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Abstract. Multi-input and large-precision lookup table (LUT) evalua-
tion pose significant challenges in Fully Homomorphic Encryption (FHE).
Currently, two modes are employed to address this issue. One is tree-
based functional bootstrapping (TFBS), which uses multiple blind rota-
tions to construct a tree for LUT evaluation. The second is circuit boot-
strapping, which decomposes all inputs into bits and utilizes a CMux tree
for LUT evaluation. In this work, we propose a novel mode that is leveled
functional bootstrapping. This mode utilizes the external product tree
to perform multi-input functional bootstrapping. We implement TFBS
and LFBS within the OpenFHE library. The results demonstrate that
our method outperforms TFBS in both computational efficiency and
bootstrapping key size. Specifically, for 12-bit and 16-bit input LUTs,
our method is approximately two to three orders of magnitude faster
than TFBS. Finally, we introduce a novel scheme-switching framework
that supports large-precision polynomial and non-polynomial evalua-
tions. The framework leverages digital extraction techniques to enable
seamless switching between the BFV and LFBS schemes.

Keywords: Lookup Table (LUT) · Functional Bootstrapping · External
Product · Scheme Switching.

1 Introduction

Fully homomorphic encryption (FHE) is a powerful cryptographic primitive
that enables performing computations over encrypted data without decryption.
In 2009, Gentry proposed the first fully homomorphic encryption scheme [22] and
designed a bootstrapping procedure. This procedure can homomorphically com-
pute the decryption function to reduce the noise of ciphertexts. Since then, FHE
has undergone significant advancements and innovations, making it applicable
to various privacy-related computing scenarios.

Typically, FHE schemes are typically categorized into three types. The first
type includes the BGV [9] and BFV [8,21] schemes. These support exact polyno-
mial evaluations with the ‘Single Instruction Multiple Data’ (SIMD) mode. The
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second type focuses on approximate arithmetic evaluations and is represented
by the CKKS [14] scheme. This approach treats noise as part of the message,
which offers advantages in performance and allows for residual multiplicative
levels. The third type supports bit-level operations and achieves efficient boot-
strapping procedures, represented by the FHEW [19] and TFHE [15] schemes.

Among them, the FHEW and TFHE schemes stand out for their efficiency
and flexibility in bootstrapping. They support different computational modes,
such as FHE mode based on the functional bootstrapping (FBS) [33,17], and
LHE mode based on circuit bootstrapping (CBS) [16,36]. In the FHE mode, a
key advantage is that an arbitrary function can be embedded into bootstrapping,
which is widely utilized in numerous applications, such as evaluating non-linear
functions in neural networks [7,31]. However, the precision of the FBS is lim-
ited by 4 ∼ 5 bits on the underlying parameters since the large-precision LUT
evaluation needs to increase the parameters of the cryptosystem, which leads to
significant performance degradation.

To deal with the muti-input LUT4, Guimarãe et al. [24] proposed tree-based
functional bootstrapping (TFBS). The TFBS algorithm decomposes the multi-
input LUT into multiple small LUTs, which are associated together in a tree-
based construction via functional bootstrapping and the special LWE-to-RLWE
packing method (i.e., base-aware key switching). Although this method addresses
the problem of parameter increases in functional bootstrapping, its exponential
complexity relative to the large inputs is still prohibitive. On the other hand,
scheme [5] presents the LHE mode to deal with the large precision LUT. The
LHE mode needs to split all input into bits and then conduct the circuit boot-
strapping. Following that, the output format of the ciphertext from circuit boot-
strapping can be used to carry out LUT evaluation with the CMux gates tree.
However, this approach still suffers from two inherent limitations: the first is
the loss of parallelism during the functional bootstrapping phase, and the sec-
ond is the inability to perform aggregation operations efficiently after bitwise
decomposition.

1.1 Our Contributions

We propose a new LUT evaluation mode to address this issue. Our contri-
butions can be divided into three main parts. Firstly, we introduce a conversion
method from LWE to RGSW ciphertexts with multi-bits and develop a new
multi-valued5 bootstrapping algorithm. Secondly, we present the leveled func-
tional bootstrapping, which enhances the efficiency of evaluating large circuits.
We propose the new LUT Evaluation mode to solve this problem. Finally, we
apply the proposed LFBS algorithm in scheme switching framework that can
support large precision polynomial and non-polynomial evaluations.

4 Multi-input FBS refers to a process in which the multivariate function
f(m0, ...,ml−1) is evaluated during the bootstrapping procedure.

5 Multi-valued FBS describes the case where multiple uni-variate functions are com-
puted during bootstrapping.
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Ciphertext Conversion (CC). We develop a new ciphertext conversion that
can switch ciphertext LWE(m) to RGSW(XEncode(m)) instead of RGSW(m).
This ciphertext conversion supports multi-bit message m for LWE. It’s output
and (multiple) test polynomials, through external product, enable multi-valued
functional bootstrapping. Additionally, we tailor a multi-valued algorithm for
this conversion to improve efficiency, requiring only one blind rotation. This
ciphertext conversion is of independent interest and can serve as a new building
block to enhance FHEW-like schemes.
Leveled Functional Bootstrapping. We design the leveled functional boot-
strapping mode as illustrated in Fig. 1. The process is divided into three steps.
Step 1 involves converting the input LWE ciphertext, while operating in FHE
mode. Step 2 performs tree-based LUT evaluation through external products,
executing functional bootstrapping in LHE mode. Finally, step 3 outputs the
result of the LUT evaluation. Furthermore, we improve the RLWE packing op-
eration used in the TFBS and LFBS schemes by utilizing the homomorphic trace
technique, which significantly reduces the computational cost.

Fig. 1. The workflow of leveled functional bootstrapping

We compare the scheme [24] based on the multivariate function, and the com-
putational complexity is shown in Tab. 1. Compared to the TFBS scheme [24],
the results indicate that our method can reduce the number from exponential
growth to linear growth.

– Implementations: We implement our proposed method in OpenFHE [3]
library. Typically, for a 12-bit-to-12-bit LUT, the LFBS algorithm outper-
forms the scheme [24] by a factor of 180.

– Key Sizes: Our approach reduces the key size of scheme [24] from the GB
level to the MB level. For B = 4, and B = 16, we achieve reductions of 94%
and 97%, respectively.
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Method Blind Rotation External Product Key Switching Gadget Product

Scheme [24] 1 + Bl−1−1
B−1

- O(Bl−1NB) O(nBl−1 +Bl−1NB)

Our l O(Bl−1) O(Bl−2 logN) O(nl +Bl−1)

Table 1. We show the computational cost for the muti-input LUT: f(m0, ...,ml−1),
for mi ∈ [0, B − 1], where N is the degree of the polynomial, n is the dimension of
the LWE, and logN < B < N . Blind rotation involves 2n gadget products and the
RLWE key switching needs one gadget product.

Scheme Switching. We propose a novel framework for switching between the
BFV and our LFBS algorithm, allowing for large precision computations, in-
cluding both polynomial and non-polynomial operations. Our approach utilizes
homomorphic digit extraction (HDE), which was originally used in the boot-
strapping processes of BGV and BFV, to separate the plaintext space with
SIMD operations for the first time. Compared to the extraction method [29]
that employs FBS, our technique significantly reduces the number of homomor-
phic multiplications from O(nlN) to O(l2B).

1.2 Technical overview

Ciphertext Conversion. In this conversion variant, we aim to convert the
LWE(m) into RGSW(XEncode(m)). Specifically, for the gadget vector g = (B0, ...,
Bd−1), the ciphertext RGSW(XEncode(m)) consists of 2d RLWE ciphertexts: Bi ·
XEncode(m) and Bis · XEncode(m). The native approach involves using d FBS to
obtain RLWE(Bi ·XEncode(m)). Subsequently, the secret key s can be embedded
in these ciphertexts through RLWE key switching. We note that the multi-
valued bootstrapping method proposed in scheme [18] can generate all RLWE
ciphertexts regarding Bi ·XEncode(m) in the original circuit bootstrapping process.
However, this technique does not apply to the new RGSW ciphertext format with
cyclic encoding.

In this work, we design a new multi-valued bootstrapping method to obtain
the gadget RLWE ciphertext with the cyclic group encoding using only one blind
rotation. In detail, we propose a new encoding during blind rotation that pads
the gadget vector into RLWE as follows

RLWE(B0X
Encode(m) + · · ·+Bd−1X

Encode(m)+d−1).

Furthermore, to separate the terms for Bi from the RLWE, we perform special
modulus switching on the input LWE(m) in advance, ensuring that the terms
B0, ..., Bd−1 reside within the subring and correspond to different residue classes.
In other words, for a polynomial of degree N , we divide these terms into d
subrings. Then, the ciphertext of B0 can be obtained by evaluating the trace
from KN to KN/d, as shown in the scheme [12,36]. Similarly, we can rotate the
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Bi to the position of B0 and repeat the HomoTrace operation to obtain the
RLWE ciphertext of BiXEncode(m). Finally, we only need to perform d RLWE
key switching operations to deal with the secret key, which in turn completes
the process.

Leveled Functional Bootstrapping. Tree-based bootstrapping [24] involves
two core operations: blind rotation and base-aware key switching. For a muti-
input LUT: Bl → Bl

′
, TFBS first splits and encodes it into l′ · Bl−1 test poly-

nomials. It then employs blind rotation to perform a multiplication between the
input LWE and the test polynomials for the computation of the sub-LUTs. Our
main observation is that the ciphertext conversion can convert the (R)LWE into
RGSW ciphertext with the cyclic group encoding, and multiplication is inter-
preted as an external product operation. Thus, we can use the external product
to reconstruct the tree-based LUT with LHE mode. The ciphertext conversion
is independent of the tree-based LUT construction, which means that the result
of the ciphertext conversion procedure can be reused by all sub-LUTs. Thus, our
scheme only involves l blind rotations in total.

RLWE Packing. Furthermore, for each level of the tree, TFBS uses sample
extraction to obtain the desired results and packs them into ciphertexts corre-
sponding to the test polynomials through base-aware key switching. However,
base-aware key switching is an extremely laborious operation, which involves
O(NdB) gadget products. We design a new packing algorithm that eliminates
the switching step between LWE and RLWE. In detail, we can integrate the
constant terms of two RLWEs into the constant and N/2 terms by using only
one automorphism. Similarly, given B RLWEs, we can pack their constant terms
into i · NB terms of a new ciphertext for i ∈ [0, B−1] with B automorphisms. Ad-
ditionally, other redundancies can be removed through trace evaluation (Hom-
Trace), while target items are replicated using rotation operations. This new
packing algorithm requires only O(logN) gadget products, which is a significant
improvement for the packing process.

1.3 Related Work

The circuit bootstrapping technique, as described in [16], is closely related to
our proposed conversion of LWE ciphertext to RGSW ciphertext. Specifically,
circuit bootstrapping transforms a 1-bit LWE ciphertext into a 1-bit RGSW
ciphertext while also refreshing the noise. This process is particularly useful in
the leveled evaluation mode of the TFHE scheme. This process consists of two
main steps. The first step, functional bootstrapping, aims to refresh the noise
in the LWE ciphertext. The second step uses key switching to transform the
LWE ciphertext into its corresponding RGSW form, enabling subsequent circuit
evaluations.

Later, Wang et al. [36] proposed a more efficient bootstrapping scheme. Their
main improvement is the use of RLWE key switching and homomorphic trace
techniques, which eliminate the key switching operation from LWE to RLWE
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that was required in the second step of the original circuit bootstrapping. Ad-
ditionally, they implemented the algorithm in the OpenFHE [3] library based
on the Number Theoretic Transform (NTT) on the FHEW scheme. Recently,
Ha et al. [25] corrected an error analysis and extended the ciphertext modulus
from a prime modulus to a power-of-two modulus. They implemented their al-
gorithm in the TFHE-rs library [10] and used Fast Fourier Transform (FFT) for
polynomial multiplication, incorporating AVX instructions for enhanced perfor-
mance. Several works [28] have extended functional bootstrapping to the BFV
and CKKS schemes. These solutions enable the execution of batch lookup table
(LUT) operations; however, their precision is somewhat limited.

Scheme switching allows the conversion of ciphertext to evaluate arithmetic
and boolean circuits for FHE schemes. CHIMERA [6] is the first framework ca-
pable of performing exact arithmetic operations on the BFV side, approximate
arithmetic operations on the CKKS side, and look-up table (LUT) evaluations
on the TFHE side. The second framework, PEGASUS [31], supports both CKKS
and FHEW schemes and optimizes the underlying computing processes by uti-
lizing Residue Number System (RNS) and Number Theoretic Transform (NTT)
techniques. Moreover, PEGASUS demonstrates its practicality by implementing
a viable application that runs K-means clustering on thousands of encrypted
samples within a few minutes.

2 Preliminary

2.1 Notation

The lower-case regular bold letters indicate vectors, e.g., a, while italic bold
letters represent polynomials, such as a. For a real number r, we write the
floor, ceiling, and round functions as ⌊r⌋ ⌈r⌉ ⌊r⌉, respectively. We denote the
infinity norm ||u|| for a vector u and Zq the integer ring Z/qZ and the scope is
[−q/2, q/2) ∩ Z, and sometimes [x]Q is used to denote x mod Q. We use ← to
denote randomly choosing an element from uniform and Gaussian distributions.
Let N be a power of 2, we denote the 2N -th cyclotomic ring by Z[X]/(XN +
1), and the quotient ring is RQ = ZQ[X]/(XN + 1) with coefficients in ZQ.
Sometimes, we also use RN,Q to denote the quotient ring. For a polynomial s,
we denote ϕ(s) = (s0, ..., sN−1) ∈ ZNq as the vector of coefficient. Furthermore,
we denote σ2 as the variance of the Gaussian Distribution for a ∈ Zq or a ∈ R.
Finally, we use ∗ to indicate terms that are considered redundant.

2.2 Gadget Decomposition

For a modulus Q and a polynomial a ∈ RQ, we define the gadget vector as
g =

(
B0, B, · · · , Bd−1

)
, and the the signed exact decomposition in base B is

g−1(a) =
(
[a]B ,

[⌊ a
B

⌉]
B
, · · · ,

[⌊ a

Bd−1

⌉]
B

)
∈ RdB ,
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where each term belongs to [−B/2, B/2], and the decomposition length satisfies
d = ⌈logB Q⌉. It is easy to see that

〈
g−1(a),g

〉
≡ a mod Q. Furthermore,

for Bd < Q, we can also define the approximate gadget decomposition with
the gadget vector gAG =

(⌈
Q
Bd

⌉
,
⌈
Q
Bd

⌉
·B, ...,

⌈
Q
Bd

⌉
·Bd

)
, which decompose a

and outputs (a0, ...,ad−1). The approximate gadget decomposition introduces
an approximate error ϵ, i.e.,

〈
g−1
AG (a),gAG

〉
≡ a+ ϵ, where |ϵ| ≤ 1

2

⌈
Q
Bd

⌉
.

2.3 Hard Problems and Ciphertexts

– LWE [34]. Given the positive integers n and q, the LWE encryption of the
message m ∈ Z is a vector (a, b) ∈ Zn+1

q , where b = a · s +m + e mod q.
The vector a is uniformly sampled from Znq , secret key s is sampled from a
key distribution χ, error e is sampled from the Gaussian Distribution χ′.

– RLWE [32]. RLWE is a ring version of LWE on RQ. The RLWE encryption
of the message m ∈ RQ is a pair (a, b) ∈ R2

Q, where b = a · s + m + e
mod Q. The polynomial a is uniformly sampled from RQ, secret key s is
sampled from a key distribution χ, and each coefficient of the error e is
sampled from the Gaussian Distribution χ′.

– RLWE′[33]. Given the gadget vector g = (B0, ..., Bd−1), the gadget RLWE
ciphertext is defined by:

RLWE′(m) = (RLWE(B0 ·m), · · · ,RLWE(Bd−1 ·m)).

– RGSW [20]. The RGSW encryption of the message m is defined by:

RGSW(m) = (RLWE′(−s ·m),RLWE′(m)).

This paper adopts the most significant bit (MSB) encoding by default. The
encoding and decoding functions are defined as follows Encode : φ =

⌊
q
t

⌋
·m +

e, Decode :
⌊
t
q · φ

⌉
mod t. In addition, we use superscripts and subscripts to

define the parameters of the ciphertext, such as LWEns,t/q(m), RLWEs,N,t/Q(m).
In certain contexts, we may omit related parameters for brevity.
Gadget Product. For t ∈ RQ, (t0, ..., td−1) denotes the gadget decomposition
of t with respect to the gadget vector g = (B0, ..., Bd−1). The gadget product ⊙
is defined by:

t⊙ RLWE′
s,Q(m) :=

d−1∑
i=0

ti · RLWEs,Q (Bi ·m)

= RLWEs,Q

(
d−1∑
i=0

Bi · ti ·m

)
= RLWEs,Q(t ·m).

We employ the approximate decomposition in the gadget product because its
length is shorter than that of the exact decomposition when considering the
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same level of noise growth. The error variance of the gadget product result is

bounded by σ2
out = ε1σ

2
in + ε2, where ε1 = B2

12 dN, ε2 = N
12 ·

(⌈
Q
Bd

⌉)2

.

External Product. Given ciphertexts RLWEs,Q (m1) = (a, b) and RGSWs,Q (m2),
where ||m2||22 ≤ 1, the external product ⊡ is defined by:

RLWEs,Q (m1)⊡ RGSWs,Q (m2) = a⊙ RLWE′
s,Q (−s ·m2) + b⊙ RLWE′

s,Q (m2)

= RLWEs,Q (−a · s ·m2 + b ·m2)

= RLWEs,Q (m1 ·m2 + e1 ·m2) .

The external product outputs the RLWE encryption of the product of m1 and
m2 with the error variance bounded by σ2

EP = εEP1 · σ2
RGSW + εEP2 + σ2

RLWE,

where εEP1 = B2dN
6 , εEP2 = N

12 ·
⌈
Q
Bd

⌉2
, σ2

RGSW denotes the error variance of
input RGSW ciphertext, and σ2

RLWE is the error variance of the input RLWE
ciphertext.

2.4 Ciphertext Switching

2.4.1 LWE Switching

[LWE Modulus Switching]. Given an LWE ciphertext ct = (a, b) ∈ LWEns,Q(m)
with error variance σ2

in, the modulus switching algorithm computes

ModSwitchQ,q(ct) = (

⌊
q

Q
· a

⌉
,

⌊
q

Q
· b
⌉
),

which outputs the LWE ciphertext under modulus q, and its variance satisfies
σ2
out ≤ ( qQ )

2 · σ2
in +

n+2
24 as shown in Appendix A.2.

[LWE Key Switching]. Given an LWE ciphertext ct = (a, b) ∈ LWENz,Q(m)

with error variance σ2
in, and the switching keys LKi,j,v ∈ LWEns,Q

(
vziB

j
LK

)
with

error variance σ2
LK, where v ∈ {0, . . . , BLK − 1}, dLK =

⌈
logBLK

Q
⌉
, for all 0 ≤ i ≤

N − 1, 0 ≤ j ≤ dLK − 1, the LWE key switching algorithm computes

LWE.KeySwitch(ct) = (0, b)−
∑
i,j

LKi,j,ai,j ,

which outputs a new LWE ciphertext ct′ ∈ LWEns,Q(m), and its variance satisfies
σ2
out ≤ σ2

in +NdLK · σ2
LK as shown in Appendix A.4.

2.4.2 RLWE Switching

[RLWE Key Switching]. The RLWE key switching can converts the cipher-
text RLWEs1(m) to a new ciphertext RLWEs2(m). The process need the key
switching key RK = RLWE′

s2
(s1). Given the RLWEs1(m) = (a, b), it computes

RLWE.KeySwitch(ct,RK) = (0, b)− a⊙ RK,
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which outputs the ciphertext RLWEs2(m). The correctness of the RLWE key
switching algorithm can be derived directly from LWE key switching, and error
variance σ2

RKS is the same as that of the gadget product.
In addition, the process can embed the secret key s into the message, which

we refer to as secret key switching. Given the key switching key RSK = RLWE′
s(s

2),
and the ciphertext ct = (a, b) ∈ RLWEs(m), we can compute

RLWE.SKSwitch(ct,RS) = a⊙ RSK+ (b, 0)

that outputs ciphertext RLWEs(−s ·m) as shown in scheme [36]. Note that
the secret key switching introduces an additional error of e · s, where the error
variance satisfies σ2

out ≤ N
2 σ

2
in + σ2

RKS.
[Automorphism]. The automorphism operation can change the plaintext m(X)
to m(Xj) in RLWE ciphertext. For RQ = ZQ[X]/(XN + 1), there are N auto-
morphisms as τj : m(X)→m(Xj) for j ∈ Z∗

2N . Given ciphertext ct = (a, b) ∈
R2
Q, and the RLWE key switching key ATKτj ∈ RLWE′

s,Q(s(X
j)), the automor-

phism HomAutoτj (ct,ATKτj ) is divided two steps:

– Let τj(ct(X)) = (a(Xj), b(Xj) ∈ R2
Q.

– Apply the RLWE key switching from the secret key s(Xj) to s(X).

The first step outputs an RLWE encryption of m(Xj) under the secret key
s(Xj). In the second step, RLWE key switching is used to switch the secret key
from s(Xj) to s(X), where the error variance of the automorphism operation is
equal to the RLWE key switching since the first step does not increase noise.
[HomoTrace]. For the tower of finite fields E = KN ≥ KN/2 ≥ · · · ≥ K1 = F ,
there are logN special automorphisms as ψj : m(X) → m(X2j+1) for j ∈
{1, logN}, where Kd denotes the (2d)-th cyclotomic field for a power-of-two
d. The field trace can be expressed as a composition TrE/F = TrK2/F ◦ · · · ◦
TrKN/KN/2

by using these special automorphisms, which can reduce the number
of automorphisms from N to logN times. The homomorphic trace (HomoTrace)
evaluation algorithm TrE/F is present in Appendix A.5.

2.4.3 LWE-RLWE Switching

[SampleExtract]. The sample extraction operation can extract some LWEs
from an RLWE ciphertext. Given the RLWE ciphertext ct = (a, b) ∈ R2

Q under
the secret key s ∈ RQ. We can define sample extraction as

SampleExtract(ct) = (a0,−aN−1,−aN−2, ...,−a1, b0) ∈ LWENϕ(s),Q(ϕ(m)0),

where the process does not increase the noise and the process can be extended
to extract other terms of the RLWE ciphertext.
[LWE-RLWE Keyswitching]. The LWE-to-RLWE key switching algorithm
can pack some LWE ciphertexts into an RLWE ciphertext. This paper focuses
on the base-aware key switching used in TFBS, each mapping to a sequence of
consecutive coefficients in the RLWE ciphertext.
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The key switching process is detailed in Algorithm 10. It is computationally
intensive, requiring O(NdBAB) gadget products. Therefore, in practice, a read-
based version can be employed to help reduce computational costs and noise
growth. However, this approach still necessitates O(NBBAdBAB) addition oper-
ations for RLWE. A more comprehensive overview of this process can be found
in Appendix A.6.

2.5 Building Blocks of FHEW and TFHE Schemes

2.5.1 CMux Gate

CMux gate is the fundamental computational unit in FHEW and TFHE
schemes, which is constructed by external product. CMux gate takes two RLWE
ciphertexts ct0, ct1 and an RGSW ciphertext CT as input, and compute

CMux(ct1, ct2,CT) = ct1 + (ct2 − ct1)⊡ CT

=

{
ct1, if m = 0 ;
ct2, else m = 1,

where the selection bit for message m is represented by the RGSW ciphertext.
The correctness of the CMux gate can be obtained directly from the external
product, and the noise variance is twice that of the external product. Input some
RGSW ciphertext of (x0, ..., xℓ−1), where xi ∈ [0, 1], the CMux gates tree can
be used to perform the LUT f(x0, ..., xℓ−1) as shown in TFHE scheme [17]. In
addition, it introduces vertical and horizontal packing techniques to improve the
efficiency of LUT evaluation. We show these details in Appendix ??.

2.5.2 Blind Rotation

Blind rotation is a fundamental component of bootstrapping in FHEW and
TFHE. Specifically, given an LWE ciphertext (a, b) where the secret is s =
(s0, ..., sn−1), the blind rotation key BRKi encrypts si using RGSW ciphertext.
The blind rotation operation then produces a new ciphertext ct ∈ RLWE(X−φ(m)).
In this context, φ(m) is defined as b−

∑n−1
i=0 aisi. Alg. 1 shows the CGGI method

[15] by using the CMux gate, and the noise growth is derived from the external
product. Let σ2

BR is the error variance of BRK, the error variance of blind rotation

is σ2
BR = εBR1 · σ2

BRK + εBR2, where εBR1 =
nNB2

BRdBR
3 , εBR2 = nN

12 ·
(⌈

Q
Bd

BR

⌉)2

.

2.5.3 Functional Bootstrapping

Functional bootstrapping (FBS) can evaluate a LUT in bootstrapping. Given
a function f : ZB → ZB and ciphertext ct = (a, b) ∈ LWEns,t/q(m), where t = 2B,
q = 2N , and m ∈ ZB , we can embed the LUT into a test polynomial denoted as

testP(X) =

N−1∑
i=0

Q

t
· f

(⌊
i · t
q

⌉)
·Xi.
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Algorithm 1 Blind Rotation with CMUX gate (BR)
Input:

The LWE sample ct = (a, b) ∈ LWEns,q(m), where q = 2N .
Thr blind rotation key BRK : {RGSWs,Q(si)} for i ∈ [0, n− 1].

Output:
The ciphertext acc ∈ RLWEs,Q(X

−φ(m)).
1: Set acc = X−b,
2: for i = 0 to n− 1 do
3: acc = CMux(acc, Xai · acc,BRKi),
4: end for
5: return acc

Then, we initialize accumulator to acc = testP(X) ·X−(b+θ) for the line 1 of the
Alg. 1, where θ = q

2t .
After performing blind rotation, we obtain the expression RLWE(testP(X) ·

X−(φ(m)+θ)), where the constant term corresponds to the message f(m). To
obtain the LWE ciphertext of f(m), we first extract the sample, followed by
LWE key switching and modulus switching to convert the ciphertext param-
eters. Additionally, functional bootstrapping can be extended to multi-valued
functional bootstrapping (MVFBS), which allows for the simultaneous evalua-
tion of multiple unrelated functions, as demonstrated in schemes such as [18]
and [11]. We can also set t = B, ensuring that the lookup table (LUT) satisfies
the negacyclic property. In this context, we assume that the message of the LWE
satisfies m ∈ Zt/2 during the functional bootstrapping process.

3 LWE-to-RGSW Ciphertext Conversion

Circuit bootstrapping (CBS) was originally proposed by Chillotti et al. [16] in
the TFHE scheme. It convert the 1-bit LWE(m) into RGSW(m), serving to LHE
mode with the CMux gate. In this section, we propose a ciphertext conversion
that can convert multi-bit ciphertext LWE(m) into ciphertext RGSW(XEncode(m)),
which achieves functional bootstrapping via the external product. Note that the
RGSW ciphertext can serve as an intermediate form for improving schemes such
as tree-based bootstrapping [24]. However, this conversion can not apply the
original multi-valued bootstrapping method [18].

First, let us analyze the reasons. Given the gadget vector g = (B0, ..., Bd−1),
the multi-valued bootstrapping can pad the gadget vector as a subsequence of

the test polynomial as testP(X) =
∑ N

2ϑ
−1

i=0

∑2ϑ−1
j=0 BiX

2ϑ·i+j , where ϑ = ⌈log d⌉.
Thus, the blind rotation outputs an RLWE ciphertext as

RLWE(B0 ·m+ · · ·+Bd−1 ·mXd−1 + ∗Xd + ...+ ∗XN−1),

and then the ciphertext RLWE(Bi ·m) can be extracted by HomoTrace or LWE-
to-RLWE key switching. However, in our LWE-to-RGSW ciphertext conversion,
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the message m and the gadget vector are located in the powers and coefficients
of the polynomials, respectively, that is

RLWE(B0 ·XEncode(m)), · · · ,RLWE(Bd−1 ·XEncode(m)),

where the method [18] can not generate the ciphertext forms.

3.1 Native Construction

The native method involves invoking functional bootstrapping d times with-
out sample extraction, which generates the RLWE ciphertext of Bi ·XEncode(m).
In detail, for the LWE ciphertext (a, b) ∈ LWEns,q(m), we initialize the accumu-
lator acc as BiX−(b+θ). After performing blind rotation, we obtain the RLWE
ciphertext of Bi · X−(φ(m)+θ). The secret key s can then be embedded to cre-
ate the ciphertext RLWE(−Bis · X−(φ(m)+θ)) through the RLWE secret key
switching process. These 2d ciphertext consists of the RGSW ciphertext as

(RLWE′
s,Q(−s ·X(φ(m)+θ),RLWE′

s,Q(X
−(φ(m)+θ))).

Alg. 2 shows the detailed process, and this method needs d blind rotations and
d key switching operations in total.

Algorithm 2 Ciphertext Conversion (CC)
Input:

The gadget vector g = (B0, ..., Bd−1) ∈ ZdQ.
The LWE sample ct = (a, b) ∈ LWEns,q(m), where q = 2N .
The blind rotation key BRK : {RGSWQ,N (si)}, for i ∈ [0, n− 1].
The key switching RSK = RLWE′

s(s
2).

Output:
RGSW ciphertext CT ∈ RGSWs,N,Q(X

−(φ(m)+θ)).
1: for i = 0 to d− 1 do
2: Set acci = Bi ·X−(b+θ),
3: for j = 0 to n− 1 do
4: acci,j ← CMux(acci,j , X

aj · acci,j ,BRKj),
5: end for
6: cti+d = acci,n−1,
7: cti = RSK.SKSwitch(acci,n−1,RSK),
8: end for
9: return CT = {ct0, ..., ct2d−1}.

3.2 Multi-valued Method for Ciphertext Conversion

Considering that blind rotation is the main computational bottleneck, our
core goal is to design a new multi-valued method for ciphertext conversion,
reducing the number of blind rotations. The key challenge of this multi-valued
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method is to efficiently pad the gadget vector into the test polynomial and
extract the desired terms.

To address the padding problem, we propose a novel encoding method. In-
stead of using all the coefficients of the test polynomial, we encode both Bi
and m into a single block. For instance, let g = (B0, B1). The initial accumu-
lator, acc, is set to B0X

−(b+θ) + B1X
−(b+θ)+1. Through blind rotation, we can

obtain RLWE(B0X
−(φ(m)+θ) + B1X

−(φ(m)+θ)+1). However, we still cannot de-
termine the position of Bi within the polynomial because the LWE ciphertext
is uniformly distributed. To address this, the additional processing for the LWE
ciphertext needs to be implemented to ensure that B0 and B1 belong to differ-
ent classes, allowing us to effectively split and extract them. Our approach is as
follows.

Algorithm 3 Ciphertext Conversion with HomTrace (CCH)
Input:

The gadget vector g = (B0, ..., Bd−1) ∈ ZdQ, and let 2ϑ = d.
The LWE ciphertext ct = (a, b) ∈ LWEns,q(m).
The blind rotation key BRK : {RGSWs,N (si)}, for i ∈ [0, n− 1].
The automorphism keys ATKu = RLWE′

s,N (s(Xu)), where u ∈ Z∗
2N .

The key switching RSK = RLWE′
s,N (s2).

Output:
RGSW ciphertext CT ∈ RGSWs,N (X−(φ(m)+θ)).

1: for i = 0 to n− 1 do
2: c̃ti =

[⌊
cti·2N·2−ϑ

q

⌉
· 2ϑ
]
2N

,
3: end for
4: acc = B0 ·X−(b̃+θ) +B1 ·X−(b̃+θ)+1 + · · ·+Bd−1 ·X−(b̃+θ)+d−1,
5: for i = 0 to n− 1 do
6: acc← CMux(acc, X ãi · acc,BRKi),
7: end for
8: for i = 0 to d− 1 do
9: cti+d = acc ·X−i,

10: ct′i+d = Eval.TrKN/KN/d
(ct′i+d,ATK),

11: ct′i = RLWE.SKSwitch(cti+d,RSK),
12: end for
13: return CT = {ct′0, ..., ct′2d−1}.

Special Modulus Switching. Given the ciphertext (a, b) ∈ LWEns,q(m), we
can use the special modulus switching to set the ϑ least significant bits (LSB)
to zero of ciphertext as follows

a′i =

[⌊
ai · 2N · 2−ϑ

q

⌉
· 2ϑ

]
2N

,

which result in φ(m) = ∆ ·m+ 2ϑe mod 2N , where ∆ = 2N/t is a multiple of
2ϑ. Note that the 2ϑ empty positions can encode the gadget vector. For the case
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d = 2, and ϑ = 1, we have

B0X
−(b+θ) +B1X

−(b+θ)+1 BR−→ ct = RLWE(B0X
−(φ(m)+θ) +B1X

−(φ(m)+θ+1)).

The term B0, which is associated with φ(m), belongs to one of the even coeffi-
cients. Conversely, B1, which is linked to φ(m) + 1, is categorized as one of the
odd coefficients. Without loss of generality, we may assume that 2ϑ ≥ d for a
larger length d. Then, the terms B0, B1, . . . , Bd−1 correspond to the subring and
coset of a polynomial with different residue classes.

After that, we can use the automorphism operation to remove and split the
terms B0, ..., Bd−1. For the simple case, we can evaluate the HomoTrace from
the finite field KN to KN/2 as

ct+ HomoAutoψlog N
(ct)

to obtain the ciphertext RLWE(B0X
φ(m)+θ). With the same way, we can get

the ciphertext RLWE(B1X
φ(m)+θ) as

ct ·X−1 + HomoAutoψlog N
(ct ·X−1).

The case can extend to an arbitrary length for the gadget vector by evaluating
the HomoTrace from KN to KN/d. The detailed process is shown in Alg. 3, and
the correctness and error analyses are shown in Appendix B.

3.3 Analysis

– Error growth. Noise growth of ciphertext conversion is generated by mod-
ulus switching, blind rotation, HomTrace, and RLWE key switching, the
specific noise analyses are detailed in Appendix B.

– Key size. The ciphertext conversion key can be divided into blind rotation
key BRK, RLWE key switching key RSK, and automorphism key ATK.
Alg. 2: (2ndBR + dRK) · RLWEs

Alg. 3: (2ndBR + dRK + logN · dAK) · RLWEs

– Computational cost. We analyze the computational cost of ciphertext
conversion in Tab. 2 with the blind rotations, key switching, and gadget
products.

Method Blind Rotation RLWE Key Switching Gadget Product

Alg. 2 d d d(2n+ 1)

Alg. 3 1 d · (log d+ 1) 2n+ d · (log d+ 1)

Table 2. Comparison of computational complexity for ciphertext conversion.
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4 Leveled Functional Bootstrapping

Functional bootstrapping (FBS) is a significant technique for the lookup
table (LUT) evaluation in the FHEW and TFHE schemes. However, it can only
support single-input LUT, and the precision of the LUT is limited for the regular
parameters. Guimarães et al. [24] proposed the tree-based FBS technique to
support multiple inputs (large precision) LUT evaluation. In this section, we
propose a new leveled functional bootstrapping scheme that significantly reduces
the computational efficiency and key size of tree-based FBS. Finally, we provide
an extensive analysis and comparison.

4.1 Tree-based Functional Bootstrapping

Given l ciphertexts ctk = LWEns,q(mk) for k ∈ [0, l−1]. Tree-based functional
bootstrapping leverages multiple functional bootstrapping operations, each asso-
ciated with ciphertext blocks, to construct a tree structure capable of evaluating
muti-input look-up tables. Specifically, for an arbitrary LUT f : [0, B − 1]l →
[0, B − 1]l

′
, TFBS algorithm first split it into l′ separate functions as

[0, B − 1]l → [0, B − 1]
(m0, ...,ml−1)→ ft(m0, ...,ml−1)

,

and then the function ft can be built upon a tree-like architecture with l levels.
In detail, TFBS encodes the each function ft into Bl−1 RLWE ciphertexts, and
each ciphertext encrypts a polynomial testPt,i as

testPt,i(X) =

B−1∑
j=0

N
B −1∑
k=0

ft(j,m1, · · · ,ml−1) ·Xj·NB +k,

where i = m1B
l−2 + · · ·+ml−1.

The ciphertext ctk = LWEns,q(mk) is utilized to select the corresponding
branch, specifically ft(· · · ,mk, · · · ) within the tree structure. For each subfunc-
tion ft, the TFBS algorithm first applies blind rotation to ct0 and RLWE(testPt,i),
where RLWE(testPt,i) represents the test polynomial for all i ∈ [0, Bl−1 − 1].
After that, one can run the sample extraction on all rotated results, which gener-
ates Bl−1 LWEs encrypting ft(m0, · · · ). Then, base-aware key switching (BAKS)
can be used to pack the Bl−1 LWEs into Bl−2 RLWEs. The evaluation for the
function ft ends until ctl−1 is used.

The sub-function ft evaluation process in TFBS needs
∑l−1
i=0B

i = Bl−1
B−1 blind

rotations,
∑l−2
i=0B

i = Bl−1−1
B−1 base-aware key switching, and one LWE key switch-

ing operation, which goes back to the initial parameters. Consequently, for a LUT
f : [0, B − 1]l → [0, B − 1]l

′
, the TFBS algorithm necessitates l′ · B

l−1
B−1 blind ro-

tations and l′ · (B
l−1−1
B−1 + 1) key switching operations. The detailed algorithm

is outlined in Algorithm 4. Furthermore, one can accelerate the TFBS scheme
by encoding the LUTs in plaintext polynomials rather than RLWE ciphertexts.
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Algorithm 4 Tree-based Functional Bootstrapping (TFBS)
Input:

l LWE ciphertexts ctk = LWEns,q(mk), for k ∈ [0, l − 1].
l′ · Bl−1 polynomials testPt,i that encode the LUT f : [0, B − 1]l → [0, B − 1]l

′
,

where t ∈ [0, l′ − 1], i ∈ [0, Bl−1 − 1].
The blind rotation key BRK : {RGSWs,Q(si)}, for i ∈ [0, n− 1] .
The base-aware key switching key BAKi,b,v ∈ RLWE′

s,Q(vϕ(s)i ·
∑(b+1)N/B−1

q=bN/B Xq)

for i ∈ [0, N − 1], v ∈ [0, BBA − 1], and b ∈ [0, B − 1] in Sec. 2.4.3.
The LWE key switching key LKi,j,v ∈ LWEns,QKS

(
vϕ(s)iB

j
LK

)
in Sec. 2.4.1.

Output:
l′ LWE ciphertexts corresponding to f(m0, ...,ml−1).

1: for t = 0 to l′ − 1 do
2: for k = 0 to l − 1 do
3: for i = 0 to Bl−k−1 − 1 do
4: ctt,k,i = BlindRotation(testPt,i, ctk,BRK),
5: ctt,k,i = SampleExtract(ctk,i),
6: end for
7: for i = 1 to Bl−k−2 do
8: testPt,i−1 = BA.KeySwitch(ctt,k,(i−1)×B , ..., ctt,k,i×B−1,BAK),
9: end for

10: end for
11: ctt = ModSwitchQ,QKS(ctt,l−1),
12: c̄tt = LWE.KeySwitch(ctt, LK),
13: end for
14: return (c̄t0, ..., c̄tl′−1).

This process can use the multi-valued bootstrapping method [11] with only one
blind rotation instead of Bl−1 at the first level of the tree. Then, the number
of blind rotation is l′(1+ Bl−1−1

B−1 ). Besides computational efficiency, the key size
of base-aware key switching is 4.3 GB in scheme [24], which is nearly 250 times
larger than that of functional bootstrapping.

4.2 Leveled Functional Bootstrapping

Recall that in function bootstrapping, the LUT is encoded within the test
polynomial, which is represented as the RLWE ciphertext Essentially, FBS needs
to perform a homomorphic multiplication between the ciphertexts of testPi and
XEncode(m). Therefore, in level k of the TFBS process, it employs Bl−k−1 blind
rotations to combine them in level k of the tree.

We redesign the coupling of the test polynomial and LWE ciphertext. We em-
ploy the proposed ciphertext conversion technique to convert the LWE ciphertext
into RGSW ciphertext, then the multiplication evolves into the efficient exter-
nal product operation. Consequently, within each layer of the tree, the external
product can be employed to execute functional bootstrapping. Furthermore, it is
important to highlight that the conversion of ciphertext is not contingent upon
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its encoding within the test polynomial LUT, which means that our methodol-
ogy is capable of facilitating multi-valued functional bootstrapping between all
sub-LUTs, associated with testPt,i, and RGSW ciphertext of XEncode(mk). There-
fore, our method only needs l blind rotations for ciphertext conversion and can
perform LUT evaluation with LHE mode.

Optimization for RLWEs Packing. It is worth noting that the LFBS also
needs some RLWE packing operations to consolidate B RLWEs into a single
RLWE corresponding to the encoded form of the test polynomial at the next
level of the tree. However, the BAKS algorithm used in the TFBS scheme is
notably inefficient. We propose a new RLWEs packing algorithm to address this
issue, which improves efficiency while reducing key sizes. Our core idea is to use
special automorphisms to perform the packing step. In detail, given B RLWE
ciphertexts RLWEs,N,Q(mj) = (aj , bj), we need to pack m0,0, ...,mB−1,0 into a

new RLWE ciphertext that encrypts m̃ =
∑B−1
j=0 mj,0 ·Xj·NB ·

∑N
B −1

k=0 Xk, where
mj,0 is the constant term for mj . A straightforward method can be summarized
as follows:

1. Apply the HomoTrace to each RLWE(mj) as shown in Alg. 9.
2. For each RLWE(mj), multiply the Xj·NB , and sum the results to obtain a

new RLWE.
3. Multiply the polynomial temp(X) = 1 +X + · · ·+X

N
B −1 with the RLWE.

Since the HomoTrace (TrKN/K1
) involves logN RLWE key switchings, the to-

tal computational cost amounts to B · logN RLWE key switchings. We in-
troduce the PRCA algorithm, which can further reduce the number of key
switchings. We observe that when using the automorphism ψ1 : X → X21+1

as HomoAutoψ1(ct0) + ct0, the N/2 term of m0 is set to zero, while the con-
stant term is doubled. Subsequently, we can perform the same operation on the
ciphertext ct1, and sum the results as

ct0 + HomoAutoψ1
(ct0) +X

N
2 (ct1 + HomoAutoψ1

(ct1)), (1)

where m0,0 and m1,0 are embedded into constant and N/2 terms of the cipher-
text, respectively. After that, Eq. 1 can be simplified to

(ct0 +X
N
2 · ct1) + HomoAutoψ1

(ct0 −X
N
2 ct1). (2)

It is easy to verify that these two formulas are equivalent, thus the number
of automorphisms can be reduced to one. More generally, the automorphism
ψi : X → X2i+1 can be used to clear all even k in the terms of N2i · k by comput-
ing ctj +HomoAutoψi

(ctj). Then, we can utilize the automorphism ψ1, ..., ψlogB

to integrate the ciphertexts ct0, ..., ctB−1 through Eq. 2 with the tree-based struc-
ture. This process outputs encryption of

∑B−1
j=0 mj,0 ·Xj·NB ·

∑N
B −1

k=0 ∗Xk. Finally,
we can evaluate TrKN/KN/B

to clear the redundancies and multiply the polyno-
mial temp(X) to duplicate the target terms. The PRCA process needs

B

2
+
B

4
+ · · ·+ 1 + log(N/B) = B − 1 + log(N/B)



18 Li et al.

RLWE key switchings. Alg. 5 presents the detailed PRCA process, the correct-
ness, and noise growth as shown in Appendix A.5.

Algorithm 5 Packing RLWE Ciphertexts via Automorphism (PRCA)
Input:

B RLWE samples ctj ∈ RLWEs,Q(mi), j ∈ [0, B − 1] .
The automorphism keys ATKu = RLWE′

s,Q(s(X
u)), where u ∈ Z∗

2N .
The polynomial temp(X) = 1 +X + · · ·+X

N
B

−1.
Output:

An RLWE sample c̃t ∈ RLWEs,Q(m̃)).
1: for j = 0 to B − 1 do
2: ctj = B−1 · ctj ,
3: for i = 1 to logB do
4: for j = 0 to B/2i − 1 do
5: ctj = (ct2j +X

N
2i · ct2j+1) + HomoAutoψi(ct2j −X

N
2i ct2j+1,ATK),

6: end for
7: end for
8: ct′ = Eval.TrKN/KN/B

(ct′)

9: c̃t = ct′ · temp(X);
10: return c̃t.

Based on the PRCA algorithm, we can use automorphisms to substitute the
sample extraction and base-aware key switching steps in the TFBS and LFBS
schemes. We present the complete LFBS scheme in Alg. 6, and the new work-
flow can be summarized as follows. Input some ciphertexts ctk = LWEns,q(mk),
we first apply the ciphertext conversion to obtain RGSW(XEncode(mk)), for k ∈
[0, l − 1]. In the first level of each subfunction ft, the external product can be
used to perform multi-valued functional bootstrapping between the ciphertexts
RGSW(XEncode(m0)) and all RLWE(Pt,i) for i ∈ [0, Bl−1 − 1], resulting in Bl−2

RLWE ciphertexts. Then, we use the PRCA algorithm to pack these RLWEs into
some new RLWEs, which are used in the next level of the tree. The evaluation
for the function ft ends until RGSW(XEncode(ml−1)) is used. The correctness can
be derived directly from the ciphertext conversion and the PRCA algorithms.

Horizontal Packing. Our leveled functional bootstrapping can support hori-
zontal packing, which can pack the multiple LUTs ft into a test polynomial using
the multi-valued bootstrapping technique. Specifically, in ciphertext conversion,
we use the modulus switching on input LWE ciphertext, such that its phase is
φ(m) = ∆m + 2ϑe mod 2N , and then 2ϑ empty positions can be further uti-
lized to encode multiple LUTs in the test polynomial. In detail, in the TFBS
and LFBS schemes, we can first decompose the large LUT into l′ sub-LUTs and
encode them in Bl−1 polynomials testPi, where l′ ≤ 2ϑ in our setting. Assuming
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Algorithm 6 Leveled Functional Bootstrapping (LFBS)
Input:

l LWE ciphertexts ctk = LWEns,q(mk), for k ∈ [0, l − 1].
l′ · Bl−1 polynomials testPt,i that encode the LUT f : [0, B − 1]l → [0, B − 1]l

′
,

where t ∈ [1, l′], i ∈ [0, Bl − 1] .
The ciphertext conversion key CCK including BRK, RSK.
The automorphism keys ATKu = RLWE′

s,Q(s(X
u)), where u ∈ Z∗

2N .
The LWE key switching key LKi,j,v ∈ LWEns,QKS

(
vϕ(s)iB

j
LK

)
in Sec. 2.4.1.

Output:
l′ LWE ciphertexts corresponding to f(m0, ...,ml−1).

1: for k = 0 to l − 1 do
2: CTk = CCH(ctk,CCK),
3: end for
4: for t = 0 to l′ − 1 do
5: for k = 0 to l − 1 do
6: for i = 0 to Bl−k−1 − 1 do
7: ctt,k,i = testPt,i ⊡ CTk,
8: end for
9: for i = 1 to Bl−k−2 do

10: testPt,i−1 = PRCA(ctt,k,(i−1)×B , ..., ctt,k,i×B−1,ATK),
11: end for
12: end for
13: ctt = ModSwitchQ,QKS(ctt,l−1),
14: c̄tt = LWE.KeySwitch(ctt, LK),
15: end for
16: return (c̄t0, ..., c̄tl′−1).

l′ = 2ϑ, we can set

testPi(X) =

B−1∑
j=0

N/B

2ϑ
−1∑

k=0

2ϑ−1∑
t=0

ft(j,m1, · · · ,ml−1) ·Xj·NB +2ϑk+t,

where i = m1 ·Bl−2+· · ·+ml−1, and it enables us to reduce the external products
from O(l′Bl−1) to O(Bl−1). However, this multi-valued encoding approach can-
not reduce the number of PRCA algorithm since we need to pack m0,t, ...,mB−1,t

of ciphertexts, t ∈ [0, l′ − 1], into a RLWE ciphertext that encrypts

m̃ =

B−1∑
j=0

Xj·NB ·

N/B

2ϑ
−1∑

k=0

X2ϑk
2ϑ−1∑
t=0

mj,tX
t.

It can be performed by using l′ PRCA and sum operations.
Remark. For handling large precision message m = m0 +m1B+ · · ·ml−1B

l−1,
we first can utilize homomorphic digit decomposition technique [30] to obtain the
LWE ciphertexts, LWE(m0), · · · ,LWE(ml−1). Subsequently, the aforementioned
multi-input functional bootstrapping algorithms, including TFBS (Alg. 4) and
LFBS (Alg.6), can be used to perform the large precision LUT.
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Algorithms Blind Rotation RLWE Key Switching Gadget Product

TFBS 4 l′(1 + Bl−1−1
B−1

) O(NBl′Bl−2) O(nl′Bl−1 +NBl′Bl−2)

ITFBS 5 l′(1 + Bl−1−1
B−1

) O(logNl′Bl−2) O(nl′Bl + logNl′Bl−2)

LFBS 6 l O(logNl′Bl−2) O(nl + logNl′Bl−2)

Table 3. Comparison of computational cost for TFBS and LFBS schemes, where
the multi-valued functional bootstrapping [18] is used in TFBS. Note that ITFBS
is represented as using PRCA to replace the base-aware key switching in the TFBS
scheme.

.

4.3 Analysis and Comparison

– Error growth. For the TFBS Alg. 4, the noise variances of the blind rota-
tion and key switching are additive. Thus, the noise variance of the tree-based
method when applied to l inputs is less than l · σ2

BR + (l − 1) · σ2
BA + σ2

LK,
where the σ2

BR, σ
2
BA, σ

2
LK is the noise variance of blind rotation, base-aware

key switching, LWE key switching, and the details can be found in the cor-
responding algorithm.
For LFBS of Alg. 6, the noise growth is a little different, it incorporates
new noise contributions from the external product and automorphism op-
erations. The error variance of the proposed algorithm derives from three
parts: the ciphertext conversion σ2

CC, the external product εEP1 and εEP2,
and the PRCA step εPA and σ2

PA. From the noise formula calculated from
the external product and PRCA steps, the noise variance is less than l ·
εPA(εEP1 · σ2

CCH + εEP2) + (l − 1) · σ2
PA + σ2

LK.
– Key size. The key of the TFBS and LFBS can be divided into blind rotation

key BRK, RLWE secret key RSK, base-aware key BAK, automorphism key
ATK, and the LWE switching key LK. The total key size can be summarised
as
TFBS Alg. 4: (2ndBR +BNdBA) · RLWEs +BLKdLKN · LWEs
LFBS Alg. 6: (2ndBR + dRK + logN · dAK) · RLWEs +BLKdLKN · LWEs

– Computational cost. Tab. 3 shows the computational cost of three meth-
ods for the LUT f : [0, B − 1]l → [0, B − 1]l

′
evaluation.

5 Parameter and Implementation

This section shows the parameters setting and implementations for the pro-
posed algorithms. Then, we compare similar schemes in terms of computational
efficiency and key size.

5.1 Symbols and Parameters

We first recall the notations of all algorithms in as follows.
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– λ, Security level;
– t, Plaintext modulus for the LWE sample;
– n, Lattice dimension for the LWE sample;
– q, Ciphertext modulus for the LWE sample;
– l, l′, Input and output length of the LUT;
– N, N̄ , Ring dimension for RLWE/RGSW;
– Q, Q̄, Ciphertext modulus for the RLWE/RGSW;
– σ, Standard deviation of Gaussian distribution;
– qLK, Ciphertext modulus used in LWE key switching;
– BLK, dLK , Gadget base and length for modulus qLK used in the LWE key

switching;
– B, d , Gadget base and length for modulus Q used in the external product

of TFBS;
– BBR, dBR, Gadget base and length used in the blind rotation;
– BRK, dRK, Gadget base and length used in the RLWE secret key switching;
– BBA, dBA, Gadget base and length used in the base-aware key switching;
– BHT, dHT, Gadget base and length used in the HomoTrace process;

5.2 Parameters setting for bootstrapping

We show the parameter settings in Tab. 4 and 5 for ciphertext conversion,
tree-based functional bootstrapping, and leveled functional bootstrapping, where
B and d are the RGSW parameter of the output for ciphertext conversion. To
facilitate comparison with the schemes for blind rotation tree, we also present
the parameters of blind rotation for scheme [24], i.e., BR I and BR II. Besides
these parameters, we set the ϑ = 3 in the LWE modulus switching.

These parameter sets support two cases for the base B = 4 and B =
16. The parameters sets BT_4_1024 and BT_16_2048 correspond to the
TFBS scheme [24], involving the blind rotation, base-aware key switching, and
LWE key switching. Our LFBS scheme is associated with the sets ET_4_2048
and ET_16_2048, including ciphertext conversion, HomoTrace, and LWE key
switching.

Note that each parameter set has different dimensions and moduli for the
ciphertext and secret key. We use the binary secret key in the LWE and RLWE
encryptions, setting the initial variances to σ2 = 3.2 across all key generation
processes. In addition, the RLWE and RGSW ciphertext modulus Q̄ and Q
are the NTT-friendly numbers with the degree N̄ and N , respectively. The key
distribution, error variance, and the dimension and modulus of ciphertexts de-
termine the security level of (R)LWE. We use the lattice estimator6 to evaluate
the security, where the security levels of these parameters exceed 128 bits.

6 https://github.com/malb/lattice-estimator.
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Methods Param. Sets N̄ Q̄ N Q n q BBR dBR BRK dRK B d

Scheme [24]
BR I - - 1024 ≈ 225 571 1024 24 5 - - - -

BR II 2048 ≈ 254 - - 648 2048 213 3 - - - -

Our Alg. 3
CC I 2048 ≈ 254 - - 571 2048 217 2 217 2 26 2

CC II 2048 ≈ 254 - - 648 2048 210 4 210 4 29 2

Table 4. Parameters of the ciphertext conversion, and blind rotation.

Methods Param. Sets B Params. for Tab. 4 BBA dBA BHT dHT qLK BLK dLk

Scheme [24]
BT_4_1024 4 BR I 26 3 - - 214 27 2

BT_16_2048 16 BR II 26 6 - - 216 28 2

Our Alg. 6
ET_4_2048 4 CBSV I - - 217 2 214 27 2

ET_16_2048 16 CBSV II - - 217 2 216 28 2

Table 5. Parameters of algorithms for TFBS, LFBS.

Failure Probability. For the LUT f : Bl → Bl
′

evaluation in the TFBS and
LFBS, the output noise is related to depth l as discussed in Sec. 4.3. Based on
the noise growth, the probability of decryption failure can be calculated using
the formula 1− erf

(
q

2t
√
2σout

)
, where erf is the Gaussian function. The plaintext

modulus t of LWE ciphertext is set to 2B to mitigate the negative effects of
functional bootstrapping. We present the decryption failure rates for different
lengths in Tab. 6, with all parameters yielding decryption failure rates of less
than 2−40.8. Notably, the parameter set E_16_2048 can support 32-bit LUT
evaluations, making it suitable for many high-precision applications.

Methods Params. sets λ d = 4 d = 6 d = 8

Scheme [24]
BT_4_1024 128 2−139.1 2−116.1 2−86.4

BT_16_2048 128 2−75.7 2−75.7 2−75.7

Our Alg. 6
ET_4_2048 128 2−134.5 2−58.5 2−48.8

ET_16_2048 128 2−78.2 2−75.2 2−68.9

Table 6. Decryption failure rates.
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5.3 Experimental Comparison with blind rotating tree

LUT evaluation with f : 4l → 4 LUT evaluation with f : 16l → 16

Fig. 2. Performance of TFBS schemes, where the red line indicates the result of re-
placing BAKS with PRCA, and the vertical axis on the right displays the speedup
ratios.

LUT evaluation with f : 4l → 4l
′

LUT evaluation with f : 16l → 16l
′

Fig. 3. Performance of TFBS, LFBS, and schemes[5,36], where BT and ET indicate
Blind rotation tree, external product tree. And I and II denote l′ = 1, l′ = l, respec-
tively.

Firstly, we implemented the TFBS, LFBS in OpenFHE library [2]. For a fair
comparison with the TFHE-based scheme [24], we use NTT instead of all FFT
operations. We stress that TFBS [24] and our approach have the same function-
ality. Our experiment compute the multivariate function f(m0, ...,ml−1), where
mi ∈ [0, B − 1]. All experiments are performed on the Cloud server equipped
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with an Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50 GHz and 32 GB of RAM,
with Gcc-11.3.0 as the compiler.

To analyze the contribution of the two proposed improvements to overall
performance, we first replaced the BAKS algorithm used in the TFBS scheme
with the PRCA algorithm. Here, we implemented the reading version of BAKS
as described in scheme [24]. According to the experimental results presented in
Fig. 2, the proposed PRCA method achieves improvements of 1.9 times and 8.9
times over the reading version of the BAKS method for parameters B = 4 and
B = 16, respectively. Furthermore, we demonstrate the run times of TFBS and
LFBS by using the PRCA technique in Fig.3. Under these parameter settings,
our solutions are more efficient. Specifically, in the case of B = 16 with 8-bit to
8-bit LUT evaluation, the running time of our approach is only 0.63s, making it
1.5 times faster than the TFBS method. For the 12-bit-to-12-bit LUT evaluation,
the running time is 1.12s, achieving an improvement of 11.7 times (180× with
PRCA algorithm). In the case of 16-bit-to-16-bit LUT evaluation, our method
yields improvements of 96 times.

5.4 Comparison for Key Sizes

Methods Params. sets BRK RSK BAK HTK LK Total

Scheme [24]
BT_4_1024 34.8 MB - 4.68 GB - 250 MB 4.95 GB

BT_16_2048 102.5 MB - > 10 GB - 162 MB > 10.2 GB

Our Alg. 6
ET_4_2048 60.2 0.05 - 0.5 MB 250 MB 310.8 MB (6%)

ET_16_2048 136.7 0.1 - 0.5 MB 162 MB 299.3 MB (< 3%)

Table 7. Key sizes for TFBS and LFBS algorithms, where BRK, RSK BAK, HTK,
and LK represent the keys for blind rotation, base-aware, HomoTrace, and LWE key
switching, respectively.

We compare the key sizes of the TFBS and LFBS algorithms in Tab. 7. Our
proposed Alg. 5 employs RLWE packing with the HomoTrace instead of BAKS,
leading to a significant reduction in key sizes. As illustrated in Ta. 7, the key
size of our method is only about 300 MB, which is at least 94% smaller than
that of the scheme [24].

6 Applications

This section shows two applications for the proposed LFBS algorithm. Firstly,
we propose a new large precision switching framework based on the efficient
LFBS algorithm. Furthermore, we apply the LFBS algorithm to improve the
homomorphic evaluation AES, which mainly focuses on Sbox evaluation.
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6.1 Scheme switching with Large Precision

6.1.1 Switching from BFV scheme to LFBS algorithm

Our proposed LFBS algorithm encrypts the digits of an integer into cipher-
text blocks, whereas the BFV scheme encrypts the integer vector and performs
SIMD mode. Therefore, to convert the BFV scheme to the LFBS scheme, we
need to perform sample extraction and homomorphic digit extraction (HDE) to
align the message encoding. The existing method uses functional bootstrapping
to get each digit of the message as shown in [18,30]. Assume that the plaintext
modulus of the BFV is Bl, for a message m =

∑l−1
i=0mi · Bi, the method re-

quires lN FBS, resulting in O(nNl) homomorphic multiplications, where N is
the number of encrypted elements in the slot of the BFV scheme.

We propose a batch method that puts the extraction step on the BFV side,
reducing the computational cost to O(Bl2). Specifically, we utilize the homomor-
phic digit extraction technique to split messages, which was initially employed
in BGV and BFV bootstrapping. Currently, there are two approaches: the first
is the lifting polynomial introduced by Halevi and Shoup [26], as detailed in
Lemma 1. The second is the digit extraction polynomial developed by Chen and
Han [13], as outlined in Lemma 2. Then, we need to analyze the circuit depth
and computational complexity of the two methods in our switching process.

Lemma 1 ([26]). For every prime p and exponent ℓ ≥ 1, there exists a lifting
polynomial F (X) ∈ Z[X] of degree p such that for all integers −p/2 < w0 ≤ p/2
and every 1 ≤ i ≤ ℓ it holds that F (w0 + piw1) = w0 (mod pi+1).

Using lifting polynomial, we can extract the least significant digit of the
input w ∈ Zpℓ through a successive method, where each iteration can remove
one additional upper digit. This process requires computing ℓ − 1 polynomials
of degree p, which is equivalent to evaluating a polynomial of degree pℓ−1.

Lemma 2 ([13]). For every prime p and exponent ℓ ≥ 1, there exists a digit
extraction polynomial Gℓ(X) ∈ Z[X] of degree at most (ℓ−1)(p−1)+1 such that
for all integers −p/2 < w0 ≤ p/2, it holds that Gℓ(w0 + pw1) = w0 (mod pℓ).

By utilizing the digit extraction polynomial Gℓ(X), the least significant digit
of the input w can be directly extracted by evaluating a polynomial of degree
(ℓ− 1)(p− 1) + 1.

In tree-based bootstrapping, we can set B = pr, allowing the messages in the
BFV scheme to be represented by ℓ = lr digits with base p. The goal of switching
from the BFV scheme to LFBS is to split the message w into l blocks of length
r digits. Typically, it is necessary to extract all ℓ digits and merge them into l
blocks. We note that only the lower (l − 1)r digits need to be extracted since
the most significant r digits can be obtained by subtracting them from w. Then,
we default to the p-adic representation from this point forward. We revisit the
lifting polynomial and the digit extraction polynomial in order to obtain a low
multiplicative depth of the procedure of the extraction of (l − 1)r digits.



26 Li et al.

Algorithm 7 Digit Extraction for Halevi/Shoup Method
Input:

Integer w =
∑ℓ−1
k=0 wk · p

k.
Output:

Integer wi.
1: for k = 0 to ℓ− 1 do
2: wk,0 = w
3: end for
4: for k = 0 to i do
5: for j = 0 to ℓ− k − 2 do
6: wk,j+1 = F (wk,j)
7: wk+j+1,0 = (wk+j+1,0 − wk,j+1)/p
8: return wi,ℓ−i−1

Algorithm 8 Digit Extraction for Chen/Han Method
Input:

Integer w =
∑ℓ−1
k=0 wk · p

k.
Output:

Integer wi.
1: for k = 0 to i− 1 do
2: wk,0 = w
3: end for
4: for k = 0 to i do
5: wk,ℓ−k−1 = Gℓ−k(wk,0)
6: for j = 0 to i− k − 1 do
7: wk,j+1 = F (wk,j)
8: wk+j+1,0 = (wk+j+1,0 − wk,j+1)/p
9: end for

10: end for
11: return wi,ℓ−i−1

In detail, all the digits form a trapezoid in our extraction process as shown
in Fig. 4. The first digit of each row is computed by subtracting the digits on the
same diagonal and dividing by p. For the last digit of each row, i.e., wi,ℓ−1−i,
it can be computed with either Halevi/Shoup or Chen/Han methods. We can
apply the lifting polynomial to this number with the Lemma 1, which requires
to sequentially compute wi,0, wi,1 up to wi,5−i. In this method, the degree of
polynomial evaluation of the i-th digit is pℓ−1 as shown in Alg. 7, which is also
the maximum degree for the extraction process. Another method is to directly
apply the digit extraction polynomial to the element wi,0, which outputs the
element wi,5−i with a polynomial of degree (p − 1)(ℓ − i − 1) + 1 as shown in
Lemma 2. Based on the Chen/Han method, the degree of evaluation of the i-th
digit is pi · ((p−1)(ℓ− i−1)+1), where pi is the degree of the lifting polynomial
used in the first number in the i row, referring to Alg. 8. Thus, the maximum
degree of this procedure is pℓ−r−1 · (r(p− 1) + 1), and we simplify it as rpℓ−r.
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(a)HDE via Halevi/Shoup method (b)HDE via Chen/Han method

Fig. 4. HDE illustration for l = 2, r = 3, and ℓ = 6. We use wi,j to denote the integer
with the base p digit as the i-th digit of w and the next j digits zero, blue arrow to
denote lifting polynomial and green arrow to denote digit extraction polynomial.

After that, the second digit in base B is obtained as w1 = (((w − w0,5)/p−
w1,4)/p−w2,3)/p. In this step, the division by p can convert the plaintext modulus
to B referring to Appendix A.1. Moreover, the first digit in base B is obtained
as w0 = w0,5 + p · w1,4 + p2 · w2,3, where the ciphertext of digit wi,ℓ−1−i can be
viewed as an encryption of pi · wi,ℓ−1−i with plaintext modulus pℓ. Therefore,
the addition is straightforward. To convert the plaintext modulus to B, we need
to perform modulus reduction on the ciphertext7, as shown in Appendix A.1.
Finally, this procedure can be easily generalized to any l and r.

Halevi/Shoup Chen/Han FBS[30]

Degree pℓ−1 rpℓ−r -

Depth (ℓ− 1) log p log r + (ℓ− r) log p -

# homomorphic Mul. (ℓ− r) ℓ+r
2
· 2√p (ℓ− r)(

√
ℓ+r
2

+ ℓ−r
2

) · 2√p nlN

Table 8. The degree, multiplicative depth, and the numbers of non-scalar multiplica-
tion of HDE with different methods.

We summarize the degree of polynomial, multiplicative depth, and number
of homomorphic multiplication in Tab. 8. It has been seen that the Chen/Han
method outperforms the Halevi/Shoup method in the three aspects, and the
advantage is larger as r increases. Compared to the FBS-based method, the
batch method requires fewer homomorphic multiplications. Therefore, we choose
the Chen/Han method to perform the HDE step. The detailed process is shown
in Appendix C.1.

6.1.2 TFBS to BFV scheme Switching

After the LUT evaluation with the TFBS scheme, we obtain some ciphertext
blocks with the based B. Then, to switch from the TFBS scheme to the BFV

7 In practice, it should be 2B due to negative effect.
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scheme, we first need to convert the plaintext modulus to Bl. In addition, simi-
lar to the existing frameworks PEGASUS [31] and HERMES [4], the switching
process involves a ring packing step that packs the LWEs into an RLWE while
lifting modulus and dimension of ciphertext in bootstrapping. Referring to the
HERMES. For LUT as f : Bl → B, given N LWEs, the whole process works as
follows.

– Use the functional bootstrapping for each LWE to convert the plaintext
modulus as

N · LWEnB/q
FBS−−→ N · LWEnBl/q

by setting the test polynomial testP(X) =
∑N−1
i=0

Q
Bl · ( i·Bq ) ·Xi, where Q is

the modulus in RLWE and RGSW of blind rotation
– Call N/n times LWE-to-RLWE key switching [17] to pack N LWEs into

some small-degree RLWEs as

N · LWEnBl/q
LRKS−−−→ N/k · RLWEk,Bl/q.

– Combine the small-degree RLWEs into a large-degree RLWE by ring switch-
ing [4], i.e.,

N/k · RLWEBl,q,k
RS−→ 1 · RLWEBl,q,N .

– Perform the BFV bootstrapping (BFV-BS) as

RLWEBl,q,N
BFV−BS−−−−−→ RLWEBl,Q,N .

The BFV bootstrapping involves two operations, coefficient-to-slot transfor-
mation, and HED to remove the noise. Meanwhile, the bootstrapping process
can lift the ciphertext modulus, and the details can be referred to schemes
[13,27].

6.2 Homomorphic Sbox Evaluation with TFBS algorithm

Currently, the homomorphic evaluation of AES based on various fully homo-
morphic encryption schemes has been proposed, such as BGV-based evaluation
[23], CKKS-based evaluation [1], and FHEW/TFHE-based evaluation [35,36].
In particular, the most significant difference between them is the computation
strategy of SubBytes, which is the only non-linear function in AES. As far as
we know, the FHEW/TFHE-based homomorphic computation achieves the op-
timal latency and can be divided into two strategies: functional bootstrapping
and circuit bootstrapping.

Trama et al. [35] proposed the homomorphic computation of AES using func-
tional bootstrapping mode based on the TFBS algorithm. They divided the
8-to-8-bit lookup table into two 8-to-4-bit lookup tables and used tree-based
functional bootstrapping to combine them. This method needs 4 blind rotations
and 2 BAKS operations. Our new LFBS method can accelerate Sbox evalua-
tion, which only involves 2 blind rotations and 2 PRCA operations. For the
overall AES homomorphism computation, we still need to consider other linear
operations including ShiftRows, MixColumns, and AddRoundKey.
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7 Conclusion

This paper introduces a new evaluation mode for the FHEW scheme and
shows how to build a more efficient leveled functional bootstrapping for large
precision LUT evaluation. We first designed a ciphertext conversion, which can
convert the LWE ciphertext to RGSW ciphertext with the cyclic group encod-
ing. Based on the ciphertext conversion, we construct a leveled tree-based func-
tional bootstrapping scheme, which uses the efficient external product to replace
the blind rotation. Finally, we propose a novel scheme switching framework for
this evaluation mode, and it can support large precision polynomial and non-
polynomial computation between BFV and the proposed TFBS scheme.
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A Fundamental Algorithms for LWE and RLWE
Ciphertext

A.1 Basic operation in BFV scheme

[Division by p]. Division by p is a basic operation in the BFV scheme, which
takes an encryption of pm mod pℓ and returns an encryption of m mod pℓ−1.
In the BFV scheme, this operation is free, since if c0 + c1s = q

pℓ
· pm + e + kq,

then the same ciphertext satisfies c0 + c1s = q
pℓ−1 ·m + e + kq, where q is the

ciphertext modulus.
[Mod p]. Mod p is another fundamental operation in the BFV scheme. Takes
as input an encryption of m mod pℓ with ciphertext modulus q = pz, if the
ℓ − 1 most significant digits of m are zero, it returns an encryption of m with
plaintext modulus p and ciphertext modulus q′ = pz−ℓ+1. In the BFV scheme,
this operation can be achieved through modulus reduction of the ciphertext,
because if c0+c1s = pz

pℓ
·m+e+kpℓ, then [c0]pz−ℓ+1 +[c1]pz−ℓ+1s = pz−ℓ+1

p ·m+e.
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A.2 Correctness of LWE modulus switching

Proof. Let the integers Q > q > t, by checking the decryption function, we can
get ⌊

q

Q
· b
⌉
−

⌊
q

Q
· a

⌉
mod q

=
q

Q
· b−

〈
q

Q
· a, s

〉
− ⟨r, s⟩+ r + kq

=
t

q
·m+

q

Q
· e− ⟨r, s⟩+ r + kq.

According to the central limit heuristic, the error is close to a Gaussian distri-
bution, and its variance is σ2

out ≤ ( qQ )
2 · σ2

in +
||s||22+1

12 , where the factor 1
12 is the

standard deviation of a uniform distribution in [−1/2, 1/2]. Due to ||s||2 <
√
n/2

for binary secret key, we have σ2
out ≤ ( qQ )

2 · σ2
in +

n+2
24 .

A.3 Correctness of LWE special modulus switching

Proof. Let w = 2N · 2−ϑ. We note a′′i = ⌊wq ai⌉ =
w
q ai + āi, then a′′i belongs

to a uniform distribution in
[−w

2 , w2
)

and āi ∈ w
q U [−q2w ,

q
2w ) . It means that

Var(a′′i ) =
w2−1
12 and E(a′′i ) = −1

2 , and Var(āi) =
1
12 −

w2

12q2 and E(āi) = −w
2q . The

decryption process:
b′′ − ⟨a′′, s⟩

=
w

q
(b− ⟨a, s⟩) + b̄− ⟨ā, s⟩

=
w

q
m+

w

q
e+ b̄− ⟨ā, s⟩ .

The variance of error is σ2
out = ( 2Nq )2σ2

in +
2θ

12 −
N2

3q2 + n2θ

24 + nN2

12q2 as shown in
scheme [18].

A.4 Correctness of LWE key switching

Proof. Let LKi,j,v = (a′i,j,v,a
′
i,j,v · s + vziB

j
k + ei,j,v) for some a′i,j,v ∈ Znq and

ei,j,v ∈ χδ with the error variance σ2
LK, the output ciphertext is

ct′ = LWE.KeySwitch(ct)

= (0, b)−
∑
i,j

LKi,j,ai,j mod Q

= (a′, b′) mod Q ∈ LWEns,Q(m),

It outputs a new LWE ciphertext under the secret key s, where a′ = −
∑
i,j a

′
i,j,ai,j

and b′ = b− a · z+ a′ · s−
∑
i,j ei,j,ai,j . Thus, the variance of the noise satisfies

σ2
out ≤ σ2

in +NdLK · σ2
LK.
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A.5 HomoTrace for RLWE Ciphertexts

We show the HomoTrace operation for TrKN/K1
as shown in Alg. 9. Given

the ciphertext RLWE(m(X)), where m(X) = m0+ · · ·+mN−1X
N−1, the trace

evaluation can obtain new ciphertext RLWE(m0). Note that this algorithm can
be extended to Eval.TrKN/Kn

for all n|N , where line 1 of the algorithm also
needs to be converted to ct′ = ((Nn )

−1a, (Nn )
−1b).

Algorithm 9 Evaluation Homomorphic Trace for TrKN/K1
(Eval.TrKN/K1

)
Input:

The RLWE ciphertext ct = (a, b) ∈ RLWEs,N,Q(m(X)).
The automorphism keys ATKψi = RLWE′

s,N,Q(s(X
2i+1)), where i ∈ [1, logN ].

Output:
RLWE ciphertext ct′ ∈ RLWEs,N,Q(m0)).

1: ct′ = (N−1a, N−1b),
2: for i = 1 to logN do
3: ct′ = ct′ + HomoAutoψlog N−i+1(ct

′,ATK),
4: end for
5: return ct′.

Noise growth. The HomTrace evaluation has logN iterations, the noise vari-
ance of the k-th iteration can be expressed as σ2

k ≤ 4σ2
k−1 + σ2

AT, thus the step
adds noises bounded by σ2

HT ≤ (1 + · · · + 4logN−1)σ2
AT + 4logN · (N2)−1 · σ2

in =
N2−1

3 σ2
AT+σ

2
in, where σ2

AT is the error variance of automorphism. For the detailed
analysis, please refer to scheme [12].
Noise growth of Alg. 5. The error variance of Alg. 5 is similar to Alg.9, with
the difference being the automorphism for the B ciphertexts. Due to addition and
automorphism operations, the error variance of the 3 line of Alg. 5 is bounded by
σ2
k ≤ 8σ2

k−1+σ
2
AT, and after logB iterations, we can get σ2

step 1 ≤ B3−1
7 σ2

AT+Bσ
2
in.

Then, with the evaluation of HomoTrace in step 2, the variance satisfies σ2
step 2 ≤

(N−B)2−1
3 σ2

AT+σ
2
step 1. Finally, multiplying by the polynomial temp, the message

and noise are repeated for N/B positions, respectively, and this step indeed
introduces no new noise. Thus, the overall noise is σ2

out ≤ εPAσ
2
in + σ2

PA, where
εPA = B, and

σ2
PA =

(
(N −B)2 − 1

3
+
B3 − 1

7

)
σ2
AT.

A.6 Base-aware key switching

The TFBS needs to pack B LWEs into the serialized blocks in the RLWE
ciphertext as shown in Alg. 10. In addition, we introduce a read version similar
to LWE key switching, and then the base-aware key switching key is convert to
BAKi,j,b,v ∈ RLWEs(vB

j
BAsi ·

∑(b+1)N/B−1
q=bN/B Xq) for v ∈ [0, BBA− 1], and the key
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Algorithm 10 Base-aware Key Switching (BAKS)
Input:

B LWE samples ct(i) = (a(i), b(i)) ∈ LWENs,Q(mi) for i ∈ [0, B − 1].
The base-aware key switching key BAKi,j,b ∈ RLWEs(B

j
BAsi ·

∑(b+1)N/B−1

q=bN/B Xq) for
i ∈ [0, N − 1], j ∈ [0, dBA − 1], and b ∈ [0, B − 1].

Output:
RLWE sample ct′ = RLWENs,Q(m̃).

1: b̃ = b(0) + · · ·+ b(0)X
N
B

−1 + · · ·+ b(B−1)X(B−1)N
B + · · ·+ b(B−1)XN−1

2: for i = 0 to N − 1 do
3: for b = 0 to B − 1 do
4: ãi,b = a

(b)
i ,

5: approximate decompose ãi,b to get (ai,b,0, .., ai,b,lBA),
6: end for
7: end for
8: return ct′ = (0, b̃)−

∑N−1
i=0

∑lBA−1
j=0

∑B−1
b=0 ãi,j · BAKi,j,b.

switching process is

ct′ = (0, b̃)−
N−1∑
i=0

dBA−1∑
j=0

B−1∑
b=0

BAKi,j,b,ãi,j ,

and the error variance is

σ2
out = σ2

in +NB · dBA · σ2
BA +

N

12
· ( Q

BdBABA

)2,

where σ2
in and σ2

BA are the error variance for input LWE ciphertext and BAK. This
method allows for modular multiplication to be replaced with modular addition,
improving the efficiency of the key switching process. However, it also results in
a significant increase in key size. The sizes of key switching key is NdBABBAB
RLWEs, which is BBA times bigger than the computational version.

B Algorithms and Correctness for Ciphertext Conversion

Theorem 1. Input an LWE ciphertext ct = (a, b) ∈ LWEns,q(m) with error vari-
ance σ2

in, Alg. 3 outputs an RGSW ciphertext as CT ∈ RGSWs,N,Q(X
φ(m)+θ),

and its error variance is σ2
CCH.

Proof. Here, we discuss the correctness and noise growth for the ciphertext con-
version of Alg. 3. The analysis can be divided into two steps: special modulus
switching and circuit bootstrapping. Firstly, the correctness of the special mod-
ulus switching is straightforward, the error variance can be referred to Appendix
A.3. Then, the noise from the modulus switching is refreshed by the bootstrap-
ping process.
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In addition, lines 5-7 of Alg. 3 outputs the acc = RLWE(B0X
−(φ(m)+θ) +

· · · + Bd−1X
−(φ(m)+θ)+d−1) after n CMux gate with the blind rotation key

BRK. Let σ2
BR is the error variance of BRK, we can get σ2

BR =
nNB2

BRdBR
3 σ2

BR +

nN
12

⌈
Q

B
dBR
BR

⌉2

. Then, after the HomoTrace evaluation, we can get the ciphertexts

cti = RLWEs,Q,N (BiX
φ(m)+θ) for i ∈ [0, d − 1]. Based on the noise analy-

sis of HomoTrace, the error variance is bound by d2−1
3 σ2

AT + σ2
BR, where σ2

AT

is the error variance of automorphism that equal to variance of RLWE key
switching. After that, by performing the RLWE secret key switching with RSK,
the new ciphertext is RLWEs,Q,N (s · BiXφ(m)+θ), and the output variance is

σ2
CCH = N

2 (
d2−1

3 σ2
AT + σ2

BR) +
NB2

RKdRK
12 σ2

RK + N
12

⌈
Q

B
dRK
RK

⌉2

. Finally, these RLWE

ciphertexts consist of the RGSW ciphertext.

C Switching from BFV scheme to TFBS algorithm

C.1 The workflow of BFV to TFBS scheme switching

We present BFV to the TFBS scheme switching as shown in Fig. 5. Given an
RLWE ciphertext, where the i-th slot is wi ∈ ZBl . First, we perform HDE step
to obtain l RLWE ciphertexts, where each ciphertext encrypts the corresponding
digits of the plaintext vector. Then, the slot-to-coefficient transformation [27] is
used to get the coefficient encoding form. Finally, sample extraction is used to
obtain LWE(wji ), where i is the index of the slot, and j is the index of the digit.
In this way, we complete the BFV to TFBS scheme switching and the message
encoding form can support the large precision LUT evaluation.

Fig. 5. The workflow of BFV to TFBS scheme switching
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