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Abstract. This paper investigates the Mersenne number-based AJPS cryp-
tosystem, with a particular focus on its associated hard problem. Specifically,
we aim to enhance the existing lattice-based attack on the Mersenne low
Hamming ratio search problem. Unlike the previous approach of directly
employing lattice reduction algorithm, we apply the lattice-based method to
solving polynomial equations derived from the above problem. We extend
the search range for vulnerabilities in weak keys and increase the success
probability of key recovery attack. To validate the efficacy and accuracy of our
proposed improvements, we conduct numerical computer experiments. These
experiments serve as a concrete validation of the practicality and effectiveness
of our improved attack.
Keywords: Attack · Mersenne number · Weak key · Low Hamming weight
· Lattice

1 Introduction
Background. At Crypto 2018, Aggarwal et al. [AJPS18] introduced the AJPS
cryptosystem, an innovative variant of the NTRU public-key cryptosystem [HPS98].
In their novel approach, integers characterized by sparse binary representation
are employed as secret keys, diverging from the conventional use of polynomials
with small coefficients. Notably, the AJPS cryptosystem is conjectured to possess
inherent resilience against potential quantum threats.

The fundamental architecture of the AJPS cryptosystem unfolds as follows.
Consider a Mersenne number designated as p = 2n − 1, where n is a prime. The
algebraic structure denoted as Z/pZ can be elegantly mapped onto a set of n-bit
strings, with 1n aligning with 0n. Leveraging the arithmetic operations conducted
modulo p, a profound connection emerges between integers modulo p and binary
strings of length n. The key generation process involves the random selection of
elements f and g from Z/pZ, with each element having a predetermined Hamming
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weight w ≈
√

n. It is necessary that g possess a multiplicative inverse within Z/pZ.
The ensuing public key h is defined as f/g, rendering an n-bit string characterized
by an arbitrary Hamming weight. Meanwhile, the private key corresponds to f
and g.

The AJPS cryptosystem is divided into a basic bit-by-bit encryption scheme
and a key encapsulation mechanism scheme. Expanding upon the former, consider
a Mersenne prime p = 2n − 1, and introduce two random integers f and g, both
residing within Z/pZ. Moreover, these integers f and g each possess a Hamming
weight of w with a constraint guided by the relationship n > 4w2. The public key
pk is expressed as h = f/g (mod p), while the private key sk is established as g.
The encryption procedure involves the utilization of two random integers a and b
with a Hamming weight of w. Encrypting one bit m is accomplished through

c = (−1)m · (a · h + b).

Upon decryption, the computation of d = Ham(c · g) is conducted, leading to
the output of ‘0’ if d ≤ 2w2, and ‘1’ otherwise. This decryption procedure leverages
the property that c · g exhibits distinct Hamming weights based on the value of m.
The core relation is

c · g = (−1)m · (a · h · g + b · g) = (−1)m · (a · f + b · g),

thus resulting in a Hamming weight of at most 2w2 if m = 0.
Transitioning to the key encapsulation mechanism scheme, the instantiation

involving error correcting codes is required. In this scheme, n and w should
satisfy the constraint n > 10w2. By introducing a random integer r modulo p, the
establishment of public and private keys is denoted by pk := (r, t) = (r, f · r + g)
and sk := f . For encrypting a message m ∈ {0, 1}w, the first step involves the
generation of random integers a, b1, b2 modulo p, all featuring a Hamming weight
of w. Subsequently, employing the encoding algorithm E : {0, 1}w → {0, 1}n

associated with an error correcting code (E , D), the ciphertext (c1, c2) is produced
as

(c1, c2) = (a · r + b1, (a · t + b2) ⊕ E(m)).

The decryption process is executed through the calculation of

D((f · c1) ⊕ c2) = D((f · c1) ⊕ (a · t + b2) ⊕ E(m)),

where D represents the corresponding decoding algorithm. This decryption lever-
ages the property that f · c1 and a · t + b2 exhibit a low Hamming distance, thereby
facilitating the recovery of m with a high probability. The core relation is

f · c1 = f · a · r + f · b1 = a · (t − g) + f · b1 = (a · t + b2) − a · g − b2 + b1 · f,

indicating the low Hamming weight difference between f · c1 and a · t + b2.
While AJPS related ideas have been employed in cryptographic framework or

algorithms such as [NZH19, FX20, BCSV20], a more comprehensive investigation
into its security remains imperative. After the initial proposal by Aggarwal et
al. [AJPS17], the focus shifted to the vulnerability of the AJPS cryptosystem,



Mengce Zheng and Wei Yan 3

as addressed by Beunardeau et al. [BCGN17]. They introduced a lattice-based
attack that could work in time complexity of O(22w). Expanding upon this
lattice-based approach, a subsequent study [dBDJdW18] not only delved into the
details of lattice-based attack but also proposed an alternative meet-in-the-middle
strategy using locality-sensitive hash functions. Their work demonstrated that the
lattice-based attack surpasses the efficiency of the meet-in-the-middle one.

The security analysis of the AJPS cryptosystem rests on the foundation of two
challenging problems. The first, referred to as the Mersenne low Hamming ratio
search problem (MLHRSP), plays a pivotal role in the recovery of an unknown
private key from a known public key.

Problem 1 (MLHRSP). Consider an n-bit Mersenne prime p = 2n − 1 and a
positive integer w. Let f and g be two n-bit random strings characterized by a
Hamming weight of w. The objective is to extract the values of f and g from the
information provided by the equation h = f/g (mod p) with a given h.

The second challenge, termed the Mersenne low Hamming combination search
problem (MLHCSP), is equally significant in the context of recovering an unknown
private key from a given public key.

Problem 2 (MLHCSP). Consider an n-bit Mersenne prime p = 2n − 1, a positive
integer w, and a uniformly random n-bit string r. Let f and g be two n-bit random
strings with a Hamming weight of w. The objective is to extract the values of f
and g given (r, t) = (r, f · r + g (mod p)).

Alongside the lattice-based attack and meet-in-the-middle attack mentioned
above, other possible attack types have been presented in [BT19, TD20, BCSV23].
We study lattice-based cryptanalysis in this paper and briefly describe two repre-
sentative attacks as follows.

Beunardeau et al. [BCGN17] handle MLHRSP based on a key insight: when f
and g satisfy f, g <

√
p, the equation h = f/g (mod p) can be exploited to deduce

f and g. This recovery is facilitated by employing the lattice reduction algorithm
in a 2-dimensional lattice. The attack achieves private key recovery from a public
key with a probability of 2−2w. To delve deeper, consider the construction of a
2-dimensional lattice Λ generated by(

1 h
0 p

)
.

The lattice determinant is det(Λ) = p, aligning with the Gaussian heuristic, thus
it has a vector of norm approximately √

p. Therefore, the vector (g, f) resides as a
short vector within this lattice. When f <

√
p and g <

√
p hold simultaneously,

recovery of f and g ensues with an approximate (1/2)2w probability, driven by
their Hamming weight of w.

Furthermore, a refined attack can apply to the bit-by-bit encryption using the
equation c = (−1)m · (a ·h+ b). When both a and b satisfy a <

√
p and b <

√
p, the

use of lattice reduction algorithm in a 3-dimensional lattice leads to recovery of a,
b, and the plaintext bit m. Expanding this attack to MLHCSP with the equation
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t = f · r + g (mod p) is similar and the attack’s success probability remains the
same.

It is essential to recognize that Beunardeau et al.’s attack leads to recovery of
weak keys, extracting a private key from known public key with a 2−2w probability.
This approach is further developed through random partition technique using
higher-dimensional lattices. Thus, the private key can be recovered from any public
key with a time complexity of O(22w).

Coron-Gini’s Attack [CG20] is a modified version of Beunardeau et al.’s attack
targeting the key encapsulation mechanism. In contrast to extracting the private
key, this attack breaks the indistinguishability of ciphertexts. To be specific, given
a public key (r, t) and a ciphertext (c1, c2), this attack effectively differentiates
between m = 0 and m ̸= 0. When m = 0, one has E(m) = 0, which yields
c1 = a · r + b1 and c2 = a · t + b2. Provided a, b1, and b2 are all less than
p2/3, recovery of a, b1, and b2 through lattice reduction algorithm is feasible.
Consequently, the attack’s success probability is (2/3)3w ≈ 2−1.75w, outperforming
the original success probability. By applying a similar random partition technique,
the attack complexity to compromise the indistinguishability of any ciphertext can
be reduced to O(21.75w).

Our Contribution. We concentrate on an enhanced examination of lattice-based
cryptanalysis related to MLHRSP, a challenging hard problem in the realm of AJPS.
The emphasis lies in refining existing attack strategy and addressing unbalanced
scenarios that arise when f <

√
p < g or g <

√
p < f , instead of solely focusing

on the balanced case where both f and g are below √
p. Through this, we aim

to augment the effectiveness of current attacks. An additional insight relates
to the utilization of lattice reduction algorithm, i.e., the LLL algorithm under
Gaussian heuristic in previous lattice-based attacks. To be specific, we recognize
the unexplored advantage of the LLL algorithm in solving modular polynomial
equations associated with MLHRSP.

We start by revisiting the key equation of MLHRSP, that is h = f/g (mod p).
This equation can be transformed into a bivariate modular polynomial equation
as x1 − hx2 ≡ 0 (mod p), where the desired root (x⋆

1, x⋆
2) corresponds to (f, g).

This allows us to apply lattice-based solving strategy without confining our attack
to the previous f and g constraints. Consequently, the unbalanced scenarios like
f <

√
p < g or g <

√
p < f become tractable, expanding the range of exploitable

weak keys.
Moreover, our proposed attack increases the success probability from 2−2w to√

πw3/22−2w−1, improving Beunardeau et al.’s attack by a factor of
√

πw3/2/2. To
validate the correctness and efficiency of our attack, we provide a numerical attack
instance that succeeds under our proposed strategy while failing under the previous
one.

Organization. This paper is structured as follows. In Section 2, we provide
essential preliminaries, including the lattice-based method for solving modular
polynomial equations. Section 3 presents our improved attack along with detailed
success probability analysis. The experimental results for validating our proposed
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attack are presented in Section 4. Finally, we draw our conclusions in Section 5.

2 Preliminaries
We present the fundamental concepts required for our attack. These include the
lattice reduction algorithm, i.e., the LLL algorithm proposed by Lenstra, Lenstra,
and Lovász [LLL82], and Coppersmith’s lattice-based method [Cop96, Cop97],
which was later refined as Howgrave-Graham’s lemma [How97]. Additionally, a
solving condition essential for finding the root of polynomial equations is introduced.
For a more comprehensive understanding, interested readers can refer to [May03,
May10].

Let us begin by defining lattice Λ as the set of all integer linear combinations
of linearly independent vectors b⃗1, b⃗2, . . . , b⃗ω ∈ Rn. In other words, a lattice can be
expressed as

Λ =
{

ω∑
i=1

zi⃗bi : zi ∈ Z
}

.

The lattice determinant denoted as det(Λ) is calculated as
√

det(BBT), where
each b⃗i is considered as a row vector of the basis matrix B. When dealing with a
full-rank lattice with ω = n, the lattice determinant becomes det(Λ) = |det(B)|.

The LLL algorithm [LLL82] is a core mathematical tool for efficiently finding
approximately short lattice vectors. As proven by [May03], the LLL algorithm
yields a reduced basis (v⃗1, v⃗2, . . . , v⃗ω) with the following property, where ∥v⃗i∥
denotes the Euclidean norm of vector v⃗i.

Lemma 1. The LLL algorithm outputs a reduced basis (v⃗1, v⃗2, . . . , v⃗ω) of a given
ω-dimensional lattice Λ satisfying

∥v⃗i∥ ≤ 2
ω(ω−1)

4(ω+1−i) det(Λ)
1

ω+1−i , for i = 1, 2, . . . , ω.

Its time complexity is polynomial in ω and in logarithmic maximal input vector
component.

An important lemma introduced by Howgrave-Graham [How97] provides a
principle for determining whether the root of a modular polynomial equation
also corresponds to a root over the integers. This lemma concerns an integer
polynomial g(x1, . . . , xn) :=

∑
ci1,...,inxi1

1 · · · xin
n , and its norm ∥g(x1, . . . , xn)∥ :=√∑

|ci1,...,in |2.

Lemma 2. Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an integer polynomial, consisting
of at most ω monomials. Let R, X1, . . . , Xn be given positive integers. If the two
following conditions are satisfied:

(1) g(x⋆
1, . . . , x⋆

n) ≡ 0 (mod R), for |x⋆
1| ≤ X1, . . . , |x⋆

n| ≤ Xn,

(2) ∥g(X1x1, . . . , Xnxn)∥ < R/
√

ω.

Then g(x⋆
1, . . . , x⋆

n) = 0 holds over the integers.



6 Improved Lattice-Based Attack on MLHRSP

Combining the LLL algorithm’s outputs with Howgrave-Graham’s lemma, we
can efficiently solve modular/integer polynomial equations. Suppose that we have
calculated the first ℓ many reduced vectors (v⃗1, v⃗2, . . . , v⃗ℓ), due to

∥v⃗i∥ ≤ 2
ω(ω−1)

4(ω+1−i) det(Λ)
1

ω+1−i ≤ 2
ω(ω−1)

4(ω+1−ℓ) det(Λ)
1

ω+1−ℓ , for i = 1, 2, . . . , ℓ.

The key to success lies in satisfying the condition

2
ω(ω−1)

4(ω+1−ℓ) det(Λ)
1

ω+1−ℓ <
R√
ω

.

It reduces to
det(Λ) < Rω+1−ℓ2− ω(ω−1)

4 ω− ω+1−ℓ
2 .

We always have ℓ < ω ≪ R and hence it further leads to det(Λ) < Rω−ϵ with a
tiny error term ϵ. We finally derive the following asymptotic solving condition as

det(Λ) < Rω, (1)

which allows us to effectively solve given modular/integer polynomial equations.
The lattice-based solving strategy consists of the following stages. Initially, we

generate a set of shift polynomials using the provided polynomial f(x1, . . . , xn)
and estimated upper bounds X1, . . . , Xn. These shift polynomials are specifically
designed to share a common root modulo R. Subsequently, we generate a lattice by
converting the coefficient vectors of each shift polynomial gi(X1x1, . . . , Xnxn) into
row vectors of a lattice basis matrix. Utilizing the LLL algorithm, we then obtain
the first few reduced vectors. These vectors are further transformed into integer
polynomials hi(x1, . . . , xn). Once we ensure that the resulting integer polynomials
hi(x1, . . . , xn) are algebraically independent, the equation system can be effectively
solved using trivial methods, thus extracting the desired root (x⋆

1, . . . , x⋆
n).

The generation of lattice stands as a pivotal stage and several studies like
[BM05, JM06, HM08, TK13, LZPL15] have focused on constructing an elegant
lattice basis matrix with optimized solving conditions. Additionally, the extraction
of the common root can be accomplished using resultant computation or Gröbner
basis computation [BWK93]. The running time primarily depends on computing
the reduced lattice basis and recovering the desired root, both of which can be
efficiently achieved in polynomial time with respect to the inputs.

We note that the lattice-based solving strategy is a heuristic approach, as there
is no assurance that the derived integer polynomials will always be algebraically
independent. However, in the realm of lattice-based attacks, it is commonly
assumed that the polynomials obtained through the LLL algorithm possess algebraic
independence. While some limited research may contradict this assumption, it is
widely accepted and, for the sake of efficiency, we adopt the following assumption
throughout this paper. We assume that the obtained integer polynomials are
algebraically independent, facilitating the efficient recovery of their common root.

3 Improved Lattice-Based Attack
We present the formulation of MLHRSP in modular polynomial equation form.
Given h = f/g (mod p) with a known h, we derive a bivariate polynomial
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f(x1, x2) := x1 − hx2, yielding the modular equation

f(x1, x2) ≡ 0 (mod p), (2)

with the root (x⋆
1, x⋆

2) = (f, g). To solve this bivariate homogeneous linear equa-
tion, we employ two distinct lattice-based solving strategies described in [HM08,
Theorem 3] and [LZPL15, Theorem 7], respectively.

Basic Strategy. We present a polynomial-time attack employing the lattice-based
solving strategy used in [HM08, Theorem 3]. We denote the upper bounds of
the desired root (x1, x2) as X1 = pξ1 and X2 = pξ2 respectively. Defining shift
polynomials for a predetermined positive integer s, and non-negative integers i1
and i2,

g[i1,i2](x1, x2) := xi2
2 f i1(x1, x2)ps−i1 , 0 ≤ i1 + i2 ≤ s.

Therefore, parameter R indicated in the lattice-based solving strategy is equal to
ps.

Our attack involves transforming the coefficient vectors of g[i1,i2](X1x1, X2x2)
into row vectors of a lattice basis matrix B. Before that, we establish the monomial
order and polynomial order. The former order ≺ corresponds to xi1

1 xi2
2 ≺ x

i′
1

1 x
i′
2

2 if

i1 + i2 < i′
1 + i′

2 or i1 + i2 = i′
1 + i′

2, i1 < i′
1.

The latter order ≺ corresponds to g[i1,i2] ≺ g[i′
1,i′

2] if

i1 + i2 < i′
1 + i′

2 or i1 + i2 = i′
1 + i′

2, i1 < i′
1.

Moreover, the leading monomial of g[i1,i2](x1, x2) is xi1
1 xi2

2 ps−i1 . Representing
derived coefficient vectors from g[i1,i2](X1x1, X2x2) as b⃗i for i = 1, . . . , ω, we
generate a lattice

Λ =
{

ω∑
i=1

zi⃗bi : zi ∈ Z
}

.

The lattice dimension ω can be calculated as

ω =
s∑

i1=0

s−i1∑
i2=0

1 = (s + 1)(s + 2)
2 .

We provide an illustrative example of the lattice basis matrix B when setting
s = 2. The shift polynomials are listed as follows.

g[0,0](x1, x2) = x0
2f0(x1, x2)p2 = p2,

g[0,1](x1, x2) = x1
2f0(x1, x2)p2 = p2x2,

g[1,0](x1, x2) = x0
2f1(x1, x2)p1 = px1 − hpx2,

g[0,2](x1, x2) = x2
2f0(x1, x2)p2 = p2x2

2,

g[1,1](x1, x2) = x1
2f1(x1, x2)p1 = px1x2 − hpx2

2,

g[2,0](x1, x2) = x0
2f2(x1, x2)p0 = x2

1 − 2hx1x2 + h2x2
2.
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Thus, substituting xi with Xi, we construct the following ω ×ω lattice basis matrix
B that is 

1 x2 x1 x2
2 x1x2 x2

1

g[0,0] p2 0 0 0 0 0

g[0,1] 0 p2X2 0 0 0 0

g[1,0] 0 −hpX2 pX1 0 0 0

g[0,2] 0 0 0 p2X2
2 0 0

g[1,1] 0 0 0 −hpX2
2 pX1X2 0

g[2,0] 0 0 0 h2X2
2 −2hX1X2 X2

1



.

The corresponding matrix diagonal elements are Xi1
1 Xi2

2 ps−i1 for 0 ≤ i1 + i2 ≤ s.
Following the lattice-based solving strategy, we calculate the lattice determinant

det(Λ) = pspXs1
1 Xs2

2 , where the respective exponents sp, s1 and s2 are computed
as

sp =
s∑

i1=0

s−i1∑
i2=0

(s − i1) = s(s + 1)(s + 2)
3 ,

s1 =
s∑

i1=0

s−i1∑
i2=0

i1 = s(s + 1)(s + 2)
6 ,

s2 =
s∑

i1=0

s−i1∑
i2=0

i2 = s(s + 1)(s + 2)
6 .

This relates to the derived solving condition (1), i.e., det(Λ) < Rω with R = ps,
which yields

p
s(s+1)(s+2)

3 (X1X2)
s(s+1)(s+2)

6 < ps· (s+1)(s+2)
2 .

With x1 and x2 bounded by X1 = pξ1 and X2 = pξ2 respectively, we simplify the
exponents over p to obtain

1
3 + 1

6 · (ξ1 + ξ2) <
1
2 ,

which further reduces to
ξ1 + ξ2 < 1. (3)

Improved Strategy. We show another polynomial-time attack employing the
lattice-based solving strategy mentioned in [LZPL15, Theorem 7]. The upper
bounds of the desired root (x1, x2) are denoted by X1 = pξ1 and X2 = pξ2

respectively. Defining shift polynomials for a predetermined positive integer s, and
a non-negative integer i,

gi(x1, x2) := xs−i
2 f i(x1, x2)ps−i, 0 ≤ i ≤ s.
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Thus, parameter R indicated in the lattice-based solving strategy is equal to ps.
Our attack involves transforming the coefficient vectors of gi(X1x1, X2x2) into

row vectors of a lattice basis matrix B. We define the same monomial order
and polynomial order as in the previous basic strategy. Moreover, the leading
monomial of gi(x1, x2) now is xi

1xs−i
2 ps−i. Representing derived coefficient vectors

from gi(X1x1, X2x2) as b⃗i for i = 1, . . . , ω, we generate a lattice

Λ =
{

ω∑
i=1

zi⃗bi : zi ∈ Z
}

.

The lattice dimension ω can be calculated as

ω =
s∑

i=0
1 = s + 1.

Note that we shall construct a lower-dimensional lattice compared to the previous
one, which is a significant advantage. We provide an illustrative example of the
lattice basis matrix B when setting s = 2 as before. The shift polynomials are
listed as follows.

g0(x1, x2) = x2
2f0(x1, x2)p2 = p2x2

2,

g1(x1, x2) = x1
2f1(x1, x2)p1 = px1x2 − hpx2

2,

g2(x1, x2) = x0
2f2(x1, x2)p0 = x2

1 − 2hx1x2 + h2x2
2.

Thus, substituting xi with Xi, we construct the following ω ×ω lattice basis matrix
B that is 

x2
2 x1x2 x2

1

g0 p2X2
2 0 0

g1 −hpX2
2 pX1X2 0

g2 h2X2
2 −2hX1X2 X2

1


.

The corresponding matrix diagonal elements are Xi
1Xs−i

2 ps−i for 0 ≤ i ≤ s.
Following the lattice-based solving strategy, we calculate the lattice determinant

det(Λ) = pspXs1
1 Xs2

2 , where the respective exponents sp, s1 and s2 are computed
as

sp = s2 =
s∑

i=0
(s − i) = s(s + 1)

2 ,

s1 =
s∑

i=0
i = s(s + 1)

2 .

This relates to the derived solving condition (1), i.e., det(Λ) < Rω with R = ps,
which yields

(pX1X2)
s(s+1)

2 < ps·(s+1).
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With x1 and x2 bounded by X1 = pξ1 and X2 = pξ2 respectively, we simplify the
exponents over p and have

1
2 · (1 + ξ1 + ξ2) < 1,

which further leads to
ξ1 + ξ2 < 1.

Interestingly, we are able to obtain the same condition with a lower lattice dimension
and smaller lattice determinant (if the parameter s is set the same).

We discuss how to effectively find the desired root in our attack. Suppose we
have several integer polynomials hi(x1, x2) derived from the proposed lattice-based
strategy, where hi(x⋆

1, x⋆
2) = 0 is satisfied. Their common root (x⋆

1, x⋆
2) can be re-

covered using resultant computation. Otherwise, we compute the greatest common
divisor h(x1, x2) of hi(x1, x2) and turn to solve it. As f(x1, x2) is homogeneous,
we assume the homogeneity of h(x1, x2) and introduce a new variable τ defined
as τ := x1/x2. With this, we define h̄(τ) := h(x1, x2)/xδ

2, where δ is a known
constant, and ensure that h̄(x⋆

1/x⋆
2) = 0. We can determine x⋆

1/x⋆
2 by employing

trivial methods to extract the rational roots of h̄(τ). Suppose x⋆
1 and x⋆

2 are
coprime, we can finally deduce their values from the numerator and denominator
of the derived root τ . In the validating experiments, we use the Gröbner basis
computation to derive the solution (x⋆

1, x⋆
2) more efficiently.

Regarding time complexity, it primarily relies on the polynomial-time LLL
algorithm, which is polynomial in both s and log(ps). Given that s is a fixed
integer, the attack’s time complexity is a polynomial of log p = n. We present
Proposition 1 as a conclusion of our improved attack.

Proposition 1. Let p = 2n − 1 be an n-bit Mersenne prime and w be a positive
integer. Let f and g bounded by f ≤ pξ1 and g ≤ pξ2, denote two unknown n-bit
random strings characterized by a Hamming weight of w. Given h with the equation
h = f/g (mod p), then f and g can be efficiently recovered in time polynomial in
n if ξ1 + ξ2 < 1.

It is worth noting that the condition ξ1 + ξ2 < 1 is identical to X1X2 < p and
also f · g < p. This condition covers the previous attack result where both f and
g are less than √

p. Furthermore, our advancement serves to extend the attack
constraint for f and g, thereby significantly broadening the potential range of
applicability.

Success Probability Analysis. We proceed to conduct a theoretical analysis of the
success probability associated with our proposed attack. To simplify the subsequent
examination, we will base our calculations on the representations of f and g using
bit strings. When considering the scenario where w is approximately

√
n, let Pr1

denote the previous success probability of Beunardeau et al.’s attack. Given that
f and g are both less than √

p, namely their w many ‘1’ bits are chosen from low
⌊n/2⌋ bits, the expression for Pr1 can be formulated as follows.

Pr1 =
(⌊n/2⌋

w

)(⌊n/2⌋
w

)(n
w

)(n
w

) =
(⌊n/2⌋!(n − w)!

n!(⌊n/2⌋ − w)!

)2
≈ 2−2w.
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Furthermore, we introduce Pr2 to represent the success probability associated with
our improved attack. Our aim is to compute the value of Pr2, which is expressed as

Pr2 =
n−w∑
t=w

( t
w

)(n−t
w

)(n
w

)(n
w

) ,

and concurrently determine the improvement ratio denoted by r := Pr2/Pr1.
From combinatorial mathematics [GKP94, Page 169], it can be seen that the

following combinatorial identity holds.

n−r∑
t=m

(
t

m

)(
n − t

r

)
=
(

n + 1
m + r + 1

)
.

Therefore, we obtain

Pr2 =
( n+1

2w+1
)(n

w

)(n
w

) .
Due to Stirling’s approximation and w ≈

√
n when n tends to infinity, the

improvement rate r can be further calculated as follows.

r =
( n+1

2w+1
)(A

w

)(A
w

)
= (n + 1)!(w!(A − w)!)2

(2w + 1)!(n − 2w)!(A!)2

≈
√

2π(n + 1)(n+1
e )n+1 · 2πw(w

e )2w · 2π(A − w)(A−w
e )2A−2w√

2π(2w + 1)(2w+1
e )2w+1 ·

√
2π(n − 2w)(n−2w

e )n−2w · 2πA(A
e )2A

=
√

2π(n + 1)n+ 3
2 · w2w+1 · (A − w)2A−2w+1

(2w + 1)2w+ 3
2 · (n − 2w)n−2w+ 1

2 · A2A+1

≈
√

2π(w2 + 1)w2+ 3
2 · w2w+1 · (w2

2 − w)w2−2w+1

(2w + 1)2w+ 3
2 · (w2 − 2w)w2−2w+ 1

2 · (w2

2 )w2+1

=
√

2π(1
2)w2−2w+1

(1
2)w2+1 · 22w+ 3

2
· (w2 + 1)w2+ 3

2

(w2)w2+1 · (w2 − 2w)w2−2w+1

(w2 − 2w)w2−2w+ 1
2

· w2w+1

(w + 1
2)2w+ 3

2

=
√

π

2 · (w2 + 1)w2+1+ 1
2

(w2)w2+1 · (w2 − 2w)
1
2 · w2w+1

(w + 1
2)2w+1+ 1

2

=
√

π

2 · (w2 + 1)
1
2 (w2 − 2w)

1
2

(w + 1
2)

1
2

·
(

1 + 1
w2

)w2+1
·
(

1 − 1
2w + 1

)2w+1

≈
√

π

2 · w
3
2 · e · e−1

=
√

π

2 w
3
2 ,

where A := ⌊n
2 ⌋ for simplicity. Therefore, we obtain the success probability Pr2 of

our improved attack that is approximately equal to
√

πw3/22−2w−1.
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4 Validating Experiments

To validate the validity and effectiveness of our improved attack on MLHRSP,
which exploits Proposition 1 by the basic and improved strategies, we conducted a
series of numerical experiments. These experiments were performed on a computer
running a 64-bit Windows 10 operating system with Ubuntu 22.04 installed on
WSL 2. The system had a CPU operating at 2.80 GHz and 16 GB of RAM.
The experiments were conducted using SageMath [The23] with Python, and the
parameters for generating the experimental instances were randomly chosen.

We generated the MLHRSP instances with suggested parameters p = 2n − 1, n,
and w in each experiment. Based on two randomized integers f and g satisfying
f · g < p, we then derived the corresponding public key h using its key equation
h = f/g (mod p). Furthermore, we gradually increased f and g to achieve larger
ξ1 and ξ2 for performing a successful key recovery attack. We provide an open
source implementation of the proposed attacks and the source code is available
at https://github.com/MengceZheng/MLHRSP. Using this implementation to
execute the key recovery attacks, we selected a suitable parameter s to construct a
lattice. Moreover, we ran 5 trials and ensured a 100% attack success rate for each
of the different experimental parameter settings.

The experimental results are presented in Table 1. The n and w columns
indicate the specific parameters of the MLHRSP instances. The ξ1 and ξ2 columns
present the experimental results on bounds of randomly generated f and g. The
lattice settings are controlled by s, and the lattice dimension is provided in the
ω column. The average time consumption of the proposed key recovery attack is
recorded in the Time column and measured in seconds.

During each experiment, we collected sufficient polynomials that satisfied the
solvable requirements after running the LLL algorithm. As indicated in Table 1,
the running time increases as the lattice dimension ω or the modulus p becomes
larger. The reason is that it is mainly influenced by the lattice dimension and the
lattice basis matrix entries. Moreover, we observe that the more unbalanced the
private keys are, the more time consuming the attack is. In more detail, the time
consumption of lattice reduction and root extraction is roughly a few seconds.

We obtained several integer polynomials by transforming the derived vectors
into polynomials and then calculated their greatest common divisor h(x1, x2).
The integer polynomial h(x1, x2) was always of a particular homogeneous form
a1x1 − a2x2. Therefore, we obtained the desired root (x⋆

1, x⋆
2) = (a2, a1) assuming

f and g were coprime. Furthermore, we used a more efficient mathematical tool,
namely the Gröbner basis computation to directly extract the solution (x⋆

1, x⋆
2).

Then we recovered f and g, which allows us to break the AJPS cryptosystem. The
experimental results reached the theoretical bounds by constructing lattices of low
dimension, where the lowest dimension can be down to 3. Additionally, we provide
the following toy examples to aid in numerical understanding.

Example 1. We provide a numerical example to illustrate key recovery attack
utilizing Proposition 1 on the AJPS cryptosystem with the basic strategy. In
this example, we consider a toy scenario where we have set n = 521 and hence
p = 2521 − 1, and we are working with w = 10. We assume that two unbalanced

https://github.com/MengceZheng/MLHRSP
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Table 1: Experimental results of the key recovery attacks on MLHRSP

n w ξ1 ξ2
basic strategy improved strategy

s ω Time† s ω Time†

521 10
0.5 0.5 7 36 0.506 s 7 8 0.116 s
0.4 0.6 7 36 0.550 s 7 8 0.130 s
0.3 0.7 7 36 0.646 s 7 8 0.135 s

2203 20
0.5 0.5 5 21 3.906 s 5 6 3.675 s
0.2 0.8 5 21 4.043 s 5 6 3.757 s
0.1 0.9 5 21 4.255 s 5 6 3.869 s

3217 25
0.5 0.5 3 10 20.237 s 3 4 17.095 s
0.65 0.35 3 10 21.489 s 3 4 18.125 s
0.75 0.25 3 10 22.826 s 3 4 19.024 s

4253 30
0.5 0.5 3 10 52.097 s 2 3 48.097 s
0.35 0.65 3 10 53.312 s 2 3 48.648 s
0.25 0.75 3 10 54.229 s 2 3 49.052 s

9689 45
0.5 0.5 3 10 1558.614 s 3 4 1528.035 s
0.35 0.65 3 10 1606.880 s 3 4 1572.536 s
0.15 0.85 3 10 1638.942 s 3 4 1598.409 s

11213 50

0.5 0.5 3 10 3013.204 s 3 4 2886.811 s
0.4 0.6 3 10 3047.022 s 3 4 2906.314 s
0.3 0.7 3 10 3071.708 s 3 4 2927.524 s
0.2 0.8 3 10 3106.117 s 3 4 2954.749 s
0.1 0.9 3 10 3127.506 s 3 4 2976.037 s

19937‡ 70

0.5 0.5 2 6 30 015.984 s 2 3 28 950.599 s
0.4 0.6 2 6 30 052.953 s 2 3 28 965.218 s
0.3 0.7 2 6 30 112.863 s 2 3 28 995.330 s
0.2 0.8 2 6 30 164.167 s 2 3 29 140.652 s
0.1 0.9 2 6 30 202.318 s 2 3 29 232.141 s

23209‡ 75

0.5 0.5 2 6 58 070.592 s 2 3 56 919.641 s
0.6 0.4 2 6 58 136.852 s 2 3 57 138.886 s
0.7 0.3 2 6 58 206.983 s 2 3 57 237.149 s
0.8 0.2 2 6 58 285.447 s 2 3 57 334.223 s
0.9 0.1 2 6 58 359.950 s 2 3 57 449.701 s

† This recorded the time consumption including lattice creation, lattice reduction, integer
equation recovery, and root extraction.

‡ One trial was performed in each experiment setting using faster implementation for efficiency
and the corresponding running time was estimated.
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secret parameters f and g are less than 252 and 2469, respectively. The specific
values for this example instance are as follows.

p = 686479766013060971498190079908139321726943530014330540939446\
345918554318339765605212255964066145455497729631139148085803\
7121987999716643812574028291115057151,

h = 154343905781433556619909067692069203322475442150730494258569\
202850224261065191872563678854092758603703688697463484625645\
0124746881433562792808921718557271307.

To conduct our basic key recovery attack, we set s = 3 to construct a 10-
dimensional lattice. After less than one second, we successfully extract the desired
root (x⋆

1, x⋆
2). The obtained root values are as follows.

x⋆
1 = 2323306724327516,

x⋆
2 = 381078635798835018906098610511937601438852185612681743552458\

943839072412774950738695778995080053337769929799580564419759\
766509943792567582721.

Thus, f and g are recovered as follows.

f = 2323306724327516,

g = 381078635798835018906098610511937601438852185612681743552458\
943839072412774950738695778995080053337769929799580564419759\
766509943792567582721.

It can be easily verified that f , g, h and p do satisfy the key generation of
the AJPS cryptosystem, confirming the success of applying Proposition 1 to the
Mersenne low Hamming ratio search problem. Moreover, we confirm that the
previous attack using a 2-dimensional lattice is invalid.

Example 2. We provide another numerical example to illustrate key recovery
attack utilizing Proposition 1 on the AJPS cryptosystem with the improved strategy.
In this example, we also consider a toy scenario where we have set n = 521 and
hence p = 2521 − 1, and we are working with w = 10. We assume that two
unbalanced secret parameters f and g are less than 2390 and 2131, respectively.
The specific values for this example instance are as follows.

p = 686479766013060971498190079908139321726943530014330540939446\
345918554318339765605212255964066145455497729631139148085803\
7121987999716643812574028291115057151,

h = 157215078908066856483109297065622826700344007691843666348046\
622548638689554972213779955101736551938803681603257590155467\
9982096056923401503970040749904852959.
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To conduct our improved key recovery attack, we set s = 2 to construct a
3-dimensional lattice. After less than one second, we successfully extract the
desired root (x⋆

1, x⋆
2). The obtained root values are as follows.

x⋆
1 = 130026620506872683435266440889561756647023327329779536478254\

7236924976239227630672771919293698599597927345039798697984,

x⋆
2 = 680564754124286577802084753380397294081.

Thus, f and g are recovered as follows.

f = 130026620506872683435266440889561756647023327329779536478254\
7236924976239227630672771919293698599597927345039798697984,

g = 680564754124286577802084753380397294081.

It can be verified that f , g, h and p do satisfy the key generation of the AJPS
cryptosystem, confirming the success of applying Proposition 1 to the Mersenne
low Hamming ratio search problem. Furthermore, in contrast to the failure of the
previous attack on unbalanced f and g using a 2-dimensional lattice, we were able
to successfully recover them using a 3-dimensional lattice.

5 Concluding Remarks

We revisit the Mersenne number-based AJPS cryptosystem, delving deep into the
associated hard problems it presents. Our goal centers on enhancing the existing
lattice-based attack targeting the Mersenne low Hamming ratio search problem.
Our improved attack adopts a specific lattice-based solving strategy, tailored for
solving bivariate polynomial equations. This results in two notable enhancements
to our key recovery attack. Firstly, we expand the attack range of susceptible
scenarios, amplifying our capacity to uncover vulnerabilities in weak keys. Secondly,
we increase the attack’s success probability when considering unbalanced attack
cases. Furthermore, we conduct a series of numerical experiments to validate the
practicality and effectiveness of our improved attack.

The major limitation of our improved lattice-based attack on MLHRSP is that
it cannot be applied when facing the enhanced key generation algorithm. To be
precise, our proposed attack is unavailable when one discards and resamples f and
g again if both of them fall within our attack range. However, the previous attack
[BCGN17] using the random partition technique is still effective. Hence, future
research should be undertaken to explore how to incorporate a similar random
partition technique into our improved lattice-based attack.
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