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Abstract
At CRYPTO ’94, Cramer, Damgård, and Schoenmakers introduced a general technique for con-

structing honest-verifier zero-knowledge proofs of partial knowledge (PPK), where a prover Alice wants
to prove to a verifier Bob she knows τ witnesses for τ claims out of k claims without revealing the indices
of those τ claims. Their solution starts from a base honest-verifier zero-knowledge proof of knowledge
Σ and requires to run in parallel k execution of the base protocol, giving a complexity of O(kγ(Σ)),
where γ(Σ) is the communication complexity of the base protocol. However, modern practical scenarios
require communication-efficient zero-knowledge proofs tailored to handle partial knowledge in specific
application-dependent formats.

In this paper we propose a technique to compose a large class of Σ-protocols for atomic statements
into Σ-protocols for PPK over formulae in conjunctive normal form (CNF) that overlap, in the sense that
there is a common subset of literals among all clauses of the formula. In such formulae, the statement
is expressed as a conjunction of m clauses, each of which consists of a disjunction of k literals (i.e.,
each literal is an atomic statement) and ℓ literals are shared among clauses. The prover, for a threshold
parameter τ ≤ k, proves knowledge of at least τ witnesses for τ distinct literals in each clause.

At the core of our protocol, there is a new technique to compose Σ-protocols for regular CNF relations
(i.e., when τ = 1) that exploits the overlap among clauses and that we then generalize to formulae where
τ > 1 providing improvements over state-of-the-art constructions.

1 Introduction
Interactive proof systems [20] allow a prover to convince a verifier that a given instance x belongs to an
NP language L. Besides completeness (namely, the honest prover always convinces the honest verifier when
the statement is true), interactive proof systems typically enjoy two other properties known as soundness
and zero knowledge. The former means that a malicious prover cannot convince the honest verifier about a
claim x when x ̸∈ L; the latter means that a malicious verifier talking to an honest prover learns nothing
from the interaction (beyond x ∈ L). The last few years have seen tremendous progress in the design
of (sometimes even non-interactive) proof systems for languages of practical interest, with good efficiency
in terms of round, communication, and computational complexity (see, e.g., [21, 9, 8, 10]). As a result,
proof systems became a fundamental building block of many modern cryptographic applications, including
electronic voting, cryptocurrencies, threshold cryptography, and distributed ledger technologies.
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Σ-protocols. Σ-protocols, introduced in Cramer’s PhD thesis [13], are the central abstraction at the heart
of several widely used zero-knowledge proofs. A Σ-protocol is a 3-round, public-coin,1 interactive proof
system in which the transcript has the form (a, c, z), where a and z are called the prover’s first-round and
third-round messages, and where c is the verifier’s random challenge.

Σ-protocols typically satisfy two security properties known as special soundness and honest-verifier zero
knowledge (HVZK). The former says that given two accepting transcripts for a statement x of the form
(a, c, z) and (a, c′, z′) with c ̸= c′, one can efficiently extract a witness w corresponding to the commonly
known instance x; this implies that Σ-protocols are also proofs of knowledge [7] when the length of the
challenge is large enough. The latter says that the protocol is zero knowledge assuming the verifier is benign
and therefore picks the challenge c from her random tape. Using the Fiat-Shamir heuristic [16], Σ-protocols
can be made non-interactive enjoying zero-knowledge proofs of knowledge, therefore providing zero knowledge
also against malicious verifiers, in the random oracle model. This is done by computing the challenge as the
hash of the prover’s first-round message concatenated to the statement and allowing the simulator and the
extractor to program the random oracle.

Composition of Σ-protocols. Given Σ-protocols for different atomic statements, it is natural to ask
whether they can be efficiently composed to prove compound NP statements. More in detail, given n ∈ N
instances x1, . . . , xn belonging to a given2 language L, and given individual Σ-protocols for proving xi ∈ L,
there are many results in literature to design a Σ-protocol for a compound relation R∗ somewhat preserving
efficiency. R∗ can be expressed in different forms, and we consider two major ones in practical scenarios:

• Disjunctive Normal Form ((k,m)-DNF): Here, for parameters k,m ∈ N, (k,m)-DNF is a disjunc-
tion (i.e., logical ∨) of m clauses, where each clause is made of the conjunction (i.e., logical ∧) of k
literals. For instance, by setting k = 1 and m = n, the resulting (1, n)-DNF represents the special case
of a disjunction, in which the prover wants to convince the verifier it knows one out of n witnesses.
Σ-protocols for (k,m)-DNF relations whenever m =

(
n
k

)
are often referred to as k-out-of-n proofs of

partial knowledge ((k, n)-PPK), where the prover proves to the verifier she holds k witnesses, each of
them corresponding to a different instance out of the n possible instances.

• Conjunctive Normal Form ((k,m)-CNF): Here, for parameters k,m ∈ N, the (k,m)-CNF is the
conjunction (i.e., logical ∧) of m clauses, where each clause is made of the disjunction (i.e., logical ∨)
of k literals. CNF relations occur naturally in many applications, for instance when describing the
access policies of certain attribute-based encryption schemes [27].

Which of the above representations is preferable depends on the application. Some policies are represented
more succinctly using DNFs, whereas others using CNFs. Switching between these representations can
involve an exponential increase in size [26].

Several prior works studied Σ-protocols composition for both DNF and CNF relations. The seminal
work of Cramer et al. [14] initiated the study of Σ-protocols composition, providing a general solution that
works for all monotone access structures. A particular case of those policies is disjunctions, which are a
great tool to build new cryptographic primitives and protocols (see, e.g., [25, 15]) and have been the focus of
many subsequent works [3, 22, 11, 18]. With the increasing interest in distributed systems (like blockchains),
threshold variants of the disjunction composition (i.e., proofs of partial knowledge) became also very relevant
[12, 4, 5].

1.1 Our Contribution and Related Work
Several recent papers focus on optimizing the composition of Σ-protocols for DNF and CNF relations. The
goal of such works is to reduce the communication complexity by exploiting literals that are repeated across
the clauses [1, 2, 29]. In this vein, we initiate, somewhat naturally, the study of threshold variants of Σ-
protocols for CNF relations. In particular, we associate a proof of partial knowledge to each clause of the

1This refers to the fact that the verifier during the protocol sends random bits only.
2More generally, the statements could even belong to different languages.
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CNF: the prover proves knowledge of τ different witnesses for each clause of the (k,m)-CNF relation. We
name the resulting relation a (τ, k,m)-CNF relation.3

We focus in particular on the case of overlapping CNF formulae in the sense that clauses of the formula
share some literals. Our main contribution is a novel technique to compose Σ-protocols for overlapping (τ, k,
m)-CNF relations. In particular, our composition technique starts from any so-called stackable Σ-protocol4
[18] for the underlying base instances, with communication complexity γ(Σ), and produces a stackable Σ-
protocol for the (τ, k,m)-CNF relation with communication complexity

O(τ · (log k +mγ(Σ) + max{m(log(k − ℓ)), log( k
k−ℓ )}))

whenever there is a common prefix of size ℓ ∈ [0, k− 1], among the m clauses. We use the word prefix solely
to simplify the presentation. Observe that the order of literals within a clause is not important. Indeed,
common literals among the clauses can be easily rearranged to become a common prefix without changing
the meaning of the statement being proven.

In Tab. 1 and Tab. 2, we compare our results to prior (1, k,m)-CNF and (τ, k,m)-CNF (with τ > 1),
respectively. The comparison considers communication complexity, supported languages, and whether the
protocol resulting from the composition is a Σ-protocol or not. As (τ, k,m)-CNF relations are not directly
captured by some of the previous works, for such protocols we start from the natural approach of repeating
a τ -out-of-k proof of partial knowledge m times in parallel. Some works can directly handle (τ, k,m)-CNF
relations. For example, [14] handles (τ, k,m)-CNF relations with a communication complexity of O(m · k ·
γ(Σ)) which is the same of the case of τ = 1. However, the m-fold parallel repetition of [17, Section 9] or [5]
outperform such protocols [14, 1] whenever τ = o(k/ log k). Therefore, starting with such communication-
efficient proofs5 (i.e., [17, Section 9] and [5]) prior works yield a complexity of O (τ ·m · (γ(Σ) + log k)),
which is worse than ours6 for every ℓ ≥ k− log k and m ≥ log k. Furthermore, it is unclear whether one can
generalize the result for (k,m)-CNF relations of Zeng et al. [29] to the setting of (τ, k,m)-CNF relations.

A building block of our construction is a new technique to compose Σ-protocols for (k,m)-CNF relations
(i.e., when τ = 1) that we call Πcnf . Πcnf is a component of our protocol for (τ, k,m)-CNF relations that we
call Πcnf

τ,k. When Πcnf is repeated τ times along with our ordering protocol Πord-cnf (built upon Avitabile et
al. [5]), we obtain Πcnf

τ,k. Πord-cnf is used to ensure that every run of Πcnf within Πcnf
τ,k uses a different witness.

Our composition technique for (k,m)-CNF relations yields a communication complexity of

O(log k +m · (γ(Σ) + log(k − ℓ))).

In contrast, the best previous protocols for the same setting [2, 29] had a communication complexity of
O(γ(Σ) · (ℓ +m · (k − ℓ))).7 In particular, the works of Abe et al. [2] and Zeng et al. [29] follow the same
approach (from which we deviate) of converting the CNF formula into a graph to then run a Σ-protocol over
the resulting graph. Contrary to [2], the resulting protocol of [29] is a Σ-protocol.

It turns out that the landscape of Σ-protocols for CNF relations is rather complex and identifying the
most communication-efficient solution depends on the application (i.e., the format of the statement). For
example, the previous protocols designed to take advantage of repeating literals in the clauses [1, 2, 29] have
a communication complexity generally worse than parallel repetition of communication-efficient protocols for
disjunctions [4, 18] whenever the clauses share a prefix of few to no literals among each other. On the other
hand, savings in [1, 2, 29] in terms of communication complexity are considerable whenever more literals are
shared among the clauses.

3Our technique can handle different threshold values τi, with i ∈ [m], for each clause. The modified protocol does not incur
in any additional overhead. To simplify the description, we will focus on the case of a single threshold value τ for all the clauses.

4Stackable Σ-protocols are Σ-protocols that in addition must satisfy some other properties (see Sec. 3.3). Concretely, this is
not a significant restriction since all the practically relevant Σ-protocols are also stackable.

5In this comparison, we are only considering Σ-protocols composition techniques. We are not considering the use of generic
succinct proof systems (e.g., SNARKs or STARKs), of which we discuss the limitations later. Furthermore, this comparison
assumes that all Σ-protocols of interest are also stackable (as it is currently known). We are also not considering composition
techniques tailored for specific languages (e.g., the discrete log setting considered in [4]).

6For the sake of simplicity, we omit the security parameter λ in the communication complexities. In particular, the complexity
of [17, 5] is O(τ ·m · (γ(Σ) + λ log k)), and γ(Σ) is dominated by O(λ log k) for sufficiently large k.

7This analysis assumes that there are no other repeating literals except the ones in the prefix.

3



Reference Language Σ-protocol? Communication (τ = 1)
Cramer et al. [14] Any Σ O(m · k · γ(Σ))
Groth et al. [22] DL ✗¶ O(m · log k) · (|G|+ |Z∗

p|)
Abe et al. [1] Any Σ ✗† O((m+ n) · γ(Σ))
Abe et al. [2] Any Σ ✗† O(γ(Σ) · (n))

Attema et al. [4] DL ✗‡ O(log(m · k)) · |G|
Goel et al. [18] Stackable Σ O(m · (γ(Σ) + log k))

Avitabile et al. [5] Stackable Σ O(m · (γ(Σ) + log k))
Zeng et al. [29] Chameleon Σ O(γ(Σ) · |V |) ♮

Ours Stackable Σ O(log k +m · (γ(Σ) + log(k − ℓ)))

Table 1: Comparison of techniques for composing Σ-protocols for (τ = 1, k,m)-CNF relations. γ(Σ) denotes the communication
complexity of the base Σ-protocol, n is the number of distinct literals in the formula, m is the number of clauses, k is the length
of each clause, and ℓ is the length of the common prefix across all clauses. If the protocol is tailored to the discrete log setting, we
write the communication complexity as the number of field and group elements sent by the prover. Whenever repeating literals
are not considered [14, 22, 4, 17, 18, 5], we report the complexity of repeating its disjunction protocol m times in parallel.
In the third column, we use ✓ if the protocol resulting from the composition is an interactive 3-round public coin protocol
with (computational) special soundness, while we use ✗ otherwise. ¶ [22] is not special sound. † [1, 2] require converting the
Σ-protocol in a non-interactive protocol with the aid of a (non-programmable) random oracle. ‡ [4] requires a logarithmic
number of rounds. ♮ The complexity of [29] depends on the number of vertices V of the graph defined in their paper.

Reference Communication (τ > 1)
Cramer et al. [14] O(m · k · γ(Σ))
Groth et al. [22] ✗

Abe et al. [1] O((m+ n) · γ(Σ))
Abe et al. [2] γ(Σ)|Γ|¶

Attema et al. [4] O(log(m · k)) · |G|
Goel et al. Sec. 9 of [17] O(τ ·m · (γ(Σ) + log k))

Avitabile et al. [5] O(τ ·m · (γ(Σ) + log k))
Zeng et al. [29] ✗

Ours O(τ · (log k +mγ(Σ) + max{m(log(k − ℓ)), log( k
k−ℓ )}))

Table 2: Comparison of techniques for composing Σ-protocols for (τ > 1, k,m)-CNF relations. If a work does not take into
account repeating literals, we consider the complexity of repeating its τ -out-of-k proof of partial knowledge m times. In the last
column, ✗ denotes that there is no known black-box way to get a protocol for (τ > 1, k,m)-CNF relations from their protocol
for τ = 1. ¶ We denote by |Γ| the size of the acyclicity program Γ representing the (τ, k,m)-CNF relation, see [2] for details.

As an additional example, consider the case where ℓ = k − 1, m = k
log log k , and there are no repeating

literals except the ones in the prefix. Parallel repetition of the protocol of [18] leads to a communication
complexity of roughly O( k

log log k (γ(Σ)+log k)), while the protocols of [2, 29] have a communication complexity
of O(k · γ(Σ)). Interestingly, in this case (and many others), even though our technique is built upon the
techniques of [18], we improve over the state-of-the-art protocols for CNF relations [2, 29] even when simple
parallel repetition of [18] is outperformed by such protocols. Indeed, the communication complexity of our
protocol when ℓ = k − 1 and m = k

log log k is O( k
log log k · γ(Σ)). Beyond the specific case of ℓ = k − 1,

our technique outperforms the communication complexity of [2, 29, 18] for all ℓ ≥ k − log k, when m is in
O( k

log log k ). In conclusion, while our protocol for (k,m)-CNF is always superior (or equivalent) to parallel
repetition of [18], there exist specific parameters for which [1, 2, 29] perform better than our protocol. Since
no single solution outperforms the others in all possible scenarios, we find that it is more viable to optimize
specific configurations of parameters, so that protocol designers can pick the constructions that better suit
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a particular application.

Applications. All the applications mentioned in prior works about (k,m)-CNF [1, 2, 29] directly carry
over to our setting as we consider the same class of statements. Additionally, we are the first to provide
direct support for threshold variants of those statements.

Nevertheless, one might wonder whether there exist application scenarios that naturally involve multiple
clauses sharing several literals. We now recall an example of such a scenario by describing an application
proposed in [2], namely proofs of possession of white money. Consider a cryptocurrency with a transaction
graph whose nodes represent public keys, and whose edges represent money flows. Proofs of possession of
white money are used to certify the integrity of a party. By integrity we mean that the money owned by a
party was received from a whitelisted organization (e.g., an accredited institution). Proofs of possession of
white money can be used to keep the organization’s identity pseudo-anonymous by not disclosing the nodes
in the network controlled by the organization. The organizations can certify the user’s integrity by proving
knowledge of valid credentials associated with nodes that form a cut from the cryptocurrency genesis node
to the node of interest, without revealing any information about the actual cut. More concretely, every
distinct path that reaches the node of interest can be modeled as a clause of a CNF, where the literals of
the clause are the public keys corresponding to each of the nodes in the path, and a witness is one of the
secret keys. If accredited institutions give valid proof for such a CNF, then all the money owned by the
final node has, at some point, gone through a whitelisted organization. At the same time, such proof does
not directly reveal the public keys controlled by the proof-giving entity. Note that these types of claims
involve the entire history of the coins arriving at the final node, therefore the clauses of the CNF will likely
be huge, and since many users make transactions with the same accredited entities (e.g., payments hubs,
banks) it is likely to have very long prefixes as well. In this scenario, our technique for CNF relations (i.e.,
for τ = 1) comes in handy. Additionally, our threshold techniques (i.e., for τ > 1) also allow us to prove,
again preserving anonymity, that in each path, the money has gone through whitelisted organizations at
least τ times. These proofs can be made non-interactive and thus publicly verifiable using the Fiat-Shamir
(FS) transform. Moreover, through classic transforms (e.g., carefully appending a message to the input of
a cryptographic hash function when implementing the FS transform), one directly gets a ring signature for
arbitrary monotone access policies.

Other related work. Previous Σ-protocols compositions had also other goals (in contrast to just focusing
on optimizing the communication complexity) such as enhancing the security properties [11, 12], or speeding
up the proving time [19]. In particular, [11] and [12] deal with delayed-instance specifications in disjunctions
and proofs of partial knowledge respectively. In [19], a stacking compiler that can be applied to constant-
round (succinct) argument systems is proposed. The goal of [19] is to obtain a faster prover exploiting the
fact that the stacked prover executes the simulator on all the false statements. In some argument systems,
the simulator is much faster than the prover and thus such technique in beneficial. Unfortunately, this is in
general not the case for Σ-protocols.

Other works consider disjunctions and proofs of partial knowledge for binary or arithmetic circuits.
Heath et al. [24] extended a previous result based on stacked garbled circuits [23] to proofs of partial
knowledge while maintaining the same communication advantage of [23]. Baum et al. [6] proposed an
interactive commit-and-prove zero-knowledge proof system for arithmetic circuits based on Vector Oblivious
Linear Evaluation (VOLE), called Mac’n’Cheese [6]. Both approaches have a communication complexity
proportional to τ times the longest circuit (or branch), and [6] has an additive term which is logarithmic in
k. More recently, Yang et al. [28] also proposed a VOLE-based protocol for disjunctions called Robin with
improved communication complexity w.r.t. Mac’n’Cheese. Notice that [6] and [28] are inherently private
coin, therefore they are not Σ-protocols.

Alternatively, one could employ succinct arguments such as STARKs [8] or SNARKs [21, 9, 10]. On
the other hand, these techniques have limitations on their own, such as demanding extensive computational
efforts and memory requirements from the prover and relying on strong assumptions or problematic trusted
setups. Moreover, although all the mentioned approaches can be applied to NP-complete languages, their
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adaptation to arbitrary languages is not a straightforward task. In comparison, Σ-protocol composition has
specific advantages for protocol designers. If there exists a Σ-protocol for the base language, the designer
can directly use the composition technique without resorting to potentially costly NP reductions.

2 Technical Overview
We start from the observation that a Σ-protocol for the conjunction of m statements can be obtained by
running in parallel a Σ-protocol for each of the underlying statements. Hence, given a Σ-protocol for the
disjunction of k literals, we immediately obtain a Σ-protocol for any (k,m)-CNF relation, with communi-
cation complexity m times the communication complexity of the underlying Σ-protocol for the disjunction
of k literals. However, this approach treats all the disjunctions as if they were independent of each other,
neglecting any communication saving that could result from their common structure. The main idea behind
our result is that we can reduce the proof size for (k,m)-CNF relation whenever the disjunctions share a
common prefix; in particular, we build upon the disjunction composition of [18] to reduce the proof size.

In a similar spirit to [5], we exploit the structure of the parameters of the commitment scheme used in
[18]. In what follows, we denote the disjunction protocol of [18] as ΠOR, and we denote our protocol for
(k,m)-CNF relations as Πcnf . Finally, to get our protocol Πcnf

τ,k for (τ, k,m)-CNF relations, we repeat Πcnf

τ times along with our ordering protocol Πord-cnf that we build upon Πord of [5]. To give a more detailed
description of our techniques, we first give a high-level overview of the protocol ΠOR presented in [18]. Then,
we show how to stack m executions of ΠOR to obtain our Σ-protocol for any (k,m)-CNF relation (Πcnf)
achieving considerable communication savings when the clauses share a common prefix. Finally, we show
how to combine our protocol for (k,m)-CNF relations with our ordering protocol Πord-cnf to get our protocol
for (τ, k,m)-CNF relations (Πcnf

τ,k).

2.1 High-Level Overview of ΠOR

We first describe the main ingredients of ΠOR, namely stackable Σ-protocols (Sec. 3.3) and 1-out-of-2 equiv-
ocal commitments (Sec. 3.1). We then show how these tools are combined in [18] to get a communication-
efficient Σ-protocol for disjunctions.

Stackable Σ-protocols. A stackable Σ-protocol has two non-standard properties called (i) Extended
HVZK (EHVZK), and (ii) recyclable third-round messages. Property (i) requires that the simulator, given
a third-round message z as additional input, along with statement x and challenge c, is able to output a
first-round message a such that (a, c, z) is an accepting transcript for x ∈ L; moreover, the simulator is
deterministic. Property (ii) requires that, given a fixed challenge c, the distributions of all the possible
third-round messages for every pair of instances in the language are indistinguishable. As shown in [18],
many natural and relevant Σ-protocols are already stackable. Moreover, any HVZK Σ-protocol can be
converted into an EHVZK one. Formal definitions of the properties required by (stackable) Σ-protocols can
be found in Sec. 3.2, Sec. 3.3. In particular, they consider a slightly weaker notion of special soundness,
called computational special soundness ([5, App. A], also reported in Sec. 3.2), that says that whenever a
PPT adversary outputs two accepting transcripts for a statement x with the same first-round messages and
different challenges, we are guaranteed to extract a valid witness for x except with negligible probability.

1-out-of-2 equivocal commitments. 1-out-of-2 equivocal commitments allow a prover to commit to a
pair of elements, in such a way that one of the two elements is binding, while the other one can be equivocated
given a trapdoor. To do so, the sender generates a pair of commitment parameters (p0, p1), where p0 is used
to commit to the element in the first position, while p1 is used for the element in the other position. Without
knowledge of a trapdoor for parameter pb, with b ∈ {0, 1}, the message committed in position b is binding.
Conversely, knowing a trapdoor tdb for pb, the prover can run an equivocation algorithm and open the
commitment in position b to an arbitrarily chosen message by generating an opening randomness which we
call equivocation randomness. 1-out-of-2 equivocal commitments guarantee that the prover can know the
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trapdoor for one position at most. Additionally, such position remains hidden from the verifier, even after
the commitment is opened. 1-out-of-2 equivocal commitments further provide an algorithm to commit to
a pair of messages without using any trapdoor in a way that its output is indistinguishable from the one
generated with the equivocation algorithm leveraging the trapdoor tdb. Notice that the construction of [18]
requires that the size of the equivocal commitment must be independent of the size of the committed value.
A simple way to satisfy this requirement is to compress the committed values down to a constant size using
a collision-resistant hash function.

Description of ΠOR. Let us assume w.l.o.g. that k is a power of two. We first show how to compose
two executions of a stackable Σ-protocol Π for a language L, into a stackable Σ-protocol for the disjunction
(x1 ∈ L) ∨ (x2 ∈ L).8 We call the resulting protocol Π1,2. For simplicity, let us assume that the prover
knows a witness w1 for statement x1; Π1,2 works as follows:

• In the first round, the prover P1,2 computes the first-round message a1 related to x1 using witness w1,
and commits to it using a 1-out-of-2 equivocal commitment scheme having a1 in the binding position,
and the dummy value 0 in the other position. The resulting commitment is denoted as com. The first-
round message a of the composed protocol Π1,2 includes com and the commitment scheme parameters
(p0, p1).

• Upon receiving a challenge c from the verifier V1,2, the prover P1,2 computes z′ using w1, and equivo-
cates the equivocal position of the commitment with a simulated message a2 generated by running the
EHVZK simulator of Π with input (x2, c, z

′). The prover P1,2 sends z′ and the opening values of com
to the verifier V1,2 as the third-round message z of Π1,2. The value z also includes the commitment
scheme parameters.

• Finally, the verifier V1,2 reconstructs a1 and a2 by running the EHVZK simulator of Π. The verifier
also checks that both (a1, c, z

′) and (a2, c, z
′) are accepting transcripts of Π, and that com indeed opens

to a1 and a2. V1,2 also checks the correctness of the commitment parameters and that the parameters
sent in the first round are equal to the ones sent in the third round.

At first glance, it might seem superfluous to send the commitment parameters (p0, p1) in both the first and
the last round. However, including (p0, p1) in the third-round message is essential to make the composed
protocol Π1,2 stackable, as the commitment parameters are necessary to deterministically compute the first-
round message which contains a commitment. One might also think of removing the parameters from the
first-round message, however, the security properties of 1-out-of-2 equivocal commitments do not rule out
the possibility for a malicious prover to explain the same commitment with different pairs of parameters
that can potentially allow him to equivocate the same commitment at different positions. This would make
it difficult to prove the special soundness of Π1,2 via a reduction to the special soundness of the underlying
Σ-protocol.

Before proceeding with the description, let us first show why Π1,2 is a stackable Σ-protocol. We recall
that stackability requires the existence of an EHVZK simulator. The EHVZK simulator SEHVZK1,2 of Π1,2

works as follows. The input of SEHVZK1,2 is ((x1, x2), c, z = (z′, r, p0, p1)). Let S be the EHVZK simulator of Π,
then SEHVZK1,2 computes a0 = S(x1, c, z

′) and a1 = S(x2, c, z
′). The returned value is a = (com, p0, p1), where

com is computed as the commitment of (a1, a2) under randomness r and parameters p0, p1.
Being Π1,2 a stackable Σ-protocol, two executions of Π1,2 can be composed in the same way to obtain

a stackable Σ-protocol for disjunctions of the type x1 ∨ x2 ∨ x3 ∨ x4. By recursion, this approach yields a
stackable Σ-protocol for general k ∈ N that here we call ΠOR. Its EHVZK simulator SEHVZKOR simply consists
in the recursive invocation of SEHVZK1,2 .

Following Avitabile et al. [5], an execution of ΠOR can be represented using the so-called composition tree.
This is a binary tree whose leaves represent the base statements (x1, . . . , xk) and the first-round messages
(a1, . . . , ak) of the underlying Σ-protocol Π. Given two siblings nodes (xi, ai) and (xj , aj), the parent node

8In the remainder of the paper, we will simply write x1 ∨ x2 for brevity.
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of (xi, ai) and (xj , aj) is (xt, at), where the disjunctive statement xt and the first-round message at are
the ones resulting from the 1-out-of-2 composition explained above. Moreover, edges ((xt, at), (xi, ai)) and
((xt, at), (xj , aj)) ((t, i) and (t, j) for short) are labeled as follows: if the prover knows a witness for the
instance xi, then the edge (t, i) is labeled with B to indicate that, in the commitment computed by the
prover, the position where xi is used is binding. Similarly, the edge (t, j) is labeled with T to indicate that
the position where xj is used is equivocal. If the prover knows a witness for xj instead, then the opposite
holds. An example of a composition tree is reported in Fig. 1. Therefore, we can assign a bit to each level of
the tree as follows: if the left edge is labeled as B (and the right edge as T) we assign the bit 0 to that level,
and we assign the bit 1 otherwise. Observe that the leaf for which the prover knows the witness uniquely
determines the string composed of the bits assigned from the first to the last level. For example, if k = 8 and
the prover knows the witness for the seventh instance, the corresponding string is 110 (i.e., 7 in binary). We
recall that the third-round message z of Π1,2 also contains the commitment parameters and the commitment
openings (i.e., the equivocation randomnesses) for the 1-out-of-2 equivocal commitment. Therefore, when
Π1,2 is stacked to get a disjunction protocol with four literals since the exact same z is used for the two
stacked executions of Π1,2, the last level of the composition tree will share the same parameters and the
same openings. This generally holds when recursively stacking protocols to get disjunctions of any length.
As a result, the same commitment parameters and openings are shared across each level of the composition
tree. Therefore, the tree for a clause of length k has log k levels, which lead to log k pairs of commitment
parameters and log k equivocation randomnesses (i.e., the commitment openings) that will be provided by
the prover during the execution of ΠOR.

a1,...,8

a1,2,3,4

a1,2

a1 a2

a3,4

a3 a4

a5,6,7,8

a5,6

a5 a6

a7,8

a7 a8

T1

T2

B3 T3

B2

B3 T3

B1

T2

B3 T3

B2

B3 T3

Figure 1: The composition tree induced by the recursive application of the stackable Σ-protocol Π1,2 from [18],
in which 8 base Σ-protocols are stacked to obtain a stackable Σ-protocol for a disjunction involving 8 literals.
Here, the prover knows a witness for the instance x7. This implies that going from the root to the leaves,
the non-trapdoor edges must be arranged as depicted. Additionally, commitment openings and parameters
are re-used across the same level of the composition tree. This is emphasized by using the same index and
the same color for all the edges within a level.

On the need of stackable Σ-protocols. The use of an equivocal commitment to get a disjunction
composition for Σ-protocols was already explored by [12] in the setting of delayed instance specification.
Their technique is very similar to the one of [18] where the first-round message consists of a 1-out-of-k
binding commitment to the first-round messages of the base Σ-protocols, and in the third round all of the
instances for which the prover does not have a witness for are equivocated with the values given in output
by the simulator. Furthermore, delayed instance specification is achieved starting from delayed-input Σ-
protocols (i.e., Σ-protocols where the prover does not have to know either the instance or the witness to
compute the first-round message), and by randomly picking the binding position and assigning a random
position to all the non-active instances received in the third round. The main difference with [18] is that
[12] does not consider stackable Σ-protocols or recursive composition. Thus, even if their compiler basically
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coincides with the compiler of [18], the result of [12] does not afford any communication complexity savings
when compared to classical techniques. This is because even if they implemented their commitment with
the recursive approach of [18], it would not be possible to re-use the same third-round message for multiple
instances, or the same commitment parameters and equivocation randomnesses for multiple levels of the
composition tree.

2.2 Batching Commitment Parameters
We consider CNF formulas of the form:

∧
i∈m

∨
j∈J

(xj) ∨
∨
u∈Ii

(xu)

 ,

where J ⊂ [n] denotes the set of indexes in common between the different clauses (i.e., |J | < k) and
I1, . . . , Im ⊂ [n] \ J represent the indexes that change among clauses. Notice that |J | + |Ii| = k, for all
i ∈ m. If the prover has a witness for an instance xj with j ∈ J , then we may w.l.o.g. assume that the
prover uses this witness to satisfy all of the clauses, i.e. the formula is satisfied with the minimal assignment.

To illustrate our idea we now consider a simple CNF, but the technique is easy to generalize. Consider
the following CNF with two clauses: (x1∨x2∨x3∨x4∨x5∨x6∨x7∨x8)∧(x1∨x2∨x3∨x4∨x5∨x6∨x9∨x10),
where the instances x1, x2, x3, x4, x5, x6 are shared across the two clauses. We observe that the prover
in ΠOR generates the parameters of each level solely based on the position of the leaf it has the witness
for. Let us now consider two executions of ΠOR for the two above clauses. Starting from the root of the
tree, if the prover has the witness for x5 ∨ x6 ∨ x7 ∨ x8, it would generate the pair of parameters for the
first level having the right position as binding in both cases. On the other hand, if it holds a witness for
x1 ∨ x2 ∨ x3 ∨ x4, it would generate the commitment parameters for the first level so that the left position
is binding in both cases. Since the ability to equivocate a specific position (depending on the witness) is
the only requirement to set a pair of parameters in the execution of ΠOR, and since both executions have to
equivocate the same position at the first level, we can use the same pair of parameters for the first level in
both the executions. It is straightforward to notice that the same reasoning applies to the second level of
the tree, indeed considering x5 ∨x6 ∨x7 ∨x8 and x5 ∨x6 ∨x9 ∨x10 the prover needs to equivocate either the
right or the left position in both clauses. In this way, we can reduce the amount of information being sent
to the verifier by re-using the same commitment parameters for the first two levels of both trees. However,
even if this small modification produces a concrete improvement in the proof size, the improvement is only
by a constant factor. Indeed, the prover still needs to send log k equivocation randomnesses per each clause
of the CNF, as those values cannot be reused. This is because, even if in the first level of both trees the same
position needs to be equivocated, the equivocations involve two different commitments and two different
committed values. Therefore, the equivocation algorithm of the commitment scheme will generally produce
different equivocation randomnesses.

2.3 Batching Equivocation Randomnesses
To get asymptotic communication savings, we need to find a way to send a single set of equivocation
randomnesses for all the levels of the trees sharing the same parameters. To illustrate our technique for
achieving this goal, let us consider the same CNF relation from the previous paragraph. W.l.o.g., we assume
the prover holds a witness for x7 and x10. Let us consider the second clause. As in a regular execution
of ΠOR, the prover would first compute the first-round message a9,10 related to x9 ∨ x10. Now, instead of
committing to a9,10 separately in a 1-out-of-2 equivocal commitment to create a5,6,9,10 as usual, we merge
the two composition trees into one by committing to the concatenation a7,8||a9,10 in the binding position
of a single commitment. To be more specific, we now have a single commitment corresponding to the
concatenation of two values in its binding position, instead of two separate commitments sharing the same
parameters and committing to a7,8 and a9,10 in their own binding positions.
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In Fig. 2, we report a graphical representation of the merged composition tree corresponding to the above
example. More generally, let ℓ ≥ k/2 and k − ℓ be a power of 2, we can compute the number of levels of
the composition trees that can share the same parameters as d = ⌊log k − log(k − ℓ)⌋. Given d, for all the
clauses, the prover computes the corresponding 1-out-of-2 commitment for all the sub-trees at level d as in
a regular run of ΠOR. Then, after having obtained all these intermediate sub-trees, the prover merges them
in a single composition tree by concatenating all the sub-trees at level d and then building all the nodes up
until the root using a shared set of parameters that works for all clauses. Indeed if the prover has a witness
for a literal that is in the prefix, we make it re-use such witness when proving all the clauses. Therefore, the
first d levels always need to be equivocated in the same way. We remark that to have any communication
saving this technique requires the prefix to be ℓ ≥ k/2. The root commitment acnf will be sent to the verifier
as part of the first-round message. The prover behave as follows:

• On input (x7, x8, w7) and (x9, x10, w10), compute a7,8 and a9,10 by using POR for statements (x7, x8)

and (x9, x10), witnesses w7 and w10 and parameters (p30, p
3
1) and (p′

3
0, p

′3
1) respectively.

• Compute an equivocal commitment a5,6,7,8 with parameters (p20, p
2
1) where a7,8||a9,10 is in the binding

position.

• Similarly, compute an equivocal commitment acnf with parameters (p10, p
1
1) where a5,6,7,8 is in the

binding position.

• When receiving the verifier’s challenge, do the following (we implicitly assume that all the algorithms
invoked from now on take the challenge as input):

1. Compute the third-round messages z7,8 = (z7, r3, p
3
0, p

3
1) and z9,10 = (z10, r

′
3, p

′3
0, p

′3
1) of ΠOR for

the statements (x7, x8) and (x9, x10), where z7, and z10 are computed running the base prover of
the underlying Σ-protocol.

2. Compute a5,6 = SEHVZKOR ((x5, x6), c, z7,8) and a′5,6 = SEHVZKOR ((x5, x6), c, z9,10), where SEHVZKOR is the
EHVZK simulator of ΠOR.

3. Compute the equivocation randomness r2 (using the trapdoor related to p20) to open the equivocal
position of a5,6,7,8 to a5,6||a′5,6.

4. Compute a1,2 = SEHVZKOR ((x1, x2), c, z7,8) and a′1,2 = SEHVZKOR ((x1, x2), c, z9,10).

5. Repeat step 4 for a3,4 and a′3,4 where the statement used by SEHVZKOR is (x3, x4).

6. Compute a1,2,3,4 by using the committing algorithm with no trapdoor with inputs a1,2||a′1,2 and
a3,4||a′3,4, parameters (p20, p

2
1) and randomness r2.

7. Generate the equivocation randomness r1 (using the trapdoor related to p10) to open the equivocal
position of acnf to a1,2,3,4.

• Send a value z = (z1, z2) to the verifier where z1 = ((z7, r3, p
3
0, p

3
1), r2, p

2
0, p

2
1), r1, p

1
0, p

1
1)) and z2 =

(z10, r
′
3, p

′3
0, p

′3
1). Notice that z2 contains less data than z1 as we are able to re-use the parameters and

the equivocation randomnesses from z2.

Finally, the verifier behaves as follows (we implicitly assume that all the algorithms take the verifier’s
challenge as input):

1. Parse z1 as ((z′1, r3, p
3
0, p

3
1), r2, p

2
0, p

2
1), r1, p

1
0, p

1
1)) and z2 as (z′2, r

′
3, p

′3
0, p

′3
1).

2. Unpack the merged trees and verify them individually. Let z̃ = (z′1, r3, p
3
0, p

3
1) and z̃′ = (z′2, r

′
3, p

′3
0, p

′3
1):

• Compute â1,2 = SEHVZKOR ((x1, x2), c, z̃) and â3,4 = SEHVZKOR ((x3, x4), c, z̃).

• Compute â′1,2 = SEHVZKOR ((x1, x2), c, z̃′) and â′3,4 = SEHVZKOR ((x3, x4), c, z̃′).
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acnf

a1,2,3,4

a1,2||a′1,2 a3,4||a′3,4

a5,6,7,8

a5,6||a′5,6 a7,8||a9,10

T1 p10

p20 p21

B1 p11

T2 p20 B2 p21

acnf

a1,2,3,4

a1,2

a1 a2

a3,4

a3 a4

a5,6,7,8

a5,6

a5 a6

a7,8

a7 a8

T1 p10

p20

p30 p31

p21

p30 p31

B1 p11

T2 p20

p30 p31

B2 p21

T3 p30 B3 p31

a′cnf

a′1,2,3,4

a′1,2

a′1 a′2

a′3,4

a′3 a′4

a5,6,9,10

a′5,6

a′5 a′6

a9,10

a9 a10

T1 p10

p20

p′
3
0 p′

3
1

p21

p′
3
0 p′

3
1

B1 p11

T2 p20

p′
3
0 p′

3
1

B2 p21

T3 p′
3
0 B3 p′

3
1

Figure 2: At the top of the figure, the merged composition tree resulting from two clauses of 8 literals
sharing a prefix of 6 literals is represented. Below are the two composition trees of the two clauses, where the
grey-shaded levels represent the levels that are not computed anymore since such commitment parameters
are shareable across the two clauses, and thus such levels are computed only in the merged composition tree
depicted on top. The solid nodes and edges represent the remaining part of the trees where the commitment
parameters are not shared between each other. These sub-trees are indeed computed and then merged in
the corresponding level of the merged composition tree depicted on top of the figure.
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• Check that the verifier algorithm of ΠOR outputs 1 for all the unmerged trees, i.e., VOR((x1, x2), â1,2,

c, z̃) = 1, VOR((x1, x2), â′1,2, c, z̃′) = 1, VOR((x3, x4), â3,4, c, z̃) = 1, and VOR((x3, x4), â′3,4, c, z̃′) =
1.

3. Verify correctness of merging:

• Compute a∗1,2,3,4 as a 1-out-of-2 commitment of a1,2||a′1,2 and a3,4||a′3,4 using parameters (p20, p
2
1)

and randomness r2 and check that a∗1,2,3,4 = a1,2,3,4.

4. Repeat step 2 to 3 for the right sub-tree of acnf , i.e. recompute â5,6 = SEHVZKOR ((x5, x6), c, z̃), â7,8 =

SEHVZKOR ((x7, x8), c, z̃), â′5,6 = SEHVZKOR ((x5, x6), c, z̃′), and â9,10 = SEHVZKOR ((x9, x10), c, z̃′), and check that
VOR((x5, x6), â5,6, c, z̃) = 1, VOR((x5, x6), â′5,6, c, z̃′) = 1, VOR((x7, x8), â7,8, c, z̃) = 1 and VOR((x9, x10),

â9,10, c, z̃′) = 1. Then, recompute a∗5,6,7,8 as the 1-out-of-2 commitment of a5,6||a′5,6 and a7,8||a9,10
using parameters (p20, p

2
1) and randomness r2, and check that a∗5,6,7,8 = a5,6,7,8.

5. Finally, compute a∗cnf as a 1-out-of-2 commitment of a1,2,3,4 and a5,6,7,8 using parameters (p10, p
1
1) and

randomness r1 and check that a∗cnf = acnf .

In a nutshell, our protocol merges all the levels that share the same commitment parameters and this
allows to use a unique set of equivocation randomnesses for such levels. In the first round, the prover sends a
single commitment encoding the 2 composition trees. Then, the verifier is able to reconstruct the composition
trees and verify them using the verification algorithm of ΠOR.

2.4 Our Σ-Protocol for (τ, k,m)-CNF Relations
To design our Σ-protocol for (τ, k,m)-CNF relations Πcnf

τ,k, we adapt some techniques from [5] to our protocol
for (k,m)-CNF relations from above. In [5], Avitabile et al. show how to compose the disjunction protocol
of [18] to get a Σ-protocol for (τ, k, 1)-CNF relations (i.e., a τ -out-of-k proof of partial knowledge). In a
nutshell, they repeat τ times the protocol ΠOR for the same statement, with additional proof certifying
that each execution uses a different witness. Their main observation is that the commitment parameters of
an execution of ΠOR can be uniquely mapped to a binary string depending on which witness was used to
generate the proof. Hence, they provide a communication-efficient stackable Σ-protocol to sort such strings
in zero knowledge, proving that there is a certain ordering among the strings representing the commitment
parameters while hiding the digits in which the strings differ (i.e., hiding which witnesses were used in the
τ executions of ΠOR). They call such protocol Πord. In order to get a Σ-protocol for (τ, k, 1)-CNF relations,
they simply run Πord using the commitment parameters of each of the τ executions of ΠOR as a statement,
and the trapdoors of every parameter pair as a witness.

Similarly to [5], we could repeat our Πcnf for τ times, and then prove that a different witness was used for
each clause in each of the τ executions of Πcnf . This latter proof would be done by running m times Πord using
the τ different full vectors of commitment parameters related to each of the m clauses as the statements.
To be more specific, we would need to consider the recycled parameters in all the vectors of commitment
parameters related to clauses of the same execution of Πcnf . However, analogously to what happens when
only batching commitment parameters (and not the equivocation randomnesses) in a (k,m)-CNF (Sec. 2.3),
the benefit of having recycled some commitment parameters would not be enough to produce asymptotic
communication savings w.r.t. the naive repetition of m times of the (τ, k)-PPK of [18, 5]. This is because
the size of the ordering proof of [5] is linear in the size of the statement, and every ordering proof would
involve vectors of commitment parameters of full length, just like in the solution of [5].

Notice that the naive approach of producing an ordering proof for the τ vectors of parameters of length
log k related to the first clause, and m− 1 proofs for the τ vectors of parameters of length log(k− ℓ) related
to of the remaining m− 1 clauses of the CNF does not work. Indeed, the resulting protocol would not even
be complete. For example, let us consider a CNF with two clauses x1, x2, with k = 16, ℓ = 12, and τ = 2.
Let the binary string representing the composition tree w.r.t. x2 in the first execution be 0000 (i.e., the
prover has the witness for position 1), and the binary string w.r.t. x2 in the second execution be 1100 (i.e.,
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the prover has the witness for position 13). Since in this case Πord is only executed over the commitment
parameters related to the suffix composed by k− ℓ literals (i.e., to the last log 4 = 2 pair of parameters), Πord

would have to prove that 00 < 00, which is impossible. We overcome this problem by slightly changing how
the ordering relation is proved for the remaining m− 1 clauses. In particular, regarding the above example,
let p1 and p2 be the parameters w.r.t. the prefix of x2 in the first and second execution respectively, and
s1 and s2 be the ones for the suffix. The prover would prove a modified ordering relation9 of the form
s1 < s2 ∨ p1 < p2. This modified version of the ordering protocol allows the prover to produce a satisfying
ordering proof by using the witness for the branch of the OR comparing the prefixes (i.e., proving that
00 < 11). As detailed in Sec. 5, thanks to the efficiency of disjunctions, this modified version of the ordering
protocol allows us to build a (τ, k,m)-CNF retaining the efficiency gains of our (k,m)-CNF.

On getting (τ, k,m)-CNF from (τ, k)-PPK. We observe that it is possible to build a communication-
efficient protocol for (1, k,m)-CNF relations from a (1, k)-PPK in a black-box way. Indeed, we can re-write
the (k,m)-CNF into a single disjunction with more complex base statements:

∨
j∈J

(xj) ∨

 ∧
i∈[m]

( ∨
u∈Ii

(xu)

) . (1)

The latter formula is a disjunction of the type
∨

j∈J (xj)∨x′ where x′ =
∧

i∈[m](
∨

u∈Ii
(xu)). Notice that

literals repeating across the clauses appear in the modified formula only once. Hence, to get a protocol for the
(k,m)-CNF relation, it suffices to prove the modified statement using a suitable disjunction protocol. The
protocol resulting from applying this observation together with the disjunction of [18] already outperforms
[1, 2, 29] for the same set of parameters discussed in Sec. 1.1.

Unfortunately, the above approach does not immediately carry over to the more interesting case of
(τ, k,m)-CNF with τ > 1. In particular, it is unclear whether there are clever ways to take advantage of
repeating literals while getting a protocol for (τ, k,m)-CNF relations from a (τ, k)-PPK in a black-box way
for general values of τ . Indeed, when considering the formula above

∨
j∈J (xj) ∨ x′, we face the following

issue when trying to obtain a proof for a (τ, k,m)-CNF.
Recall that the idea of [5] is to generate for each clause τ different executions of the (1, k)-PPK and prove

that a different witness is used to compute each of the τ PPKs. If we want to rely on a similar technique for
the formula above, it is not clear how to cover the case in which the prover used two different witnesses inside
x′. This problem arises from the fact that the composition tree of

∨
j∈J (xj)∨x′ has the same configuration

of parameters for any of the (many) witnesses for x′ that the prover may use. The same problem arises when
using the (τ, k)-PPK proposed in [18]. An idea would be to rewrite the formula in such a way that the issue
described above can be circumvented. However, we did not find a way to rewrite a suitable formula to avoid
any blow-up in the number of clauses. Therefore, we propose a novel approach that does not involve simply
re-using known Σ-protocol composition techniques out of the box.

3 Preliminaries
Let N be the set of all natural numbers; for n ∈ N, we write [n] for the set {1, . . . , n} and [m,n] for the set
{m,m+ 1, . . . , n}, where n > m.

Throughout this paper, we use the abbreviation PPT to denote probabilistic polynomial time. Given a
PPT algorithm A, let A(x) be the probability distribution of the output of A when run with x as input. We
use A(x; r), instead, to denote the output of A when run on input x and coin tosses r. We denote with λ ∈ N
the security parameter and with poly(·) an arbitrary positive polynomial. Every algorithm takes as input
the security parameter λ (in unary, i.e. 1λ). When an algorithm takes more than one input, 1λ is omitted.
We say that a function ν : N→ R is negligible in the security parameter λ ∈ N if it vanishes faster than the

9Whenever we compare two lists of commitment parameters, we actually refer to the comparison of the associated binary
strings.
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inverse of any polynomial in λ, i.e. ν(λ) < 1
poly(λ) for all positive polynomials poly(λ). We use ← when the

variable on the left side is assigned with the output value of the algorithm on the right side. Similarly, when
using ←$ , we mean that the variable on the left side is assigned a value sampled randomly according to the
distribution on the right side.

A polynomial-time relation R is a relation for which membership of (x,w) in R can be decided in time
polynomial in |x|. If (x,w) ∈ R, then we say that w is a witness for the instance x. A polynomial-time
relation R is naturally associated with the NP language L and we denote it by writing RL.

A distribution ensemble {X(λ)}λ∈N is an infinite sequence of probability distributions, where a distribu-
tion X(λ) is associated with each value of λ ∈ N. We say that two distribution ensembles {X(λ)}λ∈N and
{Y (λ)}λ∈N are computationally indistinguishable if for every PPT distinguisher D, there exists a negligible
function ν such that:

Pr
[
D(1λ, X(λ)) = 1

]
− Pr

[
D(1λ, Y (λ)) = 1

]
≤ ν(λ).

{X(λ)}λ∈N and {Y (λ)}λ∈N are statistically indistinguishable if the above holds for computationally un-
bounded D. We use ≡ to denote that two distribution ensembles are identical.

Throughout the paper, we refer to vectors using boldface. Moreover, we use v[i] to denote the i-th
position of v, v[i, . . . , j] to denote the subvector of v from position i to position j, v.append(x) to denote
that we are appending x as last element of v, v.length to denote the function that returns the number
of elements in v. The first position of the array is indexed with 1. We use the symbol “ ||” to denote the
concatenation of binary strings. In some cases, we use the ternary operator (? :) to denote the conditional
expression in the algorithms (i.e., we write “condition?evaluated-when-true : evaluated-when-false”).

3.1 1-out-of-2 Equivocal Commitments
A 1-out-of-2 equivocal commitment scheme is composed of a tuple of PPT algorithms CS = (Setup,Gen,
BindCom,EquivCom,Equiv), along with a polynomial-time relation R, specified as follows:

• pp← Setup(1λ; r): upon input the security parameter, and randomness r, generates public parameters
pp; we denote by Ypp the space of well-formed commitment parameters w.r.t. pp, and require that
membership in Ypp can be checked efficiently.

• (p0, p1, td)← Gen(pp, b; r): upon input public parameters pp, binding position b ∈ {0, 1}, and random-
ness r, returns the commitment parameters (p0, p1) ∈ Ypp and the trapdoor td for parameter p1−b such
that (p1−b, td) belongs to R.10

• com ← BindCom(pp, p0, p1,m0,m1; r): upon input public parameters pp, commitment parameters p0,
p1, messages m0, m1, and randomness r outputs a commitment com.

• (com, aux) ← EquivCom(pp, b,m, p0, p1, td; r): upon input public parameters pp, binding position b,
message of the binding position m, commitment parameters p0, p1, trapdoor td, and randomness r
returns a commitment com and auxiliary information aux.

• r ← Equiv(pp, b,m0,m1, p0, p1, td, aux): upon input public parameters pp, binding position b, messages
m0, m1, commitment parameters p0, p1, trapdoor td, and auxiliary information aux, deterministically
returns an equivocation randomness r.

Here we report the definitions of 1-out-of-2 equivocal commitments as defined in [5]. The description of
the algorithms is reported in Sec. 3.1. In the following, we will omit the randomness from the input of the
algorithms, except when it is relevant. A sender and a receiver interact using the commitment scheme as
follows.

Commit Phase: The sender, on input m and binding position b, computes (p0, p1, td) ← Gen(pp, b),
(com, aux)← EquivCom(pp, b,m, p0, p1, td). The sender sends (com, p0, p1) to the receiver.

10The statement for R may also depend from pp. We will omit this dependence to simplify the notation.
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Reveal Phase: The sender, on input m∗, computes r ← Equiv(pp, b,m0,m1, p0, p1, td, aux) where mb = m
and m1−b = m∗, and sends (r,m0,m1) to the receiver. The receiver computes com′ ← BindCom(pp, p0, p1,
m0,m1; r) and accepts if com′ = com and (p0, p1) ∈ Ypp; it rejects otherwise.

We state below the properties we require for 1-out-of-2 equivocal commitment schemes.

Partial Equivocation: For all λ ∈ N, pp ← Setup(1λ), b ∈ {0, 1}, (p0, p1) ∈ Ypp, (m0,m1) ∈ {0, 1}2λ, td
such that (p1−b, td) ∈ R the following holds:

Pr

[
BindCom(pp, p0, p1,
m0,m1; r) = com

∣∣∣∣ (com, aux)← EquivCom(pp, b,mb, p0, p1, td);
r ← Equiv(pp, b,m0,m1, p0, p1, td, aux).

]
= 1.

Computational Fixed Equivocation: Given the experiment ExpFixEquiv(λ) below, for every PPT A,
there exists a negligible function ν(·) such that Pr [ ExpFixEquivA(λ) = 1 ] ≤ ν(λ).

ExpFixEquivA(λ)

1. pp← Setup(1λ).

2. (p0, p1, r
1, r2, r3, r4,m1

0,m
2
0,m

1
1,m

2
1,m

3
0,m

4
0,m

3
1,m

4
1)← A(pp).

3. Return 1 if ∃b ∈ {0, 1} such that

(BindCom(pp, p0, p1,m
1
0,m

1
1; r

1) = BindCom(pp, p0, p1,m
2
0,m

2
1; r

2) ∧(
BindCom(pp, p0, p1,m

3
0,m

3
1; r

3) = BindCom(pp, p0, p1,m
4
0,m

4
1; r

4)) ∧
(m1

1−b ̸= m2
1−b) ∧ (m3

b ̸= m4
b) ∧ ((p0, p1) ∈ Ypp).

Return 0 otherwise.

Moreover, the protocol achieves perfect fixed equivocation if for any unbounded A it holds that
Pr [ ExpFixEquivA(λ) = 1 ] = 0.

Computational Position Hiding: Given the experiment ExpHid(λ) below, for every PPT A, there exists
a negligible function ν(·) such that
Pr [ ExpHidA(λ) = 1 ] ≤ 1

2 + ν(λ).

ExpHidA(λ)

1. pp← Setup(1λ).

2. Sample b←$ {0, 1} and compute (p0, p1, td)← Gen(pp, b).

3. b′ ← A(pp, p0, p1).
4. Return 1 if b′ = b and 0 otherwise.

Moreover, if A is unbounded and ν(λ) = 0 we say that the scheme is perfect position hiding.

Computational Trapdoorness: Given the experiment ExpTrap, for every PPT A, there exists a negligible
function ν(·) such that Pr [ ExpTrapA(λ) = 1 ] ≤ 1

2 + ν(λ).
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ExpTrapA(λ)

1. pp← Setup(1λ).

2. (m0,m1, p0, p1, td, b)← A(pp).
3. If (p0, p1) ̸∈ Ypp or (p1−b, td) ̸∈ R abort the experiment.

4. Sample β←$ {0, 1}. If β = 0, set (com, aux) ← EquivCom(pp, b,mb, p0, p1, td) and
set r ← Equiv(pp, b,m0,m1, p0, p1, td, aux). If β = 1, sample r←$ D and set com ←
BindCom(pp, p0, p1,m0,m1; r).

5. β′ ← A(pp,m0,m1, p0, p1, td, b, com, r).

6. Return 1 if β = β′, return 0 otherwise.

Moreover, if A is unbounded and ν(λ) = 0 we say that the protocol achieves perfect trapdoorness.

An instantiation of the 1-out-of-2 equivocal commitment scheme is given in [18], where the instantiated
scheme enjoys partial equivocation, computational fixed equivocation, perfect position hiding, and perfect
trapdoorness under the discrete logarithm assumption.

In the following, we assume that pp was already generated by a trusted third party using the algorithm
Setup. Additionally, to simplify the notation, we will consider pp as an implicit input of every algorithm
that internally uses a 1-out-of-2 equivocal commitment.

3.2 Σ-Protocols
We consider a 3-round public-coin protocol Π for an NP language L with a poly-time relation RL. Π =
(P0,P1,V) is run by a prover running auxiliary algorithms P0,P1 and a verifier running an auxiliary algorithm
V. The prover and the verifier receive common input x and the security parameter 1λ. The prover receives
as an additional private input a witness w for x. Prover and verifier use the auxiliary algorithms P0,P1,V
in the following way:

1. The prover runs P0 on common input x, private input w, randomness R, and outputs a message a.
The prover sends a to the verifier;

2. The verifier samples a random challenge c←$ {0, 1}λ and sends c to the prover;

3. The prover runs P1 on common input x, private input w, first-round message a, randomness R, and
challenge c, and outputs the third-round message z, which is then sent to the verifier;

4. The verifier outputs 1 if V(x, a, c, z) = 1, and rejects otherwise.

The transcript (a, c, z) for the protocol Π = (P0,P1,V), and common statement x is called accepting if
V(x, a, c, z) = 1.

Definition 1 (Σ-protocol) A 3-round public-coin protocol Π = (P0,P1,V), is a Σ-protocol for an NP
language L with a poly-time relation RL iff the following holds

Completeness: For all x ∈ L and w such that (x,w) ∈ RL it holds that:

Pr

 V(x, a, c, z) = 1

∣∣∣∣∣∣
R←$ {0, 1}λ; c←$ {0, 1}λ;

a← P0(x,w;R);
z ← P1(x,w, a, c;R)

 = 1.
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Special Soundness: There exists a PPT extractor Ext, such that on input x and two accepting transcripts
(a, c0, z0) and (a, c1, z1) for x, where c0 ̸= c1, it holds that

Pr [ (x,w) ∈ RL|w ← Ext(x, a, c0, c1, z0, z1) ] = 1.

Special HVZK (SHVZK): There exists a PPT simulator S that, on input an instance x ∈ L and chal-
lenge c, outputs (a, z) such that (a, c, z) is an accepting transcript for x. Moreover, the distribution
of the output of S on input (x, c) is computationally/statistically/perfectly indistinguishable from the
distribution obtained when the verifier sends c as a challenge and the prover runs on common input x
and any private input w such that (x,w) ∈ RL.

We will also consider Σ-protocols where prover and verifier also use some trusted parameters, and in this
case we replace the above special soundness with the following computational special soundness.

Computational Special Soundness: There exists a PPT extractor Ext such that ∀ PPT, A, λ ∈ N ∃ a
negligible function ν(·) such that Pr

[
ExpExtA,Ext(λ) = 1

]
≤ ν(λ).

ExpExtA,Ext(λ)

1. (x, a, c0, c1, z0, z1)← A(λ).
2. If c0 = c1, or V(x, a, c0, z0) = 0, or V(x, a, c1, z1) = 0 return 0.

3. w ← Ext(x, a, c0, c1, z0, z1).

4. Return 1 if (x,w) /∈ RL. Otherwise, return 0.

In the above definition of computational special soundness, one might think ν(λ) must correspond to
0 since otherwise there always is an A having the succeeding tuple (x, a, c0, c1, z0, z1) hardwired in its
code. However, notice that as in [18, 5] we are assuming that there is a trusted parameter pp implicitly
received as input. This can allow the design of a computationally special-sound Σ-protocol ruling out
the above adversary even for ν(λ) > 0.

3.3 Stackable Σ-Protocols
Stackable Σ-protocols are a strengthening of the standard Σ-protocols (Sec. 3.2). The extended honest-verifier
zero-knowledge (EHVZK) property requires the existence of an extended simulator, that, given a third-round
message sampled from the space of admissible third-round messages, outputs a unique first-round message11.
Additionally, the simulator shall be able to reuse a specific third-round message across different statements,
so that multiple first-round messages can be derived from the same third-round message. Goel et al. [18]
showed that all Σ-protocols can be made EHVZK and that usually Σ-protocols are already stackable.

Definition 2 (Computational EHVZK) Let Σ = (P0,P1,V), be a Σ-protocol for an NP language L. Σ
is EHVZK if there exists a deterministic polynomial-time algorithm SEHVZK such that for all PPT D, for all
λ ∈ N, and c ∈ {0, 1}λ, there exists an efficiently samplable distribution D

(z)
x,c and a negligible function ν(·)

such that∣∣∣Pr [ ExpEHVZK(P0,P1),D,D
(z)
x,c

(λ, c) = 1
]
− Pr

[
ExpEHVZKSEHVZK,D,D

(z)
x,c

(λ, c) = 1
] ∣∣∣ ≤ ν(λ).

The experiment ExpEHVZK for EHVZK follows.

11A similar definition was introduced by Abe et al. [3] in their type-T signatures schemes.
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ExpEHVZK
P′,D,D

(z)
x,c

(λ, c)

1. (x,w)← D(λ, c).

2. If (x,w) ̸∈ RL, return 0.

3. If P′ = SEHVZK, sample z←$ D
(z)
x,c and compute a← SEHVZK(x, c, z).

4. Otherwise, sample R←$ {0, 1}λ, compute a← P0(x,w;R) and z ← P1(x,w, a, c;R).

5. Return D(x,w, a, c, z).

Definition 3 (Statistical/Perfect EHVZK) Let Σ = (P0,P1,V), be a Σ-protocol for an NP language L.
Σ is statistical/perfect EHVZK if there exists a deterministic polynomial-time algorithm SEHVZK such that
for all λ ∈ N, and c ∈ {0, 1}λ, there exists an efficiently samplable distribution D

(z)
x,c such that for all x ∈ L

{
(a, c, z) | R←$ {0, 1}λ, a← P0(x,w;R), z ← P1(x,w, a, c;R)

}
≈
{
(a, c, z) | z←$ D(z)

x,c, a← SEHVZK(x, c, z)
}
,

where ≈ can either denote statistical or perfect indistinguishability.

Definition 4 (Σ-protocol with recyclable third messages) Let Σ = (P0,P1,V) be a Σ-protocol for an
NP language L, Σ has recyclable third messages if for every c ∈ {0, 1}λ, there exists an efficiently samplable
distribution D

(z)
c , such that for all (x,w) ∈ RL, it holds that D(z)

c ≈ {z|R←$ {0, 1}λ; a ← P0(x,w;R); z ←
P1(x,w, c;R)}.

Definition 5 (Stackable Σ-protocol) We say that a Σ-protocol Σ = (P0,P1,V), is stackable, if it is a
EHVZK Σ-protocol and has recyclable third messages.

The instantiation of the stackable Σ-protocol for disjunctions of [18] (and hence ours) requires the ex-
istence of a transparent setup. As it is done in [18], we consider a definition of stackable Σ-protocols that
does not contemplate a setup. We find that this omission does not affect the protocol description and the
security proofs while it improves the overall readability of the paper.

3.4 The Disjunction Composition of [18]
We give a description of the disjunction compiler of [18]. Let us start by describing the compiler for a
disjunction featuring just two base statements. Let Π = (P0,P1,V) be a stackable Σ-protocol for language
L and let SEHVZKbase be the simulator for Π. Let x = (x0, x1) be the public input. Let w = (wα, α), with
α ∈ {0, 1}, so that (xα, wα) ∈ RL be the prover’s private input. The compiler gives a stackable Σ-protocol
Π1,2 = (P1,2

0 ,P1,2
1 ,V1,2) for the relation R1,2 = {(x = (x0, x1), wα)|(x0, wα) ∈ RL ∨ (x1, wα) ∈ RL}. We

report such compiler in Fig. 3.
Given the compiler in Fig. 3 it is straightforward to extend this protocol to handle disjunctions with k

base statements using recursion as described in [18]. We call the resulting protocol ΠOR = (POR
0 ,POR

1 ,VOR).
Notice that, to avoid to later re-compute such data re-using the randomness, we can extend the output of
POR
0 ((x1, . . . , xk), (w,α); rand) to include additional data aside the first-round message a. In particular the

extended output can be of the form (a,p = ((p10, p
1
1), . . . , (p

log k
0 , plog k

1 ), td = (td1, . . . , tdlog k)), where a is
the first-round message, p and td the tuple of log k parameters and the respective trapdoors to be used by
the underlying composition 1-out-of-2 equivocal commitment. The algorithm POR

1 ((x1, . . . , xk), (w,α), a, c;
rand) outputs the third-round message z, and VOR((x1, . . . , xk), a, c, z) outputs 1/0.
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Let Π = (P0,P1,V) be a stackable Σ-protocol for relation RL and (Gen,BindCom,EquivCom,Equiv) the
algorithms of a 1-out-of-2 equivocal commitment scheme. The following compiler produces a stackable
Σ-protocol Π1,2 = (P1,2

0 ,P1,2
1 ,V1,2) for relation ROR = {((x0, x1), w)|(x0, w) ∈ RL ∨ (x1, w) ∈ RL}. Let

pp be public parameters of the 1-out-of-2 equivocal commitment scheme.

First round: The prover, on input (x, (w, b), randP), runs P1,2
0 (x, (w, b); randP) as follows:

• Parse randP = (randb||rand0||rand1);
• vb ← P0(xb, wb; rand

b);

• (p0, p1, td)← Gen(pp, b; rand0);

• (com, aux)← EquivCom(pp, b, vb, p0, p1, td; rand1);

• Output (σ1, td) where σ1 = (com, p0, p1).

Finally, the prover sends a = σ1 to the verifier.

Second round: The verifier samples a challenge c←$ {0, 1}λ and sends c to the prover.

Third round: The prover runs P1,2
1 (x, (w, b), a, c; randP) as follows:

• Parse randP = (randb||rand0||rand1) and a = (com, p0, p1);

• Compute z∗ ← P1(xb, wb, vb, c; rand
b) (where vb is re-computed as in the first round);

• v∗1−b ← SEHVZKbase (x1−b, c, z
∗);

• Set v∗b = vb;

• r ← Equiv(pp, b, v∗0 , v
∗
1 , p0, p1, td, aux) (where td and aux are computed with randP);

• Output z = (z∗, r, p0, p1).

Finally, the prover sends z to V1,2.

Verification: V1,2, in input (x, a, c, z), does as follows:

• Parse a = (com, p0, p1) and z = (z∗, r, p′0, p
′
1);

• If (p0, p1) ̸= (p′0, p
′
1) return 0, otherwise continue to next step;

• If (p0, p1) ̸∈ Ypp return 0, otherwise continue to next step;

• Set vi ← SEHVZKbase (xi, c, z
∗), for i ∈ {0, 1};

• Compute com′ ← BindCom(p0, p1, v0, v1, c; r). If com′ = com, return V(x0, v0, c, z
∗) ∧

V(x1, v1, c, z
∗), otherwise output 0.

Figure 3: Disjunction composition of [18] for k = 2 from stackable Σ-protocols.
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We recall that ΠOR of [18] is a stackable Σ-protocol with computational special soundness. If the employed
1-out-of-2 equivocal commitment scheme satisfies perfect trapdoorness and perfect position hiding, then the
EHVZK flavor (i.e., perfect, statistical, or computational) of the base Σ-protocol is preserved.

3.5 The Ordering Protocol of [5]
Here, we give a brief overview of the ordering protocol Πord of [5]. We refer to [5] for more details. Πord =
(Pord

0 ,Pord
1 ,Vord) is a stackable Σ-protocol. Given k vectors p1, . . . ,pk of n pairs of parameters of a 1-out-

of-2 equivocal commitment and k vectors w1, . . . ,wk of witnesses (i.e., the corresponding trapdoors), the

relation proved by Πord is Rord((p1, . . . ,pk), (w1, . . . ,wk)) =
k−1∧
i=1

Rord′((pi,pi+1), (wi,wi+1)). Informally,

the two sequences of parameters p,q (together with their trapdoors) satisfy relation Rord′ whenever the
binary string corresponding to p is smaller than the one corresponding to q (Sec. 2). As a result, a witness
for Rord is a set of trapdoors each of which corresponds to a different all-binding path in its composition tree.
More in details, [5] is instantiated with the equivocal commitment scheme presented in [18] based on the
discrete logarithm assumption that is a variation of the Pedersen commitment. Concretely, the case of the
1-out-of-2 equivocal commitment scheme, instead of having only generators g and h, for which the sender
does not know the discrete logarithm of g with base h, has three generators g1, g2, h such that the sender
knows the discrete logarithm of either g1 or g2 in base h. Let us consider the relation RDL(p

i
b, w

i
p) as the

function evaluating to 1 if wi
p is the discrete logarithm of pib with regard to h and 0 otherwise. Notice that

RDL can be substituted by any relation that returns 1 if the parameter pib in input is the parameter associated
with the trapdoor wi

p and 0 otherwise. Let us consider two vectors of parameters p = ((p10, p
1
1), . . . , (p

n
0 , p

n
1 ))

and q = ((q10 , q
1
1), . . . , (q

n
0 , q

n
1 )), and two vectors of trapdoors wp = (w1

p, . . . , w
n
p ) and wq = (w1

q , . . . , w
n
q ),

then Rord′((p,q), (wp,wq)) is defined as follows:

n∨
i=1

(( i−1∧
j=0

(
((RDL(p

j
0, w

j
p) ∧RDL(q

j
0, w

j
q)) ∨ (RDL(p

j
1, w

j
p) ∧RDL(q

j
1, w

j
q))
))

∧ (RDL(p
i
1, w

i
p) ∧RDL(q

i
0, w

i
q))

)
. (2)

In a nutshell, to check whether the string corresponding to a parameters vector p is smaller than another
one q, Rord′ checks that either there exist a bit within the p which is smaller than the corresponding one in
q, while all the other digits are identical in both strings.

The ordering protocol instantiation of [5] satisfies computational special soundness and perfect HVZK.
The communication complexity is O((k − 1)n).

4 Our (k,m)-CNF Composition
To construct our (τ, k,m)-CNF composition technique (Sec. 5), we first propose a novel stackable Σ-protocol
Πcnf for the following relation:

Rcnf
1,k = {((x1, . . . , xm), (w1, . . . , wm)) : ∀ i ∈ [m] : (xi, wi) ∈ R1,k},

where R1,k = {((x1, . . . , xk), (w,α))|1 ≤ α ≤ k ∧ (xα, w) ∈ RL}.
Πcnf is obtained via parallel execution of ΠOR. Additionally, in one of these executions of ΠOR (the one

related to the merged composition tree), we slightly modify the internal recursive composition to account
for commitment parameters and equivocation randomnesses batching. We report our stackable Σ-protocol
Πcnf for Rcnf

1,k in Fig. 4 for a (k,m+ 1)-CNF to improve its readability12. In Fig. 4 we consider the following
values:

12Notice that we do not cover the case in which ℓ = k− 1 since it is trivial and adding it will make the scheme less readable.
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• Let k be the length of the clauses that we assume to be a power of 2. Consequently, log k will be the
height of the merged composition tree.

• Let m+ 1 be the total number of clauses in the CNF formula, i.e., Pcnf
0 takes in input a list of m+ 1

set of literals (x, x1, . . . xm), where x = (x1, . . . , xk) and xt = (xt
1, . . . , x

t
k) with t ∈ [m];

• Let ℓ be the number of literals that are shared (i.e., are in the prefix) of the m+1 clauses. Then, k− ℓ
is the number of literals which are different between the clauses, we require that it is a power of 2;

• Let d be equal to ⌊log( k
k−ℓ )⌋. The value d represents the number of levels of the composition tree

in which the parameters are reused across the clauses. Notice that log(k − ℓ) is the height of the
composition sub-trees rooted at level d in the m clauses (x1, . . . xm). Such sub-trees do not share
parameters with the other sub-trees of the other clauses;

• We define the values et and dt as follows. Recall from Sec. 2 that for the m clauses (x1, . . . xm) we need
to compute the protocol of [18] on the k − ℓ literals in the composition tree that includes the witness
wαt

, for t ∈ [m]. To do so, Pcnf
0 computes et = ⌊αt/(k − ℓ)⌋ that is the index of the sub-tree of k − ℓ

leaves that contains the literal indexed αt ∈ [k]. i.e., the statement for which Pcnf
0 knows the witness

wαt
. After having computed et, Pcnf

0 computes the index of the first statement among (xt
1, . . . , x

t
k) that

corresponds to the et-th sub-tree. This index is dt = et(k − ℓ) + 1 (it is trivial to see that the last
statement of this sub-tree has index dt + k − ℓ − 1). The last thing that Pcnf

0 has to compute is the
new index to assign to the witness within the sub-tree wαt

, that is αt = αt − dt + 1 (i.e., to match the
interface of POR this index has to be re-scaled w.r.t. the length of the sub-clause of the sub-tree).

In particular, we introduce three auxiliary algorithms First, Third, and Verify, formally described in Fig.
5, 6, and 7 respectively. First and Third are run by the prover to produce the first and third-round messages
to be sent to the verifier. Verify is used by the verifier to verify the proof. These algorithms take as inputs
a set of clauses13 x, x1, . . . , xm sharing a common prefix of length ℓ. Moreover, these algorithms take as
input an additional value called d > 0 which indicates the number of levels of the trees that can share the
commitment parameters14. Let us consider the simple example of Fig. 2. In this case, d = 2. Now, the job of
First is to create the merged composition tree depicted on top of the figure. Before invoking First, the prover
has to compute the intermediate commitments {at}t∈[m] to be merged in the composition tree (i.e., the root
a9,10 of the tree depicted in the bottom of Fig. 2). This is done by running POR

0 on the appropriate portions
of each clause {xt}t∈[m] (i.e., x9 ∨ x10 in Fig. 2). Then, the prover invokes First with the additional inputs
{at}t∈[m], and an empty vector td that will be updated by First with the trapdoors of the commitment
parameters. First works as follows:

Recursive phase: divide the instance in half as follows:

• Pick the part of the instance containing the base instance the prover holds the witness for (we
call it the active instance);

• At each recursive call, decrement the value of d by 1;

• Once the base case of d = 1 is reached, call ΠOR on the portion of the instance containing the
active instance, obtaining an internal node a′d (i.e., a7,8 in Fig. 2);

Combine phase: commitments at level d are then recombined as follows:

• All {at}t∈[m] (i.e., a9,10 in Fig. 2) are appropriately concatenated with a′d to create the final node
ad at level d;

• Finally, the merged composition tree is finalized as in a regular execution of ΠOR.
13Here we are constructing a (k,m + 1)-CNF, where we call the first statement x and the remaining x1, . . . , xm. The same

holds also for the witnesses. We use this notation for readability.
14We do not consider the case of d = 0, since it is equivalent to repeating ΠOR in parallel m+ 1 times.
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Let ΠOR = (POR
0 ,POR

1 ,VOR) be the stackable Σ-protocol of [18] for relation ROR. In the following we
describe our stackable Σ-protocol Πcnf = (Pcnf

0 ,Pcnf
1 ,Vcnf) for relation Rcnf

1,k. Let x1, . . . , xm be the clauses
sharing the first 2d base statements with the first clause x. Let d = ⌊log( k

k−ℓ )⌋ represent the number of
levels that share parameters across the composition trees of each clause (i.e., 0 < d ≤ log k).

First round: The algorithm Pcnf
0 ((x, x1, . . . xm), (w,w1, . . . , wm); rand), where xt = (xt

1, . . . , x
t
k) for

t ∈ [m], works as follows:

• Parse w as (wα, α), and for t ∈ [m] parse wt as (wαt
, αt);

• Parse rand as (rand′, rand1, . . . , randm);

• Set td = [];

• Let ℓ be the common prefix of the m + 1 clauses, let et = ⌊αt/(k − ℓ)⌋, compute
dt = et(k − ℓ) + 1, set wβ = wαt

and αt = αt − dt + 1. Compute (at, ·) ←
POR
0 ((xt

dt
, . . . , xt

dt+k−ℓ−1), (wβ , αt); randt) for t ∈ [m];

• Parse at = (comt, (p
t,1
0 , pt,11 ), . . . , (p

t,log(k−ℓ)
0 , p

t,log(k−ℓ)
1 )), for t ∈ [m];

• Run (com, (p10, p
1
1), . . . , (p

log(k)
0 , p

log(k)
1 ))← First(x,wα, α, d, {comt}t∈[m], rand

′, td).

The prover sends a = (com, (p10, p
1
1), . . . , (p

log(k)
0 , p

t,log(k)
1 )) to the verifier.

Second round: The verifier samples a challenge c←$ {0, 1}λ and sends c to the prover.

Third round: The algorithm Pcnf
1 ((x, x1, . . . xm), (w,w1, . . . , wm), a, c, td; rand) works as follows:

• Parse rand as (rand′, rand1, . . . , randm);

• For each t ∈ [m], parse wt as (wαt
, αt);

• Recompute vα as the first-round message related to x committed in the binding position at
level d (e.g., a7,8 in Fig. 2);

• For each t ∈ [m], set αt = αt−dt+1 compute zt ← POR
1 ((xt

dt
, . . . , xt

dt+e), (wt, αt), at, c; randt).

• Parse at = (comt, (p
t,1
0 , pt,11 ), . . . , (p

t,log(k−ℓ)
0 , p

t,log(k−ℓ)
1 )), for t ∈ [m];

• z̃ ← Third(x,wα, α, d, {xt}t∈[m], {comt}t∈[m], {zt}t∈[m], vα, c, rand
′, td).

The prover sends z = (z̃, z1, . . . , zm) to the verifier.

Verification: Vcnf(x, x1, . . . xm, a, c, z̃, z1, . . . , zm), works as follows:

• (bool, ·, ·, ·)← Verify(x, {xt}t∈[m], d, a, z̃, {zt}t∈[m], c);

• If bool = true output 1, and 0 otherwise.

Figure 4: Our stackable Σ-protocol Πcnf for Rcnf
1,k.

After having received the challenge from the verifier, the prover first computes, by running POR
1 , the third-

round messages for all the portions of the clauses {xt}t∈[m] identified in the first round. As a result, the
prover gets m third-round messages {zt}t∈[m] that will be given in input to Third. The third-round messages
{zt}t∈[m] already contain the equivocation randomnesses, from the leaves up to level d, of the unmerged
composition trees. The job of Third is to compute, along with the third-round message related to the active
base instance of x, the equivocation randomnesses of the merged composition tree. Up to level d, such

22



randomnesses are computed as in a regular execution of ΠOR. Then from level d up to the root of the
merged composition tree, Third takes into account the third-round messages of the other clauses {zt}t∈[m],
to appropriately equivocate the merged nodes. Notice that this is basically a regular execution of ΠOR where
the trapdoor branches are equivocated up until the root, with the exception that the value to equivocate at
level d not only comes from the output of the EHVZK simulator w.r.t. (a portion of) clause x, but also from
the output of the EHVZK simulator w.r.t. the clauses {xt}t∈[m]. Third works as follows:

Recursive phase: divide the instances x, {xt}t∈[m] in half as follows:

• Consider the index α of the active instance in clause x. Let us update x and xt, t ∈ [m], to contain
half of x and xt respectively. The selected half contains the index α of active instance of x, while
x̄ and x̄t contain the other halves;

• At each recursive call, decrement the value of d by 1;
• Once the base case of d = 1 is reached, the algorithm handles the equivocation of the merged

nodes as follows:
– Compute the third-round message z∗ related to x using POR

1 ;
– Compute the first-round message v1−b related to x̄ using the EHVZK simulator on input z∗;
– Compute all the other first-round messages related to {x̄t}t∈[m] using the EHVZK simulator

on input the corresponding zt;
– Concatenate such first-round messages and equivocate the node at level d of the merged

composition tree accordingly.

Combine phase: Finally, z∗ at level d is treated as in a regular execution of ΠOR until the execution is
terminated when the root of the merged composition tree is reached.

The verification algorithm Verify is very straightforward. The goal of Verify is to reconstruct the individual
composition trees related to all the clauses, and then to simply run VOR on all of them. It recursively divides
all the clauses in half and explores both halves, decrementing the value of d at each step and checking
the consistency of the parent commitment as VOR would do. Once the base case of d = 1 is reached, the
merged node is unpacked, so that VOR can be called on all the reconstructed composition trees related to
each individual clause.

Communication complexity. The first and second-round messages are composed of two constant-size
values, while the third-round message is z = (z̃, z1, . . . , zm), where z̃ is, in turn, composed of the third-
round message of the base sigma protocol Σ, log k pairs of commitment parameters, and log k equivocation
randomnesses. Additionally, each zi, with i ∈ [m] is composed of a third-round message of the base sigma
protocol Σ, log(k−ℓ) pairs of commitment parameters, and log(k−ℓ) equivocation randomnesses. Therefore,
the overall communication complexity of Πcnf is O(log k +m · (γ(Σ) + log(k − ℓ))).

Theorem 1 Assuming that ΠOR (Fig. 3) is a stackable Σ-protocol (Def. 5) for the relation ROR, and as-
suming the existence of a 1-out-of-2 equivocal commitment scheme (Setup,Gen,BindCom,EquivCom,Equiv)
as defined in Sec. 3.1, Πcnf (Fig. 4) is a stackable Σ-protocol for the relation Rcnf . If the 1-out-of-2 equivocal
commitment scheme has perfect trapdoorness, then Πcnf preserves the EHVZK flavor of ΠOR.

We prove Thm. 1 using lemmas Lem. 1, Lem. 2, Lem. 3 for which we require the same assumptions stated
in Thm. 1.

Lemma 1 Πcnf is complete.

Proof 1 (Completeness) Completeness follows from the completeness of ΠOR and of the 1-out-of-2 equiv-
ocal commitment scheme. Given m + 1 clauses (x, x1, . . . xm) and m + 1 witnesses (w,w1, . . . , wm), the
protocol generates a transcript (a, c, z), where a = ((com, p10, p

1
1), . . . , p

log k
0 , plog k

1 ) and z = (z̃, z1, . . . , zm),
where z̃ = ((z′, p10, p

1
1), . . . , p

log k
0 , plog k

1 )) and zt = ((z′t, p
1
0, p

1
1), . . . , p

log(k−ℓ)
0 , p

log(k−ℓ)
1 )) with t ∈ [m].
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First(x,wα, α, d, {comt}t∈[m], randP, td)

1 : parse randP = (randb||rand0||rand1)
2 : if α ≤ |x|/2 : b = 0

3 : else b = 1

4 : (p0, p1, td)← Gen(pp, b; rand0)

5 : td.append(td)

6 : if α ≤ |x|/2 : x = {x1, . . . , x|x|/2}
7 : else x = {x|x|/2+1, . . . , x|x|}
8 : α = α mod |x|
9 : if d = 1 :

10 : (a, td′)← POR
0 (x,wα, α, rand

α)

11 : td = td.append(td′)

12 : parse a = (com, (p10, p
1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ))

13 : return (EquivCom(pp, b, com||com1|| . . . ||comm, p0, p1, td; rand1), (p
1
0, p

1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ), (p0, p1))

14 : else // i.e., d > 1

15 : a← First(x,wα, α, d− 1, {comt}t∈[m], rand
α, td)

16 : parse a = (com, (p10, p
1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ))

17 : return (EquivCom(pp, b, com, p0, p1, td; rand1), (p
1
0, p

1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ), (p0, p1))

Figure 5: Auxiliary algorithm used to compute the first-round message of Πcnf .

From z and the commitment parameters ((p10, p
1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 )), Vcnf recomputes the values

(a1, . . . , ak/(k−ℓ), that are the k/(k − ℓ) commitments at level d in the composition tree derived by x, and
(at1, . . . , a

t
k/(k−ℓ)), t ∈ [m], that are the k/(k − ℓ) commitments at level d in the composition tree derived by

xt.
For completeness of ΠOR the transcripts ((xi, . . . , xj), a, c, ((z

′, p10, p
1
1), . . . , p

log(k−ℓ)
0 , p

log(k−ℓ)
1 )), with i =

s(k − ℓ) + 1, s ∈ {0, . . . , k/(k − ℓ)− 1}, and j = i+ k − ℓ− 1, are accepting transcripts. The same holds for
((xi, . . . , xj), at, c, ((z

′
t, p

1
0, p

1
1), . . . , p

log(k−ℓ)
0 , p

log(k−ℓ)
1 )), for t ∈ [m] and i, j computed as before.

Then from level log(k − ℓ − 1) to the root, Vcnf checks that the commitment is computed correctly and
follows from the partial equivocation of the equivocal commitment scheme. The last two points to check are
that each pair of parameters belongs to Ypp and that the parameters in the first round message are the same
as the last round message, followed by inspecting the code.

Lemma 2 Πcnf is computational special sound.

Proof 2 (Computational Special Soundness) Let A be an admissible adversary for the experiment of
computational special soundness and ExtOR be the extractor of the underlying ΠOR. Let ((x, x1, . . . , xm), a, c1,
c2, (z̃

1, z11 , . . . , z
1
m), (z̃2, z21 , . . . , z

2
m)) be the tuple produced by A. The extractor Extcnf of our protocol Πcnf

calls RecExt (see Fig. 8) with inputs the statements (x, x1, . . . , xm) packed as (x, {xt}t∈[m]), d, and the two
transcripts (a = (ã, a1, . . . , am), c, c′, z = (z̃, z1, . . . , zm)), z′ = (z̃′, z′1, . . . , z

′
m)) packed as (a, c, z̃, {zt}t∈[m],

c′, z̃′, {z′t}t∈[m]). RecExt will return either ⊥, or a list containing m + 1 elements. We now show that
RecExt outputs a correct witness (w,w1, . . . , wm) with overwhelming probability when RecExt is fed with two
accepting transcripts and the correct d. RecExt recursively traverses all the pairs of composition trees by
opening the commitment of each level of the trees (using the openings contained in z and z′). Each pair
of composition trees is expanded by opening only the child having the same vi, with i ∈ {0, 1}. At each
recursive call d is decremented by 1. When d = 1, it means that we traversed all the levels sharing the same
commitment parameters of the composition trees for all the statements {xt}t∈[m] (line 4 of RecExt). At this
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Third(x,wα, α, d, {xt}t∈[m], {comt}t∈[m], {zt}t∈[m], vα, c, randP, td)

1 : parse randP = (randα||rand0||rand1)
2 : if α ≤ |x|/2 : b = 0

3 : else b = 1

4 : (p0, p1, td)← Gen(pp, b; rand0)

5 : if α < |x|/2 :

6 : x = {x1, . . . , x|x|/2}, x̄ = {x|x|/2+1, . . . , x|x|}
7 : for t ∈ [m] :

8 : xt = {xt
1, . . . , x

t
|xt|/2}, x̄

t = {xt
|xt|/2+1, . . . , x

t
|xt|}

9 : else

10 : x = {x|x|/2+1, . . . , x|x|}, x̄ = {x1, . . . , x|x|/2}
11 : for t ∈ [m] :

12 : x̄t = {xt
1, . . . , x

t
|x|/2}, xt = {xt

|xt|/2+1, . . . , x
t
|xt|}

13 : vb = vα,

14 : α = α mod |x|
15 : if d = 1 :

16 : z∗ ← POR
1 (x, (wα, α), vb, c, randP)

17 : v1−b ← SEHVZK
OR (x̄, c, z∗)

18 : for t ∈ [m] :

19 : v̄ ← SEHVZK
OR (x̄t, c, zt), v1−b = v1−b||v̄, vb = vb||comt

20 : else // i.e., d > 1

21 : z∗ ← Third(x,wα, α, d− 1, {xt}t∈[m], {comt}t∈[m], vb, c, rand
α, td)

22 : v1−b ← SEHVZK
OR (x̄, c, z∗)

23 : td = td[1], td = td[2, . . . , td.length]

24 : r ← Equiv(pp, b, v0, v1, p0, p1, td, aux) // where aux is computed with rand1

25 : return (z∗, r, p0, p1)

Figure 6: Auxiliary algorithm used to compute the first-round message of Πcnf .

point, we have m + 1 (i.e., one per clause) different pairs of accepting transcripts of ΠOR with each pair
sharing the same first-round message. Finally, we can call ExtOR on input each of those pairs. Thanks to
the computational special soundness of ΠOR, each one of these calls to ExtOR would return a witness for the
corresponding clause with non-negligible probability. We have so far assumed that every time we call ExtOR

we are actually feeding it with a pair of accepting transcripts w.r.t. the same first round message. This may
not hold in the bad event that none of the two children of the nodes of the two composition trees have the
same value, i.e. whenever the checks of lines 10, 19, 29 in RecExt go through and RecExt output ⊥. However,
thanks to the fixed equivocation property of the underlying (1, 2)-equivocal commitment scheme, such an event
happens with negligible probability. For example, since we start from a pair of accepting transcripts, we are
guaranteed that, regarding the checks at lines 10 and 19, BindCom(p0, p1, v0||v10 || . . . ||vm0 , v1||v11 || . . . ||vm1 ; r) =
BindCom(p′0, p

′
1, v

′
0||v′10 || . . . ||v′m0 , v′1||v′11 || . . . ||v′m1 ; r). Thus, thanks to the fixed equivocation property of the

commitment scheme, we have that either v0||v10 || . . . ||vm0 = v′0||v′10 || . . . ||v′m0 or v1||v11 || . . . ||vm1 = v′1||v′11 || . . .
||v′m1 with non-negligible probability (notice that thanks to a similar argument, the check at line 29 is satisfied
only with negligible probability, hence either v0 = v′0 or v1 = v′1). It follows that the pairs of accepting
transcripts for all the m + 1 clauses are all accepting w.r.t. their common first-round message with non-
negligible probability.
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Verify(x, {xt}t∈[m], d, a, z̃, {zt}t∈[m], c)

1 : x = {x1, . . . , x|x|/2}, x̄ = {x|x|/2+1, . . . , x|x|}
2 : for t ∈ [m] :

3 : xt = {xt
1, . . . , x

t
|xt|/2}, x̄

t = {xt
|xt|/2+1, . . . , x

t
|xt|}

4 : if d = 1 :

5 : parse z̃ = (z∗, r, p0, p1)

6 : a0 = (v0, (p
1
0, p

1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ))← SEHVZK

OR (x, c, z∗)

7 : a1 = (v1, (p
1
0, p

1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ))← SEHVZK

OR (x̄, c, z∗)

8 : for t ∈ [m] :

9 : parse zt = (z∗t , r, p
t
0, p

t
1)

10 : at
0 = (vt0, (p

t,1
0 , pt,11 ), . . . , (p

t,log(k−ℓ)
0 , p

t,log(k−ℓ)
1 ))← SEHVZK

OR (xt, c, z∗t )

11 : at
1 = (vt1, (p

t,1
0 , pt,11 ), . . . , (p

t,log(k−ℓ)
0 , p

t,log(k−ℓ)
1 ))← SEHVZK

OR (x̄t, c, z∗t )

12 : a∗ ← BindCom(p0, p1, v0||v10 || . . . ||vm0 , v1||v11 || . . . ||vm1 , c; r)

13 : parse a = (com, (p10, p
1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ), (p0, p1))

14 : return (com = a∗ ∧ VOR(x, a0, c, z̃) ∧ VOR(x̄, a1, c, z̃)∧

15 :
( ∧
t∈[m]

(VOR(xt, at
0, c, zt) ∧ VOR(x̄t, at

1, c, zt))
)
, a∗, p0, p1)

16 : else // i.e., d > 1

17 : parse a = (com, (p10, p
1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ), (p′0, p

′
1))

18 : a′ = (com, (p10, p
1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ))

19 : parse z̃ = (z∗, r, p0, p1)

20 : (b0, v0, ·, ·)← Verify(x, xt, d− 1, a′, z∗, {zt}t∈[m], c)

21 : (b1, v1, ·, ·)← Verify(x̄, x̄t, d− 1, a′, z∗, {zt}t∈[m], c)

22 : a∗ ← BindCom(p0, p1, v0, v1, c; r)

23 : if a∗ = com ∧ ((p′0, p
′
1) = (p0, p1)) ∧ b0 ∧ b1 ∧ (p0, p1) ∈ Ypp :

24 : return (true, a∗, p0, p1)

25 : else return (false, a∗, p0, p1)

Figure 7: Verification algorithm of Πcnf .

Lemma 3 Πcnf is extended honest verifier zero knowledge.

Proof 3 (EHVZK) We build the EHVZK simulator SEHVZKcnf of Πcnf as follows. The simulator SEHVZKcnf takes
in input values15 (x, x1, . . . , xm), c, z̃ = (z∗, (p10, p

1
1), . . . , (p

log k
0 , plog k

1 ), r1, . . . , rlog k), a set of values {zt}t∈[m],
where zt = (z∗t , (p

d+1
0 , pd+1

1 ), . . . , (plog k
0 , plog k

1 ), rd+1, . . . , rlog k). SEHVZKcnf computes d = ⌊log( k
k−ℓ )⌋ and returns

the output of FirstSim(x, {xt}t∈[m], d, z̃, {zt}t∈[m], c).
Let D1,k be the third-round message distribution of protocol Π1,k (Sec. 3.3, [18]) for relation R1,k. We

now define Dcnf , the third-round message distribution of Πcnf . The values z̃, z1, . . . , zm are sampled by the
distribution Dcnf = {z̃, z1, . . . , zm|z̃ ← D1,k, {zt ← D1,(k−ℓ))}t∈[m]}. The proof goes through hybrid hopping,
modifying at each step the algorithm First (Fig. 5) run by the prover until we end up with the simulator. We
report the code of the algorithm in each hybrid, and we highlight the changes using black squares.

H0: This hybrid is identical to the real game except that the prover of hybrid H0 takes in input ((x, x1, . . . xm),
(w,w1, . . . , wm), c, (z̃, z1, . . . , zm); rand), where (z̃, z1, . . . , zm) ∈ Dcnf . The additional inputs (z̃, z1, . . . ,

15For clarity, we will slightly abuse the notation in representing z̃ by rearranging the order of its components.
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RecExt(x, {xt}t∈[m], d, a, c, z̃, {zt}t∈[m], c
′, z̃′, {z′t}t∈[m])

1 : x = {x1, . . . , x|x|/2}, x̄ = {x|x|/2+1, . . . , x|x|}
2 : for t ∈ [m] :

3 : xt = {xt
1, . . . , x

t
|xt|/2}, x̄

t = {xt
|xt|/2+1, . . . , x

t
|xt|}

4 : if d = 1 :

5 : parse z̃ = (z∗, r, p0, p1), z
′ = (z′

∗
, r′, p′0, p

′
1)

6 : a0 = (v0, (p
1
0, p

1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ))← SEHVZK

OR (x, c, z∗)

7 : a′
0 = (v′0, (p

′,1
0 , p′,11 ), . . . , (p

′,log(k−ℓ)
0 , p

′,log(k−ℓ)
1 ))← SEHVZK

OR (x, c, z′∗)

8 : a1 = (v1, (p
1
0, p

1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ))← SEHVZK

OR (x̄, c, z∗)

9 : a′
1 = (v′1, (p

′,1
0 , p′,11 ), . . . , (p

′,log(k−ℓ)
0 , p

′,log(k−ℓ)
1 ))← SEHVZK

OR (x̄, c, z′∗)

10 : if (v0 ̸= v′0) ∧ (v1 ̸= v′1) :

11 : return ⊥
12 : (v0 = v′0)?w ← ExtOR(x, a0, c, z

∗, c′, z′
∗
) : w ← ExtOR(x̄, a1, c, z

∗, c′, z′
∗
)

13 : for t ∈ [m] :

14 : parse zt = (z∗t , r, p
t
0, p

t
1),parse z′t = (z′∗t , r, p′t0 , p

′t
1 )

15 : at
0 = (vt0, (p

t,1
0 , pt,11 ), . . . , (p

t,log(k−ℓ)
0 , p

t,log(k−ℓ)
1 ))← SEHVZK

OR (xt, c, z∗t )

16 : a′t
0 = (v′t0 , (p

′t,1
0 , p′t,11 ), . . . , (p

′t,log(k−ℓ)
0 , p

′t,log(k−ℓ)
1 ))← SEHVZK

OR (xt, c, z∗t )

17 : at
1 = (vt1, (p

t,1
0 , pt,11 ), . . . , (p

t,log(k−ℓ)
0 , p

t,log(k−ℓ)
1 ))← SEHVZK

OR (x̄t, c, z∗t )

18 : a′t
1 = (v′t1 , (p

′t,1
0 , p′t,11 ), . . . , (p

′t,log(k−ℓ)
0 , p

′t,log(k−ℓ)
1 ))← SEHVZK

OR (x̄t, c, z∗t )

19 : if (vt0 ̸= v′t0 ) ∧ (vt1 ̸= v′t1 ) :

20 : return ⊥
21 : (vt0 = v′t0 )?wt ← ExtOR(x

t, at
0, c, zt, c

′, z′t) : wt ← ExtOR(x̄
t, at

1, c, zt, c
′, z′t)

22 : return [w,w1, . . . , wm]

23 : else // i.e., d > 1

24 : parse z = (z∗, r, p0, p1), z
′ = (z′

∗
, r′, p′0, p

′
1)

25 : a0 = (v0, (p
1
0, p

1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ))← SEHVZK

OR (x, c, z∗)

26 : a′
0 = (v′0, (p

′1
0 , p

′1
1 ), . . . , (p

′ log(k−ℓ)+d−1
0 , p

′ log(k−ℓ)+d−1
1 ))← SEHVZK

OR (x, c, z′∗)

27 : a1 = (v1, (p
1
0, p

1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ))← SEHVZK

OR (x̄, c, z∗)

28 : a′
1 = (v′1, (p

′1
0 , p

′1
1 ), . . . , (p

′ log(k−ℓ)+d−1
0 , p

′ log(k−ℓ)+d−1
1 ))← SEHVZK

OR (x̄, c, z′∗)

29 : if (v0 ̸= v′0) ∧ (v1 ̸= v′1) :

30 : return ⊥
31 : if (v0 = v′0) :

32 : return RecExt(x, xt, d− 1, a0, c, z
∗, {zt}t∈[m], c

′, z′
∗
, {z′t}t∈[m])

33 : else

34 : return RecExt(x̄, x̄t, d− 1, a1, c, z
∗, {zt}t∈[m], c

′, z′
∗
, {z′t}t∈[m])

Figure 8: Auxiliary algorithm run by the extractor Extcnf of Πcnf .

zm) are ignored during the execution by the prover of hybrid H0. Therefore the transcript is produced by
running a← Pcnf

0 ((x, x1, . . . xm), (w,w1, . . . , wm); rand) and z ← Pcnf
1 ((x, x1, . . . , xm), (w,w1, . . . , wm),

a, c, td; rand). The prover returns (a, c, z). We notice that the output of H0 is identically distributed to
the output of the real game. This is because we only give more inputs to the prover who ignores them
in its execution.
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FirstSim(x, {xt}t∈[m], d, z̃, {zt}t∈[m], c)

1 : x = {x1, . . . , x|x|/2}, x̄ = {x|x|/2+1, . . . , x|x|}
2 : for t ∈ [m] :

3 : xt = {xt
1, . . . , x

t
|xt|/2}, x̄

t = {xt
|xt|/2+1, . . . , x

t
|xt|}

4 : parse z̃ = (z∗, r, p0, p1)

5 : if d = 1 :

6 : (v0, (p
1
0, p

1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ))← SEHVZK

OR (x, c, z∗),

7 : (v1, (p
1
0, p

1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ))← SEHVZK

OR (x̄, c, z∗)

8 : for t ∈ [m] :

9 : parse zt = (z∗t , r, p
t
0, p

t
1)

10 : (vt0, (p
t,1
0 , pt,11 ), . . . , (p

t,log(k−ℓ)
0 , p

t,log(k−ℓ)
1 ))← SEHVZK

OR (xt, c, z∗t ),

11 : (vt1, (p
t,1
0 , pt,11 ), . . . , (p

t,log(k−ℓ)
0 , p

t,log(k−ℓ)
1 ))← SEHVZK

OR (x̄t, c, z∗t )

12 : a← BindCom(pp, p0, p1, v0||v10 || . . . ||vm0 , v1||v11 || . . . ||vm1 , c; r)

13 : return (a, (p10, p
1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ), (p0, p1))

14 : else // i.e., d > 1

15 : (v0, (p
1
0, p

1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ))← FirstSim(x, xt, d− 1, z∗, {zt}t∈[m], c)

16 : (v1, (p
1
0, p

1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ))← FirstSim(x̄, x̄t, d− 1, z∗, {zt}t∈[m], c)

17 : return (BindCom(pp, p0, p1, v0, v1; r), (p
1
0, p

1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ), (p0, p1))

Figure 9: Auxiliary algorithm used by the simulator SEHVZKcnf .

H1: This hybrid (Fig. 10) is identical to H0 except that we modify the interface of First to take in input c and
(z̃, z1, . . . , zm) and we add a call to SEHVZKOR (x̄, c, z∗) at line 11 of First. The transcript is produced as fol-
lows a ← Pcnf

0,H1
((x, x1, . . . xm), (w,w1, . . . , wm), c; rand) and z ← Pcnf

1 ((x1, . . . , xm), (w1, . . . , wm), a, c,

td; rand). Where Pcnf
0,H1

is identical to Pcnf
0 except that it calls FirstH1

instead of First. The outputs of
H0 and H1 are identically distributed as the above change does not have any impact on the output’s
distribution.

H2: This hybrid (Fig. 11) is identical to H1 except that we remove the input parameters {comt}t∈[m] from
FirstH1

and add the computation of vtb′ , v
t
1−b′ at line 16 of FirstH1

. vtb′ and vt1−b′ are computed using
the extended simulator guaranteed by [18]. The transcript is produced as follows: a← Pcnf

0,H2
((x, x1, . . . ,

xm), (w,w1, . . . , wm), c; rand) and z ← Pcnf
1 ((x1, . . . , xm), (w1, . . . , wm), a, c, td; rand), where Pcnf

0,H2
is

identical to Pcnf
0,H1

except that it calls FirstH2
instead of FirstH1

. H1 and H2 are indistinguishable thanks
to the extended honest-verifier zero-knowledge property of ΠOR. In case ΠOR is only computational
EHVZ, the reduction is obvious and thus omitted.

H3: This hybrid (Fig. 12) is identical to H2 except that we replace the calls to EquivCom in FirstH2

with calls to BindCom. The transcript is produced as follows: (a, z) ← Pcnf
0,H3

((x, x1, . . . , xm), (w,w1,

. . . , wm), c; rand), where Pcnf
0,H3

is identical to Pcnf
0,H2

except that it calls FirstH3
instead of FirstH2

and
returns also the third-round message computed by FirstH3

. H2 and H3 are indistinguishable thanks
to the trapdoorness property of the commitment scheme. In case the 1-out-of-2 equivocal commitment
scheme has computational trapdorness the reduction is obvious and thus omitted.

H4: This hybrid (Fig. 13) is identical to H3 except that we replace the calls to ΠOR with calls to SEHVZKOR .
The transcript is produced as follows a ← Pcnf

0,H4
((x, x1, . . . , xm), c; rand), where Pcnf

0,H4
is identical to

Pcnf
0,H3

except that it calls FirstH4
instead of FirstH3

. z is equal to the tuple (z, z1, . . . , zm) taken in input
by the prover. H3 and H4 are indistinguishable thanks to the extended EHVZK property of ΠOR. In
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case ΠOR is only computational EHVZ, the reduction is obvious and thus omitted.

H5: This hybrid is identical to SEHVZKcnf . Notice that SEHVZKcnf only differs from H4 since b is not used at all
in FirstSim. The computation of FirstH4

does not depend on b, therefore the outputs of the two hybrids
are identically distributed.

FirstH1(x,wb, b, d, {comt}t∈[m], randP, td, z̃, {zt}t∈[m], c )

1 : parse randP = (randb||rand0||rand1)
2 : if b ≤ |x|/2 : b′ = 0

3 : else b′ = 1

4 : (p0, p1, td)← Gen(pp, b′; rand0)

5 : td.append(td)

6 : if b ≤ |x|/2 :

7 : x = {x1, . . . , x|x|/2} , x̄ = {x|x|/2+1, . . . , x|x|}

8 : else

9 : x̄ = {x1, . . . , x|x|/2} , x = {x|x|/2+1, . . . , x|x|}

10 : b = b mod |x|
11 : if d = 1 :

12 : (ab′ , td
′)← POR

0 (x,wb, b, rand
b)

13 : zcurr ← POR
1 (x,wb, b, ab′ , c, rand

b) , a1−b′ ← SEHVZK
OR (x̄, c, zcurr)

14 : td = td.append(td′)

15 : parse ab′ = (com, (p10, p
1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ))

16 : return (EquivCom(pp, b′, com||com1|| . . . ||comm, p0, p1, td; rand1), (p
1
0, p

1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ), (p0, p1))

17 : else // i.e., d > 1

18 : parse z̃ = (z∗, ·, ·, ·)

19 : a← FirstH1(x,wb, b, d− 1, {comt}t∈[m], rand
b, td, z∗, {zt}t∈[m], c)

20 : parse a = (com, (p10, p
1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ))

21 : return (EquivCom(pp, b, com, p0, p1, td; rand1), (p
1
0, p

1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ), (p0, p1))

Figure 10: Algorithm FirstH1 of hybrid H1.

5 Our (τ, k,m)-CNF Composition
We can now deal with conjunctions of proofs of partial knowledge, meaning that for each clause the prover
has to know at least τ witnesses for different base statements within the clause, out of all k literals that are
in the clause. In particular, we repeat our protocol Πcnf τ times and then prove that a different witness for
each clause is used in each of the τ executions. We call such a proof Πord-cnf . Let us first describe how we
instantiate our ordering protocol Πord-cnf , built upon Πord of [5]. Let us consider the i-th execution (out of
τ) of our Πcnf . The prover algorithm of the i-th execution will produce m lists of commitment parameters,
where the first d values of each of these lists (which we call qi) are related to the parameters re-used across
the m clauses, while the remaining parameters of each of the m clauses (which we call sti for t ∈ [m]) differ
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FirstH2
(x,wb, b, d, randP, td, z̃, {zt}t∈[m], c)

1 : parse randP = (randb||rand0||rand1)
2 : if b ≤ |x|/2 : b′ = 0

3 : else b′ = 1

4 : (p0, p1, td)← Gen(pp, b′; rand0)

5 : td.append(td)

6 : if b ≤ |x|/2 :

7 : x = {x1, . . . , x|x|/2}, x̄ = {x|x|/2+1, . . . , x|x|}
8 : else

9 : x̄ = {x1, . . . , x|x|/2}, x = {x|x|/2+1, . . . , x|x|}
10 : b = b mod |x|
11 : if d = 1 :

12 : (ab′ , td
′)← POR

0 (x,wb, b, rand
b)

13 : zcurr ← POR
1 (x,wb, b, c, rand

b), a1−b′ ← SEHVZK
OR (x̄, c, zcurr)

14 : for t ∈ [m] :

15 : parse zt = (z∗t , r, p
t
0, p

t
1) ,

16 : (vtb′ , ·, . . . , ·)← SEHVZK
OR (xt, c, z∗t ) , (vt1−b′ , ·, . . . , ·)← SEHVZK

OR (x̄t, c, z∗t )

17 : td = td.append(td′)

18 : parse ab′ = (com, (p10, p
1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ))

19 : return (EquivCom(pp, b′, comb′ ||v1b′ || . . . ||vmb′ , p0, p1, td; rand1), (p10, p11), . . . , (p
log(k−ℓ)
0 , p

log(k−ℓ)
1 ), (p0, p1))

20 : else // i.e., d > 1

21 : parse z̃ = (z∗, ·, ·, ·)
22 : ab′ ← FirstH2(x,wb, b, d− 1, {vtb′}t∈[m], rand

b, td, z∗, {zt}t∈[m], c)

23 : a1−b′ ← FirstH2(x̄, wb, b, d− 1, {vt1−b′}t∈[m], rand
b, td, z∗, {zt}t∈[m], c)

24 : parse ab′ = (com, (p10, p
1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ))

25 : return (EquivCom(pp, b′, com, p0, p1, td; rand1), (p
1
0, p

1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ), (p0, p1))

Figure 11: Algorithm FirstH2 of hybrid H2.

from each other. It suffices for us to separately prove the two following properties. For the first clause of
each of the τ executions, we prove that (q1||s11, . . . ,qτ ||s1τ ) are ordered (i.e., we are proving that we satisfy
the first clause of the CNF τ times, using a different witness every time). For each of the consecutive pair
of executions of Πcnf on indexes i and i+1 for i ∈ [τ − 1] and for each clause t ∈ [2,m], we prove that either
the commitment parameters related to the shared prefixes qi and qi+1 satisfy the ordering relation, or that
it is satisfied by the suffixes sti and sti+1. Let qwi and swt

i be the witnesses related to qi and sti respectively.
The resulting relation Rord-cnf(({qi}i∈[τ ], {s1i , . . . , smi }i∈[τ ]), ({qwi}i∈[τ ], {sw1

i , . . . , sw
m
i }i∈[τ ]) follows:

Rord((q1||s11, . . . ,qτ ||s1τ ), (qw1||sw1
1, . . . ,qwτ ||sw1

τ ))∧
τ−1∧
i=1

(
Rord((qi,qi+1), (qwi,qwi+1)) ∨

(
m∧
t=2

Rord((s
t
i, s

t
i+1), (sw

t
i, sw

t
i+1))

))
.

A stackable Σ-Protocol Πord-cnf for Rord-cnf can be straightforwardly obtained via simple AND/OR com-
position of Πord. Notice that as we compose Πord with the cross-stacking compiler of [18], Πord-cnf preserves
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FirstH3
(x,wb, b, d, randP, td, z̃, {zt}t∈[m], c)

1 : parse randP = (randb||rand0||rand1)
2 : if b ≤ |x|/2 : b′ = 0

3 : else b′ = 1

4 : (p0, p1, td)← Gen(pp, b′; rand0)

5 : td.append(td)

6 : if b ≤ |x|/2 :

7 : x = {x1, . . . , x|x|/2}, x̄ = {x|x|/2+1, . . . , x|x|}
8 : else

9 : x̄ = {x1, . . . , x|x|/2}, x = {x|x|/2+1, . . . , x|x|}
10 : b = b mod |x|
11 : if d = 1 :

12 : (ab′ , td
′)← POR

0 (x,wb, b, rand
b)

13 : zcurr ← POR
1 (x,wb, b, c, rand

b), a1−b′ ← SEHVZK
OR (x̄, c, zcurr)

14 : for t ∈ [m] :

15 : parse zt = (z∗t , r, p
t
0, p

t
1)

16 : (vtb′ , ·, . . . , ·)← SEHVZK
OR (xt, c, z∗t ), (v

t
1−b′ , ·, . . . , ·)← SEHVZK

OR (x̄t, c, z∗t )

17 : td = td.append(td′)

18 : parse a0′ = (com0, (p
1
0, p

1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ))

19 : parse a1′ = (com1, (p
1
0, p

1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ))

20 : return (BindCom(pp, p0, p1, com0||v10 || . . . ||vm0 , com1||v11 || . . . ||vm1 , c; r), (p10, p
1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ), (p0, p1))

21 : else // i.e., d > 1

22 : parse z̃ = (z∗, ·, ·, ·)
23 : ab′ ← FirstH3(x,wb, b, d− 1, {at}t∈[m], rand

b, td, z∗, {zt}t∈[m], c)

24 : a1−b′ ← FirstH3(x̄, wb, b, d− 1, {at}t∈[m], rand
b, td, z∗, {zt}t∈[m], c)

25 : parse a0 = (com, (p10, p
1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ))

26 : parse a1 = (com1, (p
1
0, p

1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ))

27 : return (BindCom(pp, p0, p1, com0, com1; rand1), (p
1
0, p

1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ), (p0, p1))

Figure 12: Algorithm FirstH3 of hybrid H3.

the same properties flavour of Πord (i.e., computational special soundness and perfect EHVZK). In Fig. 14,
we give a detailed description of our compiler that uses Πcnf of Sec. 4 and Πord-cnf to construct a stack-
able Σ-protocol Πcnf

τ,k for the relation Rcnf
τ,k = {((x1, . . . xm), (w1, . . . , wm)) : ∀ i ∈ [m] : (xi, wi) ∈ Rτ,k},

where Rτ,k = {((x1, . . . , xk), ((w1, α1), . . . , (wt, αt))) |1 ≤ α1 < . . . < αt ≤ k ∧ ∀ j ∈ [t] : (xαj , wj) ∈
RL}. Informally, Πcnf

τ,k is special sound because the first comparison on the full composition trees (i.e.,
Rord((q1||s11, . . . ,qτ ||s1τ ), (qw1||sw1

1, . . . ,qwτ ||sw1
τ ))) guarantees that q1 ≤ . . . ≤ qτ . Then, in the case

qi = qi+1 the prover can prove that all the pairs of suffixes related to the same clause in two different
executions (i.e., sti < sti+1, i ∈ [τ − 1], t ∈ [2,m]) satisfy an order relation16.

16To simplify our description, we implicitly assumed that all the clauses are already arranged so that (q1||s11 < . . . < qτ ||s1τ ).
However, the prover can always sort the τ sequences (according to the trapdoors it holds) and communicate this new ordering
to the verifier succinctly. Similarly, when comparing sti with sti+1, i ∈ [τ − 1], t ∈ [2,m], the prover can also prove sti+1 < sti if
needed. In the case sti = sti+1, the prover will pick a random order for the comparison involving the two sequences of parameters.
Notice that this comparison is part of a disjunction. Therefore, in this case, a witness for the other branch (i.e., qi,qi+1) will
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FirstH4
(x, b, d, z, {zt}t∈[m], c)

1 : if b ≤ |x|/2 : b′ = 0

2 : else b′ = 1

3 : if b ≤ |x|/2 :

4 : x = {x1, . . . , x|x|/2}, x̄ = {x|x|/2+1, . . . , x|x|}
5 : else

6 : x̄ = {x1, . . . , x|x|/2}, x = {x|x|/2+1, . . . , x|x|}
7 : b = b mod |x|
8 : parse z = (z∗, r, p∗0, p

∗
1)

9 : if d = 1 :

10 : (vb′ , (p
1
0, p

1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ))← SEHVZK

OR (x, c, z∗) , (v1−b′ , ·, . . . , ·)← SEHVZK
OR (x̄, c, z∗)

11 : for t ∈ [m] :

12 : parse zt = (z∗t , r, p
t
0, p

t
1)

13 : (vtb′ , ·, . . . , ·)← SEHVZK
OR (xt, c, z∗t ), (v

t
1−b′ , ·, . . . , ·)← SEHVZK

OR (x̄t, c, z∗t )

14 : return (BindCom(pp, p∗0, p
∗
1, v0||v10 || . . . ||vm0 , v1||v11 || . . . ||vm1 , c; r), (p10, p

1
1), . . . , (p

log(k−ℓ)
0 , p

log(k−ℓ)
1 ), (p∗0, p

∗
1))

15 : else // i.e., d > 1

16 : ab′ ← FirstH4(x, b, d− 1, {at}t∈[m], z
∗, {zt}t∈[m], c)

17 : a1−b′ ← FirstH4(x̄, b, d− 1, {at}t∈[m], z
∗, {zt}t∈[m], c)

18 : parse ab′ = (vb′ , (p
1
0, p

1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ))

19 : parse a1−b′ = (v1−b′ , (p
1
0, p

1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ))

20 : return (BindCom(pp, p∗0, p
∗
1, v

′
0, v

′
1; r), (p

1
0, p

1
1), . . . , (p

log(k−ℓ)+d−1
0 , p

log(k−ℓ)+d−1
1 ), (p∗0, p

∗
1))

Figure 13: Algorithm FirstH4
of hybrid H4.

Communication complexity. The communication complexity of Πcnf
τ,k can be obtained by multiplying the

complexity of Πcnf τ times, that is O(τ(log k+m ·(γ(Σ)+log(k−ℓ))))) and adding the complexity of Πord-cnf ,
that is O(τ(log k +max{log( k

k−ℓ ),m · log(k − ℓ))}) (i.e., applying the cross-stacking compiler of [18]). If we
consider m ≥ log k and ℓ ≥ k− log k, the complexity of Πord-cnf is O(τ · log k · log log k), while the complexity
of Πcnf is O(γ(Σ) log k + (log k · log log k)). It follows that the complexity of Πcnf

τ,k is O(τ(log k · log log k)).

Theorem 2 Assuming that Πcnf (Fig. 4) and Πord-cnf are stackable Σ-protocols as in Def. 5 and that the
commitment scheme used in Πcnf is a 1-out-of-2 equivocal commitment scheme as defined in Sec. 3.1, Πcnf

τ,k

(Fig. 14) is a stackable Σ-protocol for the relation Rcnf
τ,k. If Πord-cnf is perfect EHVZK, then Πcnf

τ,k preserves
the EHVZK flavor of Πcnf .

We prove Thm. 2 using lemmas Lem. 4, Lem. 5, Lem. 6 for which we require the same assumptions stated
in Thm. 2.

Lemma 4 Πcnf
τ,k is complete.

Proof 4 (Completeness) It follows from the completeness of Πcnf and Πord-cnf . The completeness of
Πord-cnf follows from the completeness of Πord.

Lemma 5 Πcnf
τ,k is computationally special sound.

be used to satisfy the proof.
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Let Πcnf = (Pcnf
0 ,Pcnf

1 ,Vcnf) be the stackable Σ-protocol of Fig. 4 and Πord-cnf = (Pord-cnf
0 ,Pord-cnf

1 ,Vord-cnf)
be the stackable Σ-protocol for Rord-cnf . The following compiler produces a stackable Σ-protocol Πcnf

τ,k =

(P
(τ,k)-cnf
0 ,P

(τ,k)-cnf
1 ,V(τ,k)-cnf) for relation Rcnf

τ,k = {((x1, . . . xm), (w1, . . . , wm)) : ∀ i ∈ [m] : (xi, wi) ∈
Rτ,k}.

First round: The algorithm P
(τ,k)-cnf
0 ((x1, . . . xm), (w1, . . . , wm); rand) works as follows:

• Parse rand as ((randij)i∈[τ ],j∈[m], rand
ord-cnf).

• For i ∈ [τ ]: (ai,pi, t̃di)← Pcnf
0 ((x1, . . . xm), (w1[i], . . . , wm[i]); (randij)j∈[m]).

• For i ∈ [τ ]: parse pi and tdi as (p1
i , . . . ,p

m
i ), (td1

i , . . . , td
m
i ).

• For each i ∈ [τ ] set qi = p1
i [1, d], qwi = td1

i [1, d], s1i = p1
i [d+1, log k], sw1

i = td1
i [d+1, log k],

and for t ∈ [2,m] set sti = pt
i, swt

i = tdt
i.

• Compute aord-cnf ← Pord-cnf
0 (({qi}i∈[τ ], {s1i , . . . , smi }i∈[τ ]),

({qwi}i∈[τ ], {sw1
i , . . . , sw

m
i }i∈[τ ]); rand

ord-cnf).

The prover sends a = (a1, . . . , aτ , aord-cnf ,p1, . . . ,pτ ) to the verifier.

Second round: The verifier samples a challenge c←$ {0, 1}λ and sends c to the prover.

Third round: The algorithm P
(τ,k)-cnf
1 ((x1, . . . xm), (w1, . . . , wm), a, c; rand) works as follows:

• For i ∈ [τ ]: (zi)← Pcnf
1 ((x1, . . . xm), (w1[i], . . . , wm[i]); (randij)j∈[m]).

• Compute zord-cnf ← Pord-cnf
0 (({qi}i∈[τ ], {s1i , . . . , smi }i∈[τ ]),

({qwi}i∈[τ ], {sw1
i , . . . , sw

m
i }i∈[τ ]), aord-cnf , c; rand

ord-cnf).

The prover sends z = (z1, . . . , zτ , zord-cnf) to the verifier.

Verification: V(τ,k)-cnf(x1, . . . xm, a, c, z) works as follows:

• Parse a = (a1, . . . , aτ , aord-cnf ,p1, . . . ,pτ ), and z = (z1, . . . , zτ , zord-cnf).

• For each i ∈ [τ ] check that Vcnf(x1, . . . xm, ai, c, zi) = 1, parse pi as (p1
i , . . . ,p

m
i ), set qi =

p1
i [1, d], s1i = p1

i [d+ 1, log k], and for t ∈ [2,m] set sti = pt
i.

• Check that Vord-cnf(({qi}i∈[τ ], {s1i , . . . , smi }i∈[τ ]), aord-cnf , c, zord-cnf) = 1.

• If all the previous checks are successful, output 1. Otherwise, output 0.

Figure 14: Our stackable Σ-protocol for Rcnf
τ,k.

Proof 5 (Computational special soundness) Let A be an admissible adversary of the experiment of
computational special soundness. Let (x, a, c1, c2, z1, z2) be the tuple produced by A. The tuple contains
a statement x and two accepting transcripts of Πcnf

τ,k w.r.t x with common first-round message a. The
components of the tuple can be parsed as a = (a1, . . . , aτ , aord-cnf), z1 = (z1cnf,1, . . . , z

1
cnf,τ , zord-cnf,1) with

z1cnf,i = ((z∗,1i,j )j∈[m],pi, r
i,1, . . . , ri,log k), and z2 = (z2cnf,1, . . . , z

2
cnf,τ , zord-cnf,2) with z2cnf,i = ((z∗,2i,j )j∈[m], p̄i, r̄

i,1,

. . . , r̄i,log k), with i ∈ [τ ]. We recall that pi = [[(p1,i0 , p1,i1 ), . . . , (plog k,i
0 , plog k,i

1 )], [(pd,i,j0 , pd,i,j1 ), . . . , (plog k,i,j
0 ,

plog k,i,j
1 )]j∈[2,m]] and the same holds for p̄i.

Additionally, notice that the lists of parameters in the two transcripts are equal since they are part of the
first-round message a. We now create from this pair of accepting transcripts, a pair of accepting transcripts
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for Πord-cnf .
For each i ∈ [τ ] set qi = p1

i [1, d], s1i = p1
i [d + 1, log k], and t ∈ [2,m] set sti = pt

i. The two
transcripts for the statement xord-cnf = ({qi}i∈[τ ], {s1i , . . . , smi }i∈[τ ]) for Πord-cnf are (aord-cnf , c1, zord-cnf,1),
(aord-cnf , c2, zord-cnf,2). We first run ExtΠord-cnf on input such pairs of accepting transcripts sharing the same
first-round message of Πord-cnf (i.e., ExtΠord-cnf (xord-cnf , aord-cnf , c1, c2, zord-cnf,1, zord-cnf,2)). Except with negligi-
ble probability, the extractor returns a (subset of) the trapdoors of the composition tree of each clause. In
particular, for the first clause, the extractor returns the τ sequences of trapdoors related to the merged com-
position trees (each of length log k) (qw1||sw1

1, . . . ,qwτ ||sw1
τ ). On the other hand, for the other clauses, it

returns τ · (m− 1) trapdoors that can either be related to the prefix (i.e., (qwi,qwi+1)i∈[τ ]), or to the suffix
(i.e.,(swt

i, sw
t
i+1)i∈[τ ],t∈[2,m]) of the clause itself. The extracted trapdoors sequences satisfy an order relation.

Notice that (qw1||sw1
1, . . . ,qwτ ||sw1

τ ) can be used to extract the binding positions α1,j, with j ∈ [τ ], of
the first clause for the τ executions. Moreover, for each of the remaining x2, . . . , xm clauses we extract the
binding position αi,j, with i ∈ [m] and j ∈ [τ ], either at the leaves level or at level d of the composition tree
for xi, with i ∈ [2,m]. Notice that whenever we extract the trapdoors of the suffix, we automatically get the
binding position at the leaves by combining them with the trapdoors extracted from the merged composition
tree of the first clause, since the prefix is shared. Due to the relation proved by Πord-cnf , all the extracted
binding positions for the same clause must be different, thus pointing at a different base statement. We will
extract a witness for such base statements using the pairs of accepting transcripts for Πcnf contained in the
accepting transcripts for Πcnf

τ,k. Let us first deal the with case of an extracted binding position pointing at the
leaves level.

Let E be the set of all clauses for which we extracted a binding position pointing at the leaves level. For
i ∈ E and j ∈ [τ ], ExtΠcnf

τ,k
runs a ← SEHVZKbase (xαi,j

, c1, z
∗,1
j,i ) and ā ← SEHVZKbase (xαi,j

, c2, z
∗,2
j,i )

17. If a = ā, it

runs ExtΠbase
(xαi,j , a, c1, z

∗,1
j,i , c2, z

∗,2
j,i ) and store the output of ExtΠbase

for α1,j (i.e., τ witnesses of Πbase for
the first clause). On the other end, If a ̸= ā, ExtΠcnf

τ,k
aborts.

We now prove that ExtΠcnf
τ,k

aborts only with negligible probability. Let us focus on a fixed value of
j ∈ [τ ], as we can simply repeat the following argument for all the values of j. Let us assume there ex-
ists a xαi

(with i ∈ [m]) such that a ̸= ā and let us denote by xs the statement of its sibling node in
the composition tree. We compute as ← SEHVZKi (xs, c1, z

∗,1
i ) ās ← SEHVZKi (xs, c2, z

∗,2
i ). Compute a′ ←

BindCom(plog k,i
0 , plog k,i

1 , a, as, r
log k,i) and a′′ ← BindCom(plog k,i

0 , plog k,i
1 , ā, ās, r̄

i,log k)18. If a′ = a′′, we break
the fixed equivocation of the commitment scheme. Indeed, in the transcripts we would have recovered a 1-
out-of-2 equivocal commitment that is equivocated in one position, while at the same time, we hold a trapdoor
(extracted thanks to Πord) that allows us to create a fresh commitment w.r.t. the same parameters and
equivocate it in the other position.

If a′ ̸= a′′, we can repeat the same step until level d. At level d, we just have to take care of the commitment
parameters sharing, which effectively merges all the composition trees of the CNF into one. Let a′1, . . . , a′m be
the values computed at level d for each clause in the CNF in the first transcript and a′′1 , . . . , a

′′
m be the values

computed at level d for each clause in the CNF in the second transcript. The a′ at level d − 1 is computed
as BindCom(pd−1,i

0 , pd−1,i
1 , a′1|| . . . ||a′m, a′s,1|| . . . ||a′s,m, ri,d−1), while the value a′′ for the second transcript at

level d− 1 is BindCom(pd−1,i
0 , p,d−1,i

1 , a′′1 || . . . ||a′′m, a′′s,1|| . . . ||a′′s,m, ri,d−1). After having dealt with this special
case, we can continue the same procedure as before until we are able to break the fixed equivocation property
at some level. This will happen at the root at worst, where by definition the two accepting transcripts share
the same value a.

What remains to analyze is the extraction on the clauses xi such that i ∈ {1, . . . ,m} \ E. The extraction
procedure is basically the same, with the sole difference that we start from the binding position at level d. For
this reason, the extended simulator is called on the disjunctive statement corresponding to that node, along
with the appropriate third-round message. If a = ā we can run the extractor of ΠOR and get the witness, while
if a ̸= ā, we can break the fixed equivocation property as shown before. Finally, ExtΠcnf

τ,k
returns the witnesses

17Here, with an abuse of notation, by xαi,· we indicate the base statement in position αi,· within the i-th clause of the CNF.
18Without loss of generality here we are assuming that xs is always the right sibling of xαi . In the actual extraction procedure,

this depends on the value of αi.

34



extracted for all the clauses, that thanks to the relation enforced by Πord-cnf are all related to different binding
positions.

Lemma 6 Πcnf
τ,k is extended honest verifier zero knowledge.

Proof 6 (EHVZK) Let Dcnf and Dord-cnf be the third-round message distributions of Πcnf and Πord-cnf re-
spectively. We can define the third-round message distribution of Πcnf

τ,k as Dτ,k
cnf = {{zt ← Dcnf}t∈[τ ], zord-cnf ←

Dord-cnf}. The simulator Scnfτ,k(x1, . . . , xm, c, z1 . . . , zτ , zord-cnf), for each i ∈ [τ ], computes, ai ← SEHVZKcnf (x1, . . . ,

xm, c, zi), parses zi to get the parameter list pi, sets qi = p1
i [1, d], s1i = p1

i [d + 1, log k], and for t ∈ [2,m]

set sti = pt
i. Then, for j ∈ [m], computes ajord ← SEHVZKord-cnf (({qi}i∈[τ ], {s1i , . . . , smi }i∈[τ ]), c, z

j
ord), and finally

returns a = (a1, . . . , aτ , a
1
ord, . . . , a

m
ord,pi). We prove that Πτ,k is EHVZK.

H0: This is equal to the real game with honest prover, except that the prover of hybrid H0 takes in input
(x1, . . . , xm, c, z1 . . . , zτ , zord-cnf), where all the z1, . . . , zτ , zord-cnf are drawn from Dτ,k

cnf . The additional
inputs c and (z1 . . . , zτ , zord-cnf) are ignored during the execution by the prover of hybrid H0. We notice
that the output of H0 is distributed identically to the output of the real game. This is because we only
give more inputs to the prover who ignores them in its execution.

Hj: It is equal to Hj−1 except that for each j ∈ [m], aord-cnf is computed using SEHVZKord-cnf (({qi}i∈[τ ], {s1i , . . . ,
smi }i∈[τ ]), c, zord-cnf), where are defined as in the simulator reported above, while c and zord-cnf are taken
from the prover’s additional input specified in H0. Recall that zi, for i ∈ [τ ], contains also pi. Clearly,
Hj and Hj−1 are indistinguishable thanks to the EHVZK property of Πord-cnf .

Hm+i: For each i ∈ [τ ], this is equal to Hm+i−1 except that all values a1, . . . , ai are computed using
SEHVZKcnf (x1, . . . , xm, c, zi) where c and zi are taken from the prover’s additional input specified in H0.
Clearly, Hm+i and Hm+i−1 are indistinguishable thanks to the EHVZK property of Πcnf . In case Πcnf

is only computational EHVZK, the reduction is obvious and thus omitted. Notice that the final hybrid
is identical to the simulator.
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