23: if BB is loop header then
24: newLoopExits[BB] = BB’
25: else
26: copy the terminator of BB at the end of BB’
27: set terminator of BB to br BB’
28: store BB’, BB in oldNewMap
29: for instruction I: BB do
30: if I is used outside BB then
31: create ϕ for I in BB’ with default

value from lastBB and I from BB: I’
32: replace all uses of I outside BB and

in terminator of BB with I’

A.5. Correctness
Our transformation algorithm assumes that the basic

blocks of the input program have a trivial dominance re-
lationship, the terminator instructions are either br or ret,
and there is only one entry and exit block in the CFG.
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Here, we prove the correctness of our transformation using
a forward simulation technique where we say that at every
point the state of the original program (S) and the new
program (St) follow a relationship R, and the output of
both the programs is the same. A state S = (p,m, r) where
p is the program counter, m is the memory and r is the set
of all virtual registers. We say that the relationship R(S, St)
holds if:
• pt belongs to a block in Pt that corresponds to a reachable

state in P subject to a pair of condition flags fs (private)
and fp (public).

• m = mt.
• ∀r ∈ r we have a corresponding rt ∈ rt, such that if the

value of r is defined then r = rt.
The entry node for both programs is the same; thus, the
initial states of the programs P and P ′ are the same.

Theorem 1. For each instruction I where S
I−→ Sn and

R(S, St) holds, ∃It s.t. St
It−→ Sn

t and R(Sn, Sn
t ) holds.

Proof. We consider the following cases of I as follows:
Basic Instructions: We first discuss non-terminator instruc-
tions.
• store instruction: In P , consider a store instruction

with operands v, ptr; this corresponds to a sequence of
load, select, and store instructions denoted by I0t ,
I1t , and It. v’ and ptr’ are the registers corresponding
to v and ptr in r′.
The select instruction chooses v’ if fs for the block
in P is true; otherwise, it selects the old value at ptr’.
Thus, It updates mt conditionally based on fs. Further-
more, It is reached in P ′ conditioned on fp. Therefore,
R(S, St) is maintained.

• ϕ instruction: A ϕ instruction in P is transformed into a
series of select instructions in P ′. Let b represent the
set of incoming blocks, and the value chosen comes from
the last executed block, bl. In P ′, we choose the value
from a block in b that has both fs and fp true, and it
comes last in the reverse post order of the CFG among
all other blocks where both flags are true.
Since bl is last executed, it must follow all other immedi-
ate predecessors executed in P in the reverse post order.
P ′ selects the correct value maintaining R(S, St).

• All other instruction types: For all other instructions the
main difference between I in P and It in Pt is the input
registers. Since the operand registers maintain r = rt, the
relationship R(S, St) holds for these instructions.

Control-Flow Instructions: For non-loop latch br instruc-
tions, the values defined in the current block b are propa-
gated through ϕ instructions in a new block which is always
executed in P ′. We branch to the successor conditioned
on the corresponding fp. The relationship holds because
a block in P ′ is only reached if it is possible to reach it in
P , and new registers in P ′ are defined to correspond to the
values defined in b but used outside.

We do not update the terminator if a loop latch does
not equal the loop exit. Thus, R(S, St) holds; otherwise,

we replace the successor from the old exit block with a
new block we created in P ′ for value propagation for the
values that are defined in the loop but are used outside. This
new exit block in P ′ branches to the old exit block. Thus,
R(S, St) holds for loop-latches and non loop-latches.

From the above proof, we can see the relationship R
holds for each instruction in P . Only new registers are
introduced for all the additional instructions in P ′; thus,
the relationship is maintained.

A.6. Handle Private Loop Bounds
First, we run the loop-coalescing pass described in Ap-

pendix C. Next, for any loop with a private exit condition,
there should be a pragma unroll loop count, i.e., metadata
information for the maximum number of iterations for the
loop. We create a new header basic block and a latch block.
We add a new induction variable in the new header, which is
incremented in each iteration (in the new latch), and we take
the back edge if the incremented induction does not equal
the unroll count. Furthermore, we add a ϕ instruction to the
new header corresponding to the original loop exit condition,
and we go to the original header if the exit condition is false;
otherwise, we go to the new latch. We replace the latch and
exit instructions from the original loop with unconditional
branch instructions to the new latch. Finally, we run the
transformation to oblivious CFG, given that no loops have
private exit conditions.

Appendix B.
Vectorization

Here we describe the loop flattening and reconstruction
passes below:

Flatten nested loops. To flatten nested loops, we work from
the outermost loop. If the skeleton of the loop L is b1
→ l1 → b2 → l2 → b3 → b1, where l1 and l2 are sub-
loops, then we create five new loops. The loops containing
b1, b2, and b3 iterate for the same number as L. For the
loops with l1 and l2, instead of creating new loops, we
alter them. For instance, if l1 iterates m times and L n
times, then the transformed loop l1 iterates n∗m times; thus,
the depth of the resulting loops is strictly less than that
of L. Note that we should not create new loops for the
parts that are loops themselves as this allows us to reuse
the existing loop analysis. In this optimization module, we
restrict the outermost loop to have a straight control flow if
the identified sub-loops are treated as a single node.

The first step is identifying the parts to make using the
loop access analysis. If the part itself is not a loop, create
a new loop; otherwise, update the inner loop. To update
the inner loop, we update the latch condition instruction to
compare with the new loop count (n∗m) and obtain the
effective induction value for the previous outer loop (n)
and inner loop (m) using division and unsigned remainder,
respectively. These replace the references (except in the latch
condition) with the respective induction variables with the
computed values.
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Program Clang -O0 Clang -O3 Smaug COMBINE CBMC-GC Obliv-C MP-SPDZ
Biometric 0.315 0.34 0.586 31.21 - 0.385 127.426

Convex Hull 0.313 0.327 0.574 28.265 894.55 0.392 19.741
Count10*2 0.314 0.327 0.56 27.502 621.01 0.369 19.393
Count10* 0.314 0.329 0.561 27.485 619.99 0.377 407.047

DB Variance 0.314 0.327 0.547 - - 0.371 345.321
Histogram 0.314 0.326 0.573 27.586 742.61 0.379 107.583

Inner Product 0.313 0.327 0.547 27.203 - 0.373 324.694
k-Means 0.105 0.131 0.405 28.28 744.62 0.413 397.522

Longest10*2 0.314 0.327 0.574 29.662 631.74 0.375 548.735
Max Dist. 0.314 0.33 0.58 28.883 632.89 0.368 504.992

Minimal Points 0.316 0.328 0.573 30.218 616.18 0.384 4.147
MNIST ReLU 0.313 0.327 0.546 28.493 - 0.363 156.1175

PSI 0.313 0.326 0.571 28.858 - 0.376 47.233

TABLE 6: Comparison of compilation time (sec).
Program Clang -O0 Clang -O3 Smaug COMBINE CBMC-GC Obliv-C MP-SPDZ

Biometric 121.586 133.57 90.508 1,329.29 - 43.226 3,354.074
Convex Hull 121.742 125.52 80.324 1,352.23 16,090.59 43.843 411.766
Count10*2 121.883 133.57 80.285 1,322.89 1,482.01 42.441 829.531
Count10* 121.793 133.559 82.055 1,323.41 1,378.95 43.601 9,429.929

DB Variance 121.57 125.75 80.523 - - 42.406 7,926.984
Histogram 121.688 133.195 80.84 1,323.96 8,143.34 43.011 3,023.008

Inner Product 121.688 125.934 80.387 1,313.29 - 42.574 7,880.918
k-Means 102.598 118.836 99.395 1,377.71 10,161.11 45.324 9,471.820

Longest10*2 121.793 126.031 96.961 1,325.66 1,941.31 43.062 13,470.066
Max Dist. 122.082 125.867 88.719 1,317.47 2,362.71 42.664 11,748.093

Minimal Points 121.645 125.57 81.055 1,337.49 1,137.85 43.664 107.094
MNIST ReLU 121.133 133.605 81.164 1,320.35 - 42.339 3,598.015

PSI 121.824 125.664 81.02 1,324.61 - 42.832 1,076.746

TABLE 7: Comparison of peak memory(MiB) used during compilation.

For each part, identify the values used in the part but
defined outside the part and within L, except the induction
variable. If any of the values used are a ϕ instruction with
an incoming value from basic blocks in the following parts,
then keeping the order of the parts the same, we combine the
parts, i.e., do not split the loop until that value is contained
with the original part. Note that if the part is an inner loop,
then the incoming value in the ϕ instruction in the original
loop header can itself be a ϕ instruction in the loop exit
block with only one incoming value because of LCSSA
representation. Similarly, for any load instructions in a part,
check if any load instruction in the part has a read-after-
write dependency with write (store instruction) in the parts
that follow. In case of such a dependence, combine the parts
until the dependence is within a single part.

Once we have identified the parts to form, we make
separate loops, as discussed earlier. Next, identify the values
defined in each part but are used outside this part and within
L. For each such value, allocate memory in the correspond-
ing loop preheader (block just before the header) and store
the value at the corresponding index in each iteration. For
all uses of this value in the parts that follow load from the
same index. If this value is used in the ϕ instruction in
the loop header, load from induction minus one if possible;
otherwise, use the default value (coming for loop preheader).

When updating an inner loop, we change the loop count;
thus, we need to consider the ϕ instructions being moved
here from the outer loop and the existing ϕ instructions in
the inner loop. For the existing ϕ instructions, we add a se-
lect instruction where if the inner induction (urem value) is
zero, we choose the incoming value from the preheader and

otherwise use the result of ϕ. Similarly, for ϕ instructions
from the outer loop, we add a select instruction that chooses
the new value, i.e., the ϕ value if the inner induction is zero
and the value from the previous iteration otherwise. Finally,
we add metadata llvm.loop.flattened so that the
loop-reconstruction pass can identify the change.

Loop reconstruction. Next, for any loops that were flat-
tened and are not vectorizable, but not just because of non-
contiguous memory accesses, we can reconstruct the original
nested structure. Note that we only do the reconstruction if
there are no memory dependencies. This pass helps in case
the new inner loop is vectorizable. Firstly, suppose there are
any ϕ instructions other than the induction variable. In that
case, we find the pattern discussed in the loop flattening pass
to identify the ϕ instructions initially in the inner and outer
loops. If there are no ϕ instructions from the outer loop, we
switch the loop order to eliminate the ϕ instructions in the
inner loop and make it vectorizable.

We create a new header and latch block, which mark
the new outer loop. If we do not switch the order of the
loops, we move the ϕ instructions known from the outer
loop and delete the corresponding ϕ instructions created to
keep track of the previous value. Next, we replace the outer
count (i.e., the udiv for induction with the initial inner
loop count in the flattened loop) with the induction from the
new header and the inner count (i.e., urem value) with the
inner induction. Finally, we update the branch instructions
to correctly account for the outer and inner count.

If we want to switch the order of loops, for the inner ϕ
instructions, we need to find if they are stored at a pointer
plus div value (i.e., the original outer induction); if not,
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we allocate space equal to the outer loop count. We store
the incoming value from the preheader in the corresponding
pointer from zero to the outer loop count. For each ϕ
instruction, add a store instruction in the new inner loop
such that the incoming value from the loop latch is stored
at the corresponding pointer plus induction and replace the
ϕ instruction with a load from the corresponding pointer
plus induction. This time, replace the urem value with the
outer induction and the div value with the inner induction.

Appendix C.
Loop Coalescing

We begin by identifying loops with distinct private
conditions for their headers and latches, specifically target-
ing cases with private latches and corresponding maximum
counts using unroll_count. This transformation focuses
on nested loops with a depth of two, though it can be
recursively applied to deeper nested loops. Let us denote
the outer loop’s components as preheader pho, header ho,
latch lo, and block that exits the loop (exit block) eo and the
inner loop’s components as preheader phi, header hi, latch
li and exit block ei. Notably, a loop’s header, latch, and exit
blocks need not be distinct. We describe our transformation
algorithm as follows:
1) Create an empty loop: We initialize an empty loop

with header hn and latch ln. We set up an induction
variable and loop condition such that the loop executes
2n + m times, where n is the maximum count for the
outer loop and m for the inner loop. Additionally, we
create two auxiliary basic blocks, b1 and b2.

2) Maintain loop state: In hn, we use a ϕ instruction to
maintain a state variable with s=ϕ[1,pho][s’,ln],
where s’ is defined in ln.

3) Below, we describe how the CFG is updated:
• hn: If s equals 1, hn branches to ho; otherwise, it

goes to b1.
• phi: If phi unconditionally branches to hi then it sets
sphi = 2; otherwise, let us denote the condition to
branch to hi as c1, we set sphi = select c1 2 3.
Finally, we update the terminator to an unconditional
branch instruction to ln.

• b1: If s equals 2, b1 branches to hi; otherwise, it
proceeds to b2.

• b2: If s = 3, b2 branches to e; otherwise, to ln.
• li and ei: If li ̸= ei (then terminator must be uncondi-

tional branch to hi ), li sets sli = 2 and branches to ln
unconditionally. Let us denote the exit condition in ei
with c2, we set sei = select c2 3 2. If ei ̸= li,
replace the successor so that it goes to ln instead of
the original exit; otherwise, we set the terminator as
an unconditional branch to ln.

• lo and eo: Similarly, if lo ̸= eo, lo sets slo = 1
and branches to ln. If the exit condition for eo is
c3, set seo = select c3 -1 1. If eo ̸= lo, replace
the successor such that it goes to ln instead of the
original exit; otherwise, we set the terminator as an
unconditional branch to ln.

4) Set s’ = ϕ[sphi
,phi][sli,li][sei,ei][s,b2]

[slo,lo][seo,eo] in ln. Note that li (lo, resp.) is only
used if li ̸= ei (lo ̸= eo, resp.).

5) ϕ in ho: We move all the ϕ instructions in ho to hn

and replace the incoming block from lo to ln.
6) ϕ in hi: For each v = ϕ[v1,phi][v2,li]

in hi, we create vl in ln and vi in hn,
such that vi = ϕ[vl,ln][v1,pho] and vl =
ϕ[v1,b2][v1,phi][vl,lo][v2,li][v1,eo]
[v1,ei] if ei ̸= li and eo ̸= lo. We replace all
uses of v with vi and erase v.

7) Restore dominance relationship between instruction
and users: Let us say b is the set of blocks in the
original loop that goes to ln; we classify the basic blocks
into parts such that each part corresponds to one block
in b such that the blocks in a part are dominated by
this predecessor block but do not dominate the next key
block. Given these parts, we find the instructions used
outside the part and add ϕ instructions to ln to propagate
the values.

Appendix D.
End-to-End Integration

For cases where the MPC library uses its own
classes corresponding to the cleartext data-types, e.g.,
class::Integer for int, we only need some additional
functions in the interface in order to integrate the program
with the MPC backend. These additional functions include
the following:

• Initialize: Assuming a function-level integration, we first
need initialization functions that take the input arguments
and return the corresponding MPC object pointer. For
arguments that are pointers to elementary data types we
need to obtain additional metadata regarding the length of
the arrays; this information cannot always be determined
with certainty through program analysis.

• Memory management: For any malloc calls or
alloca instructions, we add creator functions that allo-
cate memory for the corresponding object and return the
pointer. Similarly, for free calls we add deallocator func-
tions that take object pointer and free the corresponding
memory. These creator and destroyer functions are needed
separately because the class definition is not known to
the program before the linking stage thus, the size is
unknown.

• Memory access: Since the size of objects is unknown,
we need to create an interface for the gep (get element
pointer) instruction that takes the pointer and an offset
index, this function returns the corresponding pointer to
the object at the input pointer plus offset. For load (resp.
store) instructions, we can create an interface that takes
the pointer (and object to store) and returns the object at
the pointer. However, this can potentially lead to errors
because compilers sometimes optimize the functions to
follow sret format, implying that instead of returning
large objects or classes, the function interface takes the
first argument as a pointer to the return value and the
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memory needs to allocated by the caller. Thus, to avoid
such complications, we only deal with object pointers, and
thus, our store interface looks like store(Integer
*ptr, Integer *val) and we do not need a load
interface.

• Other differences:
– Vector Instructions: For vector instructions, all the

interfaces remain mostly the same because they already
handle operations at the pointer level; the only differ-
ence is that we must use the right object pointer instead
of the pointers for the original cleartext data.

– Scalar Instructions: For scalar instructions, we need
to use pointers to objects (heap memory) instead of
objects in the stack. For instance, for mul instruction,
the interface is as follows:

Integer *mul(Integer *a, Integer *b)

While replacing the instructions with function calls
this way, we cannot directly update the uses because
the data types do not match. Thus, we use a map to
store the original instruction versus the new instruction
(object pointer). For each instruction, when creating
the new function call for each operand, we use the
corresponding object pointer from the aforementioned
map.

D.1. Module Level Integration
At the module level, we need to update the program

such that the object pointer corresponding to the return
values can be used later, and the object pointers for the
input arguments can be passed if they already exist. A naive
solution to passing the corresponding object pointers is to
change the function definitions; however, if the program
itself is to be used as a library, this could lead to undesirable
library interface changes. We observe that at any point, we
only need to store the argument object pointers for at most
one function that is being called, and once initialized, this
extra memory that stores the corresponding pointers can be
cleared. Note that this acts like an addition to the function
stack, which stores the implicit argument object pointers
and, after initialization, stores these pointers in its own stack,
thus allowing us to clear this additional space.

For the output pointers, we note that all the new in-
structions deal with heap memory; thus, instead of freeing
the corresponding object pointer, we store this pointer in a
global pointer maintained by the MPC interface. On each
call to the function, we load from this global pointer and
use this in our map for plaintext to the MPC pointer.

Appendix E.
Evaluation
E.1. Benchmark Suite

For all the benchmarks, we assume that the data is
secret-shared between the parties. Below, we describe each
benchmark in the benchmark suite:
1) Biometric Matching: We use a database with N =

4096 entries and each entry has D = 4 dimensions.

2) Convex Hull: We use a polygon of N = 256 vertices.
3) Count10*: Parties use a string a of N = 4096 and

obtain the number of substrings that match the regex
10∗.

4) Count10*2: Parties use a string a of N = 4096 and
obtain the number of substrings that match the regex
10 ∗ 2.

5) DB Variance: Parties compute the variance using a
database with N = 4096.

6) Histogram: Parties use a dataset with N = 4096 entries
to obtain a histogram with D = 5 bars.

7) Inner Product: Parties compute the inner product of
two vectors of length N = 4096.

8) k-Means Iteration: Parties run one iteration of the k-
Means clustering algorithm where the size of the input
is N = 256 and the number of clusters is k = 8.

9) Longest10*2: Parties use a string a of N = 4096 and
obtain the length of the largest substring that matches
the regex 10 ∗ 2.

10) Maximum Distance Between Symbols: Parties com-
pute the maximum distance between the symbol s
(secret-shared) in a string of length N = 4096.

11) MNIST ReLU: Parties perform the MNIST ReLU
computation over an array of N = 4096 elements.

12) PSI: Parties compute the PSI of two sets of length N =
1024.

E.2. Comparison With Prior Works
Table 6 and Table 7 show a detailed comparison of

the time and memory usage by the compilers for each
benchmark.
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