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Chapter 1

Introduction

This report is an update on the TU/e final report on Round 1 of KpqC. It
covers our work on the 2nd-round candidates in the KpqC competition. We
document the functioning and highlight changes in the submissions. In some
cases we have found attacks on the specified systems, and in some cases we
have found attacks exploiting bugs or timing variations in implementations.
For all systems, we checked the security proofs to the extent that any were
given and highlight gaps and issues. We revisit our security analysis of the
generic attacks in case the designers changed the parameters or new attacks
have been developed.
Each submission is treated in its own chapter, but given that four systems
use lattices as the underlying structure, we treat lattices, lattice problems,
and generic attacks in the following background chapter. We also cover
transforms used in the constructions and their security proofs and comment
on the software evaluation in this background chapter. After that we cover
KEMs and then signature systems in alphabetical order.
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Chapter 2

Background

Multiple schemes submitted to the Korean Post Quantum competition are
based on some form of the Learning with Errors (LWE) problem or some of its
variants, including Ring (RLWE), Module (MLWE), Learning with Round-
ing (LWR or M/RLWR) and NTRU. Of the round-2 candidates we have
SMAUG-T (MLWE), HAETAE (MLWE), NCC-sign (RLWE), and NTRU+
(NTRU). The signature systems can also be attacked via variants of another
problem called SIS: HAETAE relies on a “self-target” version of MSIS, and
NCC-sign relies on a “self-target” version of RSIS.
In this chapter we first cover generic lattice attacks and then introduce the
most common problems and tools in security proofs. For systems not based
on lattices this is given as part of the chapter introducing the system and
short introductions are given also for the lattice schemes to keep the chapters
concise.
Finally, we comment on our methodology for performance evaluation.

2.1 Generic lattice attacks

Lattice-based schemes base their security on the hardness of finding short
or close vectors in lattices. The schemes differ in how these lattices are
defined and how they base the functionality of KEM or signature scheme
on the lattice problem but they share the generic lattice attacks that apply.
These are algorithms that find short non-zero vectors in the lattice. The run-
time of the algorithms typically increases with the quality of output, ranging
from polynomial for the LLL algorithm, which finds short vectors within an
exponential approximation factor of the shortest length, to exponential for
enumeration and sieving algorithms that can find vectors of minimal length.
The BKZ lattice reduction algorithm [SE91] permits to interpolate between
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these two extremes by means of the “block size” β. The BKZ algorithm
repeatedly solves the exact Shortest Vector Problem (SVP) in a lattice of
dimension β. These lattices are obtained as projections of the original lat-
tice to a subspace. Taking a linear combination of vectors in that subspace,
which give a shortest vector there, gives a relatively short vector in the full
space. BKZ iterates taking a selection of β vectors, solving the exact SVP
in the projection, moving back to the full space and considering the next set
of β vectors to repeat. The special case of β = 2 is the LLL algorithm while
taking β equal to the lattice dimension means solving the exact problem in
the full lattice. LLL and BKZ come with stopping conditions on the length
of the vectors which translate into approximation factors of how close to the
shortest length these vectors get. In general, a larger β leads to shorter vec-
tors at a longer runtime, however, often it is not necessary to compute the
shortest vector in order to break the system, some relatively short vector, no
longer than γ times the shortest length may be sufficient. Furthermore, a
lattice might lend itself to shorter runtimes, e.g. for the integer lattice Zn one
immediately writes down n independent vectors of length 1, which is much
shorter than would be expected from a random lattice, but generic lattices
will not have such extreme cases.
Asymptotically, a lower bound of the attack cost is given by the time to
solve SVP in dimension β and ignoring all lower-order terms, the iterations
(“tours”) in BKZ, and the costs of storage. We caution the reader that
this need not be an actual lower bound as the lower-order terms might have
negative signs and might have large coefficients. Other models try to account
for more of the factors.
Albrecht, Player and Scott have created a lattice estimator used to estimate
the costs of the above attack in [APS15]. Note that even though this eprint is
not updated, their latest lattice-estimator software is at the moment (to the
best of our knowledge) the state-of-the-art estimator available. This lattice-
estimator software is different from the “LWE estimator” used in [ACD+18],
in the round-1 report, and in many lattice proposals.
In order to use the lattice-estimator software, all the schemes, no matter
the form of the problem, will be reduced to an LWE instantiation. On
this LWE instantiation the estimator is then run. Note that this indeed
gives only estimates, and should be seen as a indication, but very small
numbers indicate problems. The estimates are included in the chapters on
the respective schemes.
We use the following names for four different estimates that can be obtained
from the lattice-estimator software:

� Primal Core-SVP. This is usvp from estimate.rough in lattice-
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estimator. This is the simplest estimate, and currently has the best
comparability to the literature.

� Dual Core-SVP. This is dual_hybrid from estimate.rough in lattice-
estimator. This estimates the cost of a different “dual” attack strategy.
Occasionally Dual Core-SVP is noticeably below Primal Core-SVP, but
there is ongoing controversy regarding this speedup (see, e.g., [DP23]
and [PS24]).

� BDD. This is bdd (referring to bounded-distance decoding) from
estimate (not estimate.rough) in lattice-estimator. This incorpo-
rates various effects ignored in Primal Core-SVP, and currently has
the best comparability to the part of the literature looking “beyond
Core-SVP”.

� Dual Hybrid. This is dual_hybrid from estimate in lattice-estimator.
This incorporates various effects ignored in Dual Core-SVP. This is
controversial for the same reasons as Dual Core-SVP.

The lattice-estimator software provides all four of these estimates for LWE-
based schemes, but does not provide the dual estimates for NTRU-based
schemes.
For HAETAE, the round-1 submission package included precompiled frag-
ments of a script to estimate security levels for LWE and SIS. We applied
a decompilation tool and linked in the estimator from CRYSTALS, but the
script still did not finish successfully after more than two days of CPU time,
so we terminated the run. The round-2 submission package instead includes
a script that runs successfully. When we tried

python3 HAETAE_security_estimates.py \

--param="n=256 q=64513 k=2 l=4 eta=1 gamma=48.858 security=120 adapt=1"

we received output close to—but not exactly—the 120 column in Table 1 of
the round-2 HAETAE documentation.

2.2 Security assumptions

Many LWE-like security assumptions have an interesting property of worst-
case-to-average-case reductions: an algorithm to break the average case of
the LWE-like assumption can be used, with at most a polynomial loss of
efficiency, to break the worst case of a specified lattice problem.
The specified lattice problem is typically an approximate short vector prob-
lem for a class of lattices sharing key properties of the LWE-like assumption.
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For example, a subexponential-time algorithm to break Ring-LWE in the
average case implies a subexponential-time algorithm to break approximate
short-vector problems in the worst case for ideal lattices. The approximation
factor is also related to the Ring-LWE parameters.

2.2.1 The importance of studying the security level of
assumptions

It is important to note that a worst-case-to-average-case reduction is not a
guarantee of security. There are three basic reasons for this.
First, the polynomial loss of efficiency mentioned above is very large, so the
theorems are consistent with the possibility that the LWE-like assumptions
are much easier to break than the worst-case lattice problems. This has
far-reaching consequences.
A concrete analysis and optimization from [Gär23] proves 2128 QROM IND-
CCA2 security for a particular lattice system using dimension 79510 and a 37-
bit modulus, assuming optimality of attacks against a particular worst-case
lattice problem. This lattice dimension is much larger than lattice dimensions
that have been deployed.
This means that for the currently used parameters, to the best of our knowl-
edge, all lattice-based encryption systems do not reduce to some underlying
classical worst-case assumption in a theoretically-sound way. Put differently,
when applying the existing security reductions to the parameter sizes used
in practice they would merely imply that a classical lattice problem can be
solved that has very small parameters. However, such a scheme could be
practically solved efficiently in any case, making the guarantees from the
security proof vacuous.
Second, the cryptanalytic literature often breaks worst-case problems. Con-
sider, for example, the discrete-logarithm problem for the multiplicative
group F∗2n . This problem has a worst-case-to-average-case reduction: an
attack against the average case of the problem implies an attack against a
worst-case problem (namely the worst case of the same problem). However,
known attacks break this problem in polynomial time with a quantum com-
puter, and in quasipolynomial time even without a quantum computer.
Third, even when all known attacks against a problem take exponential time,
secure parameter selection requires understanding the attack cost in more
detail. For example, in selecting a prime p to use for pre-quantum elliptic-
curve cryptography over Fp, it is important to understand that attacks use
just p1/2 operations rather than p operations.
The following sections look more closely at the most important attack prob-
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lems in lattice-based cryptography. This is not a description of the known
attack algorithms or the attack costs; it is an overview of problems that are
assumed to be hard.

2.2.2 Assumptions used in cryptography for encryp-
tion systems

An LWE-like assumption states that the distributions A, b = A · s + e and
A, b′ are computationally indistinguishable where A is a suitable uniformly
drawn (quadratic) matrix of dimension n (a lattice), s is a secret vector, e is
a small error vector, and b′ is a random vector. All values are integers. We
observe that essentially s 7→ A · s is a linear operation that is perturbed by
some error term. Moreover, A spans a lattice. The closeness to purely linear
operations gives these schemes their efficiency. In the literature, we can find
several variants where the entries in A, s, e, b, b′ range over different algebraic
structures (and accordingly the operations ·,+ are defined differently). How-
ever, each of these assumptions requires that the mapping s 7→ A · s + e is
injective, giving important conditions on the size of the parameters.
In plain LWE, the vector and matrix entries are elements of some ring Zq
while · represents matrix multiplication modulo q. Ring LWE (RLWE) in-
stead works with polynomials in the ring Z[x]/f(x) for some polynomial
f(x), typically f(x) = xn + 1 and additionally reduces modulo some number
q. The equation A · s turns into the multiplication of the polynomials a and
s modulo f(x). This can also be written in matrix form where rows of A
are a · xi followed by reduction modulo f(x) and modulo q. Module LWE
(MLWE) can be interpreted as a generalization to a spectrum that has LWE
and RLWE as its endpoints, parameterizing the additional polynomial struc-
ture introduced [AD17]. In general these variants require more algebraic
structure, with RLWE introducing stronger requirements on the algebraic
structure than general MLWE.
Peikert and Pepin in [PP19] presented a general treatment of the Learning
with Errors (LWE) assumption and its variants. Roughly, their framework
gives a tight reduction from Ring-LWE (RLWE) to other algebraic LWE
variants, including Module-LWE (MLWE), Order-LWE, and Middle-Product
LWE. Their work shows that it is possible to use the hardness of Ring-LWE
as a foundation for the hardness of all prior algebraic LWE problems. When
focusing on LWE, MLWE, and RLWE, this is natural as RLWE places the
strongest conditions on the additional structure. However, so far there are
no attacks that can specifically exploit the additional structure induced by
RLWE (or MLWE). A benefit is that the efficiency of the cryptosystem that
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are based on LWE-variants can be higher than in plain LWE, both in terms of
size as well as in speed of computation. The overall result when using RLWE
and MLWE is that in Regev-like encryption systems, we can have higher
efficiency with these variants. Roughly in Regev’s original cryptosystem,
an encryption of a single message bit would require n elements of Zq in
the ciphertext and public key. Using RLWE in Regev-like cryptosystems,
decreases this to a single value. Whereas the definition of RLWE relies on a
single polynomial, MLWE considers vectors of polynomials. When comparing
this to RLWE, this can be used to balance the number of components of the
vector with the length of its entries. Intuitively, at the same level of security,
RLWE has to compensate for considering just one polynomial by having
polynomials of larger degrees [AD17].

2.2.3 Computational vs. decisional LWE-variants

The computational version of plain LWE and its variants requires us to com-
pute the secret s from a A, b with b = A · s + e instead of distinguishing it
from random (A, b′). The computational and decisional version of LWE and
its variants are polynomial-time equivalent. In the following we will usually
be concerned with decisional variants since we deal with encryption systems
that intrinsically capture that ciphertexts do not reveal a single bit to the
attacker by requiring that ciphertexts are indistinguishable from encryptions
of random values. We note that there is still a security loss when reducing
the computational variant to the decisional [STHY23].

2.2.4 LWE vs. LWR

Whereas the LWE problem adds a small random error e to an otherwise
linear equation, the learning with rounding (LWR) assumption introduces a
deterministic error that intuitively cuts-off some of the least significant bits
(LSBs) of the linear equation. LWE reveals A,As+e; LWR reveals A, bAsep,q
where bxep,q denotes bx(p/q)e, the rounding of x(p/q) to the neaarest integer.
If p < q then this maps values in [0, q − 1] to the smaller set [0, p − 1]
and thus loses information. The resulting elements are smaller and improve
bandwidth. Essentially, instead of blinding the least significant bits with an
error e, LWR simply deletes the least significant bits.
Note that (q/p)bAsep,q is close to As, and can thus be written as As + e
where e is small. However, LWR chooses this e deterministically from As,
whereas LWE chooses e randomly.
An LWR attack can be used as an LWE attack as follows: given an LWE
sample A,As+e, discard the bottom bits of As+e to obtain an LWR sample,
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and then apply the LWR attack. This reduction works with high probability
if the amount of rounding is large enough; on the other hand, the reduction
does not imply that LWR is as hard as LWE when the amount of rounding
is similar to the size of e.

2.2.5 Partially-correct encryption system

Due to the introduction of errors (that can in rare cases accumulate quickly),
most cryptosystems based on lattices feature non-perfect correctness. This
means that in rare cases the decryption of a ciphertext may fail. The prob-
ability for this to happen is called decryption failure probability (DFP). For
practical parameters, the DFP is usually very small, so that decryption fail-
ures will virtually not happen in most usage scenarios. However, an attacker
that can find decryption failures learns valuable information on the secret
key [DRV20]. Thus attackers might use strategies that specifically search
for decryption failures. Recent improvements in these strategies improve
the success probability to find more decryption failures once a single one has
been found for a given key pair [DB22]. So the probabilities of a lattice-based
cryptosystem need to be chosen such that finding any decryption failure is
hard in the first place. However, recent analysis reveals that the DFP of most
schemes used in practice are low enough when fixing the maximum number of
decryption queries in total to some practical values [DRV20]. It is important
to note that when proving security against quantum attackers as opposed to
classical attackers, Grover’s search algorithm can be utilized by any attacker
and in particular attackers that aim at finding decryption failures.

2.2.6 Security assumptions

All schemes are essentially following the same template. For integers p, q
with 2 < p ≤ q, if w ∈ Zq, let bwep,q denote bw · p/qe, where bve represents
rounding to the integer that is nearest to v. If p = q, no rounding is performed
whatsoever. If w ∈ Rq for some polynomial ring Rq with coefficients over
Zq, bwep,q applies the rounding operation to each coefficient of w. Likewise,
rounding a vector of elements will apply the rounding to each component
of the vector. By convention we will understand that having an (error)
distribution χx = {0} that always maps to zero implies that we will not
draw an error at all.

Definition 2.2.1 (LWE). Let n, q be positive integers and let χLWE be a prob-
ability distribution on Zn

q . Implicitly set p = q. Choosing a matrix A ∈ Zn×n
q

uniformly at random and choosing e ∈ Zn
q according to χLWE, define As,χLWE
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as the probability distribution on Zn×n
q × Zn

q that outputs (A, b = A · s + e)
for given secret s ∈ Zn

q . Define ULWE = (A,w) where w is uniform in Zn
q .

Definition 2.2.2 (LWR). Let n, q, p be positive integers with p < q.Choosing
a matrix A ∈ Zn×n

q uniformly at random, define χLWR = {0}n to be a distri-
bution that always maps to zero and As,χLWR

as the distribution on Zn×n
q ×Zn

q

that outputs (A, b = bA ·s+eep,q) for given secret s ∈ Zn
q . Define ULWR as the

uniform distribution on Zn
q × Zq. Define ULWR = (A,w) where w is uniform

in Zn
q .

Definition 2.2.3 (RLWE). Let n be an integer, let q be a prime integer.
Define Rq = Zq[x]/(xn + 1) and let χRLWE be a probability distribution on Rq.
Implicitly set p = q. Choosing a polynomial A ∈ Rq uniformly at random,
drawing e at according to χRLWE, define As,χRLWE

as the probability distribution
on Rq × Rq that outputs (A, b = A · s + e) for given secret s ∈ Rq. Define
URLWE = (A,w) where w is uniform in Rq.

Definition 2.2.4 (RLWR). Let n be an integer, let q be a prime integer,
and let p be an integer with p < q. Define Rq = Zq[x]/(xn + 1). Define
χRLWR = {0}n to be a distribution that always maps to zero. Choosing a
polynomial A ∈ Rq uniformly at random define χRLWR = p and As,χRLWR

as
the probability distribution on Rq × Rq that outputs (A, b = b(A · s)cp,q) for
given secret s ∈ Rq. Define URLWR = (A,w) where w is a uniform polynomial
in Rq.

Definition 2.2.5 (MLWE). Let k,m, and n be integers, let q be a prime
integer. Define R = Z[x]/(xn + 1) and Rq = R/qR and let χMLWE be a
probability distribution on Rk

q . Implicitly set p = q. Choosing a matrix
A ∈ Rk×m

q uniformly at random and an error e according to χMLWE, define
the probability distribution As,χMLWE

on Rk×m
q ×Rk

q that outputs (A, b = A·s+e)
for given secret s ∈ Rm

q . Define UMLWE = (A,w) where w is uniform in Rk
q .

Definition 2.2.6 (MLWR). Let k,m, and n be integers, let q be a prime
integer, and let p be an integer with p < q. Define R = Z[x]/(xn + 1) and
Rq = R/qR. Define χMLWR = {0}kn to be a distribution that always maps to
zero. Choosing a matrix A ∈ Rk×m

q uniformly at random define As,χMLWR
as

the probability distribution on Rk×m
q × Rk

q that outputs (A, b = b(A · s)cp,q)
for given secret s ∈ Rm

q . Define UMLWR = (A,w) where w is uniform in Rk
q .

Definition 2.2.7 (Alternative Version). Consider the x-assumption for x ∈
{LWE,RLWE,MLWE, LWR,RLWR,MLWR}. Using the same parameters, we
say that x′ is the alternative version of x if in the computation of the output
distribution we compute sT · A instead of A · s.
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We refer to LWE, MLWE, RLWE (and to any of the corresponding alternative
versions) generally as LWE-like and more specifically to LWR, MLWR, RLWR
(and to any of the corresponding alternative versions) as LWR-like.

Definition 2.2.8 (Computational LWE-like Problems). Assume we draw s
according to some distribution χx,s. Given an arbitrary number of indepen-
dent samples from As,χx, with x ∈ {LWE,RLWE,MLWE, LWR,RLWR,MLWR}
(or a corresponding alternative version) the computational x problem asks to
find s.

Definition 2.2.9 ((Decisional) LWE-like Problems). Assume we draw s
according to some distribution χx,s. Given an arbitrary number of in-
dependent samples from As,χx or from the distribution Ux, with x ∈
{LWE,RLWE,MLWE, LWR,RLWR,MLWR} (or a corresponding alternative
version), the decisional x problem asks to distinguish between samples from
As,χx and samples from Ux.

When in the following we speak of any LWE-like assumption we specifically
refer to its decisional variant. In classical formulations of the assumptions
we typically have that χx,s is the uniform distribution. We say that LWE and
LWR have the same algebraic structure if they have the same parameters n, q
and they share A. Likewise, we say that RLWE and RLWR have the same
algebraic structure if they share the same parameters n, q and they share A.
Finally we say that MLWE and MLWR have the same algebraic structure if
they share the same parameters k,m, n, q and they share random A.
The results in [ACPS09] show that for LWE-like schemes the secret keys can
come from the same (Gaussian) distribution as the error. This accounts for
virtually no security loss. This justifies using small secret keys in the first
place.

2.2.7 The basic Regev cryptosystem

Description

We now describe a general form of the Regev system. The Regev system can
be based on the x ∈ {LWE,RLWE,MLWE, LWR,RLWR,MLWR} assumption
for key generation and the y assumption for ciphertext generation where x
and y have the same algebraic structure but possibly distinct p, p′. Observe
that these assumptions implicitly define all ambient spaces.
Below we consider a message space M = {0, 1} for x ∈ {LWE, LWR} and
M = {0, 1}n for x ∈ {RLWE,MLWE,RLWR,MLWR}. The PKE scheme con-
sists of a collection of three algorithms PKE = (KeyGen,Encrypt,Decrypt):
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� KeyGen(1κ): The key generator chooses uniformly random A. Next it
samples b = bA·s+eep,q where s is chosen according to some distribution
χx,s and e ← χx. The public key is pk = (A, b) while the secret key is
sk = s.

� Encrypt(pk,m): To encrypt message m, we compute an ephemeral key
b′ = bs′T ·A+ e′ep′,q for some s′ that has been drawn from distribution
χy,s′ and e′ ← χy. Next we use the public key of the receiver pk = (A, b)
to compute (c1, c2) where c1 = b′ and c2 = bs′T · b + e′′ep′,q + bmp′/2e
where e′′ is drawn according to χy.

� Decrypt(sk, c): To decrypt ciphertext (c1, c2) using sk = s, we compute
mq/2 ≈ c2(q/p

′)− c1(q/p′) · s from which we can easily compute m.

Correctness

We say PKE has correctness δ if it holds that the probability
Pr[m = Decrypt(sk,Encrypt(pk,m))|(pk, sk) ← KeyGen(1κ)] = δ. We define
the decryption failure probability DFP as DFP = 1− δ.

Security

Consider the following game played between attacker A and challenger C.

� The challenger draws a random key pair using (pk, sk) ← KeyGen(1κ)
and sends pk to the attacker.

� The attacker outputs a message m∗.

� The challenger draws random bit b and random message m′ ∈ M. It
sets m0 := m∗ and m1 := m′. Next it computes c∗ ← Encrypt(pk,mb)
and sends it to A.

� The attacker outputs a bit b′ indicating its guess for m∗.

The attacker wins if b′ = b. The advantage of the attacker to win is defined
as Adv = |Pr[0← A(pk, c∗)]−Pr[1← A(pk, c∗)]| where the probability is over
the random choices of A and C.

Security proof of generic Regev scheme

The security proof for this scheme is very simple. In the first game hop,
we exchange the public key element b with a truly random value b′. Any
attacker that can observe this change can immediately be used to break the
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x assumption. Next we change c1 to random b′′. Again, any attacker that
can observe this change can be used to break the y assumption. Now we are
in a game where the ciphertext is entirely independent of the public key and
the message. Thus the attacker can only guess with probability 1/2.

Security loss

The security of the basic Regev scheme reduces tightly to that of the x or y
assumption.

2.3 General design frameworks and provable

security

2.3.1 The Fujisaki-Okamoto transform (with implicit
rejection)

The Fujisaki-Okamoto (FO) transform turns a weakly secure PKE to an
IND-CCA secure one [FO99, FO13]. The FO transform has been originally
described for PKE. Dent transferred it to construction of KEMs [Den03].
However, the transforms only cover schemes with perfect correctness. The
application to partially-correct schemes got much attention in the last years
starting with [HHK17]. A good overview on the classical reductions is given
in [FO13]. Some of the key insights are that:

� When using quantum reductions, there is a tight proof from deter-
ministic PKEs with an additional strong property called disjoint sim-
ulatability to IND-CCA secure KEMs in the quantum random oracle
model (QROM) [SXY18]. Disjoint simulatability is implied by sparse
pseudo-randomness.

� When using classical reductions, there is a tight proof from a subclass
of probabilistic PKEs to IND-CCA secure KEMs in the random oracle
model [FO13].

� When using classical reductions, there is a tight proof from de-
terministic PKEs to IND-CCA secure KEMs in the random oracle
model [FO13].

� When using quantum reductions, there is a non-tight proof [HHM22,
BHH+19] from deterministic and probabilistic PKEs to IND-CCA se-
curity in the quantum random oracle model (QROM). To avoid high se-
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curity losses, it is useful to require implicit rejection, where the decryp-
tion oracle outputs random responses in case of a decryption failure.
All black-box reductions have a square loss of security. Given current
knowledge, it seems hard to avoid this non-tight security loss [JZM21]
for measurement-based reductions (that measure the output of the
QROM). Under certain assumptions on the reversibility of the attacker
a non-black box reduction presented at EC’20 has a linear loss.

� Existing KEMs often include the receiver’s public key to derive the
shared key in the key-derivation function. The reason is usually that
in this way they can achieve a form of domain separation that makes
it harder to launch attacks exploiting decryption failures. However,
there are also more formal arguments to apply this technique. It can
be used to improve the tightness loss over the standard hybrid argu-
ment [BBM00] when analyzing in the more realistic multi-user setting.
to derive the shared key. However, as [DHK+21] show, using the full
pk is wasteful, a prefix of it suffices. Relying on just the prefix results
in a considerable decrease of the running time of Kyber as opposed to
using the full public key.

We emphasize that the same reasoning applies if hashed public keys
(via some other collision-resistant hash function) are used instead of
the full public keys when deriving the shared key. With the same
arguments as before one can use a truncated hash value to derive the
shared key. However, the benefit of introducing this additional hash is
generally unclear. We note that by explicitly considering the entropy
of the truncated public keys, [DHK+21] provide alternative results that
deviate from the existing variants of the Fujisaki-Okamoto transform.
Essentially, the new transforms do not require the underlying PKE
system to provide spreadness. Moreover, for certain parameters, the
security losses reported in [DHK+21] improve on previous work.

We note that even though the results of [DHK+21] present a much more re-
alistic setting it still does not provide corruption capabilities to the attacker.
Strictly speaking, their result only holds if no party is ever corrupted. It is
unclear if their improvements over the naive hybrid argument transfer to the
setting with adaptive user corruptions as well.

2.3.2 Security loss

The security proof should have a low security loss that theoretically supports
practical parameter choices. This however, highly depends on the security
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assumption that the security of the scheme is reduced to. As stated before,
reductions to the worst-case hardness of classical lattice-based assumptions
are very likely to not cover practical parameters since they have considerably
high security losses. However, even if the reduction reduces to some decisional
LWE-like assumption, the reduction is typically not tight, in particular, if it
assumes quantum attackers in the so-called quantum random oracle model
(QROM). This is mainly due to the application of the popular Fujisaki-
Okamoto transform (and its variants) that generically turns an IND-CPA
secure PKE into a IND-CCA2 secure KEM [HHM22, BHH+19]. Recent
results show that under certain conditions this loss is unavoidable [JZM21]
(for measurement-based, black-box reductions).

2.3.3 The Fiat-Shamir transform

The Fiat-Shamir transform turns an identification scheme into a signature
scheme. A famous example that followed this design paradigm is the Pic-
nic [CDG+17] signature scheme which made it into the third round of the
NIST competition. Fiat-Shamir also has shown to be quite popular among
submissions to the NIST signature on-ramp. Amongst the round-2 KpqC
candidates, it is used by AIMer, HAETAE, and NCC-Sign.
Fiat-Shamir’s core idea is to use the identification scheme in a non-interactive
way to sign messages. To that end, the signer acts as the prover in the
identification scheme, first choosing a commitment. The signer then uses
the identification scheme in a non-interactive way: instead of having some
verifier pick a challenge, the signer feeds the to-be-signed message (and all
previous communications) through a hash function and takes the output
as the challenge. The signer then computes a response and returns as its
signature the commitment and the response.
The Fiat-Shamir with aborts paradigm additionally introduces rejection sam-
pling. This is done to render the distribution of signatures sufficiently inde-
pendent of sensitive information (the secret key), so that observing exchanged
signatures will not help an attacker with forging a signature. Rejection
sampling slightly complicates security proofs, in particular when concern-
ing quantum attackers: two papers at CRYPTO 2023 [BBD+23, DFPS23]
pointed out a flaw in the security proof of Dilithium. This flaw was directly
tied to how the proof addressed rejection sampling. The papers also showed
how to patch the proof by adapting the proof technique.
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2.4 General notes on round-2 C software

Except for REDOG (see Section 5.7), all round-2 submissions provided C
code. We modified the code to run within the SUPERCOP framework from
https://bench.cr.yp.to. The level of modifications necessary for this var-
ied from one submission to another.

2.4.1 Correctness

SUPERCOP’s tests detected bugs in some of the software. Software de-
velopers are encouraged to use gcc or clang with the compiler options
-g -fsanitize=address -Wall -Wextra and investigate all resulting error
messages, although -Wall and -Wextra very often have false positives.
Even when software passes all of SUPERCOP’s tests, the software could
be computing something different from the specified cryptosystem. (As an
analogy, it was announced in 2018 on NIST PQC Forum that the official
Dilithium software was actually implementing a breakable signature system
different from Dilithium; and it was announced in 2019 on the same forum
that the official Falcon software was actually implementing a breakable sig-
nature system different from Falcon.) Submitters are encouraged to write a
Python implementation from the specification, and to check that the Python
implementation produces the same results as the C implementations.

2.4.2 Protection against timing attacks

SUPERCOP’s TIMECOP tool detected data flow from secrets to timings
in the software for all submissions.1 Experience suggests that such data
flow is often a security problem. To illustrate the danger, we developed and
posted a fast key-recovery attack against the software for one submission;
see Section 6.5. We also posted patches to illustrate ways to remove such
data flow. We checked that the patches did not affect checksums produced
by SUPERCOP.
A recurring source of such data flow within the KpqC submissions is Fisher–
Yates sampling, which randomly permutes an array by swapping the first
position with a random position, then swapping the second position with a
random position after the first, etc. This becomes much slower when it is
implemented in constant time. Better alternatives include [Ber17], [FRL24],
and [Ber24a].
One case where data flow from secrets to timings is not a security problem
is the following subroutine in RSA key generation: choose a secret integer

1This seems difficult to reconcile with [CKK+23, Tables 8 and 9, “Const-time Test”].
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p uniformly at random from an interval, and then, if p is not prime, reject
p and start over. Similar rejection-sampling loops often appear in post-
quantum cryptography. TIMECOP offers a crypto_declassify function
that software can use to mark a rejection condition as public.

2.4.3 Benchmarks

For five of the KpqC submissions, namely AIMer, HAETAE, MQ-Sign, NCC-
Sign, and NTRU+, we submitted modified software to include in subsequent
SUPERCOP releases for testing and benchmarking on many machines. We
also submitted various updates to this software. Results from each machine
appear on https://bench.cr.yp.to once the machine has completed its
SUPERCOP run. The graphs in Chapters 7 and 12 are from SUPERCOP
version 20240909; some of these submissions to SUPERCOP had already
appeared in SUPERCOP versions 20240625, 20240716, or 20240808.
By the benchmarking cutoff date for this report (September 2024), two KpqC
submissions with C code, namely PALOMA and SMAUG-T, had not yet
been submitted to SUPERCOP. In both cases, the latest available code had
timing variations, and avoiding those timing variations required slowdowns
or cryptosystem modifications. Also, in the case of PALOMA, it was clear
that large speedups are possible compared to the latest available code. See
Sections 4.6 and 6.5. The PALOMA and SMAUG-T teams indicated that
updates were in progress (and some updates did appear subsequently).
An important warning regarding benchmarks is that differences in cycle
counts are often outweighed by differences in communication costs. For ex-
ample, on Intel’s Golden Cove microarchitecture, pre-quantum X25519 DH
uses about 216 cycles (see https://lib25519.cr.yp.to/speed.html), while
lattice systems often use far fewer cycles; but communicating a byte costs
roughly 211 times as much as a CPU cycle (see [Ber23a]), so sending a 1KB
lattice key instead of a 32-byte ECC key costs the equivalent of roughly 221

cycles. For the same reason, comparisons of the efficiency of post-quantum
systems should account not just for differences in cycle counts but also for
size differences.

2.4.4 Future speeds

Another important warning is that current speeds will often be superseded
by future speeds (although obviously this is less important in cases where
the current speeds are already satisfactory for applications).
Applying an “optimizing” compiler to reference software produces speeds
that are often much slower than the speeds that users will see. Faster software
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is typically CPU-specific, labor-intensive to write, and often not finished
within the limited time available for a competition. All of the benchmarks
shown in this report are for faster software using AVX2 vector instructions,
running on Intel/AMD CPUs that support those instructions; but further
speedups should be expected even on those CPUs, with variations from one
KpqC submission to another.
For each of the five submissions with software released in SUPERCOP, this
report includes a table showing, for the AVX2 software for the smallest pa-
rameter set, the number of instructions used for key generation. There are
also similar tables for encapsulation and decapsulation in the KEM case, and
for signing and verification in the signature case.
Within each table, if an instruction is in function F , where F is called by
function G, then the instruction is tallied in the table row for F , not the
table row for G; for example, instructions used inside a Keccak subroutine
will be tallied in the table row for the Keccak subroutine, not for the higher-
level function calling that subroutine. The table rows add up to 100% of the
instructions.
A CPU that runs at most (e.g.) 4 instructions per cycle, such as a CPU
with Intel’s Skylake microarchitecture, will have cycle counts at least 1/4
of the instruction count. Sometimes the cycle count is actually (e.g.) 1/3
of the instruction count because some instructions are waiting for others
to complete, or because the CPU can run only 3 instructions per cycle for
the type of instructions used in the software. Sometimes it is possible to
rearrange instructions to avoid the first type of slowdown, or to select different
instructions to avoid the second type of slowdown.
Some instructions are consumed by overhead rather than essential arithmetic.
Often it is possible to modify software to reduce overhead. Sometimes it is
possible to reduce the number of instructions used for essential arithmetic.
Some cases where such speedups appear to be possible are noted later in this
report. However, there are also many cases where current subroutines appear
to be close to optimal (for AVX2), for example in Keccak computations.
Future readers are encouraged to check https://bench.cr.yp.to to see
whether there are updates demonstrating higher performance.
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Chapter 3

NTRU+: Compact
Construction of NTRU Using
Simple Encoding Method

NTRU+ [KP22] is a lattice-based submission to the KpqC competition. It
builds on the NTRU system introduced by Hoffstein, Pipher and Silver-
man in 1998 [HPS98] and many of the improvements since, in particular
the NTTRU system introduced by Lyubashevsky and Seiler in 2019 [LS19].
We have analyzed this system in detail in the first round, for a more in de-
tail analysis see the first report [CHH+23] and the bachelor thesis of Luc
Steenbakkers [Ste23]. The main novelties to previous works are that the

authors propose new transformations ACWC2 and FO
⊥

. The transforma-
tion ACWC2 is used to guarantee that the worst-case decryption probability
remains bounded. In contrast to previous works like [DHK+23] the transfor-
mation has a tight security reduction. It relies on injectivity, and message

and randomness recoverability of the underlying PKE scheme. The FO
⊥

transform is a variant of the Fujisaki-Okamoto transform to turn an IND-
CPA secure PKE into a IND-CCA2 secure KEM. This transformation uses
a novel approach that promises a tight security reduction and faster run-
ning times since it does not rely on re-encryption as previous works. This is
a unique feature. The authors additionally present a direct transformation
from an IND-CPA secure PKE to IND-CCA2 secure PKE that likewise does
not use re-encryption. The new FO variants rely on rigidity and injectivity
of the underlying IND-CPA secure PKE.
This chapter starts with a short summary of changes made after round 1.
Following this is the system description, an in-depth look at their security
proofs and an analysis of their software.
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3.1 Changes from round 1

There are several changes from the version of round 1:
Importantly, there have been changes in how the SOTP transformation is
defined, addressing an attack described by Lee [Lee23a]. Apart from this,
the authors have added an IND-CCA version of a PKE (NTRU+PKE) in
Section 5 based on NTRU+ in addition to the IND-CCA secure KEM ver-
sion (NTRU+KEM) in Section 4. There are some differences between these
versions. We assume the Section 5 version is the version implemented (and
thus should be considered), since they contain steps pertaining directly to ef-
ficient implementation. Importantly, from a provable security point of view,
the definition of injectivity has been changed to a computational require-
ment. Likewise, the definition of rigidity has been changed to now not quan-
tify over all variables anymore. To address multi-target attacks, the authors
have claimed to also introduce a new slightly different key derivation. How-
ever, this is neither given in the actual descriptions of the schemes (Figure
10, Figure 11, or Figure 15) nor when the authors apply their basic PKE
scheme to the more classical FO transform (Figure 10).

3.2 System description

We will first describe the more mathematical part of the key exchange, this
is copied from the round 1 report [CHH+23], and ends with a short list of
interesting choices made in the specification of the NTRU+KEM in Section
8.
NTRU+ works with three rings

R = Z[x]/(xn − xn/2 + 1)

Rq = (Z/qZ)[x]/(xn − xn/2 + 1)

R3 = (Z/3Z)[x]/(xn − xn/2 + 1),

where n and q are integers with gcd(q, 3) = 1 and n = 2i3j, with i, j > 0
to ensure n is even. This is a large deviation from the original NTRU, and
follows the NTTRU paper by choosing a ring and values n and q such that
the Number Theoretic Transform (NTT) can be computed efficiently.
The key generation works as follows. The sparse polynomials f ′ and g are
generated using the Centered Binomial Distribution, which means the prob-
ability for a coefficient to be −1 or 1 is 1/4 for both, and the probability for
a 0 is 1/2. Using this distribution approximates a narrow discrete Gaussian
distribution.
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The secret key is then created as f = 3f ′ + 1 and g. This shape of f
goes back to a paper by Hoffstein and Silverman [HS01] and is also used
in NTTRU. It gives the benefit of saving one division by f mod 3 in the
decryption/decapsulation process. This does mean q needs to be somewhat
larger to avoid decryption failures since the coefficients of f are larger.
The public key then is computed as h = 3g/(3f ′ + 1) mod q.
In encapsulation, a random message m+ ∈ {0, 1}n is sampled. The shared
symmetric key K and the randomness r are then generated by hashing
m+. Then m is created as an element of {−1, 0, 1}n using the Semi-
generalized One-Time pad (SOTP) introduced by the authors. So m =
SOTP(m+, hash(r)), which basically splits up the hash of r into u1||u2 and
then finds m = (m+ ⊕ u1) − u2. Afterwards the encryption of the message
m is similar as in NTRU:

c = r · h+m ∈ Rq.

Decapsulation starts with the following calculation:

m′ = (f · c mod ±q) mod ±3,

where mod± indicates that the set of representatives of the residue classes is
taken centered around 0, e.g., mod ±3 means a result in {−1, 0, 1}. Note that
the mixing of moduli can lead to decryption errors here. Then r′ is obtained
by r′ = (c −m′) · h−1. If m = m′ and r = r′, then using m′ and r′ as input
to the inverse function of the SOTP, named Inv, will return the message
m+ (by splitting up the hash of r′ again into u′1 and u′2 and computing
m′+ = (m′ + u′2) ⊕ u′1). Given m′+ the user can compute hash(m′+) and
compare this to r′. If encapsulation was done correctly and no decryption
error appeared, m′+ = m+ and thus r′ = hash(m′+). If this matches, the
user can compute K.
Interesting aspects of the Section 8 NTRU+KEM specification, found in
Algorithms 15–17, are:

� Polynomials are when possible mapped using a mapping NTT () to the
specific product ring, explanation on this can be found in Appendix B
of the submission.

� The public polynomial h is multiplied often with 216 to account for the
Montgomery reduction. This is not explained further, and could use
more detail.

� Anything that is being sent in this protocol is encoded (and then later
decoded) to a certain length to ensure efficiency when implemented
with the AVX2 instruction set.
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� Note that the decryption error check is not done until after the message
was hashed. This looks like a method to hide the exact reason for
a decryption error since there is now only a single point where the
error symbol is output. However, usage of implicit rejection, where
random values are returned in case of an error symbol, could improve
this situation further since if an error occurs at all would additionally
be hidden from certain attackers. It is unclear why implicit rejection
has not been considered over explicit rejection.

3.3 Security considerations

In round 1 we have analyzed this system to check applicability of known
attacks. For a more extensive summary we refer you to the report of the first
round [CHH+23].
As seen in the first round the known key-search attacks (like meet-in-the-
middle) do not detract from the security of NTRU+. Also the structural
attacks considered (evaluate-at-1 attack and general lattice attacks) did not
result in any viable attacks. For the general lattice attacks we did use another
lattice estimator than the one used by the authors, but the differences are
negligble. This fits with the state-of-the-art lattice estimators at the moment.
The new lattice estimations we have done can be found in Table 3.1. These
results are only at most a few bits off from the reported security levels.

Version Primal Core-SVP BDD
NTRU+576 116 137
NTRU+768 166 184
NTRU+864 191 208
NTRU+1152 268 281

Table 3.1: Estimated security levels for NTRU+ based on the lattice estima-
tor [APS15]

3.4 Provable security

The authors of NTRU+ [KP22] chose to use a new two-stage IND-CCA2
transformation instead of deploying existing adaptations [DHK+21, SXY18,
HHK17] of the Fujisaki–Okamoto transform [FO99]. A first step checks that
the plaintext is in {0, 1}∗ and then a (relatively standard) transformation is
used.
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The attack sketched by Lee [Lee23a], at least in the reference implemen-
tation, leads to a practical attack. Following an initial misunderstanding
the NTRU+ submitters have now acknowledged the attack and that it also
applies to the specification.

3.4.1 General remarks

The existence of Lee’s attack points to a flaw in the security proof of IND-
CCA security. Our understanding is that the attack is related to the fact
that in the specification (and implementation) NTRU+’s algorithms do not
always test membership of the received values in the specified sets. In the
cryptographic literature this is not untypical. Often this omission is made
to concentrate on core design features. But it is a very common source
of errors and misleading claims. We highly suggest that the authors will
employ a much more rigorous way of indicating which sets are efficiently
recognizable and for which values the algorithms will actually call such an
algorithm. We stress that proper membership tests may increase the runtime
of all algorithms.
Another general issue is that in the definitions, it is sometimes unclear over
what probability space the probabilities are taken exactly. In particular,
when b ← Alg(i) is a probabilistic algorithm that takes input i to produce
output bit b the probability p = Pr[b = 1] needs specification over what
exactly the probability is taken. Usually this is over the random coins used
by Alg. If now we use the equivalent Alg(i; r) expression with explicit random
coins r, we need to specify how r is drawn then. In particular, Alg is now
a deterministic algorithm and thus it is unclear what p should mean if the
probability is specified over all r (so there is no random experiment at all).
In Algorithm 16 of [KP22] (the encapsulation algorithm), we observe that in
line 2 the session key and the random coin are outputted hashing the hashed
public key together with the message. However, in the pseudocode described
in Figure 27 (encapsulation algorithm for NTRU+KEM), we observe that
in line 2 the same output just needs the hashing of the message. Such a
difference between the cryptographic description and implementation should
be clarified.

3.4.2 FO transform without re-encryption

An interesting idea that is introduced by the authors of NTRU+ is a FO
transformation that does not use re-encryption. Not re-encrypting improves
the overall performance of NTRU+ compared to exsiting techniques that rely
on re-encrypting the message [HHK17]. See Figures 11 and 12 in [KP22] for
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an overview of both FO transforms (used in the decapsulation algorithms).
The authors of NTRU+ provide an argument, see Lemma 4.3 in [KP22], on
why both decapsulation algorithms have the same output distribution except
with negligible probability. The proof of Lemma 4.3 seems to be incomplete.
Let us sketch the issue.
To complete the proof of Lemma 4.3, the authors have to compare the equa-

tions (i) c
?
= Enc(pk,m, r) (with re-encryption) and (ii) r′

?
= r (without

re-encryption). For (ii), there is only a single r that fulfills the equation.
However, for (i), there could be many pairs (m, r) that fulfill the equation.
To make the output distributions equal, except with negligible probability, it
seems that (i) should only hold for a single pair (m, r). To argue for this, the
authors try to exploit the collision resistance property, which intuitively says
that it should be hard for an attacker to find (m, r) and (m′, r′) such that
both map to the same ciphertext c. In contrast to previous versions of the
NTRU+ document, this now correctly takes care of the adaptive freedom the
attacker obtains in the IND-CCA2 security game, where it can create arbi-
trary ciphertexts that are sent for decapsulation. Also, the authors argue that
this form of collision-resistance is guaranteed under the assumption that the
underlying generic NTRU system is IND-PCA secure. So indeed according
to the authors, collision-resistance holds only computationally. However, the
proof of Lemma 4.3 does not reflect this right now and needs to be revised.
The stated bounds rather indicate that collision-resistance holds statistically
(as it was the case in a previous version). The proof needs to be fixed in the
ROM and the QROM. To fix the proof the authors have to show that any
attacker against the IND-CCA2 security of NTRU+ can be used to break
collision-resistance, while successfully simulating the decryption oracle. In
particular, they need to show that any such IND-CCA2 attacker can be used
to ultimately extract a collision.

3.4.3 Using Public Keys to derive shared secrets

Although the cryptographic description does not make this explicit at all
times, NTRU+ uses the hashed public key of the receiver as an input to
derive the shared key. We question this approach and suggest to consider
using just the prefix of the public key instead as described in [DHK+21]. This
saves computational resources, specifically for encapsulation since the entire
public key now does not be hashed at all. When additionally introducing
implicit rejections (that further protect against timing attacks), NTRU+
could rely on the theorems in [DHK+21]. As a result, the proof does not
have to rely on the spreadness of the underlying IND-CPA secure scheme.
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doc S clean S doc S clean S
Intel Intel AMD AMD Intel Intel AMD AMD
enc enc enc enc dec dec dec dec

ntruplus576 23000 23760 55179 8846 14000 16973 19814 9391
kyber90s512 30343 12369 21351 11875
ntruplus768 30000 30700 37193 12789 19000 22458 17330 13280
ntruplus864 32000 33333 51431 13553 21000 24449 19302 14391
ntruplus1152 39000 41890 38796 17137 25000 30507 24911 17883
kyber90s768 40816 19463 29347 18639
kyber90s1024 54227 28892 40491 27957
kyber512 35851 34980 28097 28322
kyber768 53692 53457 42172 44178
kyber1024 73998 76584 60651 64786

Table 3.2: Cycle counts for NTRU+ and Kyber collected by SUPERCOP
(“S”) on Intel Skylake and AMD Zen 2, compared to cycle counts in the
NTRU+ documentation (“doc”) for Intel Coffee Lake and NTRU+ cycle
counts from KpqClean (“clean”) for AMD Zen 2. Table is sorted by the last
column.

3.5 Round-2 C software

The round-2 software provides a KEM and a PKE. The PKE appears to
take only a limited-length message as input (like the PKEs inside various
other KEMs, although PKEs vary in whether they aim for CCA security).
Our investigations of the NTRU+ software have focused on the KEM.
The sizes of keys etc. in the round-2 software match the documentation.
Modifying the software for this submission to pass TIMECOP was easier than
for any of the other submissions. Specifically, there is a rejection-sampling
loop in key generation, and simply using crypto_declassify to mark this
loop makes the software pass TIMECOP.
SUPERCOP’s tests identified a correctness issue specifically for the avx2

implementation of ntruplus864 under some compilers, reporting that
“crypto_kem_dec returns nonzero”. The same implementation worked
with other compilers.
We submitted this software for inclusion in the 25 June 2024 release of
SUPERCOP. The NTRU+ team announced a software update on 25 July
2024 (compatible with previous NTRU+ software), and we submitted a cor-
responding update for the 8 August 2024 release of SUPERCOP.
Table 3.2 displays some of the resulting cycle counts. For comparison, the
table also shows Kyber cycle counts. NTRU+ provides better tradeoffs than
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Kyber between speed and claimed security level. Note, however, that the
main costs for both ntruplus and kyber come from communicating lattice
keys and lattice ciphertexts.
The two microarchitectures selected for SUPERCOP columns in the table are
designed for comparability to two previous benchmark reports for NTRU+.
First, the table copies cycle counts from the NTRU+ documentation for an
Intel Core i7-8700K (Coffee Lake, which is practically identical to Skylake).
Compared to SUPERCOP, the documentation reports cycle counts that are
5–10% smaller for enc and close to 20% smaller for dec. Some expected
effects that could help explain this are as follows:

� The NTRU+ documentation does not comment on Turbo Boost, so
presumably Turbo Boost was enabled. An Intel Core i7-8700K can
boost by 27% (from 3.7GHz to 4.7GHz) depending on what operations
are being run.

� SUPERCOP uses a particularly efficient RNG, which should save time
for enc.

Second, the table copies AVX2 benchmarks from an AMD Zen 2 in https:

//github.com/kpqc-cryptocraft/KpqClean_ver2 (“Environment2” is a
Ryzen 7 4800H). Those benchmarks are larger than the SUPERCOP num-
bers for dec and much larger for enc. It turns out that those benchmarks used
a slow reference implementation of SHA-256, rather than optimized SHA-256
software.
Tables 3.3, 3.4, and 3.5 show the number of instructions used for key genera-
tion, encapsulation, and decapsulation respectively inside AVX2 software for
ntruplus576. In each case, more than 50% of the instructions are used in-
side SHA-256 computations. The NTRU+ software calls SHA-256 functions
from OpenSSL, and OpenSSL automatically uses SHA-256 instructions on
CPUs supporting those instructions (Intel Ice Lake and newer; AMD Zen);
these tables are from AMD Zen 2.
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Table 3.3: Instructions used for AVX2 software for ntruplus576 key gener-
ation. Each table row tallies the number of instructions used directly by one
function. If function F calls function G then instructions inside G are tallied
for G, not for F .
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Table 3.4: Instructions used for AVX2 software for ntruplus576 encapsula-
tion. Each table row tallies the number of instructions used directly by one
function. If function F calls function G then instructions inside G are tallied
for G, not for F .
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Table 3.5: Instructions used for AVX2 software for ntruplus576 decapsula-
tion. Each table row tallies the number of instructions used directly by one
function. If function F calls function G then instructions inside G are tallied
for G, not for F .
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Chapter 4

PALOMA: Binary Separable
Goppa-based KEM

PALOMA [KJKK22] is a code-based KEM, based on binary Goppa codes.
While PALOMA is close to the NIST submission Classic McEliece [ABC+22]
and references it frequently, there are several differences.
The Goppa polynomial g is chosen to split completely over F2m while it is
chosen to be irreducible in Classic McEliece. This means that the support
and the t roots of g need to share F2m and the parameters are chosen so that
n+ t < 2m and for the given parameters this is a strict inequality. There are
also some other differences in how the system achieves CCA security.
Below, we first discuss cryptanalysis results regarding PALOMA. Afterwards,
we discuss the provable security claims made in the PALOMA specification
and implementation considerations.

4.1 System description

Let q = 2m. A binary Goppa code is defined by

� a list L = (α1, . . . , αn) of n distinct elements in Fq,
called the support.

� a square-free polynomial g(x) ∈ Fq[x] of degree t such that g(αi) 6= 0
for all 1 ≤ i ≤ n. This g(x) is called the Goppa polynomial.

The corresponding binary Goppa code Γ(L, g) is{
c ∈ Fn2

∣∣∣∣S(c) =
c1

x− α1

+
c2

x− α2

+ · · ·+ cn
x− αn

≡ 0 mod g(x)

}

30



� This code Γ(L, g) has length n, dimension k ≥ n −mt and minimum
distance d ≥ 2t+ 1.

A parity-check matrix of this code is

H ′ =


1 1 1 · · · 1
α1 α2 α3 · · · αn
α2
1 α2

2 α2
3 · · · α2

n
...

...
...

. . .
...

αt−11 αt−12 αt−13 · · · αt−1n

 ·


1
g(α1)

0 0 . . . 0

0 1
g(α2)

0 . . . 0

0 0 1
g(α3)

. . . 0
...

...
...

. . .
...

0 0 0 . . . 1
g(αn)


and AH ′ for any invertible matrix A defines the same code. The parity-
check matrix defined by having the coefficients of (x − αi)

−1 mod g in the
i-th column is AH ′, where

A =


g1 g2 · · · gt
g2 g3 · · · 0
...

...
. . .

...
gt 0 · · · 0


and PALOMA uses this matrix H = AH ′ as the secret parity-check matrix.
PALOMA chooses g(x) =

∏
α∈T (x − α) for T ⊆ Fq \ {α1, α2, . . . , αn} with

|T | = t. Hence, g(x) splits completely over Fq. Classic McEliece chooses g
irreducible over Fq. This difference impacts what decoding algorithms are
readily available and the submission puts significant effort into extending
Patterson’s decoding algorithm to deal with reducible g, using an approach
from [BN19]. It is worth highlighting that [BN19] targeted random separable
polynomials; the choice of g and handling of how the support and the roots
of g share F2m are new to PALOMA.
The second-round submission is more careful in defining the secret key and
how seeds turn into parts of the key. It also includes an additional seed for
handing implicit rejection.
The separable Goppa code is generated from some seed rC , this code is then
scrambled by right multiplying with a permutation matrix P and then at-
tempting to bring it to systematic form. The permutation matrix is generated
from a seed rC̃ and if the resulting HP cannot be brought into systematic
form only the second stage repeats with a new choice of rC̃ until this suc-
ceeds. The initial seed rC is not stored and instead the support L and Goppa
polynomial g are part of the secret key; rC̃ is part of the secret key as is the
matrix S−1, where S satisfies that SHP is in systematic form. Finally, an-
other random seed r is sampled which is included in the secret key to be used
for implicit rejection.
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1. Sample rC ∈ {0, 1}256.

2. (α1, α2, . . . , αq) = shufflerC (Fq)

3. L = (α1, α2, . . . , αn), T = (αn+1, αn+2, . . . , αn+t).

4. Compute g =
∏

α∈T (x− α) and corresponding parity-check matrix H.

5. Sample rC̃ ∈ {0, 1}256

6. Compute n× n permutation matrix P using seed rC̃ .

7. Try to bring HP to systematic form, GOTO 5 if this fails.

8. Let Ĥ = SHP in systematic form.

9. Sample r ∈ {0, 1}256.

10. Output Ĥ as public key and (L, g, S−1, rC̃ , r) as secret key.

HP can be put in systematic form with 29% probability (no change compared
to Classic McEliece). For PALOMA, any choice of T leads to valid g; Classic
McEliece has a procedure to construct an irreducible g that succeeds almost
always.
Binary Goppa codes are alternant codes and can be decoded efficiently using
the Patterson decoder [Pat75], however, this decoder requires computing
the inverse of the syndrome polynomial modulo g and there is no reason
a-priori that this polynomial should be co-prime to g in the case considered
in PALOMA. The submission thus presents a version of Patterson decoding
that is suitable for this choice of g. We first describe the regular version and
then point out where changes were needed.
To decode the received vector x = c + e to c ∈ Γ(L, g), first compute the
syndrome polynomial

s(x) =
n∑
i=1

(ci + ei)/(x− αi) ≡
(

n∑
i=1

ei
∏
j 6=i

(x− αj)
)
/

n∏
i=1

(x− αi) mod g(x).

If e 6= 0 this polynomial s(x) 6= 0 by definition of the code.
Put f(x) =

∏n
i=1(x − αi)

ei with ei ∈ {0, 1}. Then, using the chain and
product rules on derivatives, f ′(x) =

∑n
i=1 ei

∏
j 6=i(x − αj)ej . Thus s(x) ≡

f ′(x)/f(x) mod g(x).
Split f(x) into odd and even terms: f(x) = A2(x)+xB2(x) and observe that
over binary fields f ′(x) = B2(x) as all even powers of x have derivative 0.
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Thus B2(x) ≡ f(x)s(x) ≡ (A2(x) + xB2(x))s(x) mod g(x) which Patterson
normally transforms by dividing by s(x) mod g(x). However, as mentioned
above, s(x) need not be co-prime to g(x) if g is reducible. If g(x) is ir-
reducible it is possible to compute B2(x)(x + 1/s(x)) ≡ A2(x) mod g(x)
and to recover A and B from a half-gcd computation on the polynomials
v(x) ≡

√
x+ 1/s(x) and g(x). Note that this computation is the first half

of inverting v modulo g, and co-primality is ensured for irreducible g as
well. At every step in the computation of the extended Euclidean algorithm,
A(x) = B(x)v(x) + h(x)g(x) and the half-gcd computation stops when the
degrees of A and B are balanced: deg(A) ≤ bt/2c, deg(B) ≤ b(t− 1)/2c.
PALOMA uses the generalized version of Patterson’s decoder for reducible g
from [BN19], dealing with non-constant gcd(g, s).
Let s̃ = 1 + xs and g1 = gcd(g, s), g2 = gcd(g, s̃). By construction, s and
s̃ are co-prime. Define g12 via g = g1g2g12, and observe that A = ag2 and
B = bg1 for some polynomials a, b. One then has b2u ≡ a2 mod g12, where
u = (g1/g2)

2s̃/s mod g12. Finally, they compute a partial gcd of
√
u and g12

(accounting for bounds on the degrees of a and b) and recombine the result
to f(x) = a2g22 + b2g21x.
To hide timing information on secret g they would need to use g1, g2, g12 of
maximum possible degree t and thus require more work and extra effort to
hide the actual degrees. So far, this protection against timing attacks is not
implemented but decoding is already very slow (see Section 4.4).
Classic McEliece uses a Berlekamp decoder instead of the Patterson decoder.
This decoder does not require g to be irreducible and could thus be used for
the g in PALOMA.
The main observation for using this decoder is that c ∈ Γ(L, g) implies
c ∈ Γ(L, g2). This fact is normally shown when proving that the minimum
distance is at least 2t+ 1.
Let c ∈ Γ(L, g), then

s(x) =
n∑
i=1

ci/(x− αi) =

(
n∑
i=1

ci
∏
j 6=i

(x− αj)
)
/

n∏
i=1

(x− αi) ≡ 0 mod g(x).

over F2m :

(f2i+1x
2i+1)′ = f2i+1x

2i, (f2ix
2i)′ = 0 · f2ix2i−1 = 0,

thus

f ′(x) =

(w−1)/2∑
i=0

f2i+1x
2i =

(w−1)/2∑
i=0

√
f2i+1x

i

2

= F 2(x).
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Having s(x) ≡ F 2(x)/f(x) ≡ 0 mod g(x) for squarefree g means g|F , thus
g2|F 2. Note that f(x) factors into linear terms and has as roots the support
elements αi in the positions i where the error occurred. Given that g(αi) 6= 0
for all i, f is invertible modulo g.
Let c ∈ Γ(L, g2), then s ≡ 0 mod g2 ⇒ s ≡ 0 mod g holds obviously.

The Berlekamp decoder can be used for any generalized Reed-Solomon code
and is used here for Γ(L, g2). This algorithm goes back to computing the
feedback polynomial for an LFSR given twice as many output bits as the
state length.

1. Let v = c + e. Then

B(x) =
n∑
i=1

vi
g2(αi)

∏
j 6=i

(x− αj).

In particular, B(αi) = vi

(∏
j 6=i(αi − αj)

)
/g2(αi).

2. Put A(x) =
∏

i(x− αi).

3. Use Berlekamp–Massey to compute approximant b/a to B/A such that
gcd(a, b) = 1, deg(a) ≤ t, deg(b) < t, and deg(aB − bA) < deg(A)− t.

4. If a divides A, compute f = B−bA/a and v = (B(α1)−f(α1), B(α2)−
f(α2), . . . , B(αn)− f(αn))

Classic McEliece chooses the Berlekamp decoder for ease of safe implementa-
tion (correctness and constant timeness). The same approach could work for
PALOMA and would probably be faster than their adaptation of Patterson.
See [Ber24b] for a full explanation of the Berlekamp decoder for binary Goppa
codes.
PALOMA highlights that it needs to use the full matrix H = AH ′ for Pat-
terson decoding and it includes S−1 in the secret key and the computation
of S−1s before decoding. Classic McEliece uses instead that the public key
defines the same code as H ′ and as H. The syndrome does indeed depend on
the use of the exact parity check matrix, but the set of code words does not.
Given that Ĥ is in systematic form, meaning that the first n − k columns
are an identity matrix, the syndrome s can be extended to a corresponding
received word v by appending k zeros to s. It is then easy to compute the
corresponding syndrome H ′v and use this in decoding. Note that due to the
very simple structure of H ′ this does not require storing H ′ as a matrix, so
the secret key need not include any matrices. See, e.g., [Ber24b, Section 8].
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The use of P in PALOMA seems redundant with the earlier use of shuffle,
which already gives a random permutation on Fq. It is possible that the
authors mean to save time by having to do the first 4 steps of KeyGen only
once and having the loop for handling non-invertible matrices only apply to
steps 5–7. However, these are the more expensive steps, and the split at
step 5 means that the resulting codes are not uniformly random in the set
of codes with completely-split g. The failure in step 7 depends not only on
L, which effectively gets overwritten by the permuted version of it, but also
on g, which remains part of the secret key. Hence, it needs to be considered
whether this rejection sampling leaks information on g. We still do not see
a valid attack but consider this a bit concerning.

4.2 Security considerations

For most purposes, the choice of g between PALOMA and Classic McEliece
does not matter. While limiting g to polynomials that split completely over
F2m limits the key space, this number is so large that key search is not
even close to the fastest known attacks to recover messages. Within the
keyspace covered by PALOMA there are several equivalent codes and an
ongoing research project is to see whether there are proportionally larger
equivalence classes. This work is currently under development by Lorenz
Panny, a former TU/e PhD student.
A concern expressed in [For18] in comparing choices for NTS-KEM and Clas-
sic McEliece is that reducible choices of g can bring structural or algebraic at-
tacks into reach. For algebraic attacks we checked [FOPT10, COT14, EM22,
CMT23] and several more. Note, again, that the public key is a hidden
parity-check matrix Ĥ = SAH ′P of Γ(L, g) for

H ′ =


1 1 1 · · · 1
α1 α2 α3 · · · αn
α2
1 α2

2 α2
3 · · · α2

n
...

...
...

. . .
...

αt−11 αt−12 αt−13 · · · αt−1n

 ·


1
g(α1)

0 0 . . . 0

0 1
g(α2)

0 . . . 0

0 0 1
g(α3)

. . . 0
...

...
...

. . .
...

0 0 0 . . . 1
g(αn)


Let M = (mij) be the generator matrix of the same code, then ĤMT = 0,
hence

n∑
j=1

mijα
u
j /g(α′j) = 0, 1 ≤ i ≤ k, 0 ≤ u ≤ t− 1.
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doc isd0 isd1 isd2
PALOMA-128 166.21 162.84 159.76 153.74
PALOMA-192 267.77 245.67 241.94 229.63
PALOMA-256 289.66 277.20 272.80 255.45

Table 4.1: PALOMA attack costs in log2(bit operations). The “isd0” col-
umn is the 0-level ISD (Prange + Lee–Brickell + Leon) cost predicted by
CryptAttackTester. The “isd1” column is the 1-level ISD (Stern + Dumer)
cost predicted by CryptAttackTester. The “isd2” column is the 2-level ISD
(MMT + BJMM) cost predicted by CryptAttackTester. CryptAttackTester
does not account for the costs of long-distance communication; the real-world
speedup from isd1 to isd2 is smaller than the bit-operation speedup in the
table. Computing this table took about a day on a dual AMD EPYC 7742:
e.g., CryptAttackTester used 2800 core-hours searching many attack parame-
ters for PALOMA-256. For comparison, the “doc” column is BJMM-ISD bit
operations estimated on page 48 of the round-2 PALOMA documentation.

Use variables Xj for the unknown α′j ∈ F2m and Yj for the unknown
1/g(α′j) ∈ F2m for 1 ≤ j ≤ n. Here we use α′j to denote the j-th element after
permutation using P . Given that that the KEM shared secret is defined with
respect to this permuted order, it is the relevant target of the attacker. Using
Gröbner basis computations to solve the system

∑n
j=1mijX

u
j Yj = 0 requires

high rate (dimension divided by length of the code) and does not make use
of g (Y is general). This means, that the difference of PALOMA and Classic
McEliece is ignored in the modeling. None of the attacks we considered gave
an improvement over message-recovery attacks and we have not yet found a
modeling that makes use of the structure of g.
The state-of-the-art attack thus appears to be information-set decoding. See
Table 4.1 for our estimates of the security levels of PALOMA-128, PALOMA-
192, and PALOMA-256.
Note that these estimates differ from those presented in the submission. The
full version of the CryptAttackTester paper [BC24] contains the full details
for PALOMA and Classic McEliece.

4.3 Implementation considerations

PALOMA shares with Classic McEliece the large public keys and small ci-
phertexts. The PALOMA private key includes a matrix even through decod-
ing algorithms for binary Goppa codes do not require this.
Requiring the roots of g and α1, . . . , αn to fit into F2m means that one cannot
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take n = 2m. This is not a large issue: previous efforts to obtain the best
tradeoffs between security level and key size for the McEliece cryptosystem
usually take n smaller than 2m.
A benefit of PALOMA’s key generation is that g can be sampled by sampling
t random elements in F2m and defining them as roots of g. Classic McEliece
instead defines g as the minimal polynomial over F2m of a random element of
F2mt , trying again on occasions when this polynomial does not have degree
t.
To analyze the rejection probability for the minimal-polynomial procedure,
note that the minimal polynomial over F2m of any element ζ ∈ F2mt has
degree d for some divisor d of t. If d 6= t then d ≤ t/2. There are 2md

monic polynomials of degree d, so there are at most 2md monic irreducible
polynomials of degree d, so there are at most 2mdd roots ζ of such polynomials
in F2mt . The actual number of such roots is closer to 2md, but the upper
bound 2mdd is good enough to see that rejections are vanishingly unlikely.
For example, for t = 64, there are most 232m+5 elements ζ ∈ F264m having
d = 32, at most 216m+4 elements ζ ∈ F264m having d = 16, etc., for an overall
rejection probability at most 2−(32m−5)+2−(48m−4)+· · · . All proposals starting
with [McE78] have m ≥ 10.
The speed difference between the two methods of generating g is more obvi-
ous. A textbook computation of the minimal polynomial of ζ applies linear
algebra to a (t+1)× t matrix over F2m obtained from t+1 powers of ζ, using
about t3 operations in F2m , whereas a textbook computation of the product
of x−α for t values of α takes only about t2 operations in F2m . The exponent
3 here can be improved, but the exponent 2 can also be improved; one cannot
expect a degree-t minimal-polynomial computation to be competitive with
multiplying t linear polynomials.
On the other hand, the main bottleneck in key generation is a different
linear-algebra step to produce the public key, an mt× (n−mt) matrix over
F2. A textbook computation uses on the order of n3 ≈ m3t3 operations
in F2, whereas the t3 operations in F2m use only about m2t3 operations in
F2. The constants are also favorable to minimal-polynomial computation;
for example, minimal-polynomial computation uses about 4% of the cycles
for current key-generation software for mceliece348864f.

4.4 Round-1 benchmarks

In round 1, PALOMA advertised better speeds than Classic McEliece on
an Apple M1. Our benchmarks found, however, that the Classic McEliece
software is much faster than the PALOMA software; see Table 4.2. We
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already included this in our final report for Round 1.
For round 2, PALOMA instead compares to Classic McEliece on an Apple
M3. We do not have an M3 available for testing, but presumably the M3
speeds for Classic McEliece are at least as good as the M1 speeds shown in
Table 4.2.
The implementation of decapsulation in PALOMA chose to use a new adap-
tation of Patterson’s algorithm which seems slower than a direct reuse of the
Berlekamp implementation in Classic McEliece. That system chose not to use
Patterson: it is not clear that a constant-time implementation of Patterson’s
algorithm can outperform Berlekamp, even without the extra complications
of adapting Patterson’s algorithm to the case of reducible g. Adapting the
Berlekamp software from Classic McEliece to PALOMA should produce large
decoding speedups for PALOMA; See Section 4.6 for further discussion.
The implementation is additionally slower than necessary in the form of
plaintext confirmation chosen to involve generating a matrix from a seed and
doing a matrix multiplication. A simpler hash function call should suffice.
While we understand the rationale for choosing split g and have not been
able to show any security degradation from this choice, we do not think the
other choices (Patterson, use of S, e, e′) are beneficial for speed (they look
detrimental to it) nor do they achieve better security compared to alterna-
tives.
There are some other quirks in PALOMA that produce slowdowns:

� KeyGen shuffles the columns of H even though the order in L was
random already.

� The secret key includes S−1 with Ĥ = SHP in systematic form. They
comment that key size could be saved as S depends on rC and RC̃ , but
miss that S is not necessary at all in decoding. Note that syndrome
s ∈ Fn−tm2 expands to noisy codeword v = s00 . . . 0 for Ĥ in systematic
form.

It would thus be easy to decrease the size of the private key by skipping S−1.
We understand that, just like for Classic McEliece, PALOMA does not use
only the seed as private key but keeps some parts expanded. This makes
KeyGen and Decap a lot faster than if the full expansion was needed.
Further slowdowns come from the use of extra permutations in encapsulation
and decapsulation.
We also observe that the PALOMA security analysis appears to assume (on
page 51) that decapsulation checks that the recovered error vector has weight
exactly t and that re-encrypting the recovered e produces the ciphertext.
These checks do not appear in the PALOMA specification of decapsulation
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cycles ms doc
PALOMA-128 init 10342016 5.011
PALOMA-128 keypair 154491948 74.851 64.00
libmceliece 348864f keypair 71569974 34.675
PALOMA-128 enc 406522 0.197 0.03
libmceliece 348864f enc 19178 0.009
PALOMA-128 dec 19770110 9.579 9.00
libmceliece 348864f dec 235124 0.114
PALOMA-192 init 10329976 5.005
PALOMA-192 keypair 646889506 313.415 261.00
libmceliece 460896f keypair 218800512 106.008
PALOMA-192 enc 819752 0.397 0.04
libmceliece 460896f enc 40764 0.020
PALOMA-192 dec 122390384 59.298 59.00
libmceliece 460896f dec 651966 0.316
PALOMA-256 init 10331352 5.005
PALOMA-256 keypair 630017080 305.241 323.00
libmceliece 6960119f keypair 368109154 178.347
PALOMA-256 enc 1000180 0.485 0.04
libmceliece 6960119f enc 76454 0.037
PALOMA-256 dec 123652778 59.909 60.00
libmceliece 6960119f dec 682152 0.331

Table 4.2: Measurements of PALOMA vs. libmceliece speed, Apple M1,
Icestorm core, gcc 13.2.0. The “cycles” column is the median of 31 mea-
surements of the round-1 PALOMA software and of libmceliece 20230612.
The “ms” column is milliseconds calculated from cycles and 2.064GHz clock
speed. For comparison, the “doc” column is milliseconds reported on page
30 of the PALOMA documentation. The PALOMA documentation does not
specify 3.2GHz Firestorm cores vs. 2.064GHz Icestorm cores, but the Ice-
storm dec measurements are a good match. The PALOMA documentation
also reports milliseconds for an Intel Core i5; libmceliece uses 256-bit vectors
on Intel and uses portable code on the M1, so the speed gap will be larger
on Intel.

39



or in the PALOMA software. These checks are important for the applicability
of the security proofs (see Section 4.5) and are important for security (see
Section 4.7).

4.5 Provable security claims

The PALOMA specification provides a provable security result: to con-
struct an IND-CCA secure Key Encapsulation Mechanism, PALOMA uses its
own modified version of the Fujisaki-Okamoto (FO) design paradigm [FO99,
HHK17], the paradigm that was also used by most of the NIST proposals
(including the winner Kyber).
The core idea of the FO paradigm is to use a given public-key encryption
scheme to encrypt a randomly chosen message, from which a key can be
derived by feeding the message (and sometimes some auxiliary information)
into a hash function. Intuitively, this makes the key unpredictable unless
the attacker can break the encryption algorithm. To make chosen-ciphertext
attacks unfeasible, the encryption algorithm is modified in a certain way.
This modification prevents that attackers can build dishonest ciphertexts
that will be accepted by the decapsulation algorithm.

4.5.1 Security proof of PALOMA in round 1

In our round-1 report we highlighted the following issues:
At a first glance, PALOMA-KEM is constructed from PALOMA-PKE by
applying a variant of the FO design paradigm. To argue IND-CCA security
of PALOMA-KEM, the specification relatively briefly recalls the security
reasoning for FO that was given in [HHK17].
There are, however, several gaps in the proof: PALOMA-KEM deviates from
the established FO paradigm in several different ways (detailed below). The
submission does not address at all that/why it introduces these modifications
and if/why they do not decrease security.
While it is not straightforward to assess whether/how these deviations lead
to an attack, each one on its own makes it impossible to apply the established
security proof.
Undesirable dependencies in the decapsulation algorithm. To deal
with chosen-ciphertext attacks, FO-KEMs react to dishonest ciphertexts by
returning a pseudorandom value. This pseudorandom value is derived from
a secret random seed which is part of the secret key (besides the secret key
needed for decrypting). The FO paradigm picks this seed independently
from the secret key used for decrypting ciphertexts, unlike PALOMA-KEM,
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which reuses a seed that was already used to generate the secret decryption
key. This leads to undesirable leakage on the secret decryption key during
decapsulations of dishonest ciphertexts, and leaves a gap in the security proof.
Plaintext permuting not covered by FO paradigm. Following the FO
paradigm, one would expect that security of PALOMA-KEM is based on
security of the encryption algorithm introduced as algorithm 6. Instead, it is
based on a modification of algorithm 6, called algorithm 18, which introduces
a permutation step. This leaves a gap in the security proof – to close this
gap, it would have been necessary to show that security of algorithm 18 can
be based on security of algorithm 6.
One possible explanation for this modification might be that the full FO de-
sign can only be applied to probabilistic schemes: it could be that the random
sampling of the permutation matrix was introduced to make the encryption
algorithm probabilistic. In this case, the submission could consider switching
to FO-alternatives for deterministic schemes (e.g., [BHH+19]) instead.
Treatment of dishonest ciphertexts not covered by FO paradigm.
As described above, dishonest ciphertexts are treated by FO-KEMs in a
specific way to mitigate chosen-ciphertext attacks. To identify such dishonest
ciphertexts, PALOMA-KEM deviates from the standard check imposed by
the FO paradigm. This leaves a gap in the security proof – to close this gap,
it would have been necessary to show that the alternative check performed by
PALOMA-KEM is equivalent to the one that is imposed by the FO paradigm.
Additional gap - sampling of messages not covered by FO paradigm.
FO-KEMs sample messages uniformly at random. This is needed to be able
to base security of the KEM on security of the involved encryption algorithm
– the security definition for the encryption algorithm assumes uniform mes-
sages. PALOMA-KEM instead samples messages using algorithm 13. This
leaves a gap in the security proof – to close this gap, it would be necessary to
analyze whether algorithm 13 yields the required uniform distribution. (See
section 5.5.4 of [ABC+22] as an example for such a discussion.)

4.5.2 Security proof of PALOMA before the update in
August 2024

The updated security reasoning for round 2 addressed some of the concerns
brought up in round 1.
The updated specification resolved the undesirable dependency in the de-
capsulation algorithm (pseudo-random values leaking on the secret key) as
PALOMA started using independent randomness r. Instead of using r itself
as the seed for the pseudo-random values, r first gets expanded to an error
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vector ẽ. Using ẽ unifies how the two branches (valid/invalid ct) compute
their keys with respect to the length/format of their hash inputs. Proposi-
tion 5.1 of the PALOMA security analysis indicates that there is no entropy
loss.
The following subtlety arose in addressing the second issue:

� The IND-CCA transform used for PALOMA permutes the plaintexts.
This is a deviation from ‘standard FO’ transforms. The motivation for
this deviation is not stated explicitly. The deviation makes it necessary
to give a dedicated security proof that closes the resulting gap in the
security reasoning. The specification now included such a proof.

The following issues brought up in Round 1 so far were unaddressed:

� The identification of dishonest ciphertexts still deviated from the FO
paradigm, and hence vulnerabilities against chosen-ciphertext attacks
could not generically be ruled out. In more detail, it was not discussed
or proven that the alternative ciphertext validity check does not intro-
duce chosen-ciphertext vulnerabilities.

� It is was furthermore left unaddressed whether the message sampling
is actually captured by the FO paradigm. (I.e., if the algorithm yields
the required uniform distribution.)

4.5.3 Security proof of PALOMA after the update in
August 2024

The updated security reasoning gives a new modular proof. Upon inspection,
it is not clear why this is necessary. (I.e., why a security result cannot be
obtained by simply applying [HHK17] and follow-ups.) At a first glance, it
might furthermore be surprising that the section shows equivalence between
OW-PCA and OW-CPA security, given that the KEM’s security statement
does not base security on OW-PCA security. We suspect a mismatch between
what the theorem states and what its proof actually requires.
The ciphertext validity check that is used in place of the re-encryption check
was modified by introducing an additional weight check, and the proof sec-
tion now argues equivalence of the two checks, implicitly assuming that the
decoder behaves perfectly. This assumption is not further studied.
The following concerns remain unaddressed:

� The message distribution that might be potentially problematic, in
case messages (and thus the resulting session keys) can be predicted
too easily.
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� Giving security proofs against quantum attackers.

4.5.4 Interpretation of provable security results

For round 1

The formal security arguments discussed in subsection 4.5.1 do not seem
sound, and have an additional significant shortcoming: the arguments only
consider classical adversaries. This also means that the bounds do not apply
against quantum adversaries that at least can gain a polynomial advantage
using Grover.
A result might be obtained by switching to the design paradigm underpin-
ning McEliece, and then using recent work on this design paradigm [BP18,
BHH+19], but this would require a redesign of PALOMA.

For round 2

Our initial conclusion was as follows: “While we did not find proof that
the introduced deviations create a security break, we cannot fully rule out
that they might.” We then found a chosen-ciphertext attack (see Section 4.7)
exploiting one of the proof gaps. The August 2024 PALOMA update stopped
that attack, but, because of the remaining deviations, we cannot rule out the
possibility of further attacks. In any case, it seems that the deviations result
in PALOMA requiring more running time than necessary, without explicitly
highlighting the rationale/resulting benefits.

4.6 Round-2 C software

The software provides w_openssl and wo_openssl options, evidently refer-
ring to using or not using the OpenSSL library. Our investigations have
focused on the w_openssl option.
The sizes of keys etc. in the round-2 software match the documentation.
The software has uninitialized hash output buffers in utility.c. We mod-
ified this in a way that seems to produce consistent output, but more work
would be required to check that this matches the specification.
We noticed that the software exits when an internal vector has weight 0. We
developed an attack that exploits this to recover the shared secret from a
given PALOMA ciphertext by observing the receiver’s reactions to tweaked
versions of the ciphertext. See our KpqC-bulletin email from 13 Apr 2024
14:05:13 -0700. This security problem comes from a deviation between the
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software and the specification, whereas our July 2024 IND-CCA attack (see
Section 4.7) applies both to the software and the specification.
TIMECOP identifies many issues in the PALOMA software. Presumably
these issues can be exploited to recover secret keys through timing, as in
Section 6.5.
We highlight three sources of timing variations for PALOMA. First, per-
mutations are carried out with Fisher–Yates sampling. Two ways to change
the PALOMA specification to avoid this issue would be (1) replacing Fisher–
Yates sampling with one of the alternatives mentioned in Section 2.4 or (2)
eliminating the permutations as part of a broader redesign.
Second, the PALOMA decoding algorithm works with polynomials of variable
degree (starting with the greatest common divisors on line 3 of Algorithm 3
in the specification). The easiest way to make the software run in constant
time would be to carry out each operation to the maximum possible degree.
This is feasible, but will take some effort and will produce some slowdown in
decapsulation.
Third, multiplication of elements of F213 is carried out with lookups in some
precomputed tables (e.g., a table of size 214 containing all 7-bit-by-7-bit prod-
ucts). We provided a replacement multiplication function (KpqC-bulletin
email from 26 Apr 2024 22:49:08 +0200) that avoids table lookups. This
produced a 3× slowdown in decapsulation, but it is clear that more work on
the software would produce speedups:

� About half of the operations in the replacement function are converting
back and forth between packed 13-bit field elements and an unpacked
format. If more of the code were written in the unpacked format then
most of the conversions would disappear.

� Further speedups are possible from “bitslicing” arithmetic operations
across CPU words, for example carrying out 64 bit operations in parallel
with a single 64-bit operation. An initial analysis indicates that [Cho17]
is applicable to PALOMA and would produce better speeds than the
original PALOMA software while running in constant time.

� Many CPUs have instructions for binary-polynomial multiplication,
and then a multiplication is just a few instructions. Typically these
can again be carried out on more than one input at once.

There are some CPUs with variable-time multipliers; a further advantage to
the bitslicing approach is that it will run in constant time on those CPUs.
We highlight that the speeds presented in Table 4.2 use the original round-1
software, not our constant-time-multiplication patch.
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PALOMA is the only submission for which our analyses conclude that, with
no changes to the specification, large software speedups are possible com-
pared to the current software. This relies on extrapolation from the Classic
McEliece software, where the major subroutines include optimizations that
are applicable to the corresponding subroutines in PALOMA. In particular,
for decapsulation, the Berlekamp decoder applies to any squarefree Goppa
polynomial g, so it does not need any adjustments for the split polynomi-
als used in PALOMA; and, as noted above, the techniques for fast arith-
metic from [Cho17] should work for PALOMA. This does not mean that
PALOMA will end up with identical speeds to Classic McEliece: some as-
pects of PALOMA are different from Classic McEliece, such as PALOMA’s
use of permutations. See generally Section 4.4.
The PALOMA team has indicated that a software update is in progress.

4.7 A chosen-ciphertext attack

As noted in Section 4.5, after identifying various proof gaps, we found a fast
chosen-ciphertext attack exploiting one of those gaps. We announced the
attack in the July 2024 KpqC workshop and in accompanying kpqc-bulletin
email.
The attack recovers the session key (shared secret) given a ciphertext, a
public key, and a decapsulation oracle for other ciphertexts. The attack
takes 1 query to ROG and O(n) queries to the decapsulation oracle and to
ROH . The decapsulation oracle is used only for comparison to guessed session
keys, so this attack can also be used as a reaction attack using observations
of whether a server successfully responds to data that the attacker encrypted
under those guessed keys.
We also implemented this attack, calling subroutines from the reference soft-
ware. Our experiments worked for all 100 KATs for PALOMA-128, taking
around 30 seconds for each session-key recovery on one core of a 3GHz Intel
Skylake. We posted a demo script to reproduce the experiments. Tweak-
ing the script to attack PALOMA-256 takes under 7 minutes per session-key
recovery.
We had previously found and implemented a reaction attack against the
software in the original submission package, exploiting a deviation of the
software from the specification (see Section 4.6). That attack did not work
against the specified version of PALOMA. The software deviation was fixed
by an April 2024 software patch from the PALOMA team. The CCA attack
demo works against the patched PALOMA software.
For the specified PALOMA KEM, we also announced in July 2024 a partial-
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key-recovery attack which in one call to ROG and at most n calls to the
decapsulation oracle and to ROH can determine whether 0 is one of the sup-
port elements in L and, if so, which column it belongs to in the public matrix.
We implemented this and found that this causes the reference software to en-
ter an infinite loop, which is another deviation from the specified KEM. The
infinite loop allows an easy timing attack obtaining the same information.
These attacks are possible for two reasons:

� The extended Patterson decoder has predictable outputs under certain
inputs and in particular often outputs the 0 vector. (This was also
exploited in the previous reaction attack.)

� The use of r does not sufficiently limit what is a valid ciphertext. (This
is a new result exploited in the new attacks.)

The first part manifests itself in two different forms. First of all, the Extended
Patterson decoder inherently fails to decode a weight-1 error if that error is
at the support position α = 0. In that case the syndrome polynomial s(x)
corresponds to 1/x modulo g so that s̃(x) = 1 + (x/s) mod g gives 0. In
that case g1 = 1, g2 = g, g12 = 1 and the output of SolveKeyEqn is (1, 0)
leading to σ = g2, which by construction does not have any roots in L and
thus SolveKeyEqn returns the 0 vector.
This issue is specific to the Extended Patterson decoder and g reducible and
does not appear in the regular Patterson decoder. It can be caught as a
special case by checking that the input to SolveKeyEqn has (0, 1) as the first
two components and returning (0, 1) in that case, but care must be taken not
to cause side-channel attacks. This might also not be necessary as t = 1 is
not an option for any of the parameter sets. In any case, the implementation
needs to be fixed to avoid infinite loops. (The implementation is computing
g12 by calling gf_poly_mul, which multiplies g1 by g2 modulo g, obtaining 0
instead of the correct g. The implementation is then dividing g by 0, which
loops forever.)
Secondly, random inputs to the Extended Patterson decoder often return the
0 vector. This is because they find a random polynomial of degree less than
t which will often not have roots in L. A simple model says that this occurs
with probability (1− 1/q)n, which is 62%, 51%, 45% for PALOMA-128, 192,
256. Our experiments are close to this model.
For both of these failure cases, the attacks use the following observations:
The 0 vector is mapped to itself by any permutation of e∗ = ê and we
can run ROG in the forward direction on e∗ = 0 to obtain the matching
r̂ = ROG(00 . . . 0). Hence, we can produce a ciphertext which is often valid
by using this r̂ with any syndrome vector s of length n − k and we can
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compute the KEM key κ = ROH((00....0), r̂, s) that this would produce if
the decapsulation indeed returns the 0 vector. This means, we compare the
output of the decapsulation oracle with this κ to see if the decoding step
indeed returned 0. This machinery can then be used in the two attacks.

Identifying if 0 ∈ L and finding its position in the public matrix:
This attack iterates s over the n different columns of the public-key matrix
Ĥ. The first part of the ciphertext is r̂ obtained from ROG on input the 0
vector, the second part is the column hi.
If the output of the decapsulation oracle matches ROH((00 . . . 0), r̂, hi) we
have found the location of α = 0. If we do not encounter this for any of the
n columns then we know that 0 is not in L.

OW-CCA2 and IND-CCA2 attack: Given a challenge ciphertext (r, s)
this attack prepares related ciphertexts and candidate KEM keys as follows.
Iterating over all columns hi we compute challenge ciphertext (r̂, s + hi),
where r̂ is as above, and compare the output of the decapsulation oracle to
ROH((00 . . . 0), r̂, s + hi). If this matches we learn that the decoding step
has returned the 0 vector. Apart from the issue exploited in identifying if
0 ∈ L, the decoder works correctly on syndromes coming from error vectors of
weight up to t. Since s is a valid syndrome, thus corresponding to a weight-t
error, having the decoding algorithm output the 0 vector means that s + hi
corresponds to an error of weight larger than t. Hence, the position i in ê
was not set.
If the outputs do not match we do not a priori know if position i was set
and had been flipped to 0 by the addition s + hi, thus creating a syndrome
matching an error vector of weight t − 1, which decodes correctly, of if the
random error locator polynomial happened to have a root in L.
We can get clarity about which of the two cases we are in by taking combi-
nations of two positions. If position j is known to be 0 in ê, then performing
the above with s+hj +hi is guaranteed to give non-zero output if position i
was set, so that the two bit flips lead to a weight-t error while it has a signif-
icant probability of producing the 0 vector otherwise. Varying over different
known positions j quickly gives clarity. Furthermore, we know that ê that
led to s has weight t, so we can stop once we have identified n− t positions
as 0 positions.
This way of modifying s to obtain ê matches our earlier attack against the
software (see Section 4.6), which used crashes in the code as an oracle. The
July 2024 attack relies on the CCA2 decapsulation oracle, which adds the
complication that the new attack needs to provide otherwise valid cipher-
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texts, achieved as explained above.
To finish the OW-CCA2 or IND-CCA2 attack after recovering ê we apply
PermInv, for which we use r from the original ciphertext, to get e∗, and
obtain κ = ROH(e∗, r, s). This concludes the OW-CCA2 attack, which is
what we implemented. For an IND-CCA2 attack, simply compare this κ to
the candidate k∗ provided in the challenge.
The attacks as described are stopped by checking that ê as returned by
Decrypt(sk; ŝ) has weight t. This check is mentioned in PKE1 which is used
in the security proof for the IND-CCA security in chapter 5, but it is not
present in the PKE or KEM specified in chapter 3. It is also not present in
the implementation provided. It is not clear if that alone suffices to achieve
CCA2 security. At least a proof that if ê returned by the extended Patterson
decoder has weight t then ŝ must be valid seems necessary here; note that
this has to be specific to the decoder used.
For the decoder used in Classic McEliece, there is a proof of this rigidity,
but the software still performs re-encryption to make sure that nothing goes
wrong. See [Ber24b, Theorem 5.1.3, Theorem 7.1, and Section 8].
Inside the PALOMA security analysis (chapter 5), Alg 21 and 22 perform
the weight check and re-encryption. However, these two checks do not ap-
pear in the KEM specification in chapter 3 and are not implemented in the
C code provided with the submission package. A system using these two
checks should be able to use the standard FO transform and achieve CCA2
security if the RSD problem is hard. Including these checks will slow down
the decapsulation procedure and may require including the public key in the
secret key. For ways to avoid this inclusion, see Classic McEliece.

4.8 Further updates

Following the attacks presented in July the PALMOA designers informed us
that they were working on an update to their implementation that would add
an extra check for the weight of e and would also remove timing variations.
In August they sent us and then posted an updated version of the specifica-
tion docoument, which we considered above in the section on proofs, and the
updates should stop the attacks, however we are still awaiting the software
update.
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Chapter 5

REDOG

This chapter analyzes the security of the REinforced modified Dual-
Ouroboros based on Gabidulin codes, REDOG [KHL+22], a public-key en-
cryption system submitted to KpqC. REDOG is a code-based cryptosystem
using rank-metric codes, aiming at providing a rank-metric alternative to
Hamming-metric code-based cryptosystems.
Rank-metric codes were introduced by Delsarte [Del78] and independently
rediscovered by Gabidulin [Gab85] in 1985, who focused on those that are
linear over a field extension. Gabidulin, Paramonov, and Tretjakov [GPT91]
proposed their use for cryptography in 1991. The GPT system was attacked
by Overbeck [Ove05, Ove08] who showed structural attacks, permitting re-
covery of the private key from the public key.
During the mid 2010s new cryptosystems using rank-metric codes were devel-
oped such as Ouroboros [DGZ17] and the first round of the NIST competition
on post-quantum cryptography saw 5 systems based on rank-metric codes:
LAKE [ABD+17a], LOCKER [ABD+17b], McNie [GKK+17], Ouroboros-
R [AAB+17a], and RQC [AAB+17b]. For all these systems see NIST’s
Round-1 Submissions page. Gaborit announced an attack weakening Mc-
Nie and the McNie authors adjusted their parameters. A further attack was
published in [LT18] and NIST did not advance McNie into the second round
of the competition.
ROLLO, a merger of LAKE, LOCKER and Ouroboros-R, and RQC made
it into the the second round but got broken near the end of it by signifi-
cant advances in the cryptanalysis of rank-metric codes and the MinRank
problem in general, see [BBB+20] and [BBC+20a]. In their report at the
end of round 2 [AASA+20], NIST wrote an encouraging note on rank-metric
codes: “Despite the development of algebraic attacks, NIST believes rank-
based cryptography should continue to be researched. The rank metric cryp-
tosystems offer a nice alternative to traditional hamming metric codes with
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comparable bandwidth.” (capitalization as in the original).
Kim, Kim, Galvez, and Kim [KKGK21] proposed a rank-metric system in
2021 which was then analyzed by Lau, Tan, and Prabowo in [LTP21] who also
proposed some modifications to the issues they found. REDOG resembles
the system in [LTP21].
We found several attacks against the REDOG submission to the first round,
see [LPR23] for the full paper, but also showed that these were not fun-
damentally breaking REDOG. The following describes the system and the
changes to the 2nd-Round submission.

5.1 Preliminaries and background notions

This section gives the necessary background on rank-metric codes for the rest
of the chapter.
Let {α1, . . . , αm} be a basis of Fqm over Fq. Write x ∈ Fqm uniquely as
x =

∑m
i=1Xiαi, Xi ∈ Fq for all i. So x can be represented as (X1, . . . , Xm) ∈

Fmq . We will call this the vector representation of x. Extend this process to
v = (v1, . . . , vn) ∈ Fnqm defining a map Mat : Fnqm → Fm×nq by:

v 7→


V11 V21 . . . Vn1
V12 V22 . . . Vn2
...

...
. . .

...
V1m V2m . . . Vnm

 .
Definition 5.1.1. The rank weight of v ∈ Fnqm is defined as wtR(v) :=
rkq(Mat(v)) and the rank distance between v,w ∈ Fnqm is dR(v,w) := wtR(v−
w).

Remark 5.1.2. It can be shown that the rank distance does not depend on
the choice of the basis of Fqm over Fq. In particular, the choice of the basis
is irrelevant for the results in this document.

When talking about the space spanned by v ∈ Fnqm , denoted as 〈v〉, we mean
the Fq-subspace of Fmq spanned by the columns of Mat(v).
For completeness, we introduce the Hamming weight and the Hamming dis-
tance. These notions will be used in our message recovery attack against
REDOG’s implementation.
The Hamming weight of a vector v ∈ Fnqm is defined as wtH(v) := #{i ∈
{1, . . . , n} | vi 6= 0} and the Hamming distance between vectors v,w ∈ Fnqm
is defined as dH(v,w) := wtH(v −w).
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Let D = dR or D = dH . Then an [n, k, d]-code C with respect to D over Fqm
is a k-dimensional Fqm-linear subspace of Fnqm with minimum distance

d := min
a,b∈C,a6=b

D(a,b)

and correction capability b(d − 1)/2c. If D = dR (resp. D = dH) then the
code C is also called a rank-metric (resp. Hamming-metric) code. All codes
in this document are linear over the field extension Fqm .
We say that G is a generator matrix of C if its rows span C. We say that H
is a parity check matrix of C if C is the right-kernel of H.
A very well-known family of rank metric codes are Gabidulin codes [Gab85],
which have d = n− k + 1.
In this analysis we can mostly use these codes as a black box, knowing that
there is an efficient decoding algorithm using the parity-check matrix of the
code and decoding vectors with errors of rank up to b(d− 1)/2c.
Another definition needed for the specification of REDOG is that of circulant
matrix.

Definition 5.1.3. A circulant matrix M over Fqm is a k × n matrix of the
form

M =


m0 m1 m2 · · · mn−1
mn−1 m0 m1 · · · mn−2
mn−2 mn−1 m0 · · · mn−3

...
...

...
. . .

...
mn−k−1 mn−k mn−k+1 · · · mn−k−2


where m0,m1, . . . ,mn−1 ∈ Fqm.
In other words, each row of the matrix is a cyclic permutation of the previous
row.

A final definition necessary to understand REDOG is that of isometries.

Definition 5.1.4. Consider vectors in Fnqm. An isometry with respect to the
rank metric is a matrix P ∈ GLn(Fqm) satisfying that wtR(vP ) = wtR(v) for
any v ∈ Fnqm.

Obviously matrices P ∈ GLn(Fq) are isometries as Fq-linear combinations of
the coordinates of v do not increase the rank and the rank does not decrease
as P is invertible. The rank does also not change under scalar multiplication
by some α ∈ F∗qm : wtR(αv) = wtR(v). Note that the latter corresponds to
multiplication by P = αIn.
Berger [Ber03] showed that any isometry is obtained by composing these two
options.
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Theorem 5.1.5. [Ber03, Theorem 1] The isometry group of Fnqm for the
rank metric is generated by scalar multiplications by elements in F∗qm and el-

ements of GLn(Fq). This group is isomorphic to the product group
(
F∗qm/F∗q

)
×

GLn(Fq).

5.2 System specification

This section introduces the specification of REDOG. We follow the notation
of [LTP21], with minor changes, adjusted for the round-2 submission.
The system parameters are positive integers (n, k, `, q,m, r, λ, t1, t2), with
` < n and t1 + λt2 ≤ r ≤ b(n − k)/2c, as well as a hash function hash :
F2n−k
qm → F`qm .

KeyGen:

1. Select H = (H1 | H2), H2 ∈ GLn−k(Fqm), a parity check matrix of
a [2n− k, n] Gabidulin code, with syndrome decoder Φ correcting
r errors.

2. Select a complete rank matrix M ∈ F`×nqm and isometry P ∈ Fn×nqm

(with respect to the rank metric).

3. Select a λ-dimensional Fq-subspace Λ ⊂ Fqm containing 1 and
select a random circulant matrix S−1 ∈ GLn−k(Fqm) having entries
only in Λ;

4. Compute F = MP−1HT
1

(
HT

2

)−1
S and publish the public key

pk = (M,F ). Store the secret key sk = (P,H, S,Φ).

Encrypt (m ∈ F`qm , pk)

1. Generate uniformly random e = (e1, e2) ∈ F2n−k
qm with e1 ∈ Fnqm

having wtR(e1) = t1 and e2 ∈ Fn−kqm having wtR(e2) = t2;

2. Compute m = msg + hash(e).

3. Compute c1 = mM + e1 and c2 = mF + e2 and send (c1, c2).

Decrypt ((c1, c2), sk)

1. Compute c′ = c1P
−1HT

1 − c2S
−1HT

2 = e′HT where the vector
e′ := (e1P

−1,−e2S
−1).

2. Decode c′ using Φ to obtain e′, recover e = (e1, e2) using P and S.

3. Solve mM = c1 − e1. Output msg = m− hash(e).
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5.2.1 Suggested parameters

We list the suggested parameters of REDOG for 128,192 and 256 bits of
security submitted to KPQC.

Security parameter (n, k, `, q,m, r, λ, t1, t2)

128 (30, 6, 25, 2, 59, 12, 3, 6, 2)
192 (44, 8, 37, 2, 83, 18, 3, 12, 2)
256 (58, 10, 49, 2, 109, 24, 3, 15, 3)

Table 5.1: Suggested parameters.

5.3 The Pad Thai Attack

In this section, we describe our attack on REDOG which succeeds in recov-
ering the messages corresponding to REDOG’s ciphertexts. Let us first give
an overview of the attack.

5.3.1 Overview

We break down the description of the Pad Thai attack into two steps. We
aim to construct a system of linear equations which can be solved uniquely
for m, and subsequently for e1 and e2. Finally, we recover the message by
computing msg = m− hash(e1 | e2).

First Step.

The goal of the first step is to construct a system of linear equations starting
from the relation c2 = mF + e2. To construct this system, we combine
columns of F and the corresponding entries of c in order to obtain a system
of equations c′2 = mF′ + e′2 where e′2 has only t2 nonzero entries whose
positions are known.
Assume that we know the mentioned system. Observe that, for all security
levels of REDOG, we have t2 = 2 or t2 = 3, which means that n−k−t2 entries
in c′2 are error-free. Let i1, . . . , it2 ∈ {1, . . . , n− k} be such that e2,ij 6= 0 for

j ∈ {1, . . . , t2}. Take F′′ ∈ F`×(n−k−t2)2m as the submatrix of F′ consisting of
the columns F ′i for i 6= i1, . . . , it2 . Similarly, compute c′′2 ∈ Fn−k−t22m by taking
the entries c′i where i 6= i1, . . . , it2 . Then, the message m satisfies

c′′2 = mF′′, (5.1)
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which is an underdetermined system as we have ` unknowns of m and n−k−t2
equations, where n−k− t2 < ` for every security level. In reality, `−n+k =
t2+1 for every security level, which means that we are t2+1 equations short.

Second Step.

In order to uniquely compute m we need to pad the system in (5.1) with
t2 + 1 extra error-free equations by combining some of the equations from
c1 = mM + e1. Let c′1,i = mM ′

i for i = 1, . . . , t2 + 1 be such error-free
equations. We can add these equations to (5.1) and obtain a new system

(c′′2 | c1,1 | · · · | c1,t2+1) = m
(
F′′ |M ′

1 | · · · |M ′
t2+1

)
. (5.2)

In REDOG’s specification, M is chosen uniformly at random among the
full-rank matrices in F`×n2m . Moreover, F is assumed to be another ran-
dom matrix by [KHL+24, Problem 2] so we can safely assume that(
F′′ |M ′

1 | · · · |M ′
t2+1

)
∈ F`×`2m is a random matrix, thus having full rank

with high probability. We can now compute m by inverting the system (5.2)
and recover msg.

5.3.2 First Step

We describe a method to produce a system of equations c′2 = mF′+e′2 where
the Hamming weight wtH(e′2) = t2 and the positions of non-zero entries of
e′2 are known. This can be done because of the following observation.

Remark 5.3.1. Let Fi denote the i-th column of F, then c2,i = mFi + e2,i.
Assume that e2,i = e2,j for some i, j. Then

c2,i + c2,j = m(Fi + Fj) + e2,i + e2,j = m(Fi + Fj).

Let α1, . . . , αt2 ∈ F∗2m be such that 〈e2〉F2 = 〈α1, . . . , αt2〉F2 . So each entry
e2,i of e2 can assume a value in an F2-vector subspace of F2m containing
2t2 elements. This suggests that REDOG’s encryption algorithm chooses e2

among 2(n−k)t2 possibilities (actually, less than 2(n−k)t2 as the rank weight
constraint wtR(e2) = t2 must also hold). Label the unknown values of 〈e2〉F2

as {0, α1, α2, . . . , α2t2−1}, where

αj =

t2∑
h=1

zj,hαh (5.3)

for some zj,h ∈ F2 for every j = t2 + 1, . . . , 2t2 − 1. Most of the time we will
handle 0 separately, but for convenience, we define α0 = 0.
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In the following, let 2{1,...,n} denote the set of subsets of {1, . . . , n}, and thus(
2{1,...,n}

)t
a vector of t such subsets.

Definition 5.3.2 (Set of arrangements of subsets). Let t ∈ N be a posi-
tive integer. We define the set of arrangements of t disjoint subsets over n
elements as the set of ordered tuples in

(
2{1,...,n}

)t
defined as

At,n :=

{
a ∈

(
2{1,...,n}

)t | t⋃
i=1

ai = {1, . . . , n}, ai ∩ aj = ∅ ∀i 6= j

}
.

Proposition 1. Let α = {α1, . . . , αt2} ⊂ F∗2m be a set of F2-linearly inde-
pendent elements. There exists a one-to-one correspondence between the set
Eα,n−k := {e ∈ Fn−k2m | 〈e〉F2 ⊆ 〈α1, . . . , αt2〉F2} and A2|α|,n−k.

Proof. For e ∈ Eα,n−k, denote by

e0 := {i ∈ {1, . . . , n− k} | ei = 0}

and by
eαj := {i ∈ {1, . . . , n− k} | ei = αj}

the positions where e2 is 0 and αj for all j = 1, . . . , 2t2 − 1, respectively. We
prove that the map

ϕα,n−k : Eα,n−k → A2|α|,n−k

e 7→ (e0, eα1 , . . . , eα2t2−1)

is a bijection by showing that it is both injective and surjective. Let e, f ∈
Eα,n−k be such that e 6= f . Then there exists i ∈ {1, . . . , n − k} such that
ei 6= fi. Write ei = αj1 and fi = αj2 for some j1, j2 ∈ {0, . . . , 2t2 − 1} with
j1 6= j2, then eαj1 6= fαj1 . It follows that ϕα,n−k(e) 6= ϕα,n−k(f).
On the other hand, let a ∈ A2|α|,n−k and let e ∈ Fn−k2m be such that ej = 0
for every j ∈ a1 and ej = αi−1 for every j ∈ ai−1 and every i = 2, . . . , 2t2 .
Clearly, 〈e〉F2 ⊆ 〈α1, . . . , αt2〉F2 and ϕα,n−k(e) = a.

Definition 5.3.3 (Good basis of a vector). Let v ∈ Fn2m be such that
wtR(v) = t. A set of elements {α1, . . . , αt} ⊂ Ft2m such that 〈v〉F2 =
〈α1, . . . , αt〉F2, is called a good basis for v if for every j ∈ {1, . . . , t} there
exists an i ∈ {1, . . . , n} such that vi = αj.

Remark 5.3.4. It is clear that a good basis exists for every e ∈ F2m. To
see that, let t = wtR(e) and define the basis {α1, . . . , αt} of 〈e〉F2 by taking
the leftmost t entries in e which are linearly independent over F2. Then
{α1, . . . , αt} is a good basis for e.
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Denote by A′2t2 ,n−k the subset of A2t2 ,n−k so that ai 6= ∅ for i = 2, . . . , t2 + 1.

Definition 5.3.5 (Arrangement of a vector). Let e ∈ Fn−k2m with wtR(e) = t2
and α = {α1, . . . , αt2} ⊂ Ft22m be a good basis for e. Then we call ϕα,n−k(e)
the arrangement of e with respect to α.

Observe that, given a good basis α for e, the arrangement of e w.r.t. α is in
A′2t2 ,n−k.

Algorithm 1 RearrangeSystem

Input: An arrangement a ∈ A′2t2 ,n−k, a REDOG’s partial ciphertext c2 ∈
Fn−k2m corresponding to a message m ∈ F`2m under the partial public key

F ∈ F`×(n−k)2m .

Output: A vector c′′2 ∈ Fn−k−t22m and a matrix F′′ ∈ F`×(n−k−t2)2m .

1. Fix elements xi ∈ ai for every i = 2, . . . , t2 + 1;

2. Construct F′′ ∈ F`×(n−k−t2)2m and c′′2 by computing the following columns
and values:

(a) F ′′j = Fj and c′′2,j = c2,j for every j ∈ a1;
(b) F ′′j = Fj + Fxi and c′′2,j = c2,j + c2,xi for all j ∈ ai \ {xi} and

i = 2, . . . , t2 + 1;

(c) F ′′j = Fj +
∑t2

h=1 zi−1,hFxh+1 and c′′2,j = c2,j +
∑t2

h=1 zi−1,hc2,xh+1 for
all j ∈ ai and i = t2 + 2, . . . , 2t2 .

3. Return F′′ and c′′2, the matrix F′′ and vector c′′ punctured at xi, i =
2, . . . , t2 + 1.

Proposition 2. Let c2 = mF + e2 be a REDOG’s partial ciphertext and
ϕα,n−k(e2) be the arrangement of e2 w.r.t a good basis α. Then Algorithm 1

returns c′′2 ∈ Fn−k−t22 and F′′ ∈ F`×(n−k−t2)2m such that

c′′2 = mF′′.

Proof. The algorithm repeatedly applies the observation in Remark 5.3.1.
Each j ∈ a1 has that c2,j is error free. Each j ∈ ai, i = 2, . . . , t2 + 1 has
c2,j = mFj + αi−1. The algorithm selects one such index as xi and then
applies Remark 5.3.1 to cancel the αi−1 in all other c2,j for j ∈ ai \ {xi}.
Eventually, c′′2 is punctured at xi so that only those entries without error
remain.
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Similarly, all c2,j with j ∈ ai for i = t2 + 2, . . . , 2t2 have error αi−1 added and
(5.3) states the coefficients zi−1,h representing αi−1 in the basis. Again using
that cxh contributes αh−1 shows that the third case produces an error-free
c′′2,j for j ∈ ai.
In total, the matrix and vector are punctured at the t2 positions of the xi,
thus producing n− k − t2 error free equations c′′2,j = mF ′′j .

Proposition 2 together with Algorithm 1 provides a method that transforms
the system of equations c2 = mF + e2 into a smaller system c′′2 = mF′′ that
does not involve any noise. As the system is underdetermined, we present
an algorithm in the next section that exploits REDOG’s partial ciphertext
c1 to obtain the necessary remaining equations for the system.

Remark 5.3.6. Note that Proposition 2 assumes knowledge of the arrange-
ment of e2. We want to stress that, since the basis α is unknown, knowing
the arrangement of e2 w.r.t. α does not necessarily mean knowing e2. This
assumption will be satisfied as we iterate over all possible arrangements of
e2.

5.3.3 Second Step

In this subsection, we investigate how to pad the system equations c′′2 = mF′′

with t2 + 1 additional equations to uniquely determine m. The idea is to
construct these extra equations, combining equations from c1 = mM + e1.
Observe that since wtR(e1) = t1, then any set {e1,i1 , . . . , e1,it1+1} of t1 + 1
entries of e1 is linearly dependent, i.e. there exist z1, . . . , zt1+1 ∈ F2 not all
zero such that

t1+1∑
j=1

zje1,ij = 0.

This suggests that given a set of t1 + 1 equations of c1 = mM + e1 one can
search the space of F2-linear combinations for t1 + 1 non-zero combinations
of the equations, which cancels the error factor.

Remark 5.3.7. Observe that we need to make sure that the columns Mij for
j = 1, . . . , t1 + 1 are linearly independent, as otherwise we might run into

t1+1∑
j=1

zjMij = 0

which is a useless equation. However, the probability for this to happen is
negligible for each parameter set.
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Since we need t2 + 1 extra equations to pad the system, we need to find
t2 + 1 equations simultaneously with this method. In total, we obtain a
linear system of ` = n − k + 1 equations that can be solved to recover the
message.

5.3.4 The Full Attack

For each system rearrangement that we perform in the first step, we need to
test all paddings in the second step. Testing the solution of each system we
construct implies computing a candidate message m′ ∈ F`2m and candidate
errors e′1 ∈ Fn2m and e′2 ∈ Fn−k2m and checking whether the rank weights of
e′1 and e′2 match t1 and t2, respectively. Therefore, combining the two steps
described in this section, we obtain the following algorithm.
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Algorithm 2 PadThaiAttack

Input: A REDOG’s ciphertext c = (c1, c2) ∈ F2n−k
2m corresponding to a

message msg ∈ F`2m under the public key pk = (M,F) ∈ F`×(2n−k)2m .
Output: The message msg.

For each arrangement a ∈ A′2t2 ,n−k do:

1. Let F′′, c′′ = RearrangeSystem(a, c2,F);

2. Pick random sets J1, . . . , Jt2+1 ⊂ {1, . . . , n} with |Ji| = t1 + 1;

3. Let MJi be the matrix consisting of columns of M indexed by Ji;

4. If rk(MJi) < t1 + 1 for some i ∈ {1, . . . , t2 + 1} then go to Step 2.

5. For every (v1, . . . ,vt2+1) ∈
(
Ft1+1
2

)t2+1
do:

(a) Compute M ′
i = MJiv

> for each i = 1, . . . , t2 + 1;

(b) Let c1,Ji be the vector consisting of the entries of c1 indexed by
Ji;

(c) Compute c′1,i = c1,Jiv
>
i for each i = 1, . . . , t2 + 1;

(d) Let G := (F′′ |M ′
1, . . . ,M

′
t2+1) and y := (c′′ | c′1,2, . . . , c′1,t2+1);

(e) Compute m′ = yG−1;

(f) Compute e′1 = c1 −m′M and e′2 = c2 −m′F;

(g) If wtR(e′1) = t1 and wtR(e′2) = t2 then return msg = m′−hash(e′1 |
e′2).

Let us provide an argument for the correctness of the Pad Thai attack.

Proposition 3. Algorithm 2, under the assumption that matrix G in Step
5.(d) is invertible, recovers a valid message msg corresponding to a REDOG’s
ciphertext c under public key pk = (M,F).

The proof of Proposition 3 follows directly from Proposition 2 and the ar-
guments given in Section 5.3.3. We thus omit the full proof. In the next
section, we give the complexity analysis of our attack and point out some
areas of improvement.

Remark 5.3.8. The matrix G in Step 5.(d) of Algorithm 2 needs to be
invertible for the attack to be successful. This is a direct consequence of
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Lemma 5.4.2, which can be applied to show that G is invertible with proba-
bility ∼ 1. A more elaborate argument is presented in Section 5.4.1.

5.4 Analysis of the Pad Thai Attack

In this section, we describe the complexity of our attack on REDOG described
in Algorithm 2. Let us start with the following easy lemma.

Lemma 5.4.1. The cardinality of A2t2 ,n−k is 2t2(n−k).

Proof. By Proposition 1 there is a bijection between A2t2 ,n−k and Eα,n−k for
a fixed set α = {α1, . . . , αt2} ⊂ Ft22m . The number of elements in Eα,n−k is
clearly 2t2(n−k).

A first assessment of the complexity of the Pad Thai attack is given in the
following proposition.

Proposition 4. The Algorithm 2 recovers the message msg corresponding to
a REDOG ciphertext c under public key pk = (M,F) in

O(2(t1+1)(t2+1)+t2(n−k)`ωm2) (5.4)

field operations, where 2 ≤ ω ≤ 3 is the matrix multiplication exponent.

Proof. The algorithm consists of two nested cycles. The first cycle iterates
over all arrangements A′2t2 ,n−k, which is a subset of A2t2 ,n−k whose cardinality
is reported in Lemma 5.4.1.
The most expensive steps of each cycle of Algorithm 2 are Steps 2.(c)
in Algorithm 1 and 5.(e). The former computes 2t2 − t2 − 1 sums Fj +∑t2

h=1 zi−1,hFxh+1
, i.e. the sum of t2 elements of F`2m for a total number of

operations in F2 in O(2t2mt2`). The latter happens in the nested cycle and
inverts a matrix G ∈ F`×`2m . Its cost, using schoolbook multiplications in finite
fields, is in O(`ωm2) and is performed 2(t1+1)(t2+1) times for each outer cycle.
For each parameter set in Table 5.1 we have that

2t2mt2` < 2(t1+1)(t2+1)`ωm2.

Combining with the number of outer cycles we obtain the claimed complexity.
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The following table reports the updated security provided by REDOG based
on our attack.

Security parameter (n, k, `, q,m, r, λ, t1, t2) Pad Thai attack

128 (30, 6, 25, 2, 59, 12, 3, 6, 2) 93.8
192 (44, 8, 37, 2, 83, 18, 3, 12, 2) 138.37
256 (58, 10, 49, 2, 109, 24, 3, 15, 3) 237.3

Table 5.2: log2 of the complexity of the Pad Thai attack for each security
level of REDOG according to equation (5.4) with ω = 2.807.

Table 5.2 suggests that the combination of parameters of REDOG security
level 256 has a smaller loss of security under the Pad Thai attack compared
to security levels 128 and 192. This can be explained by the choices for
parameter t2.

5.4.1 Success Probability

The matrix F ∈ F`×n−k2m is assumed to be indistinguishable from random
as per [KHL+24, Problem 2], hence we can consider every output matrix
F′′ ∈ F`×n−k−t22m of Algorithm 1 as random too. Furthermore, given that each
pad consists of a combination of random columns of an actually random
matrix M ∈ F`×n2m , we conclude that the entire matrix G ∈ F`×`2m can be
considered as a matrix chosen uniformly at random. We only need to estimate
the probability that G is invertible in order for the attack to succeed when
the right system has been set up. To this end we can use the following result
of [LPR23].

Lemma 5.4.2 ([LPR23, Lemma 4.2]). Let V be a t-dimensional subspace
V ⊆ Fm2 and let S ∈ V s be a uniformly random s-tuple of elements of V .
The probability p(q, s, t) that 〈Si | i ∈ {1, . . . , s}〉 = V is

p(q, s, t) =

{
0 if 0 ≤ s < t;∑t

i=0

[
t
i

]
q

(−1)t−iqs(i−t)+(t−i2 ) otherwise,
(5.5)

where
[
t
i

]
q

is the q-binomial coefficient, counting the number of subspaces of
dimension i of Ft2, and

(
a
b

)
= 0 for a < b. In particular, this probability does

not depend on m or on the choice of V , but only on its dimension.

By setting V = F`2m and s = t = ` in the above lemma, we obtain that the
set of columns of G spans the entire space V . In other words, G is invertible
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with probability ∼ 1 for every cycle and every security level. As a result,
we are assured that the attack succeeds at recovering the secret msg with
probability ∼ 1.

5.4.2 Attack Improvements

In this subsection, we point out an interesting behavior of Algorithm 1 of the
first step of our attack. We observe that Algorithm 1 rearranges the system
c2 = mF + e2 depending only on the arrangement of e2. Here is an example
for t2 = 2.

Example 5.4.3. Let e, f ∈ Fn−k2m be the vectors

e = (0, 0, α, α, β, α + β)

and
f = (0, 0, β, β, α + β, α).

These two vectors have the same arrangement w.r.t. the bases {α, β} and
{β, α + β}, respectively. Now, let ce = mF + e and cf = mF + f and let
x1 = 3 and x2 = 5. Let also a be the arrangement of e (equivalently, of f).
Then, on inputs (a, ce) and (a, cf ), Algorithm 1 produces the same output.

This means that we can run the first cycle on a subset of the arrangements
A′2t2 ,n−k as Algorithm 1 does not distinguish between errors having the same

arrangement. Indeed, for each arrangement there are r =
∏t2−1

i=0 (2t2 − 2i)
other arrangements for which Algorithm 1 produces the same output. The
updated complexity becomes therefore

O(2(t1+1)(t2+1)+t2(n−k)`ωm2r−1). (5.6)

The updated values are as follows.

Security parameter (n, k, `, q,m, r, λ, t1, t2) Pad Thai attack

128 (30, 6, 25, 2, 59, 12, 3, 6, 2) 91.22
192 (44, 8, 37, 2, 83, 18, 3, 12, 2) 135.78
256 (58, 10, 49, 2, 109, 24, 3, 15, 3) 229.9

Table 5.3: log2 of the complexity of the Pad Thai attack for each security
level of REDOG according to equation (5.6) with ω = 2.807.

Another improvement comes from noting that the complexity estimates con-
sider all arrangements in A2t2 ,n−k including those that correspond to error
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vectors e2 that have rank weight wtR(e2) ≤ t2. Considering only arrange-
ments for error vectors with rank weight exactly t2 slightly reduces the num-
ber of arrangements that we need to iterate over in the first step.

Remark 5.4.4. We want to stress that the values in Table 5.2 and Table 5.3
are overestimates due to the fact that Algorithm 2 iterates over A′2t2 ,n−k,
which is a subset of A2t2 ,n−k and that we assume schoolbook arithmetic in
F2m.

5.5 Other observations and potential direc-

tions

In this section we measure key sizes in bytes or kilobytes (KB). We believe
that the key sizes reported in [KHL+24, Table 1] have been computed erro-
neously. Regarding the public key size of REDOG, the authors seem to use
the formula

sizepk = m`(n− k)/8

which forgets about the size of the matrix M . Plugging the values of the
parameters in the above formula we also get slightly different values from
those reported in Table 2. In [LPR23] we had recommended defining M via
a seed; which would reduce the M part of the public key to just the size of
the seed, typically 256 bits, but means a slowdown in the computations for
computing M from the seed, this affects KeyGen, encryption/encapsulation,
and decapsulation. An alternative option is that M is considered a system
parameter and shared by all users. This is also not consistent with the current
description, as M is listed as part of the public key, and would require some
security analysis.
For the currently described version using a random M , we believe that the
correct formula is

sizepk = m`(2n− k)/8.

Moreover, we believe that the formula computing the sizes of private keys is
incorrect as it seems to forget that P is an isometry w.r.t. the rank metric,
meaning that there is an Fqm-scalar to take into account as per Theorem 5.1.5.
The correct formula is then

sizesk = (m(3n− 2k + 1) + n2)/8

Using these formulas, the correct key sizes are

63



Security parameter sizepk sizesk

128 9.72 0.68
192 29.99 1.42
256 69.11 2.47

Table 5.4: Actual REDOG key sizes in KB.

Finally, the submission document describes only a PKE and not a KEM. As
discussed in Section 2.2, the FO transform can be used to turn a OW-CPA
secure PKE into an IND-CCA secure KEM. While such considerations are
entirely missing, see below, the switch to the KEM increases the secret key
size by requiring the inclusion of the public key for the reencryption step, and
of course leading to decapsulation speeds that are slower than the decryption
speeds.

5.5.1 Parameter selection

It is not clear to us how the complexities of rank decoding attacks for each
security level have been computed. In [LPR23] we pointed to some code that
performs this computation, and running this on the suggested parameters
we note that the complexities reported in [KHL+24] are computed using
Winograd exponent for matrix multiplication instead of Strassen’s. This is
a safe choice, but for practical attacks estimates using Strassen’s exponent
are more reliable. Also we believe that at least for security 128 and 192 the
best complexity is given by brute force attack instead of BBB+. In their
document, the authors talk about a fix in the code we provided. It would be
helpful if the authors could share their version of such code so that we can
make clear how these values are computed.

5.5.2 Potential directions

We became aware of attacks on rank metric code based schemes using
Loidreau’s idea of selecting invertible matrices having entries restricted to
a small space Λ of dimension λ, see [CC20] for λ = 2 and [Gha22] for λ = 3.
REDOG uses λ = 3. We believe that something can be said when combining
the mentioned analysis strategies with that of the Frobenius-weak attack,
described for example in [HTMR16].
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5.5.3 Implementation

We could not run the C-code coming with the implementation package of
REDOG. We assume that the REDOG team is still working on the code and
suggest to add a README to the package with the instruction for compiling
and running the code. We think that providing a working implementation
package is crucial for us to perform a complete analysis.
Nevertheless, we produced a SageMath implementation of the cryptosystem
following the specification faithfully, except for the fixes we point out in
Section 5.5.4. We paste a copy of the implementation here.

from itertools import chain

 

# params for security 128

q,m,n,k,l,t1,t2,lamb = 2,59,30,6,25,6,2,3

F = GF(q^m)

baseF = GF(q)

 

# I need this C just to use methods like rank_weight_of_vector()....

C = codes.LinearRankMetricCode(random_matrix(F,25,30),baseF)

 

def rand_circulant(size):

  LAMB = vector(F,[1]+[F.random_element() for i in range(lamb-1)])

  while C.rank_weight_of_vector(LAMB) != lamb:

    LAMB = vector(F,[1]+[F.random_element() for i in range(lamb-1)])

  mat = random_matrix(baseF,lamb,n-k)

  row = list(LAMB*mat)

  S = [row]

  for i in range(size-1):

    row = [row[-1]] + row[0:-1]

    S += [row]

  return matrix(S), LAMB

 

 

def generror(length, weight):

  tmpe = vector(F,[F.random_element() for i in range(weight)])

  mat = random_matrix(baseF,weight,length)

  e = tmpe*mat

  while C.rank_weight_of_vector(e) != weight:

    tmpe = vector(F,[F.random_element() for i in range(weight)])

    mat = random_matrix(baseF,weight,length)

    e = tmpe*mat

  return e

 

def keygen():

  S,LAMB = rand_circulant(n-k)

  while not S.is_invertible():

    S,LAMB = rand_circulant(n-k)

 

  C = codes.GabidulinCode(F,2*n-k,n)

  H = C.parity_check_matrix()

  H2 = H[:,n:]

  while not H2.is_invertible():

    C = codes.GabidulinCode(F,2*n-k,n)

    H = C.parity_check_matrix()

    H2 = H[:,n:]

  H1 = H[:,:n]
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  gamma = F.random_element()

  while gamma in baseF:

    gamma = F.random_element()

 

  Q = random_matrix(baseF,n,n)

  while not Q.is_invertible():

    Q = random_matrix(baseF,n,n)

  P = gamma*Q

 

  M = random_matrix(F,l,n)

  while not M.rank() == l:

    M = random_matrix(F,l,n)

 

  pubkeyF = M*P.inverse()*H1.transpose()*(H2.transpose()).inverse()*(S.inverse())

  return (M,pubkeyF),(P,S,H,H1,H2,LAMB,C)

 

def encrypt(m,pk):

  e1 = generror(n,t1)

  e2 = generror(n-k,t2)

 

  #e_sent = vector(chain(e1,e2))

 

  y1 = m*pk[0] + e1

  y2 = m*pk[1] + e2

 

  y = vector(chain(y1,y2))

  return y

 

 

def decrypt(y,sk,pk):

  y1 = y[:n]

  y2 = y[n:]

  s = y1*sk[0].inverse()*(sk[3].transpose()) - y2*sk[1]*(sk[4].transpose())

  X = sk[2].solve_right(s)

  c = C.decode_to_code(X)

 

  e_rec = X - c

  e_rec1 = e_rec[:n]*sk[0]

  e_rec2 = e_rec[n:]*sk[1].inverse()

  e_rec = vector(chain(e_rec1,e_rec2))

  m_rec = pk[0].solve_left(y1-e_rec1)

  return e_rec,m_rec

 

 

pk,sk = keygen()

C = sk[6]

# Encrypt

m = random_vector(F,l)

y = encrypt(m,pk)

 

# Decrypt (returns error vector and message)

 

e_rec,m_rec = decrypt(y,sk,pk)

 

print("m == m_rec : ", m_rec == m)
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5.5.4 Editorial observations

There are some inconsistencies in the document [KHL+24] that we point out
in the following list (which is not ordered by importance):

� In the specification, we recommend clearly stating that the matrix
P ∈ Fn×nqm represents an isometry of the space with respect to the rank
metric. Otherwise decryption fails, as pointed out in [LPR23];

� If the intent is for S−1 to be chosen as a circulant matrix, we recommend
clearly stating this in the specification of the system;

� The Gabidulin decoder is denoted by both Φ and ΦH . We recommend
choosing one notation and sticking to it (or if there is any difference
between regular decoder and syndrome decoder, which should not be
the case, clearly stating that).

� The statement “We adopt the approach of selecting matrices S and
S−1 and addressing...” does not make sense.

� Tables 2, 3, and 4 report key sizes of other PQ candidates using bytes,
bits and KB as measures. We recommend choosing one and sticking to
it throughout all the tables, this improves readability.

� In section 4.3 first paragraph the citation [LT19] should be replaced
with [LTP21].

� Similarly to previous item, right after Definition 7, the citation [LT19]
should be replaced with [LTP21].

5.6 Provable Security of REDOG

In this section, we discuss the security proof of REDOG. No changes seem to
be made regarding the security proof of REDOG compared to the submission
in the first round.

5.6.1 IND-CPA Security of REDOG

We would like to address the following improvements of the security proof to
the authors.

1. Arguments regarding problem 2. There does not seem to be a formal
argument on why Problem 2 is a hard problem to solve for the given
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F = MHT
1 [HT

2 ]−1S. We are aware that so far, no attacks have been
found that efficiently distinguish matrix F from an arbitrary matrix R.
The authors remark that, due to the choices for matrices M and S−1,
Overbeck’s attack [Ove08] can be circumvented. However, this does not
imply that this is a hard problem in general. Next to this, we wonder
why problem two is equivalent to a matrix factorization problem, as a
formal argument for this is lacking.

2. Game transition REDOG to mod DO.Gab-PKE missing. The security
proof of Modified DO.Gab-PKE [KKGK21] takes S−1 to be an invert-
ible matrix, whereas S−1 ∈ GLn−k(Λ) for some finite-dimensional Λ.
A formal argument for this transition is missing. One may reduce the
IND-CPA security of REDOG to the IND-CPA security of the Modified
DO.Gab-PKE using a game transition. However, we would recommend
to make appropriate changes to the proof of [KKGK21] so that game
G0 corresponds to an honest run of the REDOG system.

3. Hash function hash. In the proof of Theorem 1 of [KKGK21], it is
mentioned in game G2 that m is completely random because of the
usage of H. This requires an extra game transition (between games G1
and G2) where the hash function is replaced by a value taken uniformly
random. In this way, there is no dependence between error e and m′

anymore in G2. Note that this introduces the advantage of breaking
hash function hash in the security proof.

5.6.2 IND-CCA2 secure KEM using FO Transforma-
tion

The authors do not mention how REDOG, given that it is IND-CPA secure,
can be transformed into a IND-CCA2 secure KEM using an appropriate FO
Transformation. It is recommended to specify which FO transformation will
be used and discuss how this influences the performance of the system. This
should be considered as future work for the authors.

5.7 Round-2 C software

As noted above, the round-2 C software from the REDOG team appears to
be work in progress. For example, the rbc_97_vec_clear function in the
software varies in the number of arguments (and is not a varargs function).
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Chapter 6

SMAUG-T: The Key Exchange
Algorithm based on
Module-LWE and
Module-LWR

SMAUG [CCH+22] and TiGER [PJP+22] are lattice-based key encapsulation
algorithms (KEMs). According to the recommendations after the first round,
SMAUG and TiGER have been merged. The result of this merge is called
SMAUG-T. SMAUG-T is essentially SMAUG (the parameter sets are now
called SMAUG-T128, SMAUG-T192, and SMAUG-T256) together with a
new parameter set called TiMER that, like TiGER, uses the D2 encoding to
achieve smaller parameter sizes. The new parameter set achieves secret key
size of 136 bytes while the ciphertexts are 608 bytes long. Together with a
public key size of 672 bytes, this is the most efficient variant of SMAUG-T.
In TiMER, the intermediate randomness that is used to derive encapsulated
keys has reduced entropy compared to SMAUG-T128 (128 bits instead of
256). With respect to ciphertext size, this makes TiMER more efficient than
TiGER and highly efficient state-of-the-art schemes like LightSaber. The
authors of SMAUG-T point out that TiMER is better suited for lightweight
devices as used in IoT applications. At the same time they caution that the
use of the D2 encoding as well as the reduced entropy “may affect security
in the future”. As a compromise they recommend to use TiMER while
restricting the number of operations the KEM system will perform. However,
they do not provide concrete numbers for this.
The first report provides details on SMAUG and TiGER. For more informa-
tion on relating SMAUG to Kyber [SAB+22] see the thesis [Mer23] by Jorge
Correa-Merlino. SMAUG-T is based on the hardness of the MLWE (Module
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Learning with Errors) and the MLWR (Module Learning with Rounding)
assumption.
In the following, we will provide a brief description and discussion of key
features of SMAUG-T. It is instructive to compare it with the winner of
NIST’s PQC competition, Kyber. Naturally, the improvements employed in
SMAUG-T can be based on a more mature field of knowledge, incorporating
more recent research results as compared to Kyber and thus we expect to see
improvements.

6.1 System description

Conceptually and on a high level, SMAUG-T closely follows the well-known
template for building lattice-based KEMs as initiated by Regev [Reg05]. Sec-
tion 2.2 provides more details on the Regev template.
Regev-like cryptosystems mimic the well-known ElGamal cryptosystem,
where each ciphertext consists of an ephemeral public key and another part
that is a function of the message. Decryption of the message is possible
with a shared secret which is derived from the long-term key of the receiver
(pk, sk) and the fresh ephemeral key (epk, esk) of the sender (so either from
(pk, esk) by the sender or from (epk, sk) by the receiver). All Regev-like en-
cryption systems have comparatively simple security proofs linking them to
some LWE-like assumption. These underlying security assumptions mainly
differ in i) the type of underlying lattice structure they are defined in, ii) the
distribution that the secret key is chosen from, and iii) the error distribution
that is used to bias (destroy) otherwise linear dependencies between public
and secret variables. Applying these assumptions in constructions is sim-
ple. They guarantee that the long-term public key and the ephemeral public
key of the ciphertext are indistinguishable from random values to passive
attackers. For random public keys, the decrypted message is essentially also
a random value to the attacker. In the security proof, this is enough to show
that the scheme guarantees the relatively weak notion of IND-CPA secu-
rity (indistinguishability under chosen plaintext attacks). Thus, even though
there is a wide variety of LWE-like assumptions, each Regev-like cryptosys-
tem chooses its algebraic setting and security assumption while following the
same template.
In terms of provable security, the concrete choices of security assumptions
influence the concrete correctness error and the achieved security level. Em-
ploying additional mechanisms often results in new tradeoffs. In TiMER,
error correcting codes (ECCs) are applied that allow to decrease the size of
ciphertexts and secret keys. At the same time ECCs are in this context often
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regarded as a source of implementation problems that increase the risk of
side-channel attacks.

6.1.1 Concrete parameters

When contrasted with SMAUG, SMAUG-T simply introduces a new set of
parameters called TiMER while keeping the parameters of the SMAUG sub-
mission from the first round (after the update). Here we comment on the
most recent choices while comparing with Kyber.
In general, the parameters should make the scheme i) have low bandwidth
and high throughput, ii) have high concrete security supported by a proof to
some security assumption, and iii) have adequate DFP.
Kyber uses MLWE with base ring Rq = Zq[x]/(Xd + 1). The values of q and
d are fixed to q = 3329 and d = 256 for all security levels; note that 256
divides q − 1 which permits using an almost complete NTT in Rq (Xd + 1
factors into quadratic factors). The smallest security level uses two blocks of
size 256 and the number increases with the security level, so n ∈ {2, 3, 4}.
SMAUG-T uses MLWE and combines it with MLWR with power-of-2 cyclo-
tomics for the ring at d = 256. Compared to Kyber it uses one more block
for the highest security level, so n ∈ {2, 3, 5}. Like Saber [DKR+20] it works
with a power-of-2 modulus q ∈ {1024, 2048} and uses rounding.
TiMER uses the basic parameter set for SMAUG-T128. However, it uses a
reduced message space of size {0, 1}128 (instead of {0, 1}256) to apply the D2
encoding. As a result we can have D2 decoding that expands from {0, 1}128
back to {0, 1}256 in the decryption process instead of rounding.
According to observations by Seongkwang Kim (KpqC-bulletin email from
29 Feb 2024) the SMAUG-T team has been made aware that instantiations
of their XOF function by SHAKE128 should be replaced by SHAKE256 for
higher security levels.

6.2 Security analysis

6.2.1 Generic lattice attackss

The results of the lattice estimator for both TiMER and all the versions of
SMAUG-T can be found in Table 6.1. These are actually quite a bit higher
than the reported security levels.
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Version Primal Core-SVP Dual Core-SVP BDD Dual-Hybrid
TiMER 130 124 151 146

SMAUG-T128 128 122 149 145
SMAUG-T192 200 189 218 211
SMAUG-T256 342 320 354 339

Table 6.1: Estimated security levels for TiMER and SMAUG-T based on the
lattice estimator [APS15]

6.2.2 Key search – the May attack on sparse secrets

The current parameter choices for SMAUG-T consider combinatorial at-
tacks [May21] on earlier versions of SMAUG as pointed out by [Ber22a].
For SMAUG specifically, these attacks could not be used to push the secu-
rity level under a critical threshold value for some security level. However the
SMAUG team changed the parameters as well to allow for a larger security
margin.

6.2.3 Decryption failures

After v2.1 of TiGER was announced, Lee [Lee23b] showed that the DFP was
calculated incorrectly and that it was larger by a factor of 28. The TiGER
team acknowledged the issue and provided a new version (v3.0) in which they
changed the parameters for the highest security level. Since SMAUG-T uses
SMAUG as a basis, these attacks do not transfer to the SMAUG-T without
error correction.
The authors use the methodology employed by the Saber KEM system to
justify the target decryption failure probability that they aim to achieve.
Crucially, they differentiate between the number of users of a crypto system
and the number of observable users. Then they proceed to use the latter,
lower number, to bound the required decryption failure probability.

6.3 Distinctive efficiency considerations

Except for TiMER, the efficiency claims of SMAUG-T are the same as those
of SMAUG. The efficiency levels that were claimed by TiGER for NIST level
III and level V cannot be achieved. The only efficiency improvements gained
are via the TiMER parameter set that has more aggressive parameter choices
for the 128 security level.
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Secret-key sizes. SMAUG-T chose a trade-off that focuses on overall good
efficiency but particularly small secret key sizes. This has the advantage that
secret keys can more cheaply be stored in physically protected memory loca-
tions (trusted memory). Many server applications use such memory locations
in the form of hardware security modules (HSMs). Trusted memory tends
to be more expensive but features additional security guarantees that are
typically not reflected in common security definitions but may matter in
practice. Importantly, keys stored in trusted memory locations offer bet-
ter protection against physical attacks like power analysis or fault injections.
Trusted memory locations usually make sure that the secret key cannot leave
the safe memory location in an unprotected form. Instead, the interface to
the trusted memory only allows to apply the secret key to decrypt (or gener-
ate signatures on) input values sent into the HSM. At the same time, while
security is higher, efficiency is often lower than computations on general
CPUs that access the secret key from RAM. However, this is compensated
by the fact that the trusted location computes on the secret keys in parallel
to what the general CPU computes.
The main technique to obtain small secret keys is by using a sparse distribu-
tion, where most entries of the secret key vector are zero, and only storing
the non-zero entries, together with the index of their component. However,
drawing sparse secret keys has the downside of increasing the attack surface,
particularly allowing combinatorial attacks, see section 6.2.2.
TiMER additionally employs D2 encoding. As a result it can avoid round-
ing in the decryption operation. This helps to decrease the probability for
decryption failures. As stated, this comes at the cost of less entropy in the
key derivation.
While small ciphertexts and public keys are generally useful to reduce trans-
mission size, it is unclear whether, in practice, small secret keys will be of
much importance. Of course, small secret keys can be useful since they can
be protected better physically. However, it is unclear what the additional
costs are and how much weight this use case should have overall.
Another cautionary note regarding the secret-key sizes is that SMAUG-T
decapsulation requires not just the secret key but also the public key. This
means that SMAUG-T’s secret-key sizes should not be directly compared to
the secret-key sizes for, e.g., Kyber and Saber, where the secret key includes
everything needed for decapsulation.

Ciphertext sizes. SMAUG-T has better ciphertext sizes than Kyber and
Saber, except that it has the same ciphertext size as Saber (smaller than
Kyber) at the top security level. Specifically, ciphertext sizes are 608 bytes
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for TiMER, 672 bytes for SMAUG-T128, 736 bytes for LightSaber, 768 bytes
for Kyber-512, 1024 bytes for SMAUG-T192, 1088 bytes for Kyber-768, 1088
bytes for Saber, 1472 bytes for SMAUG-T256, 1472 bytes for FireSaber, and
1568 bytes for Kyber-1024.

Public-key sizes. For public-key size, SMAUG-T is better at the lowest
security level but worse at the highest security level. Specifically, public-key
sizes are 672 bytes for TiMER, 672 bytes for SMAUG-T128, 736 bytes for
LightSaber, 800 bytes for Kyber-512, 992 bytes for Saber, 1088 bytes for
SMAUG-T192, 1184 bytes for Kyber-768, 1568 bytes for Kyber-1024, 1664
bytes for FireSaber, and 1792 bytes for SMAUG-T256.

CPU cycles. It is safe to predict that any slowdown in CPU cycles from
Kyber to SMAUG-T will be outweighed by the SMAUG-T size improve-
ments, given the relative costs of bytes and cycles (see, e.g., [Ber23b]) and
given techniques for polynomial multiplications in lattice-based cryptogra-
phy (see, e.g., [CHK+21]). However, optimized constant-time SMAUG-T
software is not currently available; see Section 6.5. The SMAUG-T specifi-
cation suggests that SMAUG-T outperforms Kyber in CPU cycles, but this
appears to be based primarily on a comparison of reference software, which
is not a valid predictor of the speed of optimized software.
The authors provide a SCA-protected implementation of the discrete Gaus-
sian sampler that they need. This increases the cycle count by around 110
percent for SMAUG-T256 and around 75 percent for the remaining param-
eter sets.

6.4 Considerations on provable security

SMAUG-T provides a detailed security proof in its documentation. The
authors argue convincingly that the proof also applies to TiMER, where ran-
dom values are simply encoded before usage in SMAUG-T.PKE. To obtain
a security proof for SMAUG-T.KEM, the authors deviate from Kyber that
uses the FO transform with implicit rejection and ciphertext contribution
while relying on [HHK17].
SMAUG-T uses the FO transform with implicit rejection and no cipher-
text contribution relying on [BHH+19]. The authors argue why avoiding
ciphertext contributions can improve speed. Moreover, when deriving the
shared secrets via a random oracle, they now also incorporate (a prefix of)
the public key [DHK+21]. This protects better against multi-target attacks.
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Unlike before, the SMAUG-T team does not invoke additional non-standard
assumptions to use [HHK17].
We stress that the proof of IND-CCA security for SMAUG-T.KEM relies
on a generic application of the FO transformation. This guarantees tight
results in the random oracle model and non-tight results in the QROM. At
the same time, this makes the crucial contribution of SMAUG-T the proof of
IND-CPA security. This proof is well structured and generally in sufficient
detail. The security reduction is tight. The underlying assumptions are:

� The MLWE assumption that is used to argue that real public keys are
indistinguishable from random MLWE samples.

� The MLWR assumption that is used to argue that parts of the real
ciphertext are indistinguishable from random MLWR samples.

� The output of XOF is pseudo-random. This assumption is not formal-
ized.

� The output of sampling algorithms is pseudo-random. This assumption
is not formalized.

The analysis includes a derivation of the completeness property of SMAUG-
T.KEM.
To improve the argumentation, the SMAUG-T submission should introduce
the formal definitions required for the two pseudo-randomness assumptions
and a discussion of why it is plausible that they hold in practice.

6.4.1 Prefix hashing

We note that the cryptographic description of SMAUG-T does not indicate
that the hashed public key is used to derive the shared secret. However, the
pseudo-code and the text indicate this along with a motivation: “The pub-
lic key is additionally fed into the hash function with the message to avoid
multi-target decryption failure attacks”. This means that, practically, for
encapsulation the sender has to hash the entire public key. Using the result
from [DHK+21], the efficiency of SMAUG-T can be improved by using a dif-
ferent variant of the Fujisaki-Okamoto transform. Here, only prefixes of the
public key are hashed, which can greatly increase the speed of encapsulation.
Moreover, one can now rely on the results from [DHK+21] to provide a secu-
rity proof that does not rely on the underlying injectivity of the IND-CPA
secure PKE scheme.
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This new transformation reduces the running time of the scheme. It is shown
that the security bounds for that FO transform using prefix hashing are
exactly the same as the security bounds for the FO transform without prefix
hashing, see Table 6.2.

Variant Advantage QROM

FO SMAUG-T 2
√

(qG + 2)AdvIND-CPA
PKE + 16

|M| + AdvDFPKE

√
qH
|M| + εinj

FO Prefix Hash 2
√
qAdvIND-CPA

PKE + 4q
√

1
|M| + 1

2l
+ 4(qF + 1)

√
1
2λ

+ 16q2δ + 1
|M|

Table 6.2: Comparison of the security bounds for the FO transform used
for SMAUG-T and the FO transform using prefix hashing. We assume that
n = 1, qC = 1. For FO SMAUG-T, qG, qH are the number of hash queries.
The PKE is assumed to be εinj-injective. For the FO prefix hash, qF is the
number of QROM hash queries, qD the number of decapsulation queries,
q = qD + qF + 1, δ is the correctness error, l is the min-entropy of ID(pk),
and λ is the bit length of secret seed.

Observe that the security of the FO transform using prefix hashing does not
include a term on injectivity. Therefore, as the security bounds are compa-
rable, utilizing the prefix hash technique avoids the injectivity assumption
necessary for the security proof of SMAUG-T.
As a reference, we include the speed improvements of using this FO trans-
formation for Kyber and Saber [DHK+21], see Table 6.3.

6.5 Round-2 C software

The round-2 software documentation does not make clear how the software
relates to the specification. The reference implementations appear to cover
only SMAUG. There is an “additional” implementation that is perhaps in-
tended to be TiMER, but this does not appear to be documented.
The software does not follow the standard decapsulation API: it changes the
API to take the public key as a separate argument. An embedded device
carrying out decapsulation needs to have the private key and the public key,
as noted in Section 6.3, whereas submissions following the standard API need
only the private key.
We modified the software to follow the standard decapsulation API; inter-
nally, this means including a copy of the public key inside the private key.
This makes the private keys longer than reported in the documentation. This
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is necessary for comparability of the private-key size to other submissions,
and for future integration of the software into SUPERCOP.
Inspecting thousands of SMAUG-T128 secret keys generated by the reference
and optimized software showed that the nonzero coefficients of the keys were
always at positions 1, 10, 16, etc. The signs are random, but the known
positions reduce the secret from 512 dimensions to 140 dimensions, which is
not secure against lattice attacks.
Some manual code analysis detected another software bug: the software is
using 0xfffffffff instead of 0xffffffff. Fixing this changed the known
positions to a different set of 140 positions: 4, 7, 8, 13, etc.
Further code analysis shows that, for most choices of randomness, the soft-
ware chooses positions 1+((232−1) mod (512−140)), 1+((232−1) mod (512−
139)), etc. There are many collisions in these numbers: e.g., there are 14 oc-
currences of 256, coming from many divisors of 232−256. The code also moves
previously initialized array entries to the end of the array, so the collisions
produce a pileup of positions near the end of the array.
We compared this to the specified algorithm (Figure 2 on page 12), con-
cluding that the specified algorithm (1) is different and (2) does not work:
“buf[idx] / i” in the specified algorithm is almost always out of range. Pre-
sumably the intent was mod instead of division, and then the specified algo-
rithm appears to use Fisher–Yates sampling.
The SMAUG-T team indicated that it had already found and fixed the
known-position bug in March 2024, in https://github.com/hmchoe0528/

SMAUG-T_public/releases/tag/v3.0.1. Further bugs were then pointed
out by Moon Sung Lee, Nari Lee, and Hansol Ryu in kpqc-bulletin email
from 23 May 2024 22:59:23 -0700.
A separate problem is that there are many timing leaks in the software
(including timing leaks from this sampling). We posted an attack demo
(kpqc-bulletin email from 11 May 2024 20:12:45 +0200) that often recovers
a long-term SMAUG-T128 secret key from a few minutes of decapsulation
timings of the optimized implementation in the SMAUG-T package. The
attack demo does not exploit the known-position bug.
The SMAUG-T team has indicated that a software update is in progress.
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Scheme Original Prefix Hash Work Speed-up

KGen 23562 12883 45%

Kyber-512 Enc 37144 16981 54%

Dec 28595 28529 0%

KGen 40487 25272 38%

Kyber-768 Enc 55726 27624 50%

Dec 43553 43442 0%

KGen 55770 38815 30%

Kyber-1024 Enc 77011 40692 47%

Dec 61470 61473 0%

KGen 42169 36220 14%

LightSaber Enc 57831 39232 32%

Dec 57780 57806 0%

KGen 74577 64180 14%

Saber Enc 95958 69304 28%

Dec 95388 95301 0%

KGen 116178 102101 12%

FireSaber Enc 142034 109203 23%

Dec 142957 143090 0%

Table 6.3: Table from [DHK+21] showing median Skylake cycle counts of
10000 executions of Kyber and Saber using either the original CCA transform
or the improved transform from prefix hash work. The “original” version of
Kyber and Saber are the Round 3 submissions to the NIST postquantum
standardization process.
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Chapter 7

SUPERCOP results for KEM
software

Figures 7.1, 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7 are scatterplots showing various
measurements from SUPERCOP version 20240909 for NTRU+ (ntruplus).
As selected baselines for comparison, these figures also show measurements
for kyber (not reflecting incompatible Kyber changes after the latest sub-
mission of Kyber to SUPERCOP), mceliece, ntruhps, ntruhrss, and
sntrup. For reasons explained earlier in this report, PALOMA, REDOG,
and SMAUG-T are not included at this time.
Figure 7.1 is a CPU-independent plot of sizes vs. sizes. Figures 7.2, 7.4, and
7.6 plot sizes vs. timings for a computer named titan0 with an Intel Haswell
CPU, while Figures 7.3, 7.5, and 7.7 plot sizes vs. timings for a computer
named cezanne with an AMD Zen 3 CPU. The Haswell microarchitecture
was introduced by Intel in 2013 and was designated as a comparison platform
by NIST in January 2019. Zen 3 is an example of a newer microarchitec-
ture: it was introduced by AMD in 2020. Both of these microarchitectures
support 256-bit AVX2 vector instructions, and all dots in the figures are for
code written to use those instructions. In some cases there are noticeable
differences in timings between titan0 and cezanne (e.g., for NTRU+ using
SHA-256 instructions on cezanne). Timings are median cycle counts; see
https://bench.cr.yp.to for tables including quartiles.
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Figure 7.1: Bytes for a ciphertext vs. bytes for a public key.
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Figure 7.2: Bytes for a public key vs. cycles for key generation. Measurements
collected on titan0, which has an Intel Haswell CPU.
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Figure 7.3: Bytes for a public key vs. cycles for key generation. Measurements
collected on cezanne, which has an AMD Zen 3 CPU.
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Figure 7.4: Bytes for a ciphertext vs. cycles for encapsulation. Measurements
collected on titan0, which has an Intel Haswell CPU.
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Figure 7.5: Bytes for a ciphertext vs. cycles for encapsulation. Measurements
collected on cezanne, which has an AMD Zen 3 CPU.
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Figure 7.6: Bytes for a ciphertext vs. cycles for decapsulation. Measurements
collected on titan0, which has an Intel Haswell CPU.
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Figure 7.7: Bytes for a ciphertext vs. cycles for decapsulation. Measurements
collected on cezanne, which has an AMD Zen 3 CPU.
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Chapter 8

AIMer: The AIMer Signature
Scheme

AIMer [KCC+23] is a signature scheme designed using the MPC-in-the-head
[IKOS09] paradigm to design an identification scheme which is then trans-
formed into a signature scheme.
The core idea of the MPC-in-the-head paradigm in the context of signatures
is to create an identification scheme that proves knowledge of a preimage for
a one-way function in zero-knowledge. For this, the prover simulates a multi-
party computation (MPC) that evaluates the one-way function on input of
the secret-shared preimage. For this, every simulated party obtains a secret-
share of the preimage. Then the MPC computation is simulated, the prover
commits to the internal state of each party, and sends the commitments
together with all the communication between the parties to the verifier. The
verifier then challenges the prover to open the full state of all but one party,
which allows the verifier to probabilistically check that the prover did not
cheat in the MPC simulation. At the same time, the security of the MPC
protocol guarantees that even colluding parties cannot learn anything about
the input of another party except what can be derived from the computation
outcome. Thereby, it is guaranteed that the verifier does not learn anything
about one of the secret shares and thereby the preimage remains hidden.
This identification scheme is then made non-interactive using the Fiat-Shamir
transform described in Section 2.3.3. The security of the resulting scheme
is (provably) based on the security of several hash functions, use as pseu-
dorandom generators, commitment scheme, and message hash, as well as
the security of the one-way function for which knowledge of the preimage
is proven. An important aspect is that while the hash functions used for
the former applications can simply be instantiated with standardized hash
functions / XOFs like SHA2, SHA3 or SHAKE, this does not hold for the
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Figure 8.1: Structure of AIM. The input X and output Y are in F2n ; the
S-box (non-linear) layer consists of Mersenne-number power maps; the affine
layer is an n×mn binary matrix and a binary vector randomized using IV.

one-way function. Given that the latter is evaluated in an MPC, its perfor-
mance in this setting determines the performance of the signature scheme.
Hence, proposals following the MPCitH design make use of special one-way
functions that are optimized for the use in MPC1. For example, Picnic makes
use of the third version of LowMC which was first proposed in [ARS+15] as its
underlying one-way function. In the case of AIMer, the underlying one-way
function is a new design called AIM [KHS+22].
Below, we first discuss cryptanalysis results regarding AIM. Afterwards, we
comment on the provable security claims made in the AIMer specification.
Finally, we conclude.

8.1 Cryptanalysis results for AIM

The first version of AIMer used AIM [KHS+22] as its underlying one-way
function. The design of AIM is depicted in Figure 8.1.
The parameters for different versions of AIM are described in Table 8.1. Let
X ,Y be input and output of AIM respectively. Let Zi be the output of the
ith S-box, S be the output of the affine layer, and Bi(x) =

∑λ−1
j=0 ai,jx

2j +ai,λ
represent the affine layer applied to the state after the ith Sbox. AIM can be

1Specifically, these designs try to minimize the use of multiplication as it is the by far
most costly operation in common MPC protocols.
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Scheme λ Field m e1 e2 e3 e∗
AIM-I 128 F2128 2 3 27 5

AIM-III 192 F2192 2 5 29 7
AIM-V 256 F2256 3 3 53 7 5

Table 8.1: Parameters for different instances of AIM.

described as:

Zi = X 2ei−1 for 1 ≤ i ≤ m,

S =
m∑
i=1

Bi(Zi),

Y = S2e∗−1 + X .

The structure of AIM was exploited in two works and in both cases, the
complexity of the proposed attacks were smaller than the required security
level.

Fast exhaustive search

In [LMØM23], Fukang, Mahzoun, Øygarden, and Meier used fast exhaustive
search [BCC+10] to break AIM. The versions with 128/192/256-bit security
are shown to be broken with complexity 2115/2178/2241. The attack exploits
the low degree of the non-linear operations of AIM. Similar observation was
made by Markku-Juhani O. Saarinen2 which shows that AIM does not reach
the claimed security level.
As shown in Figure 8.2, one can write:

X = S2e∗−1 + Y

And for each variable Zi, one can write:

Zi =
(
S2e∗−1 + Y

)2ei−1 ⇒ Zi =
2ei−1∑
j=0

YjS2e∗−1(2ej−1−j)

Then, Zm can be written in two different ways as:

Zm = B−1m

(
c+ S +

m−1∑
i=0

Bi

((
S2e∗−1

+ Y
)2ei−1))

, (8.1)

Zm =
(
S2e∗−1 + Y

)2em−1
, (8.2)

2https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0
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Figure 8.2: The variables used to model AIM are denoted with X , Zi for
1 ≤ i ≤ m, S.

Scheme λ Field m+ 1 Algebraic Degree Time Memory Complexity
AIM-I 128 F2128 3 10 2136.2 261.7 2115

AIM-III 192 F2192 3 14 2200.7 284.3 2178

AIM-V 256 F2256 4 15 2265.0 295.1 2241

Table 8.2: Complexity of breaking instances of AIM using fast exhaustive
search.

which gives an equation in S, which can be solved using fast exhaustive
search technique and the complexity is summarized in Table 8.2.

Linearization attack

It was shown in [ZWY+23] that the linearization method breaks AIM. The
attack targets the design flaw in the first non-linear operation of AIM where
all three Mersenne powers have the same input. Each S-box can be written
as:

x2
ei−1 =

(
xd
)si · x2ti ,

and by guessing the value of xd, one will have a linear system to solve. The
summary of the attacks and their complexities are summarized in Table 8.3.
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Scheme λ Field m+ 1 d t1 t2 degree of freedom Complexity
AIM-I 128 F2128 3 5 1 1 4 2125.7

AIM-III 192 F2192 3 45 8 8 12 2186.5

AIM-V 256 F2256 4 3 0 0 2 2254.4

Table 8.3: Complexity of breaking instances of AIM using linearization
method.
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Figure 8.3: Design of AIM2

8.2 AIM2

After AIM was broken, a new design was proposed AIM2 [KHSL23]. AIM2
uses the non-linear layers with larger exponents, and each input to a non-
linear function is guaranteed to be different from other inputs in the same
step. AIM2 works as follows:

AIM2(IV,X ) = Y =

(∑̀
i=1

λ−1∑
j=0

(
αi,j(X + ci)

(2ei−1)−1
)2j

+ αλ

)2e∗−1

+ X ,

where αi,j, αλ values are constants derived from IV, ci values are public con-
stants , and X ,Y and constants are elements of F2λ . The design of AIM2 is
depicted in Figure 8.3.
Recommended sets of parameters for AIM2 instances for three security levels
λ ∈ {128, 192, 256} are given in Table 8.4.
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Scheme λ n ` e1 e2 e3 e∗

AIM2-I 128 128 2 49 91 - 3
AIM2-III 192 192 2 17 47 - 5
AIM2-V 256 256 3 11 141 7 3

Table 8.4: Recommended sets of parameters of AIM2

8.2.1 Security of AIM2

The main focus in cryptanalysis of AIM2 is against algebraic attacks, and
the attacks that broke AIM. In case of algebraic attack, different approaches
to model AIM2 as a multivariate polynomial system are analyzed. The sum-
mary of the complexity of algebraic attacks against AIM2 is described in
Table 8.5.

Scheme variables (equations, Deg) dreg Time (bits)

AIM2-I
n (n, 60) - -
2n (3n, 2) 20 207.9
3n (12n, 2) 18 185.3

AIM2-III
n (2n, 114) - -
2n (3n, 2) 30 301.9
3n (12n, 2) 26 262.4

AIM2-V

n (2n, 172) - -
2n (n, 2) + (2n, 38) 50 513.5
3n (6n, 2) 50 503.7
4n (18n, 2) 41 411.4

Table 8.5: Summary of the complexity of algebraic attacks against
AIM2 [KHSL23].

The AIM2 designers have thoroughly analyzed potential algebraic attack
methods using various techniques based on the current parameters. The
security model of AIM2 restricts attackers to O(1) data complexity, making
statistical attacks appear impractical at first glance.

8.3 Solving AIM2 System

The security of AIM2 is extensively analyzed against algebraic attacks. As
the first step, AIM2 is modeled as an overdetermined polynomial system,
and the complexity of solving that polynomial system is used to argue the
security of AIM2. The reason to model AIM2 as overdetermined polynomial
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system is that it is believed that generally, adding linearly independent equa-
tions to a polynomial system reduces its solving complexity [LMM24]. While
overdetermined systems are expected to be easier to solve, they are usually
more complicated, and thus finding structures among the polynomials in the
system is harder. We show that in the case of AIM2, using a determined
polynomial system with fewer polynomials results in a simplified polynomial
system that can be used to break AIM2 using exhaustive search.

8.3.1 Exhaustive Search on AIM2

Let R = F2λ [x, y1, . . . , ym]. Having an output value h, the preimage problem
for AIM2 can be modeled the following polynomial system over R:

(x⊕ c1) = y2
e1−1

1

(x⊕ c2) = y2
e2−1

2

...

(x⊕ cm) = y2
em−1
m(

αλ ⊕
m∑
j=1

λ−1∑
i=0

αjiy
2i

j

)2e∗−1

= (x⊕ h).

We can replace x with y2
e1−1

1 − c1 and rewrite the equations as:(
y2

e1−1
1 ⊕ c1 ⊕ c2

)
= y2

e2−1
2

...(
y2

e1−1
1 ⊕ c1 ⊕ cm

)
= y2

em−1
m(

αλ ⊕
m∑
j=1

λ−1∑
i=0

αjiy
2i

j

)2e∗−1

= (y2
e1−1

1 ⊕ c1 ⊕ h).

Which can be rewritten as:(
y2

e1

1 y2 ⊕ y1y2(c1 ⊕ c2)
)

= y1y
2e2
2 (8.3)

...(
y2

e1

1 ym ⊕ y1ym(c1 ⊕ cm)
)

= y1y
2em
m (8.4)

y1

(
αλ ⊕

m∑
j=1

λ−1∑
i=0

αjiy
2i

j

)2e∗

= y2
e1

1

(
αλ ⊕

m∑
j=1

λ−1∑
i=0

αjiy
2i

j

)

⊕ y1
(
αλ ⊕

m∑
j=1

λ−1∑
i=0

αjiy
2i

j

)
(c1 ⊕ h).

(8.5)

94



Primitive m Solving complexity AIM2 complexity Attack complexity
AIM2-I 2 144.8 147 125.8

AIM2-III 2 210.2 212.3 189.9
AIM3-III 3 276.2 277.7 254.4

Table 8.6: Solving complexity refers to the complexity of solving an instance
of AIM2 using our exhaustive search approach. AIM2 complexity is the bit
complexity of AIM2 circuit as reported in [KHSL23]. Attack complexity is
total security of instances of AIM2. The security is measured by converting
the bit complexity of the attack to the number of calls to the underlying
instance of AIM2.

which is a quadratic polynomial system with m equations and variables.
Transforming it to a boolean polynomial system over F2[yji], 1 ≤ j ≤ m, 0 ≤
i < λ results in the following polynomial system:

λ−1∑
j=0

λ−1∑
i=0

βkijy1iykj +
λ−1∑
j=0

γkjykj + γkλ = 0 1 ≤ k ≤ m (8.6)

which is a quadratic polynomial system with λ(m) equations and variables.
As a result, guessing the λ boolean variables y11, . . . , y1λ−1 results in a linear
system with (m− 1)λ variables and mλ equations. The coefficient matrix of
this linear system has the form:

Mλm,λ(m−1) =


A1 O · · · O
O A2 · · · O
...

... · · · ...
O O · · · Am−1
B1 B2 · · · Bm−1

 , (8.7)

where Ai, Bi ∈ Fλ×λ2 . To solve the system, we have the complexity

(m− 1)
(
λω + λ2

)
.

Then, the system can be solved using 2λ · (m− 1) (λω + λ2) bit operations
where 2λ is the number of possible assignments for the input x. For com-
pairison, exhaustive search takes 2λ evaluations of AIM2. Hence, the above
is faster than exhausitive search if solving one such liniear system to ver-
ify the guess is faster than one execution of AIM2. Assuming ω = 2.37, the
complexity of solving different instances of AIM2, is summarized in Table 8.6.
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Primitive m Linear system Time(ns) AIM2 Time(µs) Speed-up factor
AIM2-I 2 201 330 210.7

AIM2-III 2 206 347 210.71

AIM3-III 3 412 510 210.27

Table 8.7: Time of solving the linear system compared to the time of AIM2
algorithm based on the optimizations of [KHSL23]. The times are computed
over 7 separate runs of the algorithms, with each run consisting of 107 exe-
cutions.

8.3.2 Experimental Verification

We compare the complexity of solving the linear system described in Equa-
tion. 8.7 with complexity of AIM2 circuit using SageMath 10.5 on Apple M4
Pro chip. The result for each instance is described in Table 8.7.

8.4 Provable security claims

The AIMer specification provides two provable security results. On the one
hand, the authors present an analysis of the AIM design assuming that the
S-boxes are random permutations. On the other hand, the authors present
an analysis of the final signature scheme.

8.4.1 Security proof of AIM

The authors provide a security proof of one-wayness of the AIM construction
assuming that the S-boxes are (public) random permutations. This is a
common approach in arguing security of hash function designs.

8.4.2 Security proof of signature

AIMer can be described as using AIM within a specific MPCitH based identi-
fication scheme called BN++ [KZ22] which generically describes how to turn
the arithmetic circuit of a one-way function into an efficient identification
scheme. The security proof of BN++ applies (and the proof in the AIMer
paper is a direct copy of the BN++ security proof with the one-way function
being spelled out as AIM).
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8.4.3 Impact of Round 2 changes on proofs

The authors updated parts of the writing with regards to proofs and exact
parameters. However, the changes are relatively minor. At some points,
only clarifications were added. As mentioned before, the proofs seem correct
– our review did at least not reveal any major flaws – up to minor potential
imprecisions that do not impact the correctness of the final result.

Previous issues that were handled.

In the last report we pointed out that the model used for the proof of AIM
is flawed. The authors now clarified that the adversary only gets access to
the function or the permutations after they picked an image. The reason is
that they want to prove the notion of everywhere preimage resistant (ePRE).
However, this is a questionable model. The ePRE notion is a notion for keyed
hash functions where the adversary only receives the randomly chosen key
after they picked an image. The authors try to apply it to an unkeyed prim-
itive. While they can make it work in an idealized setting, it does not make
sense for any real-world instantiation of the permutations. Obviously, there
is nothing that can keep the adversary from evaluating the permutations be-
fore they commit to an image. However, this clearly implies security against
standard preimage attacks in which the image is chosen by the game which
is enough for the security of AIMer.
Another issue was the relevance of the proof and the impact of using a final
permutation with feed forward. The authors clarify that they can prove a
better bound than what we get from the sum of permutations which is a
meaningful motivation.
Finally, we remarked that the proof only considers classical attackers as it
is given in the ROM. This did not change and the authors leave it as future
work.

Room for improvement

In general, the proof would benefit a lot from adding intuition. This would
ease the work of reviewers trying to follow the proof to verify correctness.
Also, the proof seems unnecessarily non-tight in several places which lim-
its its relevance for practical parameters / requires bigger parameters than
necessary for several functions.
Following recent works [AHJ+23, HJMN24] it seems clear that one can obtain
a close to optimal (as tight as possible) proof for AIMer in the QROM. This
only requires to determine HVZK and certain soundness properties of the
underlying identification scheme of AIMer (see [HJMN24] for details).
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Moreover, there were several recent developments that could significantly
improve the size and speed of AIMer. Most importantly, the authors of
[BBM+24] propose an optimization of GGM trees (or batch all-but-one vec-
tor commitments) as used by AIMer that can have a significant impact on
the signature size without reducing speed. An older improvement is the hy-
percube technique from [AGH+23] which was generalized in [HJMN24] which
also allows to reduce the signature size by limiting the number of delta values
that have to be sent when boosting soundness.

Parameters

Another complaint in the last report was about the authors not detailing their
parameter choices for the used hash functions. Especially, output lengths for
the different security levels were not provided. This is fixed in the new
report. However, the new analysis in Section 6 of the submission document
actually points out flaws. Specifically, the authors claim to achieve security
level L1 (L3, L5) using hash functions with 128 (192, 256) bit outputs, while
requiring collision resistance of these hash functions. However, they actually
achieve security level L2 (L4, and security of a generic 512-bit hash function)
by definition. The AIMer argument for L1, L3, and L5 implicitly is the
discussion if L1 = L2, L3 = L4, and so on. While arguments can be made
in this direction, it seems wiser to stick to levels L2, L4, and what we would
call L6 as it is more precise. Moreover, the soundness analysis in Section 6.2
entirely ignores quantum attacks.

8.5 Round-2 C software

The sizes of keys etc. in the round-2 software match the documentation.
We posted a series of AIMer patches (kpqc-bulletin email from 2 May
2024 18:51:36 +0200) to resolve all issues detected by a TIMECOP run on
aimer128f on an Intel Skylake CPU:

� Used bit operations to eliminate a variable index in nodes[index ^ 1].
An initial analysis indicated that this was public data, meaning that
there is no security issue; this was confirmed by the AIMer team.

� Rewrote poly64_mul to eliminate variable indices. This is presumably
a security issue for the original reference and optimized code. The avx2
code uses PCLMULQDQ and is not affected.
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� Replaced htole64 and le64toh with byte computations. The origi-
nal functions take variable time on some platforms; also, casting byte
pointers to uint64_t pointers can lead to crashes on some platforms.

� Replaced _load_ and _store_ with _loadu_ and _storeu_ in the avx2
code. The _load_ and _store_ functions can crash when inputs are
unaligned.

� Rewrote SQR_LOW and SQR_HIGH to eliminate variable indices. This is
presumably a security issue for the original reference and optimized
code.

� Eliminated a variable branch on GF_getbit(a_, i). It was not imme-
diately clear whether there was a security issue here.

� Eliminated variable indexing in commits[rep][i_bar]. An initial
analysis indicated that this was public data, meaning that there is
no security issue; this was confirmed by the AIMer team.

� Eliminated variable indexing in alpha_v_shares[rep][0][i_bar]

and alpha_v_shares[rep][i_bar][0]. An initial analysis indicated
that this was public data, meaning that there is no security issue; this
was confirmed by the AIMer team.

� Cleared some avx2 buffers that TIMECOP had identified as having
uninitialized data.

Some of these patches had a noticeable effect on performance. The AIMer
team said it would modify the software, so we did not submit the software
for the 25 June 2024 release of SUPERCOP. The AIMer team released new
software on 26 June 2024, and we submitted AIMer for the 16 July 2024
release of SUPERCOP.
SUPERCOP’s median cycle counts for aimer128f on Intel Haswell are 49339
for key generation, 1453521 for signing, and 1426865 for verification, where
the documentation says 99847, 1483624, and 1442334 respectively. Other
sizes similarly show that SUPERCOP matches the documentation for signing
times and verification times.
For AMD Zen 2, https://github.com/kpqc-cryptocraft/KpqClean_ver2
lists aimer128f as 109474 cycles for key generation, 988392 cycles for sign-
ing, and 990973 cycles for verification. Presumably these results were reduced
by overclocking. We re-ran the KpqClean software on an AMD Zen 2 with
overclocking disabled; it reported 61878, 1421772, and 1410609 cycles respec-
tively. SUPERCOP reports slightly smaller AMD Zen 2 cycle counts: 57795,
1388218, and 1378545 respectively.
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Tables 8.8, 8.9, and 8.10 show the number of instructions used for key
generation, signing, and verification respectively inside AVX2 software for
aimer128f. In each case, more than 50% of instructions are used by Keccak
computations.
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Table 8.8: Instructions used for AVX2 software for aimer128f key genera-
tion. Each table row tallies the number of instructions used directly by one
function. If function F calls function G then instructions inside G are tallied
for G, not for F .
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Table 8.9: Instructions used for AVX2 software for aimer128f signing. Each
table row tallies the number of instructions used directly by one function. If
function F calls function G then instructions inside G are tallied for G, not
for F .
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Table 8.10: Instructions used for AVX2 software for aimer128f verification.
Each table row tallies the number of instructions used directly by one func-
tion. If function F calls function G then instructions inside G are tallied for
G, not for F .
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Chapter 9

HAETAE: Shorter
Lattice-Based Fiat-Shamir
Signatures

HAETAE [CCD+22] (Hyperball bimodAl modulE rejecTion signAture
schemE) is a module lattice-based signature scheme based on the Fiat-Shamir
with Aborts paradigm [Lyu09, Lyu12]. In that sense, it resembles NIST stan-
dard Dilithium [LDK+22]. The main difference is that the design of HAETAE
is aimed at improving the sizes of keys and signatures – the proposal claims
29–39% shorter signatures when comparing with Dilithium – and 20–25%
smaller public keys. The main changes are using a bimodal distribution as in
BLISS [DDLL13] and a new sampler using hyperballs, where Dilithium uses
uniform distribution and BLISS used discrete Gaussians.
In this evaluation we focus on the 2nd-round version of HAETAE, v2.1, but
refer back to the previous three versions where appropriate.

9.1 System description

We give a general description of Dilithium-like signatures later, in Chapter 11.
These systems use rejection sampling on the signatures to ensure that their
distribution is independent of the secret key.
Concretely, HAETAE works in R = Z[x]/(xn + 1) for n = 2r (here n = 256),
and also in Rq = (Z/q)[x]/(xn+1) for q a prime with 2n|(q−1). All HAETAE
parameters use q = 64513. Unlike NCC-Sign but like Dilithium, HAETAE
uses module lattices in which the lattice elements are vectors of elements from
R. The public key is an k × (` + k) matrix over R. The maximum-security
version has k = 4, ` = 7. This matrix can be interpreted as a kn× (` + k)n
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Figure 9.1: The HAETAE eyes, picture taken from [CCD+22].

lattice system and the generic attacks use this interpretation. So far no better
attacks are known for module structure than generic lattice attacks.
The benefits of a bimodal distribution are that the signatures are distributed
over two different centers, one linked to the secret v and one to −v. Rejection
sampling samples from the overlay of these two distributions and can stay
in a narrower region around the middle, meaning that fewer rejections are
encountered and that parameters can be chosen smaller for the same security
level as the narrower size makes forgeries less likely.
In HAETAE the authors choose a hyperball distribution around the secrets
and do rejection sampling to a hyperball around 0. In Figure 9.1, taken
from the HAETAE v0.9 submission [CCD+22], the secrets are the pupils of
the eyes of the Haetae; the originally sampled signatures are the blue circles
and the signatures that pass rejection are in the pink circle. The checkered
region would be sampled twice as frequently and is thus rejected with 50%
probability.
Table 1 in the submission shows the expected number of repetitions until a
signature passes rejection sampling, which is 6, 5, and 6 for the three versions
of HAETAE.
A defining feature of HAETAE beyond the bimodal distribution is that it
used a hyperball sampler. Earlier versions of HAETAE had moved from ad-
vertising avoiding Gaussian sampling to using discrete Gaussian sampling in
the process of hyperball sampling to approximate sampling from a continu-
ous Gaussian. While the submission document to the 2nd round is consis-
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tent in its messaging, we are still missing a comparison to a design that uses
Gaussians directly in place of hyperballs, basically a module-lattice version
of BLISS. The authors have added a comparison of their Gaussian sampler
with the GALACTICS sampler from [BBE+19].

9.2 Security

All changes from BLISS and Dilithium are covered in the security proofs
(for issues see the next section). For the 2nd-round submission we were able
to run the script estimating the security of the chosen parameter sets as
provided in the implementation package. It would have been nicer to have
some documentation on how to use it but we managed to run it. However,
as pointed out in Section 2.1, our output did not exactly match the values
stated in Table 1 of the submission.
Furthermore, as found by Lee, Ryu, and Lee and announced in email to
the KpqC bulletin dated 14 May 2024, 19::08:55 +0900, the parameters for
HAETAE-120 do not satisfy the specification requirements for the paHVZK
property requiring B2 ≥ B′2 + γ2τ . The submitters acknowledged the issue
and promised to provide updated parameters Another issue regarding the
parameters was pointed out by Kim in email to KpqC bulletin on 28 Feb
2024 23:33:45 -0800 and concerns the length of µ, which is the hash involving
the message and thus must be defended against collision attacks. The size
of µ is not included in the parameter set but Kim noticed in the general
specification and the implementation that it was limited to 256 bits while
it should be longer for the higher-security parameters. The submitters have
acknowledged this issue and promised an update. The hash µ is computed
locally and not transmitted, hence its size is not relevant to the signature
size; as the submitters point out, the implementation even derives it as a
truncation of a larger value, so that the change will not have any noticeable
performance implications, as the only place where µ is used is as input to
another hash function.
Both of these issues are easy to fix but show the limitations of the script, in
that it does not check the boundary conditions, and of the parameter table,
in that it does not cover all parameters an in particular does not state the
lengths of symmetric functions.
At this point we have not yet audited the script for correctness. For the
other lattice-based schemes we used the lattice estimator to double-check
the assertions by the authors. The lattice estimator is widely used and has
received review; it is also relevant to say that this external review has found
errors in previous versions. In turn, the software submitted with the imple-
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mentation package has not received review and the version submitted to the
1st round of KpqC did not even work (see our report on the first round),
hence, we have less confidence in the estimates. It is puzzling that our run
of the same software did not reproduce the same numbers, further lowering
our confidence in the results.

9.3 Implementation considerations

As stated above, v2.1 of HAETAE is consistent in avoiding floating-point
arithmetic and using Gaussian sampling in order to define their hyperball
sampler. This version also includes fixed rANS encoding, with smaller tables
than earlier versions, after this was targeted in a bit-flipping attack by the
HuFu Team, see email to NIST PQC Forum on 2 Sep 2023 22:17:28 -0700.
We noticed during round 1 that HAETAE had KAT mismatches. Several im-
plementation issues were pointed out in a NIST PQC Forum post by Markku
Saarinen. Section 9.5 describes our evaluation of the current software.

9.4 Provable security claims

On a high level, HAETAE shares with Dilithium that it first builds a lattice-
based identification scheme Σ, and then turns Σ into a signature scheme
using the Fiat-Shamir paradigm. Consequently, the security reasoning for
HAETAE is similar to the security reasoning for Dilithium, with appropri-
ately adapted assumptions.
The core idea of the Fiat-Shamir paradigm is as follows: signatures consist
of a prover commitment, together with a prover response. To tie the prover
response to the to-be-signed-message, it is built by using as its challenge the
hash value of the message and the prover commitment. The Fiat-Shamir with
aborts paradigm additionally introduces rejection sampling. This is done
to render the distribution of signatures sufficiently independent of sensitive
information (the secret key), so that observing exchanged signatures will not
help an attacker with forging a signature.
In the following we first present our observations from the first-round report
and then provide an update of how the submitters have handled these issues.

9.4.1 Security proof of HAETAE in round 1

Rejection sampling slightly complicates security proofs, in particular when
concerning quantum attackers: two recent papers [BBD+23, DFPS23]
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pointed out a flaw in the security proof of Dilithium that was directly tied
to how the proof addressed rejection sampling. HAETAE v1.0 took this into
account by adapting the proof to the fix provided in [DFPS23].
To argue Strong Unforgeability under Chosen Message Attacks (sUF-CMA) of
(deterministic) HAETAE, the submission follows the approach of Dilithium:
it goes through an “implication chain” that relates computational hardness
of (appropriately adapted) problems to security properties. We summarize
the chain in the figure below.

BimodSTMSIS

uncompr.
HAETAE
UF-NMA

HAETAE
UF-NMA

Σ HVZK

Σ-commitment
entropy

sUF-CMA

using

MLWE

Gap in UF-NMA reasoning. The specification claims that hardness of the
Bimodal Self-Target MSIS problem (BimodSTMSIS) directly translates into
the fact that HAETAE satisfies the intermediate security notion UF-NMA,
which is then used to argue the aimed-at security property (sUF-CMA). The
definitions of BimodSTMSIS and UF-NMA, however, are only equivalent for
the uncompressed version of HAETAE. The specification does not address
whether/how compression affects UF-NMA security, and it is not obvious that
compression does not decrease security.
Gap in HVZK reasoning. The specification aims to argue HVZK without
presenting the underlying identification scheme Σ, thus forcing the reader to
essentially re-do the proof. The proof sketch for HVZK also seems to intro-
duce a LWR-like assumption that differs from more well-studied variants in
the distribution of matrix and secret: it is assumed that w = Abye is indistin-
guishable from a uniform element (both modulo q), where A is a public key
(a randomly chosen compressed matrix). The specification does not make
explicit how y is defined in this assumption. The likeliest interpretation is
that y is computed as in the deterministic signing algorithm (Figure 7 in the
specification), i.e., by using a – not further specified – expansion algorithm
expandYbb.
Reading through the implementation package for v0.9, expandYbb is men-
tioned only in a comment but the steps match what is described in the main
part of the specification, except that b is not made dependent on the seed but
sampled uniformly random, so this should fail for recomputing the KATs. In
the specification the Gaussian sampler is assumed to be continuous. Looking

108



at the code for sampler gaussian, this uses a big table and is sure not safe
against cache timing attacks (nor did it claim to be).
In v1.0 the code changed from calling polydblveclk uniform hyperball to
calling a new function polyfixveclk sample hyperball using fixed-point
arithmetic and the discrete Gaussian sampler. The latter is implemented
with a very small CDT which might be small enough to fit in cache and to
avoid cache-timing attacks. In general, there are far fewer branches in the
code, but there might still be timing dependencies on the secret.
Asymptotic reasoning not necessarily applicable to parameter
choices. The specification does not specify how closely the security no-
tions are related to one another as it is missing concrete security bounds
that quantify the relation. This leaves the reader with asymptotic reasoning,
meaning it is only shown that the implication chain will begin to be satisfied
at the point where appropriately large parameters are chosen. This makes it
hard to verify security for the concrete parameter choices made in the spec-
ification. Depending on how close (or distant) the relations are, the proof
might not apply.

9.4.2 Security proof of HAETAE in round 2

The update addresses all remarks on provable security made in Subsection
9.4.1, resulting in the (now-closed) ‘implication chain’ below:

BimodSTMSIS
HAETAE
UF-NMA

Σ HVZK

Σ-commitment
entropy

sUF-CMA

using

MLWE

Closed gap in UF-NMA reasoning. The update closes a gap in the secu-
rity proof: the specification treated the hardness of the Bimodal Self-Target
MSIS problem (BimodSTMSIS) as immediately related to the necessary inter-
mediate security goal, UF-NMA of HAETAE. As pointed out in round 1, this
relation only applies to the uncompressed version of HAETAE. The update
adequately addresses this by giving a dedicated and sound-looking security
reduction that captures compression.
Closed gap in HVZK reasoning. In the previous round, the specification
assumed the necessary HVZK property without explicitly stating the con-
crete identification scheme Σ to which it assigns this property, which created
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some overhead when assessing the overall security reasoning. The update
adequately addresses the remark by a) specifying the identification scheme
in question, and b) proving that it achieves HVZK, assuming the parameters
are adequately chosen.
Now-concrete bounds allow reasoning about parameter choices.
The specification now gives concrete security bounds that quantify how
closely the security notions are related to one another. This allows to rea-
son about the level of security that will be achieved for concrete parameter
choices.

Interpretation of provable security results

The overall security reasoning already looked sound in round 1, up to the
now-addressed missing details. If a vulnerability were to be found, it would
likely stem from

� a cryptanalytical break of one of the underlying computational prob-
lems (MSIS, MLWE, BimodSTMSIS), or

� parameter choices that do not match the intended level of security.

9.5 Round-2 C software

The private-key sizes in the round-2 software do not match the documenta-
tion. The difference is 32 bytes.
To handle various TIMECOP alerts, we added crypto_declassify at
various positions in rej_uniform, crypto_sign_keypair, sample_gauss,
polyfixveclk_sample_hyperball, poly_challenge, rej_eta, and
crypto_sign_signature. Most of these were for declassifying what appear
to be rejection-sampling conditions. The exceptions were

� two variables hb_z1 and h inside the crypto_sign_signature function
(these seem to be public variables that are then encoded in a variable-
time way) and

� a variable b in poly_challenge (this also seems to be public).

There was one further TIMECOP warning, namely for the following code in
sample_gauss_sigma76:

const uint64_t *rand_gauss16_ptr = (uint64_t *)rand,

*rand_rej_ptr = (uint64_t *)(&rand[2]);

const uint64_t rand_gauss16 = (*rand_gauss16_ptr) & ((1ULL << 16) - 1);

const uint64_t rand_rej = (*rand_rej_ptr) & ((1ULL << 48) - 1);
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This is not a portable way to read 16-bit and 48-bit pieces from bytes: some
CPUs prohibit unaligned reads, and big-endian CPUs will give the wrong
results. We changed this to portable code.
Preliminary analysis indicates that none of the issues identified by TIMECOP
for HAETAE are security issues. However, it is important to note that every
use of crypto_declassify requires auditors to check whether the declassified
variable is in fact safe to make public. The submitters are encouraged to
check this for HAETAE.
Another issue, which presumably allows timing attacks on some platforms,
is the division by LN in the following code:

int32_t fix_round(int32_t num) {

num += (num >> 31) & (-LN + 1);

num += LN / 2;

return num / LN;

}

This code is called on secret inputs and can end up using division instructions
(see, e.g., https://godbolt.org/z/rEEcn89x6 saying “idiv”). We changed
this to

int32_t fix_round(int32_t num) {

return (num + LNHALF) >> LNBITS;

}

with appropriate definitions of LNHALF and LNBITS.
We submitted this software for inclusion in the 25 June 2024 release of SU-
PERCOP. The Skylake results from SUPERCOP are on the same scale as
the Core i7-10700k (Comet Lake) results reported in the HAETAE documen-
tation.
The HAETAE team distributed new software on 17 July 2024 (not com-
patible with previous HAETAE software). We submitted a corresponding
HAETAE update for the 8 August 2024 release of SUPERCOP.
The quartiles reported by SUPERCOP show that HAETAE key gen-
eration and signing have large variance in run times. For exam-
ple, on Intel Comet Lake, (quartile,median, quartile) for haetae2 are
(269003, 554861, 981331) for key generation, (660171, 2325056, 3162129) for
signing, and (118609, 119061, 119652) for verification. The variations also
make precise comparisons difficult. The February 2024 HAETAE docu-
mentation (before the HAETAE team’s July 2024 announcement of a key-
generation speedup) reported Comet Lake medians of 882350 cycles for key
generation, 1323118 cycles for signing, and 115638 cycles for verification.
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KpqClean reports 834651, 4946575, 67068 for an Intel Coffee Lake (which
is similar to Comet Lake). We re-ran KpqClean on a Comet Lake with
overclocking disabled. One run of KpqClean reported 1392489 cycles for key
generation (presumably for HAETAE code before July 2024), 5044873 cycles
for signing, and 123485 cycles for verification. A second run of KpqClean
reported 1389823 cycles, 1216527 cycles, and 123730 cycles.
Checking the source code shows that KpqClean tries 10000 iterations of sign-
ing the same message with the same key, so new randomness appears only
when KpqClean is run again. This means that a HAETAE signing result
reported by KpqClean can be far above average or far below average.
Tables 9.1, 9.2, and 9.3 show the (average) number of instructions used for
key generation, signing, and verification respectively inside AVX2 software for
haetae2. Investigation of the top subroutines has identified some speedup
possibilities to explore: e.g., merging FFT layers inside the fft function
would eliminate many load/store instructions, and replacing some shift in-
structions with permutation instructions inside that function would make
better use of “port 5” on Intel CPUs.
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Table 9.1: Instructions used for AVX2 software for haetae2 key generation.
Each table row tallies the number of instructions used directly by one func-
tion. If function F calls function G then instructions inside G are tallied for
G, not for F .
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Table 9.2: Instructions used for AVX2 software for haetae2 signing. Each
table row tallies the number of instructions used directly by one function. If
function F calls function G then instructions inside G are tallied for G, not
for F .
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Table 9.3: Instructions used for AVX2 software for haetae2 verification.
Each table row tallies the number of instructions used directly by one func-
tion. If function F calls function G then instructions inside G are tallied for
G, not for F .
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Chapter 10

MQ-Sign: A New
Post-Quantum Signature
Scheme based on Multivariate
Quadratic Equations: Shorter
and Faster

The MQ-Sign digital signature scheme [SK24] is based on the trapdoor
paradigm. In this setting, the secret key is composed of a central map

F : (x1, . . . , xn) ∈ Fnq →
(
F (1)(x1, . . . , xn), . . . ,F (m)(x1, . . . , xn)

)
∈ Fmq ,

for which it is computationally easy to find a solution, aka a tuple x =
(x1, . . . , xn) such that F(x) = 0, and two bijective affine mappings S ∈
AGLn(q), T ∈ AGLm(q). These mappings are used to hide the special struc-
ture of F that allows us to easily compute solutions. The public key is ob-
tained by mapping F to another quadratic map P , such that P = T ◦F ◦S.
This results in a multivariate system that is hard to solve and indistinguish-
able from a randomly generated multivariate quadratic system unless the
structure of F can be retrieved from P .
Define a hash function to map to Fmq and let t = H(M), then a signature
on M is a preimage x of t under the public map. To verify the signature,
compute t and accept if this matches P(x). To find such an x, the signer
uses the knowledge of the affine maps and the ability to compute preimages
of the central map to compute t′ = T −1(t),x′ = F−1(t′), and x = S−1(x′),
where F−1(t′) means the computation of a (typically not unique) preimage
of t′. For a secure scheme, it should be hard to find x given any t and the
public key.
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10.1 Unbalanced Oil and Vinegar

One of the oldest trapdoor constructions is the Unbalanced Oil and Vinegar
signature scheme, proposed by Kipnis, Patarin, and Goubin [KPG99] as a
modification of the oil and vinegar scheme of Patarin [Pat97] that was broken
by Kipnis and Shamir in 1998 [KS98].
In the oil and vinegar construction, the variables in the central map are
divided in two distinct sets, called vinegar variables and oil variables. The
vinegar variables are combined quadratically with all the variables, while the
oil variables are only combined quadratically with the vinegar variables and
not with other oil variables. This special structure serves as a trapdoor that
allows to find preimages of the central map. Formally, the central map is
defined as F : Fnq → Fmq , with polynomials

F (k)(x1, . . . , xn) =
∑

i∈V,j∈V

γ
(k)
ij xixj +

∑
i∈V,j∈O

γ
(k)
ij xixj +

n∑
i=1

β
(k)
i xi+α(k) (10.1)

where n = v + m, and V = {1, . . . , v} and O = {v + 1, . . . , n} denote the
index sets of the vinegar and oil variables, respectively.
The affine mapping T is omitted, as it can be shown that if an oil and
vinegar central map is used in the standard MQ construction, T does not
add to the security of the scheme. Hence, the secret key consists of a linear
transformation S and central map F , while the public key is defined as
P = F◦S. It is also common to use homogeneous polynomials in UOV, so the
affine map becomes a linear map represented by the matrix S ∈ GLn(q). As
with any trapdoor-based multivariate signature scheme, to sign a message, we
need to find a preimage of F . This can be done by simply fixing the vinegar
variables to some random values. The resulting system is a linear system of
m equations in m variables, and thus has a solution with probability around
1 − 1/q. If the obtained system does not have a solution, we repeat the
procedure with different values for the vinegar variables, otherwise we apply
the inverse affine transformation and obtain a signature.

10.2 MQ-Sign

UOV signature schemes are attractive because they have very small signa-
tures and fast verification. On the downside, they have large public and
secret keys. As a result, variations of the traditional UOV scheme are usu-
ally developed with the goal to reduce the size of the public key. These
variations have additional structure that might compromise the security of
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the scheme. A notable example of such a scheme is Rainbow [DS05], which
was a finalist in the NIST PQC standardization process as [DCP+20], before
Beullens showed that it does not meet the security requirements [Beu22]. It
is a great challenge to develop UOV variations with additional structure that
do not compromise the security of the scheme or where the trade-off results
in smaller key sizes.
MQ-Sign is a UOV-based signature scheme, where the main focus is to reduce
the size of the public and secret key compared to traditional UOV. In the first-
round proposal of MQ-Sign, this was achieved by using sparse polynomials
for the quadratic part of the central map. In the central map, we distinguish
two main parts: the vinegar-vinegar part, which is comprised of monomials
that contain two vinegar variables, and the vinegar-oil part, comprised of
the monomials containing one vinegar variable and one oil variable. There
were initially four variations of the scheme: MQ-Sign-SS, MQ-Sign-RS, MQ-
Sign-SR, and MQ-Sign-RR, where the suffix specifies, for the two parts of the
quadratic maps, whether they are defined with sparse or random polynomials.
Three attacks on MQ-Sign were published during the first round of the com-
petition, which eliminated all but the last variant of MQ-Sign, denoted MQ-
Sign-RR. This is the most conservative variant as it is built on the UOV
trapdoor without any additional structure. The first algebraic attack on MQ-
Sign was proposed by Aulbach, Samardjiska, and Trimoska [AST24] and it
exploits the sparseness of the vinegar-oil part of the secret key. The attack
also relies on the fact that the map S is chosen to be given by a matrix of
the following form

S =

(
Iv×v S1

0m×v Im×m

)
. (10.2)

This typically does not reduce the security of a UOV-based scheme because
it was shown in [Pet13] that for any instance of a UOV secret key (F ′, S ′),
there is an equivalent key (F , S) where S has the form as in (10.2). However,
coupling this optimization technique with the specific structure of the central
map in MQ-Sign yields many linear constraints that allow for a polynomial-
time key recovery. The attack was fully implemented and it was reported to
run in 0.6 seconds for the proposed parameters for the security level I, 2.3
seconds for the security level III, and 6.9 seconds for the security level V.
Following this, Ikematsu, Jo, and Yasuda proposed another algebraic attack
that also targets the MQ-Sign-{S/R}S variants but is not dependent on S
having the equivalent keys structure [IJY23]. These two attacks eliminated
both variants where the vinegar-oil part of the secret key is sparse.
Another algebraic attack was proposed in [AST24] that targets specifically
the variant in which only the vinegar-vinegar part of the secret key is sparse.
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This attack is not practical, but shows that the security of MQ-Sign-SR does
not meet the required security level, and this variant is also removed from
the updated submission in round 2.

10.3 Design updates

MQ-Sign announces two updates for the second round. One major update is
the design of the variant MQ-Sign-LR that has a specific structure only in the
vinegar-vinegar part of the central map and the vinegar-oil part is generated
randomly, same as in MQ-Sign-RR. Both variants use the equivalent keys
optimization. The second update is the introduction of a binding technique.

10.3.1 A new variant MQ-Sign-LR

MQ-Sign-LR is the new non-conservative variant of MQ-Sign that has smaller
secret keys while maintaining the same signature size as MQ-Sign-RR. This
variant reportedly yields better performance for both key generation and
signing. Note that since the reduction of the size of the secret key is in
the vinegar-vinegar part, when the equivalent keys optimization is used, this
yields a reduction in the public key size as well. This is because when S is
of the form as in (10.2), the vinegar-vinegar part of the public key is equal
to the vinegar-vinegar part of the secret key. This can be observed from the
equation defining the computation of the public key

(
P

(k)
1 P

(k)
2

0 P
(k)
4

)
=

(
I 0
S>1 I

)(
F

(k)
1 F

(k)
2

0 0

)(
I S1

0 I

)
,

which in upper-triangular matrix form simplifies to(
P

(k)
1 P

(k)
2

0 P
(k)
4

)
=

(
F

(k)
1 (F

(k)
1 + F

(k)>
1 )S1 + F

(k)
2

0 Upper(S>1 F
(k)
1 S1 + S>1 F

(k)
2 )

)

adding the entry at (j, i) to the entry of (i, j) for j > i.
The main difference between the two MQ-Sign variants is in the structure of
the vinegar-vinegar part of the central map. In MQ-Sign-LR, the vinegar-
vinegar part of the central map is constructed as a product of a circulant
matrix where the entries are the vinegar variables (x1, . . . , xv) and a vector
whose entries are linear combinations of the vinegar variables. Specifically,
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the central map is defined as
x1 x2 ... xv
xv x1 . . . xv−1
. . . . . . . . . . . .

xv−m+2 xv−m+3 . . . xv−m+1

 ·

L1

L2

. . .
Lv

 , (10.3)

where Li =
∑v

j=1 γijxj, for i ∈ {1, . . . , v} and each row of the product matrix
gives a polynomial in F . As a result, the vinegar-vinegar part of the central
map can be represented with v2 field elements1, instead of the v2m

2
field

elements that are required in the MQ-Sign-RR variant.

10.3.2 A new binding technique

The binding technique that is introduced aims to prevent the following sce-
nario. Let us assume that there are two equivalent public keys, so public
keys PA and PB such that PB = PA ◦ S. The corresponding secret keys are
denoted (FA, SA) and (FB, SB). If σA = (zA, r) (r denotes the salt used in
signing) is a signature on a message M under the public key PA, then any-
one who knows S can generate a valid signature σB = (zB, r) on the same
message M under the public key PB by computing zB = S−1zA.
The binding technique aims to prevent this attack by identifying a signature
with a unique public key in the following manner. In the usual setting, the
target value t for which the signer needs to find a preimage z is computed
as a hash t = H(M ||r). The binding technique consists in adding the hash
of the public key of the signer to the input to the hash function, so t =
H(M ||r||H(P)). As a result, zB = S−1zA will not form a valid signature
under the public key PB, as zA was computed with PA as input to the hash.

An attack under this assumption. Note that this binding technique
protects against adversaries that only know the two equivalent public keys,
but it does not prevent the owner of the public key PB to produce a valid
signature under the public key PA. Since the two public keys are equivalent,
being able to invert any of the two maps allows us to invert both of them.
Specifically, the owner of PB can forge a signature under PA by computing
a preimage of t = H(M ||r||H(PA)) using their own secret key as zB =
S−1B · F−1B (t), and then computing zA = SzB using their knowledge of the
equivalence. We emphasize that this is not a security concern because the
probability of having two equivalent public keys is negligibly small. We

1The submission counts v(v+m) elements, which corresponds to the evaluation costs,
but not to the number of stored elements.
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verified that this is the case for the parameters of MQ-Sign. We first count
the number of possible public keys. Each key is a set of m n × n matrices,
but not all maps of this size constitute a UOV public key, since a UOV public
key contains the hidden oil space. We can equivalently count the number of
secret keys and this gives rise to an easier reasoning because the secret keys
are of a specific form. Specifically, a central map is comprised of matrices

F (k) =

(
F

(k)
1 F

(k)
2

0m×v 0m×m

)
,

where F
(k)
1 is an upper-triangular matrix of size v×v and F

(k)
2 is a rectangular

matrix of size v×m. Hence, for MQ-Sign-RR, we have qmv(v−1)/2+vm
2

possible
public keys. For MQ-Sign-LR, we have qv

2+vm2
public keys. Note that for

this variant, the v2 in the exponent does not have a factor m, due to the
specific way the secret key is created. For the parameters of security level
1, this leads to 21260288 possible public keys for MQ-Sign-LR and 22159424 for
MQ-Sign-RR. To get the probability that two public keys are equivalent, we
divide the total number of possible maps between equivalent public keys by
the number of public keys. These possible maps are simply invertible n× n
matrices, of which there are

∏n−1
i=0 (qn− qi). So we have 2111391 of these maps,

which results in a probability of two public keys being equivalent of 2−1148897

for MQ-Sign-LR and 2−2048033 for MQ-Sign-RR. This shows that equivalent
keys are not a security concern. Note that the negligible probability is a
crucial argument, because checking whether two public keys are equivalent
is an easy problem. Since MQ-Sign (and UOV in general) does not use a
transformation on the output (denoted as T in the introduction), finding the
equivalence between two quadratic maps is the isomorphism of polynomials
with one secret (IP1S) problem, which can be solved with a polynomial-time
algorithm [BFFP11].
The binding technique is used only in the variant MQ-Sign-RR. No rationale
is provided for this choice, but the analysis in [SK24] shows that there is
a non-negligible performance loss, as well as a slight increase of the public
key, as a result of the addition of the binding technique. However, adding
the binding technique has the advantage of protecting against attacks that
exploit hash collisions.

10.4 A forgery attack on MQ-Sign-LR

We start the description of the attack by showing how an attacker can forge
a signature in the case where t = H(M ||r) is the zero vector. This attack
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exploits the structure of the vinegar-vinegar part and relies on the matrix
S being of the form as in (10.2). The attack is probabilistic, however, the
probability of success is high enough that we were able to perform it multiple
times for all security levels. Forging a signature for t = 0 consists in finding
a preimage of 0 under the public map P . We will write in block matrix
representation since we are using the specific structure of the upper-left block
of the public map. We need to find a vector (xv,xm) ∈ Fnq such that

(
xv xm

)(P (k)
1 P

(k)
2

0 P
(k)
4

)(
xv
xm

)
= xvP

(k)
1 xv + xvP

(k)
2 xm + xmP

(k)
4 xm = 0

holds for every k ∈ {1, . . . ,m}. Note here that P
(k)
1 has the same shape as

F
(k)
1 because of the equivalent keys form of S and this structure is used in

the attack. Let us denote by V (0) the variety (the set of solutions) of the
ideal generated by P(x) = 0. Since we have m equations in n variables with
n > m, we can afford to add another v = n −m affine constraints and still
expect, heuristically, to have a solution. We use only m (recall that m < v)
of those to eliminate the nonstructured part of this system. Specifically,
we assign all variables in xm to zero. We are thus left with a homogenous
system that has the structure depicted in (10.3). Looking closely at this
structure, we see that the matrices representing these quadratic forms are
equal up to cyclic row-shifts. Let us denote by Pi the matrix representing
the permutation corresponding to a cyclic upward row shift of i. The system
of equations that we aim to solve takes the following form

xvP
(1)xv = 0,

xvP1P
(1)xv = 0,

. . .

xvPm−1P
(1)xv = 0.

(10.4)

Equivalently, we can imagine that we have the same equation m times, but
the permutation is on the xv vectors on the left side, performing cyclic shifts
on vector entries (a permutation on columns, since the Pi multiply on the
right). It is then evident that for vectors xv where all of the entries are equal
to each other, if xv is a solution to the first equation, then xv is a solution
to the entire system. We generalize this observation to other specific vectors
that have a repeating subsequence.
Let us denote by ∼ the binary relation on Fvq described informally as “a is
equal to b up to a cyclic right-shift (without loss of generality)”. We add
a further restriction that if b is obtained by performing a right-shift of k
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entries on a, then k is the smallest number for which this holds. This is
indeed an equivalence relation because (i) a ∼ a by a shift of zero, (ii) if a
is obtained by performing a right-shift of k on b, then b can be obtained by
a right-shift of v − k on a, and (iii) if a is a k-shift away from b and b is an
l-shift away from c, then a is a ((k + l) mod v)-shift away from c. We also
know that, for a given v, the number of such equivalence classes in Fvq can be
derived by looking at the divisors of v. For each divisor d of v, we have up
to qd equivalence classes of size d. We now make the following observation
for the system in (10.4). If x belongs to an equivalence class of size d and
x is a solution to the first d equations in (10.4), then x is a solution to the
entire system. We also have that all of the vectors in the equivalence class
are a solution to the first equation. This observation tells us that the system
does not behave like a random system and that there are some vectors that
are probabilistically more likely to be a solution to the system than others.
We exploit this by looking for such solutions using the following strategy.
For each divisor d of v, excluding v and taken in ascending order,
build a smaller system by taking the first d equations of the initial sys-
tem in (10.4) and replacing the unknown xv = (x1, . . . , xv) by x =
(x1, . . . , xd, x1, . . . , xd, . . . , x1, . . . , xd). This is a quadratic system of d equa-
tions in d variables. The complexity of solving such systems is (usually)
exponential, but for a parameter v that has some small divisors, as in the
case of MQ-Sign parameters, we can solve it in practice. The results of ap-
plying this strategy to the parameters of MQ-Sign are presented in the next
section.
With this attack, we are able to find one (or a few) out of many elements in
V (0). The secret oil subspace, denoted O, is contained in V (0) and in the
case that the obtained vector is part of the oil subspace this would lead to
a full key recovery. Consider the polar form P(k)′ of a quadratic form P(k)

defined as
P(k)′(x,y) = P(k)(x + y)− P(k)(x)− P(k)(y).

When (x,y) in O2, we have that P(k)(x) = 0 and P(k)(y) = 0 because
O ⊆ V (0). In addition, we have that P(k)(x + y) = 0 because O is a
linear subspace of Fnq , so x + y is also in O. This gives us the additional

constraint that P(k)′(x,y) = 0 for all pairs of vectors in the oil space. When
the first oil vector is known, this constraint gives us m linear equations in
the variables of the other vector. Coupled with the equations from P(k)(y) =
0, we obtain a system that is significantly easier to solve than obtaining
the first oil vector. This is for instance used to build the reconciliation
attack [DYC+08], and recently it was shown that once we have found the
first oil vector, the remaining steps to recover the entire oil space can be
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Security level I III V
Parameters (v,m) (72, 46) (112, 72) (148, 96)
Tried divisors 1, 2, 3, 4, 6, 8, 9, 12 1, 2, 4, 7, 8, 14 1, 2, 4
Max. running time (s) 2.23 72.36 0.06
Success rate 132/300 32/300 5/300

Table 10.1: Experimental results for finding a preimage of 0 in MQ-Sign-LR.

done in polynomial time [Péb24]. This reasoning can not be used when we
have a vector that is in the variety of 0 but not in the oil space because
the variety of 0 is not a linear subspace. In this case, we can only infer
that P(k)′(x,y) = P(k)(x + y) for x,y in V (0)2, which does not give any
additional constraints. The attack could indeed recover an oil vector, but
the probability of this lucky guess is too low to exploit. Since V (0) is of
dimension n −m and O is of dimension m, the probability that the vector
we obtain is in O is q−n+2m. For MQ-Sign parameters, this is 2−208, 2−320,
and 2−416 for the three security levels respectively. Hence, we conclude that
this forgery attack does not lead to a key-recovery attack.

10.4.1 Experimental results

We implemented the attack in Magma and experimented with the parameters
of all three security levels. MQ-Sign is defined over the finite field F28 for all
parameter sets. We ran 300 experiments for each set of parameters and the
results are presented in Table 10.1. We opted for solving systems of at most
14 equations in 14 variables, which has a running time of about a minute
on our machine. We tried only small systems, so that we can have many
runs and get a clear view of the success rate of the attack. The probability
of success would naturally increase if we use more computational power and
attempt the attack with higher divisors of v. The third row in Table 10.1
shows for which divisors we attempted the attack and we see that the more
choices we have, the better the success rate. For instance, we can see that
for security level V we have the lowest success rate because we could only
perform the attack with divisors 2 and 4; the next divisor is 37, which is not
practical for any algebraic solver. We conclude that the attack is practical
with nonnegligible probability for all security levels and that countermeasures
need to used to prevent such an attack.
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10.4.2 Forging a signature for any message

We generalize these findings in [RT24] and use them to compute a preimage
of many such target vectors that have a particular shape. In fact, the strategy
explained here can be extended to any periodic t. Let d | v with d ≤ m and
let t be a d-periodic vector, that is, ti = ti+d for all 1 ≤ i ≤ m − d. Then
for any d′ with d | d′ and d′ | v we can apply the same trick and look for
d′-periodic solutions x = (xd′ , . . . ,xd′). For each security level, we compute
the number of targets for which a preimage can be found with complexity
less than the corresponding security threshold. We find that for all levels,
it is possible to find a preimage of a v/2-periodic hash t. Recall that t is
obtained from a hash function taking as input the message concatenated by
a chosen salt r. The salt is chosen by the signer. Hence, we can recompute t
using different values for r until we find one that results in a v/2-periodic t.
Obtaining a t with a shorter period is even more advantageous for the rest
of the attack, but the number of expected attempts is greater than 2λ, where
λ is the security parameter. Thus, we focus on finding a v/2-periodic target,
and the expected number of attempts for this goal is given in Table 10.2.

Level q v m salts
I 28 72 46 280

III 28 112 72 2128

V 28 148 96 2176

Table 10.2: The average number of salts to try before finding a v/2-periodic
hash.

The complexity of finding a preimage of a v/2-periodic target can be com-
puted by taking a straightforward FXL algorithm [CKPS00] as reference.
FXL is a hybrid algorithm where we first guess the value of some variables
(the number of which is determined as the optimal trade-off) and then we
compute a Gröbner basis and extract a solution. In addition, we introduce
an improved guessing strategy tailored to this problem in [RT24]. We give
the complexity of this solving algorithm for all security levels in Table 10.3.

Level q v m log2 cost
I 256 72 46 112

III 256 112 72 173
V 256 148 96 220

Table 10.3: The theoretical complexity of forging MQ-Sign-LR signatures.

Comparing the complexities in both tables, we conclude that the bottleneck
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of the attack is the resolution of a polynomial system to find the preimage.
The complexity of this part of the attack is lower than the required security
level for all MQ-Sign parameter sets.

10.4.3 Countermeasures

A straightforward countermeasure for this attack would be to choose param-
eters such that v is a prime number. In this case, the only targets for which
we are able to find preimages easily are the 1-periodic targets. Obtaining a
1-periodic t by recomputing the hash using different salts is out of reach. In
this case, the cost of sampling salts would dominate the cost of the attack
and exceed the security requirement.
This attack is also countered in the case where the equivalent keys opti-
mization is not used and the secret linear transformation S is a randomly
generated invertible matrix. However, we would not recommend this as the
only countermeasure, because in the case of MQ-Sign-LR, the Extended Iso-
morphism of Polynomials with One Secret (EIP1S) problem underlying the
security of the system is different than for traditional UOV. As a result, fur-
ther analysis is needed to determine whether this difference can be exploited
by an attacker.

10.5 Secure MQ-Sign variant

None of the attacks on MQ-Sign in the first or second round affect the con-
servative variant MQ-Sign-RR. There is strong confidence that this variant is
secure, especially because it is equivalent to the traditional UOV scheme. In
parallel work, UOV with the implementation and parameter choices outlined
in [BCH+23] was submitted to NIST’s additional call for signatures in sum-
mer 2023. These two instantiations of traditional UOV have almost identical
parameter choices and some differences in implementation choices. We out-
line here those differences. We refer to the UOV instantiation in [BCH+23]
as Modern UOV.

� MQ-Sign proposes a nonconservative variant MQ-Sign-LR that aims at
reducing the size of the secret key. There are doubts about the security
of this variant and we express some of them in previous sections. Mod-
ern UOV does not have a variant that differs from traditional UOV.

� MQ-Sign uses a traditional representation of the secret key, storing the
central map F and the linear transformation S. Modern UOV stores
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Security level MQ-Sign-RR Modern UOV
I 276649 237896

III 1044385 1044320
V 2436769 2436704

Table 10.4: Size (in Bytes) of the secret key of MQ-Sign-RR and Modern
UOV.

only a basis of the oil space and presents a corresponding signing algo-
rithm. This also allows Modern UOV to offer a variant with compressed
public keys.

� For solving linear systems of equations, MQ-Sign uses the Block Ma-
trix Inversion (BMI) method proposed in [SLK22]. Modern UOV
uses Gaussian Elimination techniques instead, and this implemen-
tation choice is substantiated both theoretically and experimentally
in [BCH+23] with a comparison to the BMI technique.

� MQ-Sign uses offline precomputation to improve the signing runtime.

� MQ-Sign uses a binding technique and Modern UOV does not. We do
not know of an attack scenario that would target Modern UOV and
would be avoided by MQ-Sign because of the binding technique.

� Even though the secret keys of Modern UOV and MQ-Sign-RR con-
sist of entirely different data structures, they have comparable sizes.
Table 10.4 shows this comparison.

10.6 Security proofs

The round 1 submission of MQ-Sign did not include any claim about provable
security despite a paragraph discussing a work by Sakumoto, Shirai and
Hiwatari [SSH11] who gave a security proof for a minor variation of UOV
that includes a random nonce in the message hash following the proof for Full
Domain Hash (FDH). This proof reduces the UOV problem to the hardness
of the modified UOV signature. The round 2 submission still does not include
a security proof for MQ-Sign. The authors collect a number of assumptions
and refer again to [SSH11]. However, the authors now claim explicitly that
the proof from [SSH11] applies to MQ-Sign (without giving any detail).
From the provided text, it is unclear what the implications of the proof
from [SSH11] for MQ-Sign are, and what the roles of the remaining two as-
sumptions (MQ- and EIP-problem) play. Moreover, the proof does not hold
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against quantum adversaries, as it is given in the conventional random oracle
model (ROM), instead of the quantum-accessible ROM (QROM). Further-
more, the UOV assumption is lacking precision in not defining the distribu-
tion from which the y values are picked.
A minimum of arguments, required to apply the proof from [SSH11], is:

� Change the definition of the UOV problem to use a uniformly random y.
This is necessary to ensure that the random oracle can be simulated for
the challenge value. Note, it is also necessary to analyze the hardness
of exactly this problem later (e.g., by relating it to the hardness of
another, more general problem).

� Rephrase MQ-Sign in terms of GenUOVfunc and argue that the re-
sulting scheme is indistinguishable from the specified scheme. This is
necessary to show that the public maps used in MQ-sign are actually
defining random UOV instances.

� Show that the map P is a preimage sampleable trapdoor function. For
this it is necessary to show that there exists a distribution over the
preimage space Fnq which

– is efficiently sampleable without knowledge of a trapdoor,

– is indistinguishable from the distribution of preimages generated
using the trapdoor sampler (i.e., the distribution of the z values
produced by the signing algorithm), and

– is mapped to the uniform distribution over Fmq by P (or a compu-
tationally indistinguishable distribution).

This is necessary to argue that the simulation of the random oracle is
sound.

If these requirements are fulfilled, the result can be lifted to the QROM
following the recent work of Kosuge and Xagawa [KX24].
Without a detailed proof that includes detailed arguments for the above
points, there are no provable security guarantees for MQ-Sign.

10.7 Editorial Issues

The two loops in Algorithm 2 are defined in a very confusing way: We believe
that this is meant to be one loop reaching from line 1 to line 9, with line 6
being an early restart if A is not invertible. This should instead be phrased
along the lines of “if @A−1: continue”.
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In the same Algorithm we suspect that the ST
O in line 15 should be spelled

as sTO (with a lowercase s).
The replacement attack described in the submission document [SK24, Sec-
tion 3.2] is dedicated to the new MQ-Sign-LR variant, but it is not fully
developed, it has no complexity estimates and it is not taken into account
in the parameter choice of MQ-Sign. We did not find a way to develop this
attack further. It seems that this description serves as an argument for the
robustness of MQ-Sign-LR, showing that a possible linearization and rewrite
of the system in (10.3) also results in a central map where all matrices are
of full rank. We believe that the exposition would be improved if this is
introduced as an intuitive security argument, instead of as an attack.

10.8 Round-2 C software

The sizes of keys etc. in the round-2 software match the documentation.
One of SUPERCOP’s signature tests is whether a signed message can be
stored in the same array as the original message. The original MQ-Sign
software does not allow this. We modified the software to allow this.
Other SUPERCOP tests detect failures for MQLR that we eliminated by
modifying the software to 0-initialize the buffers used to store the public key
and the private key. This could indicate a more serious bug. The submitters
are encouraged to investigate this.
A portability issue is that the software sometimes uses variable declarations
after labels; this is allowed by some compilers but not others. We changed
label: int foo to label: ; int foo to fix this.
A correctness issue, and potentially a security issue, is that the software
stores message lengths in 32-bit variables. Presumably it is possible to fix
this by replacing the 32-bit variables with 64-bit variables.
TIMECOP identified two issues in the reference MQ-Sign software.
First, there are some rejection-sampling loops in mqs.c; we added
crypto_declassify. Second, there is a real timing leak in rng.c, which
is software that NIST provided and encouraged people to use for seed expan-
sion but that was never designed to run in constant time.
We rewrote part of rng.c to use crypto_uint8_zero_mask, a constant-time
support function provided by SUPERCOP. The usage of AES inside the NIST
code is expected to produce further timing variations on some platforms, as
illustrated by [CKP+20].
A preliminary assessment indicates that, on platforms where AES runs in
constant time, the timing leak is limited to a small number of bytes from a
fresh buffer for each message. However, it would still be better to eliminate
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rng.c and call SHAKE256 with the seed as input to generate the desired
number of bytes of output.
TIMECOP identified a further issue in the avx2 software. The software
uses table lookups to multiply in F256. This should be fixed; perhaps it
is exploitable. We decided to submit the software for the 25 June 2024
release of SUPERCOP, marking the ref software but not the avx2 software
as constant-time; SUPERCOP reports the results for both, with a red “T:”
for the avx2 software.
The MQ-Sign team distributed new software on 17 July 2024 (not compatible
with previous MQ-Sign software). We submitted a corresponding MQ-Sign
update for the 8 August 2024 release of SUPERCOP.
We subsequently modified avx2 to obtain an avx2ct that passes TIMECOP,
and submitted that for the 9 September 2024 release of SUPERCOP. This
still has noticeably slower signing than avx2.
For example, for mqsignlr2567246, the SUPERCOP signing results for
Skylake show (quartile,median, quartile) of (103313, 107424, 117000) cycles
(from avx2) with “T:”, and (118967, 124404, 131977) cycles (from avx2ct)
without “T:”. Before the September 2024 update, the results showed more
than 500000 cycles (from ref) without “T:”.
The MQ-Sign documentation says 65300+51744 cycles for the AVX2 code
for sign+verify and 451262+774652 cycles for the reference code; this is on
an Intel Xeon Gold 6234 (Cascade Lake). We tried running the MQ-Sign
benchmarking tool on Skylake; it reported 78445+58329 cycles for the origi-
nal MQ-Sign code, and 81421+57972 cycles after our patches.
KpqClean reports 43696+35239 cycles on Comet Lake. We re-ran KpqClean
on a Comet Lake with overclocking disabled; it reported 99940+80662 cycles.
We also ran KpqClean on a Skylake with overclocking disabled; it reported
76426+58099 cycles.
The discrepancies here warrant further investigation. For example, if some
compiler options are producing better speeds, then the faster assembly-
language results can be added to SUPERCOP. Another reason for a dis-
crepancy is that the MQ-Sign and KpqClean benchmarking tools do not
measure the time to generate a “seed” and “salt” used in signing.
Tables 10.5, 10.6, and 10.7 show the number of instructions used for key
generation, signing, and verification respectively inside AVX2 software for
mqsignlr2567246. Arithmetic in F256 accounts for more than 50% of the
instructions in MQ-Sign. The software does not appear to be using the
speedup techniques from, e.g., [KS09] and [BMP13].
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Table 10.5: Instructions used for AVX2 software for mqsignlr2567246 key
generation. Each table row tallies the number of instructions used directly
by one function. If function F calls function G then instructions inside G
are tallied for G, not for F .
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Table 10.6: Instructions used for AVX2 software for mqsignlr2567246 sign-
ing. Each table row tallies the number of instructions used directly by one
function. If function F calls function G then instructions inside G are tallied
for G, not for F .
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Table 10.7: Instructions used for AVX2 software for mqsignlr2567246 veri-
fication. Each table row tallies the number of instructions used directly by
one function. If function F calls function G then instructions inside G are
tallied for G, not for F .
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Chapter 11

NCC-Sign: A New
Lattice-based Signature Scheme
using Non-Cyclotomic
Polynomials

The main idea of NCC-Sign is to take the Dilithium design and replace the
mathematical structure used. While Dilithium uses a module lattice, NCC-
Sign moves to ideal lattices.

11.1 System description

NCC-Sign [SKA22] is based on Lyubashevky’s signature scheme [Lyu12]
using Fiat–Shamir with aborts, a signature compression technique by Bai
and Galbraith [BG14], and the public-key compression technique from
Dilithium [LDK+20] on the signature side and on NTRU Prime [BCLv17,
BBC+20b] and NTTRU [LS19] on the ideal lattice side.
The main part of the submission, as also reflected in the title, uses ideal
lattices over the NTRU Prime field R = Z[x]/(xp−x− 1) modulo a prime q,
where q is chosen such that xp − x− 1 is irreducible modulo q and that q is
inert in Q[x]/(xp − x − 1). The authors follow NTRU Prime in pointing to
security concerns related to the cyclotomic structure and the many subfields
present in the typical choice of xn + 1 for n = 2d.
The submission also considers a version using cyclotomic polynomials of the
form x2n−xn + 1 for n = 2a3b. These cyclotomic polynomials were proposed
in [LS19] to add flexibility in the dimension beyond n = 2d while keeping the
speed benefits of NTT-friendly rings. In the original NCC-Sign submission
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from October 2022 this version is presented in Section 3.5 and Table 6 while
all implementation considerations cover only the non-cyclotomic case. In
the updated version [SKA23], labeled v1.0 in that document, two sets of
parameters are proposed for this case and implementation results indeed show
better speeds, however, most of the text still focuses on the non-cyclotomic
case.
The round-2 NCC-Sign submission has some additional comments on the
cyclotomic case, and changes the choice of parameters for that case. The
round-1 submission proposed cyclotomics of degrees 1152, 1536, 2048, and
2304; the round-2 submission proposes cyclotomics of degrees 1024, 1458,
and 1944. For the non-cyclotomic case, the proposed degrees are 1021, 1201,
1429, 1607, 1913, and 2039, and we did not find any changes in the further
parameter-set details (q, d, etc.). Our evaluations of concrete parameters
focus on the non-cyclotomic case.
KeyGen, Sign, and Verify as well as the supporting algorithms match those
of Dilithium. The difference is that where Dilithium uses module lattices,
NCC-Sign uses ideal lattices. The supporting algorithms are defined for
the coefficients and thus match 1-to-1. For the other functions, matrices of
polynomials are replaced by polynomials.
KeyGen generates a public polynomial a ∈ Rq from some seed ζ, this seed
forms the first part of the public key. The second part is an RLWE sample
using a: Pick small (s1, s2) and compute t = as1 + s2, where “small” means
that the coefficients are in {0,±1,±2}; the July 2023 version added an option
for using {0,±1}. The public key includes only the top part of t while the
bottom part is included in the secret key along with the small polynomials
s1 and s2. The secret key additionally includes the seed ζ, the hash ph =
H(ζ, t1) of the public key (the round-2 submission renames this hash “tr”),
and a string dK to generate pseudo-random numbers in signing.
Top and bottom parts of t are defined as follows: Assume that the coefficients
of t are in [0, q−1]. Let t0 be the polynomial whose coefficients are computed
from the coefficients of t taking the remainder under division by 2d using
representatives inside (−2d−1, 2d−1]. Then t1 = (t − t0)/(2

d). Since the
division here is by a power of 2, the top part basically means the top bits
of each coefficient, apart from the detail that the remainder can be negative
which then adds 1 to the top part. Other functions use top and bottom
parts for more general moduli γ, using the same approach of computing the
remainder centered around 0 and then taking the quotient of division by γ
after subtracting the remainder.
The signature should show that the signer indeed knows s1, s2 matching t1.
To sign message M , first a random commitment y ∈ Rq with restricted
coefficients is sampled; this process may need to be repeated (the aborts
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part), hence the sampling includes a counter κ. The randomized version
version picks a 512-bit ρ at random while for the deterministic version ρ
depends on M, ph, and dK. Here, “restricted” is not as small as in the key
generation but coefficients of y are in (−217, 217] for the 128-bit security level
and the range doubles for each level. Then w = ay is computed and only
the quotient after division by some γ2 is taken, the remainder is centered
around 0. The parameter γ2 is chosen to be co-prime to q and to be between
q/27 and q/25. (The full details include one corner case, see the Decompose
function.)
The challenge is then given by c̃ = H(µ,w1) ∈ {0, 1}256, where µ = H(ph,M).
This c̃ is then used to deterministically sample a fixed-weight polynomial c,
having τ coefficients in {−1, 1} and the rest being 0, where τ = 25 for the
smallest parameters and 32 for the largest.
The polynomial z = y + cs1 then uses the secret key. However, the public
key is computed using also s2 and the public key only includes the top part
of t, hence the next steps in signature generation ensure that verification
can proceed. First it is checked that z does not leak information on s, for
that it is checked that none of the coefficients are larger than some bound
γ1 − β, where γ1 was the bound on the coefficients of y and β = 4τ . This
means that z does not depend on the secret. Signature verification for Bai–
Galbraith signature compression reconstructs the top part of w as the top
part of az − ct = ay + acs1 − cas1 − cs2 = w − c − s2 which matches the
top part of w if s2 is sufficiently small. This is checked by checking that the
centered remainder of w − cs2 after division by 2γ2 has no coefficient larger
than γ2 − β, because β = 2ητ is the maximum size a coefficient of cs2 can
have (note that reductions modulo xp − x − 1 cause the extra factor of 2
here). If either of these are violated, the counter κ is incremented and a new
y is sampled.
There is an indentation error in the signing function in both versions of NCC-
Sign [SKA22, SKA23] as Step 20 needs to be indented less (be at the same
level as if and else). We pointed this out in the round-1 report. This still
has not been fixed in the round-2 submission. The algorithm as written will
often loop forever.
NCC-Sign follows Dilithium in additionally compressing the public key (in-
cluding only t1 instead of t), which means that only ct1 is available, leading
to w−cs2+ct0. The signature includes a vector h of hints, which are 1 in the
positions in which the high parts of w−cs2 and of w−cs2 +ct0 differ. Valid
signatures are limited in how large the Hamming weight of h is permitted to
be as these hints give extra flexibility to a forger. If the calculated h has too
large weight κ is incremented and a new c is sampled.
Eventually all checks succeed and the signature is (c̃, z,h).
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To verify signature (c̃, z,h) on M compute c from c̃ and compute the high
part w′1 of az− ct1 · 2d using the hint vector h. If this computation worked
correctly, w1 = w′1 and c̃ = H(µ,w′1), hence this forms the verification check
along with checking the weight of h and the coefficient sizes of z.
By the above, an honestly generated signature passes verification.

11.2 Security

The suitability of the underlying lattice problem has been argued in NTRU
Prime and NTTRU respectively. While NTRU Prime cautions of using cyclo-
tomic lattices no actual attacks on RLWE or RLWR with power-of-2 cyclo-
tomics are known. The general strategy of NCC-Sign equals that of Dilithium
and is thus well studied. As we comment in the section on security proofs,
the differences are not fully explored and it is not clear that the proofs hold,
however, we have not been able to turn the differences into attacks. The
most visible difference, caused by the asymmetry in how reductions modulo
xp − x− 1 affect the coefficients, has been taken into account by the design-
ers. There is no matching counterpart for the cyclotomic polynomial. This
leaves generic attacks as the main attack avenue and guidance on choosing
parameters.
A general issue with the security evaluations of Dilithium, HAETAE, NCC-
Sign, etc. is the following gap:

� The proofs hypothesize the hardness of “self-target” problems such as
SelfTargetRSIS and SelfTargetMSIS.

� The analyses of security levels focus on the simplified problem SIS.

There has been some attention to the question of whether the ring structure
in RSIS and MSIS can reduce security, but it is also important to ask whether
the “self-target” structure can reduce security.
Regarding the self-target structure, the Dilithium documentation says that,
for a strong hash function, “the only approach for obtaining a solution ap-
pears to be” picking a hash input and then solving an SIS-like problem for
the hash output. In 2022, Wang, Xia, Shi, Wang, Zhang, and Gu [WXS+22]
pointed out that one can instead pick many hash inputs and then solve one
of many SIS-like problems for the same lattice. There are known techniques
to save time in attacking multi-target lattice problems (see, e.g., [Ber22b]
and [WXS+22]), and further analysis is required of the concrete impact. For
a generic hash function, this approach cannot save more than a factor q when
there are q hash queries, but q can be very large.
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11.2.1 Generic lattice attacks

The results of the lattice estimator for the non-cyclotomic version of NCC-
Sign (split up over per security level and the choice of η) can be found in
Table 11.1. The Trionomial version can be found in Table 11.2. These results
are quite close to the reported security levels.

Security level η Primal Core-SVP Dual Core-SVP BDD Dual-Hybrid
1 2 144 142 167 167
3 2 209 204 229 227
5 2 280 272 298 294
1 1 132 129 156 154
3 1 192 186 214 209
5 1 259 249 278 270

Table 11.1: Estimated security levels for NCC-Sign Non-Cyclotomic based
on the lattice estimator [APS15]

Security level Primal Core-SVP Dual Core-SVP BDD Dual-Hybrid
1 132 129 156 154
3 191 185 212 208
5’ 274 262 292 284
5 316 302 333 322

Table 11.2: Estimated security levels for NCC-Sign Trinomial based on the
lattice estimator [APS15]

11.3 Implementation considerations

The designers observe that reducing csi modulo xp − x − 1 leads to higher
weight in the bottom half of the result. They modify the sampler to split
c into top and bottom parts c = c2 + xp2c1 with weight τi in ci. Taking si
with extremal coefficients ±η leads to a polynomial with constant term and
coefficients of xj with j ≥ p2 bounded by β2 = (2τ1 + τ2)η and coefficients
of xj with 1 ≤ j < p2 bounded by β1 = 2(τ1 + τ2)η. They thus suggest to
change the distribution of c to have τ1 < τ2 and to change the size constraints
to using β1 and β2 instead. There is an error in Table 7 of [SKA22] in that
the columns labeled τ1, τ2 should be labeled β1, β2. The choice of variable
name κ for the challenge entropy is bad as κ in the signing algorithm is a
counter. While it is confusing that τ1 + τ2 6= τ and no comment is made to
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this regard, the examples have τ1 + τ2 > τ which is good as the sampler loses
some entropy by fixing a split of the weight, e.g., the first parameter set has
τ2 = 14, τ1 = 12 for τ = 25.
NCC-Sign gains flexibility over power-of-two cyclotomics by permitting any
prime p as length. NTRU Prime has shown that arithmetic in these rings can
be competitive with implementations using NTT but NCC-Sign needs larger
parameters than the KEM. It is likely that further speedups are possible,
using the tooling for code generation in NTRU Prime, but at this moment the
speed is much slower. The cyclotomic rings can use the implementation from
NTTRU and do obtain better speed in the experiments reported in [SKA23].
In general, there is room for improvement. The round-2 submission reports
speedups; our preliminary assessment is that further speedups are possible.

11.4 Provable security of the signature

scheme

Given that NCC-Sign closely follows Dilithium, the straight-forward way to
prove security is to adopt existing proofs for Dilithium. In the round 1 sub-
mission, the authors followed the original proof of Kiltz, Lyubashevsky, and
Schaffner [KLS18] for this. However, the proof in [KLS18] was later found to
be flawed but also immediately fixed [BBD+23, DFPS23]. In the round 2 sub-
mission, the NCC-Sign authors updated their security argument to now fol-
low the proof presented in [BBD+23]. The proof factors into showing security
of the signature scheme under No-Message Attacks (UF-NMA) and accepting
Honest-Verifier Zero-Knowledge (acHVZK) of the underlying identification
scheme. The authors added the analysis of the commitment min-entropy
which is a part of the security evaluation in the fixed proof [BBD+23].
Although the presented proof sketch discusses several changes, such as se-
lecting parameters k = 1 and l = 1, compared to the Dilithium scheme, it
does not provide a full proof. First, it is difficult to evaluate the proof with-
out a formal statement of what is being proven. A theorem statement with
specified terms in the upper bound on the adversary’s forgery capabilities is
crucial for a formal evaluation of the scheme. Moreover, such a statement will
clarify the choice of parameters for the needed security levels in the following
sections.
Regarding the security proof, in [BBD+23], the upper bound consists of four
main parts: UF-NMA security, acHVZK, Random Oracle reprogramming
terms, and commitment min-entropy requirement. For NCC-Sign, the given
proof sketch of UF-NMA security appears to be correct, but it is so com-
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pressed that it is not possible to recover a meaningful proof without redoing
the proof. For a proper proof, one needs to provide formal statements and
a concrete reduction with all coefficients and terms that appear from the
reduction itself. The same applies to the HVZK part. An explicit presen-
tation of the underlying identification scheme is also required for a formal
treatment. For the proof of HVZK, a discussion on the min-entropy of the
commitment and the probability of rejection is required. This min-entropy
needs to be analyzed in the general case and conditioned on the occurrence
of a “good” event. The Random Oracle reprogramming terms are not men-
tioned in the security section. It is important not to drop the terms that
appeared from the security reduction, as they can have a significant impact
on the security parameters of the scheme. Regarding the min-entropy evalu-
ation, the authors claim that variable a is invertible, which is done through
rejection sampling for the trinomial case. This case must be discussed in
more detail, as a is generated not from the whole domain. Also, this affects
the underlying RLWE assumption used.
We also point out several details that need clarifications or improvement:

1. The SampleInBall algorithm should be updated to align with the de-
scriptions provided in the text.

2. Regarding cryptographic asumptions in Definition 1 and Definition 2,
for the decisional RLWE assumption, the adversary is typically pro-
vided with multiple samples in the security game, with the number of
samples specified as a parameter. Additionally, the parameter q for the
ring Rq is usually not included in the game parameters.

We did not redo the proofs. While it is reasonable to believe that the proofs
go through with the changes in assumptions made by the authors, we do not
think one can rely on this without someone carefully doing the proofs and
writing them out to enable public scrutiny.

11.5 Round-2 C software

The optimized round-2 software appears to cover only the trinomial cyclo-
tomic options in the documentation (NIMS_TRI_NTT_MODE in the software),
not the non-cyclotomic options in the documentation.
The private-key sizes in the software are longer than the sizes in the documen-
tation. For example, for the lowest security level, we find 1760-byte public
keys, 2688-byte private keys, and 2912-byte signatures where the documen-
tation reports 1760-byte public keys, 2400-byte private keys, and 2912-byte
signatures.
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SUPERCOP’s tests report that different (implementation, compiler) pairs
produce different checksums: i.e., these pairs are producing different results
even when SUPERCOP’s randombytes returns the same results. This indi-
cates that the software is obtaining data from uninitialized memory or from
external sources of randomness.
Some manual code review identified further reasons for concern regarding
the extent to which the software has been checked against the specification.
For example, the following code, for the case that ETA is 1, makes the output
array much less random than it should be:

if (t0 < 3) {

a[ctr++] = 1 - t0;

}

if (t1 < 3 && ctr < len) {

a[ctr++] = 1 - t0;

}

if (t2 < 3 && ctr < len) {

a[ctr++] = 1 - t0;

}

if (t3 < 3 && ctr < len) {

a[ctr++] = 1 - t0;

}

The intent was clearly to use 1 - t0, 1 - t1, 1 - t2, and 1 - t3, produc-
ing independent outputs in {−1, 0, 1} as specified.
We did some initial work to resolve some TIMECOP complaints. There are
many branches that appear to be from rejection sampling (in poly_chknorm,
poly_uniform, etc.), presumably not a security issue. There is Fisher–Yates
sampling, presumably a security issue.
The NCC-Sign team issued a 17 July 2024 software update that resolved
most issues we had reported, and we submitted NCC-Sign for the 8 August
2024 SUPERCOP release.
We subsequently modified the software to eliminate secret divisions, and
submitted the result for the 9 September 2024 SUPERCOP release. This
passes TIMECOP on various machines, including machines that are using
the TIMECOP patches from [BBB+24] to check for secret divisions.
For nccsign1aes on Skylake, SUPERCOP reports medians of 191041 cy-
cles for key generation, 472358 cycles for signing (with quartiles 341500 and
512246), and 231666 cycles for verification. For comparison, on Cascade
Lake, the NCC-Sign documentation reports medians of 240496 cycles for key
generation, 616746 cycles for signing, and 339698 cycles for verification.
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For Comet Lake, KpqClean reports 246285 cycles for key generation, 250040
cycles for signing, and 165103 cycles for verification. We re-ran KpqClean on
a Comet Lake with overclocking disabled; it reported 236061, 363541, 246957
in one run, and 235941, 541095, 245345 in a second run.
Tables 11.3, 11.4, and 11.5 show the number of instructions used for key
generation, signing, and verification respectively inside AVX2 software for
nccsign1. Keccak computations use over 50% of the instructions for key
generation but under 50% for signing and verification. The NTT and inverse-
NTT functions in signing and verification appear to have eliminated most
loads and stores but, as in Section 9.5, may still benefit from replacing some
shift instructions with permutation instructions.
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Table 11.3: Instructions used for AVX2 software for nccsign1 key genera-
tion. Each table row tallies the number of instructions used directly by one
function. If function F calls function G then instructions inside G are tallied
for G, not for F .
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Table 11.4: Instructions used for AVX2 software for nccsign1 signing. Each
table row tallies the number of instructions used directly by one function. If
function F calls function G then instructions inside G are tallied for G, not
for F .
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Table 11.5: Instructions used for AVX2 software for nccsign1 verification.
Each table row tallies the number of instructions used directly by one func-
tion. If function F calls function G then instructions inside G are tallied for
G, not for F .

145



Chapter 12

SUPERCOP results for
signature software

Figures 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, and 12.9 are scatter-
plots showing various measurements from SUPERCOP version 20240909
for AIMer (aimer), HAETAE (haetae), MQ-Sign (mqsign), and NCC-Sign
(nccsign). As selected baselines for comparison, these figures also show
measurements for dilithium (not reflecting incompatible Dilithium changes
after the latest submission of Dilithium to SUPERCOP), falcon (similar
issue), ed25519, ed448goldilocks, and one sphincs parameter set.
“T:” means that an implementation is not marked as constant-time. MQ-
Sign is shown with and without “T:” because SUPERCOP includes both
variable-time software from the MQ-Sign team and our patched constant-
time software; the constant-time software has slower signing.
Some of the baseline software was submitted before SUPERCOP added sup-
port for constant-time markers, and has not been updated, so it is also shown
with “T:”.
As in Chapter 7, there is first a CPU-independent plot of sizes vs. sizes, and
then timing graphs split between (1) a computer named titan0 with an Intel
Haswell CPU and (2) a computer named cezanne with an AMD Zen 3 CPU.
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Figure 12.1: Bytes for a signature vs. bytes for a public key.
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Figure 12.2: Bytes for a public key vs. cycles for key generation. Measure-
ments collected on titan0, which has an Intel Haswell CPU.
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Figure 12.3: Bytes for a public key vs. cycles for key generation. Measure-
ments collected on cezanne, which has an AMD Zen 3 CPU.
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Figure 12.4: Bytes for a signature vs. cycles for signing. Measurements
collected on titan0, which has an Intel Haswell CPU.
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Figure 12.5: Bytes for a signature vs. cycles for signing. Measurements
collected on cezanne, which has an AMD Zen 3 CPU.
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Figure 12.6: Bytes for a signature vs. cycles for verification. Measurements
collected on titan0, which has an Intel Haswell CPU.
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Figure 12.7: Bytes for a signature vs. cycles for verification. Measurements
collected on cezanne, which has an AMD Zen 3 CPU.
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Figure 12.8: Bytes for a public key vs. cycles for verification. Measurements
collected on titan0, which has an Intel Haswell CPU.
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Figure 12.9: Bytes for a public key vs. cycles for verification. Measurements
collected on cezanne, which has an AMD Zen 3 CPU.
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Chapter 13

Introduction to patents

13.1 The concept of a patent

A patent is a government-issued monopoly on an “invention”. Use of the
“invention” without authorization from the patent holder is unlawful.
This document uses the United States as a running example (although the
reader is cautioned that there are some variations in patent laws across coun-
tries). United States law says that anyone who “without authority makes,
uses, offers to sell, or sells any patented invention, within the United States
or imports into the United States any patented invention during the term of
the patent therefor, infringes the patent”.1

13.2 Penalties for patent infringement

If a United States court decides that a patent has been infringed, it forces the
infringer to pay the patent holder “damages adequate to compensate for the
infringement”,2 optionally times a factor 3. For example, if a court decides
that an infringement reduced the patent holder’s income by 10 million USD,
the court will force the infringer to pay the patent holder between 10 million
and 30 million USD.
It does not matter whether the infringer received any income. Free software,
such as a cryptographic library or a web browser, is not exempt from patent
law.

135 U.S.C. §271(a).
235 U.S.C. §284.
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13.3 The doctrine of equivalents

The “inventions” covered by a patent are described by a series of “claims”
in the patent. Each claim lists one “invention”, and the patent is infringed
if any claim is infringed.
For example, claim 1 of the RSA patent (filed in 1977, expired in 2000) is as
follows (occasional italics and “1 cm” as in original):

A cryptographic communications system comprising:

� A. a communications channel,

� B. an encoding means coupled to said channel and adapted for
transforming a transmit message word signal M to a ciphertext
word signal C and for transmitting C on said channel,

– where M corresponds to a number representative of a mes-
sage and

0 ≤ M ≤ n−1

– where n is a composite number of the form

n = p · q

– where p and q are prime numbers, and

– where C corresponds to a number representative of an en-
ciphered form of said message and corresponds to

C ≡ Me(mod n)

– where e is a number relatively prime to 1 cm(p-1,q-1), and

� C. a decoding means coupled to said channel and adapted for
receiving C from said channel and for transforming C to a re-
ceive message word signal M′

– where M′ corresponds to a number representative of a de-
ciphered form of C and corresponds to

M′ ≡ Cd(mod n)

– where d is a multiplicative inverse of e(mod(1 cm((p-1),(q-
1)))).

To evaluate an accusation of infringement, a court begins by holding hearings
(called “Markman hearings” in the United States) to decide what the words
in the claim mean. The court then asks whether the infringing use includes
each element of the claim or something “equivalent”:
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� The “doctrine of equivalents” states [Uni02, page 732] that a patent
“is not limited to its literal terms but instead embraces all equivalents
to the claims described”.

� The patent holder can show infringement of a patent claim under this
doctrine by showing for each element of the claim that “the accused
product performs substantially the same function in substantially the
same way with substantially the same result” [Uni09, page 1312].

Consider, for example, the RSA patent. There is descriptive text separate
from the claims, and this text mentions that “the present invention may
use a modulus n which is a product of three or more primes (not necessarily
distinct)”. Meanwhile claim 1 of the patent, quoted above, explicitly requires
n to be pq where p and q are prime numbers. Scientists tend to think that a
patent covers only what is literally included in the patent’s claims, so simply
taking n = 3pq avoids infringement of the RSA patent; i.e., requiring n = pq
was a foolish mistake by whoever wrote the claims in the patent. But that is
not how patent law works. RSA with n = 3pq is performing substantially the
same function as claim 1 in substantially the same way with substantially
the same result, so it infringes the claim.

Ensnarement. In the United States, accused infringers sometimes raise
an “ensnarement” defense. This defense says that “substantially” would
cover the prior art, i.e., publications before the patent. Courts then require
the patent holder to define the boundaries of “substantially” by stating an
expanded “hypothetical” claim that literally covers the infringement without
covering those publications. It is important to realize that this hypothetical
claim is written by the patent holder [Uni00], not by the accused infringer:
“Under a hypothetical claim analysis, a patentee proposes a hypothetical
claim that is sufficiently broad in scope to literally encompass the accused
product or process. . . . If that claim would have been allowed by the PTO
over the prior art, then the prior art does not bar the application of the
doctrine of equivalents.” In other words, the patent holder comes up with
some dividing line having the following three properties:

� the prior art is on one side of the line;

� what the accused infringer did is on the other side of the line;

� the claim is also on the other side of the line.

The infringer then has to argue that crossing this line was obvious.
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13.4 Basic limits on patents

Historically, patent law is based on the belief that patents promote progress.
For example, the constitution of the United States gives the legislature the
power to “promote the Progress of Science and useful Arts, by securing for
limited Times to Authors and Inventors the exclusive Right to their respective
Writings and Discoveries”. There are some corresponding limits on patents:

� Patents are issued only to “inventors”. For example, in the United
States, a patent can be issued only to someone who “invents or discovers
any new and useful process, machine, manufacture, or composition of
matter, or any new and useful improvement thereof”.

� Patents have time limits. Typically patents expire 20 years after the
“priority date” (the date when the “inventor” filed a patent applica-
tion), although the United States often adds “patent term adjustments”
to this 20-year period to account for delays by the patent office.

Showing that a patent did not promote progress—for example, showing that
the same “invention” was independently published a day after the patent ap-
plication was filed—does not invalidate the patent. The following quote from
[Lem12] illustrates why this is important: “Surveys of hundreds of significant
new technologies show that almost all of them are invented simultaneously or
nearly simultaneously by two or more teams working independently of each
other.”

13.5 Novelty

In the United States, a patent claim is not permitted if “the claimed invention
was patented, described in a printed publication, or in public use, on sale,
or otherwise available to the public before the effective filing date of the
claimed invention”,3 or if the claimed invention was described in a patent
filed earlier.4

In other words, showing that someone else5 published an “invention” before
the patent application was filed invalidates the patent. The patent applica-
tion is not on something “new”.

335 U.S.C. §102(a)(1).
435 U.S.C. §102(a)(2).
5An “inventor” can publish something and then file a patent application up to a year

later, so the patent effectively covers 21 years. In most countries, the publication has to
be preceded by a “provisional patent application”.
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It is important to understand that, to eliminate a patent claim as not being
new, courts need to see one reference that discloses every element of a patent
claim. See, e.g., [Uni87, page 631]:

A claim is anticipated only if each and every element as set forth
in the claim is found, either expressly or inherently described, in
a single prior art reference.

Providing two references, where one reference has some of the elements of
the claim and the other reference has the other elements, is not good enough.

13.6 Specializations

Imagine, after the RSA patent, a new patent application being filed with
claim X that looks just like claim 1 of the RSA patent but adds an extra
element: “p and q are 1 modulo 264”.
A court asking whether claim X is new will ask whether there is a single prior
publication that is an example of every element of X. The RSA patent itself
has most elements, but doesn’t say that p and q are 1 modulo 264. Unless
there’s some other publication that has every element, the court will conclude
that X is new. In other words, a patent does not prevent subsequent patents
on specializations.
Granting a patent on X means that anyone using RSA with primes p and
q chosen to be 1 modulo 264 will be infringing the new patent—and will be
infringing the RSA patent. This type of overlap happens all the time; patents
are not required to be disjoint.
As a simpler example, the original Hellman–Diffie–Merkle patent on public-
key cryptography didn’t prevent the subsequent RSA patent. RSA is an
example of public-key cryptography, so anyone using RSA needed permission
from both patent holders.

13.7 Unobviousness

Beyond being new, patents have to be unobvious. “A patent for a claimed
invention may not be obtained” if “the differences between the claimed inven-
tion and the prior art are such that the claimed invention as a whole would
have been obvious before the effective filing date of the claimed invention
to a person having ordinary skill in the art to which the claimed invention
pertains.”6

635 U.S.C. §103.
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An obviousness analysis can look at multiple prior-art references. However,
the question of what is obvious to someone of “ordinary skill in the art”
is decided by courts. The people making these decisions—judges and, for
resolving disputes about the facts in the United States, juries—generally have
no training in the area, and are always faced with a battle between expert
witnesses for one side saying something was obvious at the time of the patent
application and expert witnesses for the other side saying it wasn’t.
For many years, United States courts were also requiring claims of obvious-
ness to meet a restrictive “TSM test”, demonstrating that “some motivation
or suggestion to combine the prior art teachings” can be found in “the prior
art, the nature of the problem, or the knowledge of a person having ordinary
skill in the art”. However, this was rejected by a unanimous Supreme Court
decision in 2007 [Uni07], which held that something “obvious to try” can
qualify as obvious:

When there is a design need or market pressure to solve a problem
and there are a finite number of identified, predictable solutions,
a person of ordinary skill has good reason to pursue the known
options within his or her technical grasp. If this leads to the
anticipated success, it is likely the product not of innovation but
of ordinary skill and common sense. In that instance the fact that
a combination was obvious to try might show that it was obvious
under §103.

13.8 Algorithm patents

It is not clear whether algorithm patents, and more broadly software patents,
are valid in the United States. A unanimous 2014 decision by the Supreme
Court [Uni14] invalidated a patent on “a computer-implemented scheme for
mitigating ‘settlement risk’ (i.e., the risk that only one party to a financial
transaction will pay what it owes) by using a third-party intermediary”.
The decision held that “the mere recitation of a generic computer cannot
transform a patent-ineligible abstract idea into a patent-eligible invention”.
As an example of applying the principles from that court case, consider
US patent 9912479, which claims a particular code-based key-encapsulation
algorithm plus “providing the ciphertext, the confirmation value, and the
encrypted message for transmission between nodes in a communication net-
work”. This is reciting a generic network, just like reciting a generic com-
puter; it does not transform a patent-ineligible algorithm into a patent-
eligible invention.
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There are many examples of court cases after 2014 invalidating software
patents on this basis. Consider, e.g., [Uni23], where a court invalidated
a patent on an improved method of “determining the location of a mobile
device by comparing previously-gathered calibration data with observed data
that has been modified”. The questions of novelty and unobviousness did
not matter; the critical point for invalidating the patent was simply that
this was “modifying or manipulating data” using “conventional computer
technology”.
US patent 9912479 was filed in 2017, and was initially rejected by the patent
office. However, the patent examiner wrote “It is recommended to incor-
porate an explicit recitation of hardware into the claimed to overcome this
portion of the rejection”. The applicant did this, and the patent office issued
the patent.7 This is obviously subverting the Supreme Court’s 2014 decision,
but the only way to enforce the decision is with an expensive court case.
Furthermore, companies cannot be confident of success in court: [Sal19] re-
ported that challenges to software patents under the 2014 decision succeeded
only about half the time.

7The patent office receives more money for issuing a patent than for rejecting it.
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Chapter 14

Specific post-quantum patents

14.1 Warnings

The following sections list various patents that appear potentially relevant
to post-quantum cryptography. This list is not comprehensive: a search on
Google Patents indicates more than 100000 search results for cryptography,
and more than 4000 search results for “post-quantum”.
The sections are organized by priority date. Publications before that date
are relevant to analyses of whether the claimed “inventions” are new and
unobvious.
Patents are typically filed in multiple countries, often with different claims,
and are often further split into “divisional” patents. Specific patent num-
bers are provided here to identify the patent families. Sometimes multiple
countries are listed here, but this has not been done systematically.
The patent analyses in this document are preliminary and are not legal ad-
vice. Comments on prior art are not comprehensive.

14.2 25 July 2000: pqNTRUSign

Application WO 2002009348 A3. Was listed as applicable by the pqN-
TRUSign team in a NIST filing.

Abandonment. The patent application appears to have been abandoned
long before the NIST submission.
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14.3 7 December 2001: FALCON

US patent 7308097. 1-year provisional period and 889-day patent-term ad-
justment, so expires in May 2025. Listed as applicable by the FALCON team
in a NIST filing.

14.4 7 December 2001: pqNTRUSign

US patent 7913088. Listed as applicable by the pqNTRUSign team in a
NIST filing.

Expiration. This patent had a 1-year provisional period and a 654-day
patent-term adjustment, so it expired in September 2024.

14.5 11 April 2002: Gui and Rainbow

US patent 7158636. Ding. 1-year provisional period and 704-day patent-
term adjustment, so expires in May 2025. Listed as applicable by the Gui
and Rainbow teams in a NIST filing.

Expiration. The patent has already expired because of non-payment of
fees.

14.6 24 April 2003: NTRU without decryp-

tion failures

US patent 7929688. Yamamichi, Futa, Ohmori, Tatebayashi (Panasonic).
Expires 23 July 2028 in the United States; has already expired in all other
countries.
Roughly: Claims generating and using NTRU parameters “causing no de-
cryption error”, using the condition “2 ·p ·d+2df−1 < q/2” where df is “the
number of coefficients in a private key polynomial f whose coefficient values
equal to 1”. This might be stretched to cover similar formulas to eliminate
decryption failures in other variants of NTRU, so it’s a potential problem for
the 2005 NTRU parameter sets and most newer variants of NTRU.
Given the doctrine of equivalents, a patent on NTRU without decryption
failures can cover a version of NTRU for which decryption failures are so
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unlikely as to never be observed. The patent might also be stretched to
lattice-based systems beyond NTRU.

Prior art 1. Hoffstein, Pipher, and Silverman handed out a preprint
“NTRU: a new high speed public key cryptosystem” in 1996, in particu-
lar at Crypto 1996. Section 4.3 of this draft (page 18) says “NTRU with 0%
decoding failure. It is possible to eliminate gap failure entirely by choosing
the parameter q sufficiently large. . . . a trivial analysis shows that the coeffi-
cient range is less than d2 + 2dp for binary NTRU and less than r5d2 + r2dp
for symmetric NTRU. So if we choose q larger than this bound, gap failure
disappears.”
Handing out documents at a conference open to the public (even if there are
registration fees), without confidentiality restrictions, should count as prior
art under United States patent law. Conference handouts were treated as
prior art in, e.g., [Uni85]:

We agree with the ITC’s conclusion that the Birmingham paper is
prior art. As the Commission noted, between 50 and 500 persons
interested and of ordinary skill in the subject matter were actually
told of the existence of the paper and informed of its contents
by the oral presentation, and the document itself was actually
disseminated without restriction to at least six persons.

In [Uni04], a three-day conference-poster display—never handed out—was
treated as prior art, with the court saying that it was “considering and bal-
ancing” the following factors:

the length of time the display was exhibited, the expertise of
the target audience, the existence (or lack thereof) of reasonable
expectations that the material displayed would not be copied, and
the simplicity or ease with which the material displayed could
have been copied.

Prior art 2. In 2000, Jaulmes and Joux [JJ00] made the following state-
ment about NTRU: “How Decryption Works. . . . For appropriate param-
eter choices, we can ensure that all coefficients of the polynomial . . . lie
between −q/2 and q/2. So the intermediate value . . . is in fact the true
(non modular) value of this polynomial. This means that when we com-
pute a and reduce its coefficients into this interval, we recover exactly the
polynomial . . . Hence . . . retrieves the message m.”
The patent description says that “while the existing technique presents con-
ditions for generating NTRU parameters that do not cause any decryption
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errors, such conditions are not formulated, which makes it difficult to gen-
erate NTRU parameters that do not cause any decryption errors”. In other
words, the patent holder is asserting that it isn’t obvious how to write down
what Jaulmes and Joux call “appropriate parameter choices”. Meanwhile
the 1996 NTRU draft correctly called this “trivial” and gave an example of
the conditions.

14.7 3 November 2003: decryption using

pairings

US patent 7499544. 959-day patent-term adjustment, so expires in 2026.
Mentioned by the SIKE team in a NIST filing. Official statements from the
SIKE team do not claim that this patent covers SIKE. SIKE is broken, but
the same patent seems to apply to some other isogeny-based systems.

14.8 11 January 2005: Gui and Rainbow

US patent 7961876. Ding. Nearly 1-year provisional period and 1335-day
patent-term adjustment, so will expire in August 2029. Listed as applicable
by the Gui and Rainbow teams in a NIST filing.

14.9 8 June 2005: WalnutDSA

US patent 7649999. 772-day patent-term adjustment. Listed as applicable
in a NIST filing by the WalnutDSA team. WalnutDSA is broken.

14.10 8 June 2005: WalnutDSA

US patent 9071427. 0-day patent-term adjustment. Listed as applicable in
a NIST filing by the WalnutDSA team. WalnutDSA is broken.
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14.11 18 February 2010: the GAM/LPR

family of cryptosystems (noisy DH +

reconciliation)

Patents EP 2537284, US 9094189, FR 10/51190. Gaborit and Aguilar Mel-
chor. The patent holder, CNRS, also paid fees for DE, GB, CH. Expires
January 2032.
Listed as applicable in a NIST filing for various small-key code-based cryp-
tosystems (BIKE, HQC, RQC, and Ouroboros). Apparently also applicable
to various small-key lattice-based cryptosystems.
This is a very broad patent on encryption via the noisy Diffie–Hellman system
plus reconciliation. This is typically called the “LPR10” cryptosystem and
credited to a 2010 paper [LPR10a] by Lyubashevsky, Peikert, and Regev, but
LPR published that cryptosystem after the 18 February 2010 priority date
for this patent.
The original version of the LPR paper had a deadline in late February 2010
for Eurocrypt, was published a few months later by Springer, and had a
more complicated cryptosystem with larger keys. The simple “LPR10” sys-
tem (with small keys, noisy DH, and reconciliation) appeared in, e.g., the
Eurocrypt 2010 slides [LPR10b] from LPR in May 2010. Peikert had posted
slides in 2009 on noisy DH, but those slides did not have reconciliation.
In 2017, on behalf of an undeclared client, a British law firm named
Keltie filed an opposition to the European version of this patent. De-
clared consultants for Keltie included Peikert (who wrote “In the likely
event that the court accepts this argument, the patent is invalidated”
in 2020) and two GCHQ cryptographers. Keltie’s opposition was re-
jected. Keltie appealed. The appeal board issued a preliminary as-
sessment in 2021, not in Keltie’s favor. Keltie withdrew the appeal
on 20 October 2021. https://register.epo.org/application?number=

EP11712927&lng=en&tab=doclist shows the full history of documents filed
in the dispute.
Keltie’s rejected arguments included the following:

� One general requirement in patent law is for patents to claim “inven-
tions” that actually work. Keltie argued that the GAM claim doesn’t
work, since the specific formulas given fail unless the underlying ring is
commutative. The patent holders responded that the formulas work for
various commutative rings given as examples in the patent description,
and that anyone skilled in the art can figure out that the commutative
case makes the formulas work, while (obviously) the formulas require
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adjustment to handle the non-commutative case.

� Keltie argued that the patented “invention” wasn’t novel. However,
the first publications of the GAM/LPR cryptosystem (by GAM, and
independently by LPR) were after the GAM patent was filed. For
each prior publication provided by Keltie, it is easy to see that the
publication is missing some element of the GAM claim.

� Keltie argued that the patented “invention” was obvious. Peikert filed
a statement under oath stating that someone skilled in the art “and
wishing to improve the efficiency of the described lattice/LWE-based
cryptographic system, would have arrived at the invention set out in
the claims of the patent”. For comparison, [Pei16] says that the LPR10
cryptosystem “was first described in [LPR10]”. The Eurocrypt 2010
slides from LPR [LPR10b], after presenting a “suitable ‘compact’ ver-
sion of LWE called Ring-LWE”, used that to produce “an entirely new
& even more efficient PKE scheme”—“a new kind of LWE cryptosys-
tem”, namely LPR10.

It is important to realize that all of these proceedings were regarding the
validity of the claims in the patent. Recall from Section 13.3 that, when a
court considers infringement of a patent claim, the court does not ask merely
whether the claim is literally infringed; doing substantially the same as the
patented invention is enough.
Hoping to avoid the GAM patent by adding some non-commutativity, as
in Kyber, Saber, etc., is like hoping to avoid the RSA patent by using 3pq
instead of pq: this avoids the literal meaning of the claim, but is doing
substantially the same thing as the claim. An ensnarement defense (see
Section 13.3) based on LWE will not work: it is easy to formulate an edited
claim that uses efficiency to cover RLWE and typical examples of MLWE
while excluding LWE.
There have been some public statements dismissing the risk from this patent.
These statements are generally missing how patent law works. For example,
it is asserted in [LS21] that the “patent applicability claim to Kyber and
Saber is baseless”. No references to patent law appear in [LS21], and the
main arguments in [LS21] erroneously conflate the question of infringement
with the question of literal coverage. A separate argument in [LS21] quotes
the statement “The owner indicates that in no case would the patent as
granted prevent the protection of a development based on non-commutative
rings”; this is saying that the GAM patent does not prevent a followup patent
regarding non-commutative rings (see Section 13.6), but is misinterpreted in
[LS21] as a statement about what would infringe this patent.
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Partial licensing. NIST reportedly purchased a license for this patent
family specifically for Kyber.

14.12 22 April 2010: McEliece variant

US patent 8958553, GB patent 2469393. “This invention provides improved
security of the McEliece Public Key encryption system adding features which
make full use of random number generation for given message and cryptogram
parameters, using this invention the encrypted message (i.e. the cryptogram)
is a truly random function, not a pseudo random function of the message
so that even with the same message and the same public key, a different,
unpredictable cryptogram is produced each time.”
This is one of the basic patents on “NTS-KEM”, a variant of McEliece;
“NTS” stands for “never the same”.

Abandonment. The patent holders agreed to abandon these patents as
a condition of being allowed to merge NTS-KEM with Classic McEliece.
Google Patents now lists the patents as expired for non-payment of fees by
the patent holder.

14.13 16 November 2010: McEliece variant

US patent 8891763, GB patent 2473154. “This invention provides improved
security and improved throughput of the McEliece public key encryption
system and reduces the public key size. . . . It is possible using this invention
that the encrypted message, the cryptogram is a truly random function, not
a pseudo random function of the message so that even with the same message
and the same public key, a different, unpredictable cryptogram is produced
each time.”

Abandonment. The patent holders agreed to abandon these patents as
a condition of being allowed to merge NTS-KEM with Classic McEliece.
Google Patents now lists the patents as expired for non-payment of fees by
the patent holder.
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14.14 9 February 2011: secret-sharing signa-

tures

JP 5736816, US 8522033, US 8959355, CN ZL201110145023.8. Sakumoto,
Shirai, Hiwatari (Sony). Listed as applicable in a NIST filing by the MQDSS
team. Expires 2031 or 2032.
Many claims are on authentication, but there is no real dividing line between
authentication and signatures, and claim 18 of US patent 8522033 is explicitly
on signatures. Reading claim 18 finds many words that do not really limit
which signature systems are covered. For example:

� “Signature generation device”: This covers any computer generating
signatures.

� “Processor”: This is the CPU in the computer.

� “Key setting unit”: This is the part of the computer generating a public
key.

� Secret key “s ∈ Kn” for a “ring K”: Any secret key can be viewed as
a string of bits, with K = F2.

� A “multi-order multi-variable polynomial fi(x1, . . . , xn)”: Any finite
computation can be viewed as evaluating a polynomial; there is no
requirement of the polynomial being, e.g., a random quadratic polyno-
mial.

� A “message generation unit for generating N messages c based on the
multi-order multi-variable polynomial fi(x1, . . . , xn) and the secret key
s”: Any signing computation will generate data from the secret key.

� A “verification pattern” obtained by “applying a document M and the
message c to a one-way hash function”: Signature systems typically
hash something together with the document being signed.

Claim 18 has one restriction that sounds more specific: “the digital signature
σ is information that enables calculation of the secret key s in a case verifi-
cations performed using the digital signature σ corresponding to (k−1)N +1
verification patterns have all been successful.”
It is not clear how restrictive this actually is, especially given the doctrine
of equivalents (see Section 13.3). It seems possible to cover, e.g., Schnorr
signatures by choosing k = 2 and N = 1 and interpreting the words reason-
ably. This would also invalidate this patent claim (since Schnorr signatures
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are older), so the patent holder would argue for a narrower interpretation of
the words.
It seems possible that the patent holder could interpret words so as to cover
any MPC-in-the-head signature scheme. MPC-in-the-head zero-knowledge
proofs appeared in 2007 [IKOS07], but [IKOS07] did not mention signatures,
so stopping a claim interpreted in this way would require convincing a court
that MPC-in-the-head signatures were obvious given (1) MPC-in-the-head
zero-knowledge proofs and (2) standard transformations from zero-knowledge
proofs to signatures.

14.15 12 April 2012: compressing

GAM/LPR ciphertexts

US patent 9246675. Ding. 1-year provisional period and 0-day patent-term
adjustment, so expires 11 April 2033. Roughly, this patent claims noisy DH
with compressed reconciliation data. This produces shorter ciphertexts than
GAM/LPR.
A paper by Peikert said it was introducing noisy DH with compressed rec-
onciliation data:

One of our main technical innovations (which may be of indepen-
dent interest) is a simple, low-bandwidth reconciliation technique
that allows two parties who “approximately agree” on a secret
value to reach exact agreement, a setting common to essentially
all lattice-based encryption schemes. Our technique reduces the
ciphertext length of prior (already compact) encryption schemes
nearly twofold, at essentially no cost.

However, this paper was from 2014 [Pei14], two years after this patent was
filed. The patent seems very likely to be upheld in court if there is any
litigation.
In July 2016, Google rolled out an experiment with New Hope, saying “we
plan to discontinue this experiment within two years, hopefully by replacing
it with something better”. The patent holder reportedly contacted Google
to ask for money. In November 2016, Google announced that it was turning
off the experiment.
In December 2016, a paper “NewHope without reconciliation” [ADPS16]
said that it “avoids the error-reconciliation mechanism originally proposed by
Ding”. This led to a perception that the cryptosystem avoids Ding’s patent.
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Various cryptosystems such as Kyber were based on “NewHope without rec-
onciliation”. However, it is unclear why the “v” quantity in “NewHope with-
out reconciliation” does not qualify as “reconciliation”. Even if it is possible
to articulate a clear technical difference, “NewHope without reconciliation”
and its successors perform substantially the same function as Ding’s patented
system in substantially the same way with substantially the same result.

Partial licensing. As in the case of the GAM patent discussed above,
NIST reportedly purchased a license for this patent family specifically for
Kyber.

14.16 13 November 2014: McEliece variant

GB patent 2532242. “This invention is concerned with providing additional
features to the original McEliece system which enhance the bandwidth effi-
ciency and security of the Public Key Encryption arrangement, and to ap-
plications thereof.”

Abandonment. The patent holders agreed to abandon this patent as
a condition of being allowed to merge NTS-KEM with Classic McEliece.
Google Patents now lists the patent as expired for non-payment of fees by
the patent holder.

14.17 5 January 2015: pqNTRUSign

US patent 9722798. Expires in 2035. Listed (20150229478) as applicable in
a NIST filing for pqNTRUSign.

14.18 30 March 2015: Gui and Rainbow

US patent 11290273. Ding. Expires in 2036. Listed as applicable (under
the application number, US 15/562034) by the Gui and Rainbow teams in a
NIST filing.

14.19 8 August 2016: multiple signing

US patent 9794249 by Truskovsky, Yamada, Brown, and Gutoski (ISARA).
Claims combining multiple signature systems.
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Prior art. [Ber16] (February 2016). The general idea of combining cryp-
tosystems is much older than [Ber16]. The specific idea of combining pre-
quantum and post-quantum cryptosystems is probably much older than this
too.

14.20 15 September 2016: randomizing pub-

lic lattice parameters

US patent 9942040 by Kalach (ISARA). Claim 1: “A lattice-based cryp-
tography method comprising: obtaining a first value of a public parameter
previously used in a first execution of a lattice-based cryptography proto-
col; generating, by operation of one or more processors, a second value of
the public parameter based on the first value of the public parameter and
random information; and using the second value of the public parameter in
a second execution of the lattice-based cryptography protocol, wherein the
second execution of the lattice-based cryptography protocol comprises: gen-
erating a public key based on the second value of the public parameter; and
sending the public key to a correspondent over a channel.”

14.21 7 November 2016: isogeny-based key

exchange

US patent 10673631. This appears to be a rather broad patent on isogeny-
based key exchange, although it cannot cover systems published earlier, such
as CRS.

14.22 18 November 2016: GAM/LPR with

rounding

US patent 11329799. Expires in 2037. Listed (PCT/KR2017/013119,
WO2018093203A1) as applicable in a NIST filing by the Lizard team.
Roughly, the patent claims schemes where the public key uses addition of
errors (as in GAM/LPR) but the ciphertext uses rounding. A question of
whether the patent also covers, e.g., SABER has not been answered.

Prior art. Rounded ciphertexts already appeared in [BCLv17, May 2016
version].
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14.23 18 November 2016: GAM/LPR vari-

ants

China patent 107566121. Yunlei Zhao. Expires in 2036. Listed as applicable
in a NIST filing for KCL (OKCN, AKCN, CNKE).
This patent sounds very similar to “NewHope without reconciliation” and
was filed a month before “NewHope without reconciliation” was published.
The patent holder stated in May 2022 (https://groups.google.com/
a/list.nist.gov/g/pqc-forum/c/Fm4cDfsx65s/m/F63mixuWBAAJ) that
“Kyber is covered by our patents”. There has been no statement from NIST
regarding this.

14.24 15 February 2017: GAM/LPR with

rounding

US patent 11070367. Bhattacharya, Garcia Morchon, Tolhuizen, Rietman.
Listed (EP17156214, EP17170508, EP17159296, EP17196812, EP17196926)
as applicable in a NIST filing for Round5.

14.25 10 May 2017: GAM/LPR with round-

ing

Europe patent 3622663. Appears similar to the 15 February 2017 filing,
except for using polynomials rather than matrices.

14.26 9 June 2017: QC-MDPC

US patent 9912479. ISARA. Listed as applicable in a NIST filing for QC-
MDPC. Expires 2037.
This patent was discussed in Section 13.8 as an example of how the US patent
office continues to allow algorithm patents.
During the application process, the patent examiner also identified prior art
(namely patent application 20150163060 from Tomlinson). ISARA filed an
amendment, replacing “applying an error vector derivation function to a
random value to produce an error vector” with the following text:

applying an error vector derivation function to a random value to
produce an error vector, wherein applying the error vector derivation
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function to the random value comprises:

� applying a pseudorandom function to the random value to pro-
duce a pseudorandom function output;

� applying a filter to the pseudorandom function output to pro-
duce a filtered pseudorandom function output, the filtered pseu-
dorandom function output comprising t integers; and

� generating the error vector based on the filtered pseudorandom
function output, the error vector having a Hamming weight
equal to t[.]

ISARA argued that the amended claims did not include any prior art: “The
Office Action relies on Tomlinson as allegedly disclosing a previous version
of these features, but Tomlinson does not disclose an error vector derivation
function that includes a pseudorandom function and a filter applied to a
pseudorandom function output as claimed, and thus, does not disclose an
error vector based on a filtered pseudorandom function output.”
Of course, there is ample literature explaining that the job of pseudorandom
functions is to simulate randomness; one can freely replace any random value
with the output of a pseudorandom function. There is also ample literature
explaining how to apply various filters to random strings to obtain other
types of randomness, this is the standard way of obtaining, e.g., random
error vectors. But the patent office issued the patent.
The original Classic McEliece submission to NIST in 2017 started with a
ciphertext format from Niederreiter and added “plaintext confirmation”. In
2022, Classic McEliece added software that removes “plaintext confirma-
tion”, and explained this as patent avoidance:

The purpose of this tweak is to proactively eliminate any concerns
regarding U.S. patent 9912479. The threat posed by the patent was
already very low, for at least two reasons:

� The patent does not literally apply to any version of Classic
McEliece. For example, one of the requirements in the patent
is to obtain a ciphertext from “the error vector and the plaintext
value”; Classic McEliece has only one of these two objects. The
decryption mechanism in the patent is even farther away from
what Classic McEliece does.

� All of the overlap between the patent and Classic McEliece is
already in the prior art, such as https://eprint.iacr.org/

2015/610.
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However, users may be concerned about the risk of a court (1) declar-
ing Classic McEliece’s encapsulation “equivalent” to the patented en-
cryption mechanism and (2) mishandling the prior art. Eliminating
plaintext confirmation creates a much more clear separation between
Classic McEliece and the patent, and returns Classic McEliece to the
traditional Niederreiter form of encryption.

Prior art. [BCS13]; [BCLv17].

14.27 13 December 2017: RLCE

US patent application 15/840,121. Listed as applicable in a NIST filing for
RLCE.

Abandonment. The patent application has been abandoned.

14.28 20 September 2016: WalnutDSA

US patent 10523440. Listed as applicable in a NIST filing by the WalnutDSA
team. WalnutDSA is broken.

14.29 22 May 2017: Compact LWE

Australia patent application 2017901941. Listed as applicable in a NIST
filing for Compact LWE.

Abandonment. The patent application has been abandoned.

14.30 6 February 2018: multiple signing and

encryption

US patent 11716195. Claim 1: “A method comprising: generating, by a first
device and based on a secret sharing algorithm, a first secret and a second
secret from a first communication; encrypting, using a first encryption algo-
rithm, the first secret; encrypting, using a second encryption algorithm, the
second secret; generating a first signature of the first and second encrypted se-
crets; generating a second signature of the first and second encrypted secrets;
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and transmitting, by the first device to a second device, the first encrypted
secret, the second encrypted secret, the first signature, and the second sig-
nature.”
The wording here sounds broad, for example covering TLS if encryption and
signatures are both upgraded to post-quantum hybrids.

Prior art. [Ber16].

14.31 12 September 2018: polynomial multi-

plication

US patent 11798435. Claim 1: “A method for executing a cryptographic
operation on a security device, the method comprising: sampling a first
polynomial, wherein coefficients of the first polynomial are determined based
on a first distribution such that: a value 0 of the first polynomial occurs
with a probability amounting to ζ, a value −lim1 of the first polynomial
occurs with a probability amounting to α, and a value lim1 of the first poly-
nomial occurs with a probability amounting to β, wherein ζ + α + β=near
1; sampling a second polynomial, wherein a selection of k coefficients of the
second polynomial is determined based on a second distribution; multiplying
the first polynomial with the second polynomial to determine a result; and
executing the cryptographic operation using the result of the multiplication,
wherein the method is performed to increase the robustness of the security
device against one or more side-channel attacks.”

Prior art. The NTRU Prime software from [BCLv17] was already multi-
plying a ternary polynomial by another polynomial with protection against
timing attacks.

14.32 12 February 2019: multiple encryption

US patent 11431498. Claim 1: “A method, comprising: concatenating, by a
processor system of a computing device, a message to be encrypted with a
random value; generating a symmetric key and a first ciphertext comprising
an encapsulation of the symmetric key using a value derived from the random
value using at least a first one-way function and a first public key of a first
asymmetric key pair; encrypting, by the processor system, the combination of
the message to be encrypted and the random value with the symmetric key to
provide an intermediate ciphertext; encapsulating, by the processor system,
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the intermediate ciphertext using a different value derived from the random
value and a second public key of a second asymmetric key pair to provide a
second ciphertext, the different value being derived from the random value
using at least a second one-way function; and storing the first and second
ciphertexts in memory of the computing device.”

Prior art. [Ber16].

14.33 28 June 2019: precomputation in hash-

based signatures

US patent 11218320. Intel. Roughly: claims hash-based signatures with
“accelerator logic to pre-compute at least one set of inputs to the signature
logic”.

Prior art. [WJW+19], already online in 2018.

14.34 28 June 2019: multiple signing

US patent 11456877. Intel. Roughly: claims signing a message twice on a
“unified hardware accelerator hosted by a trusted platform of the computing
device”.

14.35 28 June 2019: hash chains

US patent 11770258. Intel. Roughly: claims a “hardware processor” for hash
chains.

14.36 28 June 2019: hash-based signatures

US patent 11770262. Intel. Roughly: claims a “hardware processor” for
hash-based signatures.

14.37 28 June 2019: hash-based signatures

US patent 11917053. Intel. Roughly: claims a combined SHA-2/SHA-3
accelerator for hash-based signatures.
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14.38 28 February 2020: multiple encryption

US patent 11343084. Roughly: claims double encryption with ECDH and
post-quantum cryptography.

Prior art. [Ber16].

14.39 29 July 2020: multiple encryption

US patent 11722296. John A. Nix, who has licensed other patents to a
patent-enforcement company “Network-1 Technologies”. Roughly: claims
a device that (1) announces an ephemeral KEM public key, (2) receives a
ciphertext, (3) decapsulates the ciphertext, (4) extracts a public key for a
different KEM, and (5) encapsulates to that public key.

Prior art. [SSW20].
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[DHK+21] Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyuba-
shevsky, and Gregor Seiler. Faster lattice-based KEMs via a
generic fujisaki-okamoto transform using prefix hashing. In Gio-
vanni Vigna and Elaine Shi, editors, ACM CCS 2021: 28th Con-
ference on Computer and Communications Security, pages 2722–
2737. ACM Press, November 2021. doi:10.1145/3460120.

3484819.
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