Paper 2024/2071
Perfectly Secure Fluid MPC with Abort and Linear Communication Complexity
Abstract
The \emph{Fluid} multiparty computation (MPC) model, introduced in (Choudhuri \emph{et al.} CRYPTO 2021), addresses dynamic scenarios where participants can join or leave computations between rounds. Communication complexity initially stood at $\Omega(n^2)$ elements per gate, where $n$ is the number of parties in a committee online at a time. This held for both statistical security (honest majority) and computational security (dishonest majority) in (Choudhuri \emph{et al.}~CRYPTO'21) and (Rachuri and Scholl, CRYPTO'22), respectively. The work of Bienstock \emph{et al.}~CRYPTO'23) improved communication to $O(n)$ elements per gate. However, it's important to note that the perfectly secure setting with one-third corruptions per committee has only recently been addressed in the work of (David \emph{et al.}~CRYPTO'23). Notably, their contribution marked a significant advancement in the Fluid MPC literature by introducing guaranteed output delivery. However, this achievement comes at the cost of prohibitively expensive communication, which scales to $\Omega(n^9)$ elements per gate. In this work, we study the realm of perfectly secure Fluid MPC under one-third active corruptions. Our primary focus lies in proposing efficient protocols that embrace the concept of security with abort. Towards this, we design a protocol for perfectly secure Fluid MPC that requires only \emph{linear} communication of $O(n)$ elements per gate, matching the communication of the non-Fluid setting. Our results show that, as in the case of computational and statistical security, perfect security with abort for Fluid MPC comes "for free (asymptotically linear in $n$) with respect to traditional non-Fluid MPC, marking a substantial leap forward in large scale dynamic computations, such as Fluid MPC.
Metadata
- Available format(s)
- Category
- Cryptographic protocols
- Publication info
- Published by the IACR in CIC 2024
- Keywords
- MPCFluid MPCPerfect SecuritySecurity with AbortLinear Communication
- Contact author(s)
-
abienstock @ cs nyu edu
daniel escudero @ protonmail com
antigonipoly @ gmail com - History
- 2024-12-26: approved
- 2024-12-24: received
- See all versions
- Short URL
- https://ia.cr/2024/2071
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2024/2071, author = {Alexander Bienstock and Daniel Escudero and Antigoni Polychroniadou}, title = {Perfectly Secure Fluid {MPC} with Abort and Linear Communication Complexity}, howpublished = {Cryptology {ePrint} Archive, Paper 2024/2071}, year = {2024}, url = {https://eprint.iacr.org/2024/2071} }