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Abstract—Side-channel analysis is a powerful technique to
extract secret data from cryptographic devices. However, this
task heavily relies on experts and specialized tools, particularly
in the case of simple power analysis (SPA). Meanwhile, ChatGPT,
a leading example of large language models, has attracted
great attention and been widely applied for assisting users with
complex tasks. Despite this, ChatGPT’s capabilities for fully
automated SPA, where prompts and traces are input only once,
have yet to be systematically explored and improved. In this
paper, we introduce a novel prompt template with three expert
strategies and conduct a large-scale evaluation of ChatGPT’s
capabilities for SPA. We establish a dataset comprising seven
sets of real power traces from various implementations of public-
key cryptosystems, including RSA, ECC, and Kyber, as well as
eighteen sets of simulated power traces that illustrate typical SPA
leakage patterns. The results indicate that ChatGPT fails to be
directly used for SPA. However, by applying the expert strategies,
we successfully recovered the private keys for all twenty-five
traces, which demonstrate that non-experts can use ChatGPT
with our expert strategies to perform fully automated SPA.

Index Terms—AI and Machine Learning, Security & Privacy,
Test

I. INTRODUCTION

Hardware and embedded systems security is essential, re-
quiring cryptographic moudles to protect. Before entering the
market, these products typically need experts and specialized
tools to perform security tests. Recently, the swift advancement
of AI technology has led to a remarkable surge in powerful
large language models (LLMs). Leading global companies
like OpenAI, Meta, and Google, along with numerous open-
source contributors, have played a pivotal role in advancing the
development of a wide range of LLMs. To date, LLMs have
achieved significant success and found widely used in various
domains, including code generation [1], vulnerability manage-
ment [2], and anomaly detection [3]. Among the numerous
LLMs, ChatGPT [4] has attracted widespread attention for its
exceptional natural language processing and multimodal learn-
ing capabilities. Impressively, ChatGPT became the fastest-
growing app worldwide, reaching 100 million users just two
months after its launch.

In 1999, Kocher first proposed side-channel analysis for
cryptosystems and successfully recovered the key using timing
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analysis and simple power analysis (SPA) [5]. Public-key cryp-
tosystems such as RSA, ECC, and Kyber are widely used for
identity recognition and digital signatures. These algorithms
demonstrate distinctive power consumption patterns, rendering
them vulnerable to SPA [6]. Consequently, SPA has become
a crucial step for evaluating the security of cryptographic
devices in standard [7]. Researchers have developed several
effective SPA techniques by combining machine learning and
mathematical analysis [8]. However, these methods still rely
heavily on expert and specialized tools. Since ChatGPT can be
applied in numerous fields, could it also be used as illustrated
in Figure 1 to achieve fully automated SPA for public-key
algorithms?

Figure 1. ChatGPT for SPA.

To fill this research gap, in this paper, we explore: Can
ChatGPT directly assist evaluators in performing fully
automated SPA classification tasks for public-key cryp-
tosystems? Given the similarities between classification in
SPA and anomaly detection tasks, applying ChatGPT to solve
these tasks is highly plausible. Specifically, we aim to in-
vestigate whether GPT can directly perform fully automated
public-key SPA. Besides, considering the impact of existing
prompt engineering methods, we introduce a novel prompt
template with three expert strategies to evaluate its effect on
ChatGPT’s capabilities. Finally, for the difficulties encountered
by ChatGPT for SPA, we seek to shed light on aspects for
future exploration.

To address the question, we established a dataset comprising
seven sets of real power traces from various implementations
of public-key cryptosystems, including RSA, ECC, and Kyber,
as well as eighteen sets of simulated power traces representing
common SPA leakage patterns. By leveraging this dataset, we
evaluated ChatGPT’s performance for SPA classification tasks
by sending different prompts. We investigate the effect of each
prompt by measuring the one-prompt success rate (OPSR),



which is defined as the proportion of correct classifications
achieved over ten independent trials, with each trial inputting a
prompt only once. Then, we investigate the impact of different
prompt engineering strategy. Finally, we analyzed ChatGPT’s
responses to identify bottlenecks for each task.

Our evaluation and analysis results demonstrate that (1)
ChatGPT cannot be directly used for SPA. (2) By applying
expert strategies, we successfully recovered the private keys
for all twenty-five traces, which demonstrate that non-experts
can use ChatGPT with our expert strategies to perform fully
automated SPA. (3) Intuitively, the more information provided
in the prompt, the better ChatGPT performs. However, our
investigation reveals that providing excessive information to
ChatGPT can lead to memory loss and hallucinations. There-
fore, directing ChatGPT to prioritize relevant and constructive
information over potentially problematic content is a critical
area for further research. Our contributions are as follows.

• We conduct the first large-scale evaluation of ChatGPT
for SPA tasks. The results indicate that ChatGPT cannot
be directly used for SPA.

• We introduce a novel prompt template with three expert
strategies. By applying our strategies, we successfully
recovered the private keys for all twenty-five traces,
which demonstrate that non-experts can use ChatGPT
with our expert strategies to perform fully automated
SPA.

• We uncover the bottlenecks encountered by ChatGPT for
SPA and shed light on promising future directions to
improve ChatGPT’s performance.

The remainder of the paper is organized as follows. Section
II gives the background about SPA and ChatGPT. Section III
describes the research pipeline and expert strategies design.
Section IV shows the experimental setup and evaluation re-
sults. Section V discusses the bottlenecks and future directions.
Section VI concludes the paper.

II. BACKGROUND

A. SPA on Public-key Cryptosystems

Currently, there are two commonly used public-key cryp-
tosystems: RSA [9] and ECC [10], [11]. The sequence of
cryptographic operations is directly related to the private key.
Taking RSA as an example, if a private key bit is “0”, the
algorithm only performs modular square. However, if a private
key bit is “1”, the algorithm sequentially performs modular
square and modular multiplication. Due to the typical differ-
ences in the execution operations for different bit values, these
variations are often significantly reflected in power traces.
Therefore, the core of SPA typically consists in classifying
waveforms to different cryptographic operations to obtain
information about private keys.

B. ChatGPT and Prompt

ChatGPT is a large language model developed by OpenAI
with powerful language understanding and generation capa-
bilities. Users can use ChatGPT through its web interface or
official API [4]. A common method to adapt general models

to specific tasks is model fine-tuning. However, this approach
is often eschewed due to its labor-intensive requirements
and significant resource consumption. As a result, attention
has shifted toward optimizing the prompt, i.e., the input of
ChatGPT, which significantly influences the relevance and
accuracy of ChatGPT’s output [12].

Currently, various prompt construction strategies are em-
ployed to enhance ChatGPT’s capabilities. Among these, in-
context learning has become a dominant paradigm [13]. The
foundational approach to in-context learning, known as 0-shot
prompting, instructs ChatGPT by directly describing the task
and question [14]. However, this approach may struggle with
unfamiliar tasks. To address this problem, researchers devised
advanced prompts by integrating demonstrations. Depending
on the volume of demonstration examples within a prompt,
they can be classified as 1-shot prompting (with a singular
demonstration example) or few-shot prompting (incorporating
multiple demonstration examples) [15]. While well-structured
demonstrations have proven effective for simple tasks, they
tend to be less effective for intricate tasks. To counter these
challenges, another line of works enhance ChatGPT by re-
fining demonstration formats. This includes providing supple-
mental general information, such as role definitions [14], [16]
and step-by-step thinking guidance [12].

III. METHODOLOGY

A. Research Pipeline

Figure 2 shows the pipeline of our research, which includes
three phases: ➀ template design and dataset preparation, ➁
expert strategies design and optimization, and ➂ large-scale
evaluation.

Figure 2. Research pipeline.

Currently, automatic prompt generation [17] is an ongoing
research work that has not been well addressed. Consequently,
in phase ➀, according to the construction rules outlined in
II-B, we first design three prompt templates listed in Table 1
manually based on the heuristics derived from existing widely
adopted strategies [15]. Subsequently, We have established a
power trace dataset which list in Table 2 and Table 3.

In phase ➁, we first design many different expert strate-
gies. Subsequently, we refine the strategies based on our
manual analysis of ChatGPT’s responses to limited traces
in the dataset. Details regarding the strategies design and
optimization process are discussed in III-B. As a result, we



Table 1. Three prompt templates.

Template Name Template Description

0-shot <input><task description> Input: The file contains a power trace from an RSA signing process, where each segment
represents an operation.
Task Description: Please identify these operations, which can be classified into two types: S
and M.

general-info <role><reinforce><input>
<task description><zero-CoT>

Role: I would like you to act as an expert in side-channel analysis and signal processing, helping
me analyze vulnerabilities in an encryption system.
Reinforce: During the analysis process, please do not ask me any questions; instead, proceed
step by step until you provide the final answer.
Input & Task Description: (...Same as Above...)
Zero-CoT: To complete this task, you may need to follow these steps: 1. Choose an appropriate
method to segment the trace. 2. Choose an appropriate method to classify the operations into
two types, S and M.

expertise <role><reinforce><input>
<task description><zero-CoT>
<expert strategies>

Role & Reinforce & Input & Task Description & Zero-CoT: (...Same as Above...)
Expert Strategies: (A selection of three expert strategies.)

acquire three expert strategies: Preprocessing, Classification
and Rectification.

Finally, in phase ➂, to fully explore ChatGPT’s capabilities,
we use 0-shot, general-info, and expertise prompts with a
selection of expert strategies developed in phase ➁ to conduct
a large-scale evaluation on the dataset.

B. Expert Strategies Design and Optimization

When humans get the power traces to do SPA, the approach
is generally: (1) First segment the trace according to the known
bit length of the private key [8], [18]. (2) Then apply moving
average, filtering or other preprocessing operations to the
segmented waveforms [19]. (3) Then choose a classification
method such as evaluating visual information, or reducing the
dimension followed by clustering to divide the waveforms
into two categories [20], [21]. (4) Then check the results by
certain rules. For example, the number of modular squares
must be consistent with the known bit length of the private
key under RSA algorithm without special SPA protection [22].
There must never be two consecutive modular multiplication
operations. If results violate a rule, try a different classifi-
cation method until the rule is no longer violated. From the
perspective of human thinking logic, we refine (2) - (4) into
three expert strategies when the private key of a public-key
cryptosystems is n bits (where n represents the bit length
of the private key) and disregarding unexpected segmentation
issues. To ensure the effectiveness of each expert strategies, we
assess them using limited traces in the dataset. Subsequently,
we optimize the strategies based on our manual analysis of
ChatGPT’s responses. Finally, the three expert strategies are
as follows:

• Preprocessing: Apply moving average, filtering or other
preprocessing operations to the segmented waveforms.

• Classification: Please evaluate the classification by con-
sidering both numerical data and visual information from
the waveform. For the visual aspect, you can use tech-
niques such as shape recognition, peak count, or image-
based anomaly detection methods. For the numerical data,

consider dimensionality reduction followed by clustering
to divide the operations into two categories.

• Rectification: There must be exactly n S operations,
the first operation must be a S operation, and there
must be at least one S operation between any two M
operations. After completing the classification, please
check the number of S operations and whether the M
operations meet the spacing requirements. If the criteria
are not met, please try a different classification method.

As shown in Figure 3, the expertise prompt differs from the
general-info prompt by providing Preprocessing and Classifi-
cation expert strategies. After removing the pink text, the rest
represents the general-info prompt.

Figure 3. An example of the expertise prompt for side-
channel analysis.

IV. EVALUATION RESULTS

In this section, we elaborate on the evaluation results of
ChatGPT for SPA tasks. We seek the answers to the research



question proposed in Section I by using OPSR, investigating
the impact of different expert strategies, and exploring the
potential future research directions to address the bottlenecks
encountered by ChatGPT.

A. Setup

We use different accounts to access ChatGPT-4 through
OpenAI’s web interface. Each experiment started a new con-
versation and turn off the memory function to ensure that each
experiment was repeated independently. We have established
a dataset1 with seven sets of real power traces from different
implementations of public-key cryptosystems, including RSA,
ECC, and Kyber, as well as eighteen sets of simulated power
traces illustrating common SPA leakage patterns. Table 2 and
Table 3 presents the key information about the traces in the
dataset.

The real dataset includes four different implementations of
RSA, two implementations of ECC, and one implementation
of the post-quantum algorithm Kyber [23]. To differentiate
between devices, we assigned symbolic abbreviations, which
are subsequently used throughout the paper. Details such as
private-key lengths (Lkey), number of points, and other key
information are described in Table 2. And ECC-AT is a toy
implementation due to limited memory and computational
resources on the AT89S52. During the experiment, in light of
ChatGPT’s response limitations, we provided extracted traces
containing thirty-six operations per submission to ChatGPT.

Table 2. The dataset of public-key cryptosystems.

Algorithm Lkey Operations Device Implementation

RSA 1024 1562 smart card (SC) co-design

RSA 1024 1536 ASIC (AS) hardware

RSA 1024 1531 SAKURA-G (SG) hardware

RSA 1024 1535 STM32F429 (S9) software

ECC 128 192 AT89S52 (AT) software

ECC 256 372 smart card (SC) co-design

Kyber 256 256 STM32F407 (S7) software

The simulated dataset includes six distinct categories, each
subdivided into three levels, differentiated by Gaussian noise
with standard deviations of 0.01, 0.1, and 0.2, denoted as
σ1, σ10, and σ20, respectively. Furthermore, we apply the
modular square (S) and modular multiplication (M) operations
of the RSA algorithm as examples, characterizing the signal-
to-noise ratio (SNR) difference between two operations traces
by calculating the Euclidean distance between them:

dEuclidean =

√√√√ N∑
t=1

(y1(t)− y2(t))
2 (1)

where dEuclidean denotes the Euclidean distance between two
operations, t denotes the t-th point in the operation, and N
represents the total number of points in each operation. y1(t)
and y2(t) are the values of the trace at point t.

1https://github.com/haillife/One-Solves-All

We use the same dEuclidean between two operations in the
first five simulated traces:

• Simulated-1: S and M is different overall.
• Simulated-2: M is slightly higher than S overall.
• Simulated-3: M differs from S in only one point.
• Simulated-4: M has 10 discrete points differ from S.
• Simulated-5: M has 10 consecutive points differ from S.
In Simulated-1 to Simulated-5, S and M share the same

number of points 100. In Simulated-6, M contains ten addi-
tional points compared to S, but the overall shape remains
identical.

Table 3. The dataset of simulated traces.

Name Lkey Points Noise
Simulated-1 24 3600 σ1, σ10, σ20

Simulated-2 24 3600 σ1, σ10, σ20

Simulated-3 24 3600 σ1, σ10, σ20

Simulated-4 24 3600 σ1, σ10, σ20

Simulated-5 24 3600 σ1, σ10, σ20

Simulated-6 24 3720 σ1, σ10, σ20

By leveraging dataset, we evaluated ChatGPT’s capabilities
for SPA tasks by sending 0-shot, general-info, and expertise
prompts with different expert strategies. We label the three
expert strategies Preprocessing, Classification, and Rectifica-
tion, as 1, 2, and 3, respectively. For example, expertise-2&3
represents an expertise prompt that uses the Classification and
Rectification strategies. And we investigate the effect of each
prompt by measuring the one-prompt success rate (OPSR),
which is defined as the proportion of correct classifications
achieved over ten independent trials, with each trial inputting
a prompt only once.

Table 4. Evaluation results of real dataset.

Prompt RSA ECC Kyber

SC AS SG S9 AT SC S7
0-shot 0 0 0 0.1 0 0 0

general-info 0 0 0.17 0.4 0 0 0
expertise-1 0.1 0 0 0.14 0 0 0
expertise-2 0.1 0 0 0.125 0.125 0.25 0.1
expertise-3 0.2 0 0 0 0 0.3 −

expertise-1&2 0 0 0 0.5 0.25 0 0.5
expertise-1&3 0 0 0 0.4 0 0 −
expertise-2&3 0.25 0.125 0 0.9 0 0.9 −

expertise-1&2&3 0.2 0.5 0.2 0.4 0.14 0.14 −

B. Results

Table 4 and Table 5 reports the results of evaluation and −
represents the expert strategy is not suitable.

a) ChatGPT cannot be directly used for SPA: For
comparison, we first evaluate ChatGPT’s capabilities by 0-
shot, general-info, and expertise with strategies. The OPSR
results from the analysis of seven real and eighteen simulated
traces, as detailed in Table 4 and Table 5, indicate that
ChatGPT cannot be directly used for SPA, achieving nearly



Table 5. Evaluation results of simulated dataset.

Prompt Simulated-1 Simulated-2 Simulated-3 Simulated-4 Simulated-5 Simulated-6

σ1 σ10 σ20 σ1 σ10 σ20 σ1 σ10 σ20 σ1 σ10 σ20 σ1 σ10 σ20 σ1 σ10 σ20

0-shot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
general-info 0 0 0 0.5 0 0 0 0 0 0.5 0 0 0.2 0 0 0 0 0
expertise-1 0 0 0 0.2 0.9 0.5 0.9 0 0 0 0 0 0 0 0 0 0 0
expertise-2 0.5 0.5 0.5 0.5 0.17 0.5 1 0 0 1 0.33 0 0.5 0.14 0 0 0 0
expertise-3 0.9 0 0 0.33 0 0 0 0 0 0.33 0 0 0 0 0 0 0 0

expertise-1&2 0.2 0.5 0.5 1 1 0.5 0.3 1 0 0.5 0 0 1 0 0 0.5 0.14 0
expertise-1&3 0.3 0 0.2 0 0 0 0.3 0 0 0.17 0 0 0.3 0 0 0 0 0
expertise-2&3 0.5 0 0.8 1 0.5 1 0.2 0 0 1 0.13 0.5 1 0.13 0.25 0.3 0.5 0

expertise-1&2&3 1 1 1 1 1 0.25 1 0.5 0.5 0.5 0.5 0 0.5 0.25 0 0.5 0.8 0.4

zero success in both 0-shot and general-info input. This lack
of effectiveness is evident, as most traces yielded no successful
analyses across ten attempts, with only a few displaying
minimal success rates. However, capabilities significantly im-
prove when prompts with expert strategies are employed,
enabling successful private-key recovery of all twenty-five
traces. Notably, the success rates fluctuate depending on the
strategies applied, indicating that the effectiveness of these
strategies can vary independently.

b) ChatGPT’s capabilities: The OPSR results of the
simulated traces with Gaussian noise of σ10 are detailed in
table 5. It reveals that ChatGPT demonstrates a notable profi-
ciency in distinguishing between Simulated-1 and Simulated-2
traces which share the same SNR leakage. While Simulated-1
can be distinguished by the naked eye, Simulated-2 remains
visually indistinguishable. This finding suggests that Chat-
GPT holds an advantage over human visual analysis. Further
analysis extends this observation to a broader range of leak
scenarios within Simulated-3, Simulated-4, and Simulated-5.
In these cases, ChatGPT effectively manages SPA tasks across
varying leak types, including single-point leaks (Simulated-
3), discrete multi-point leaks (Simulated-4), and continuous
multi-point leaks (Simulated-5). Additionally, the results for
Simulated-6 underscore ChatGPT’s effectiveness in handling
SPA tasks involving temporal leaks, reaffirming its utility
in complex scenarios where precise timing information is
essential. Collectively, these outcomes highlight ChatGPT’s
robustness and versatility in SPA tasks across various contexts
and leakage categories.

We examines the impact of Gaussian noise on the OPSR
across various simulated datasets, confirms the anticipated
influence of noise on signal processing tasks. The results
demonstrate a clear trend: OPSR decreases as noise levels rise,
aligning with expectations that higher noise generally impairs
signal analysis success rates due to increased distortion and
reduced clarity. Despite the anticipated decline in performance
with increased noise levels, ChatGPT demonstrates substan-
tial robustness and retains a notable degree of resistance
to interference. This suggests that ChatGPT can effectively
manage SPA tasks even under suboptimal conditions where
noise impacts the data analysis process. Its ability to perform
successfully across varying noise levels highlights both its

adaptability and potential utility in environments where noise
is an unavoidable factor.

c) Suggestions: The success ratio in Figure 4a indicates
the number of successfully recovered traces out of the total
twenty-five, while the average OPSR represents the mean
OPSR of these successful recoveries. Figure 4a provides a
comprehensive analysis of OPSR across different expertise
prompts for SPA tasks, offering a deeper understanding of
the relative effectiveness of various strategies when applied
individually or in combination. The analysis indicates that
expertise-1, when used alone, generally results in low OPSR,
suggesting limited efficacy as a standalone approach. Specif-
ically, in scenarios such as RSA-SC and Simulated-2, where
leakage is represented by a single point, expertise-1 may
actually hinder capability. This effect likely arises from Chat-
GPT’s tendency under expertise-1 to inadvertently filter out
essential signal points. Further data shows that combining
strategies often improves OPSR, though more strategies (e.g.,
expertise-1&2&3) do not necessarily produce better outcomes
than selective applications (e.g., expertise-1&2). This outcome
may stem from ChatGPT’s constraints in context memory,
where an excess of strategies can lead to issues like memory
loss and hallucinations. Additionally, expertise-3 demonstrates
limitations in specific contexts, such as the kyber traces,
where signals distinguish between consecutive bits (e.g., two
consecutive “1” bits). In these cases, expertise-3 may be less
effective or even unsuitable, indicating a need for adjustments
or the potential exclusion of this strategy.

In Figure 4b, “Length” represents the total word count in
this strategy, while “Time” denotes ChatGPT’s average re-
sponse time. This figure reveals that as the number of strategies
increases, both the token count and response time also rise,
though both remain within acceptable limits. In summary,
the statistical findings suggest that expertise-2&3 is generally
sufficient and effective in most cases. While using expertise-
1&2&3 may yield a marginally higher average OPSR, the
nuanced performance of each strategy combination under
varying conditions advocates for a more tailored approach to
optimize ChatGPT’s capabilities.

V. DISCUSSION

In this section, we uncover the bottlenecks encountered
by ChatGPT for SPA and shed light on promising future



(a) Success ratio of prompts. (b) Consumption of prompts.

Figure 4. Success ratio and consumption of prompts.

directions to improve ChatGPT’s performance.
Segmentation problem. The quality of trace segmentation

directly impacts the accuracy of segment classification, which
in turn affects private key recovery [22]. Currently, the most
common method of segmentation are equidistant segmentation
[8] and peak-based segmentation [18]. In this paper, we find
that ChatGPT generally uses a straightforward equal-division
strategy for segmentation, which is often effective. When the
segments are not of equal length, we can guide ChatGPT
to use the find peaks function from the SciPy library, which
identifies peaks in traces, to achieve successful segmentation.
Therefore, we do not focus on segmentation in particular.
We acknowledge that segmentation can become complex in
certain cases, in such instances, our approach is to separate
segmentation from classification tasks. In future work, we will
further explore and enhance ChatGPT’s capabilities in trace
segmentation and preprocessing.

Prompting techniques. We manually constructed prompt
templates based on prior works in LLM evaluation [24] and
our empirical analysis. This manual approach is adopted due
to the inherent challenges of automatic prompt engineering,
a complex area that holds potential for stimulating research
[17]. We also tried to design other expert strategies, such as
providing examples. However, due to the significant length of
traces and absence of a golden sample for SPA, this approach
proved challenging. ChatGPT struggles to effectively learn
features when the context exceeds its length limit, leading us
to ultimately abandon this strategy. Nevertheless, developing
additional expert strategies remains an interesting direction for
future research.

Alternative AI approaches. We primarily evaluates Chat-
GPT’s performance, given its prominence as the leading AI
tool currently available. However, our prompt templates and
evaluation pipeline are broadly applicable to other LLMs. Fu-
ture work will entail comprehensive assessments of additional
LLMs to rigorously investigate and benchmark their perfor-
mance. Furthermore, exploring alternative AI methodologies,
such as fine-tuning open-source models, may help mitigate
certain identified limitations, thus offering a valuable avenue

for future research.
Hallucination issues. We identify several instances of hallu-

cination and implement mitigation strategies, including expert-
driven prompts and meticulous manual verification. Nonethe-
less, effectively addressing hallucination in LLMs remains
an unresolved challenge that warrants further investigation in
subsequent research.

VI. CONCLUSION

In this paper, we conduct the first large-scale evaluation
to explore ChatGPT’s capabilities for SPA. Specifically, we
propose a novel prompt template with three expert strategies.
By sending the prompt to ChatGPT only once, we investigate
ChatGPT’s SPA capabilities using seven sets of real power
traces from different implementations of public-key cryptosys-
tems, including RSA, ECC, and Kyber, as well as eighteen sets
of simulated power traces illustrating common SPA leakage
patterns. The results indicate that ChatGPT cannot be directly
used for SPA. However, by applying our strategies, we suc-
cessfully recovered the private keys for all twenty-five traces,
which demonstrate that non-experts can use ChatGPT with our
expert strategies to perform fully automated SPA. Furthermore,
we identify specific challenges encountered by ChatGPT and
shed light on future research aimed at optimizing ChatGPT’s
capabilities for SPA.
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