
1

NMFT: A Copyrighted Data Trading Protocol based
on NFT and AI-powered Merkle Feature Tree

Dongming Zhang, Lei Xie and Yu Tao

Abstract—With the rapid growth of blockchain-based Non-
Fungible Tokens (NFTs), data trading has evolved to incorporate
NFTs for ownership verification. However, the NFT ecosystem
faces significant challenges in copyright protection, particularly
when malicious buyers slightly modify the purchased data and re-
mint it as a new NFT, infringing upon the original owner’s rights.
In this paper, we propose a copyright-preserving data trading
protocol to address this challenge. First, we introduce the Merkle
Feature Tree (MFT), an enhanced version of the traditional
Merkle Tree that incorporates an AI-powered feature layer above
the data layer. Second, we design a copyright challenge phase
during the trading process, which recognizes the data owner with
highly similar feature vectors and earlier on-chain timestamp
as the legitimate owner. Furthermore, to achieve efficient and
low-gas feature vector similarity computation on blockchain,
we employ Locality-Sensitive Hashing (LSH) to compress high-
dimensional floating-point feature vectors into single uint256
integers. Experiments with multiple image and text feature
extraction models demonstrate that LSH effectively preserves
the similarity between highly similar feature vectors before and
after compression, thus supporting similarity-based copyright
challenges. Experimental results on the Ethereum Sepolia testnet
demonstrate NMFT’s scalability with sublinear growth in gas
consumption while maintaining stable latency.

Index Terms—Copyright protection, non-fungible token (NFT),
Merkle tree, AI, blockchain, data trading

I. INTRODUCTION

THE proliferation of substantial volumes of data, driven
by the rapid development of the information technology,

has significantly boosted various sectors, including govern-
ment [1], enterprises [2] and research institutions [3], en-
hancing their efficiency and innovation capabilities. How-
ever, relying exclusively on one’s own data is insufficient
to exploit its potential value, creating an urgent demand for
data exchange. Consequently, an abundance of data trading
marketplaces such as Datacoup [4] and Qlik [5] have rapidly
emerged. Nonetheless, such centralized marketplaces exhibit
several drawbacks. The complexity of the trading process leads
to prolonged trading time, and malicious behaviors within the
marketplace itself may result in data breaches. Additionally,
external attacks on the marketplace can cause a single point
of failure, rendering services unavailable.

Blockchain, as a decentralized distributed system [6], [7],
addresses the aforementioned weaknesses in the traditional

Dongming Zhang and Lei Xie are with Zhejiang Lab, Hangzhou 311121,
China. (e-mail: zhangdongming@zhejianglab.com; xielei@zhejianglab.com).

Yu Tao is with College of Computer Science and Technology, Nanjing
University of Aeronautics and Astronautics, Nanjing 211106, China. (e-mail:
yu tao@nuaa.edu.cn).

Corresponding author: Dongming Zhang (e-mail: zhangdong-
ming@zhejianglab.com).

Fig. 1: The copyright protection challenge in NFT-based data trading, where a
legitimate owner (LO) sells data to a misappropriator (MO), who then makes
minimal modifications and re-mints it as a new NFT before reselling to a
normal data consumer (DC), infringing the original owner’s copyright.

data trading marketplace. On the one hand, it leverages
the peer-to-peer nature of blockchain to enable direct data
exchange between two parties, bypassing cumbersome pro-
cedures and reducing the risk of third-party malicious be-
haviors. Smart contracts [8] further automate data transac-
tions by executing predefined rules without the need for
human intervention. On the other hand, the maintenance of
a distributed ledger, along with partially malicious-tolerant
consensus mechanisms [9], [10], and the design of hash
links between adjacent blocks, make malicious attacks on
blockchain prohibitively costly.

In recent years, the Non-fungible token (NFT) [11] on
the blockchain has garnered significant attention. Its capacity
to provide verifiable proof of ownership and a traceable
ownership history makes it highly suitable for data exchange
scenarios. Several studies, including Song et al. [12] and
Ranjbar et al. [13] have explored the use of data as an NFT to
fully leverage the aforementioned characteristics. In addition, a
number of decentralized data trading platforms emerged [14]–
[16], allowing customers to mint and sell data NFTs.

Although blockchain and its associated NFTs have ad-
dressed some of the challenges in traditional data trading, one
significant challenge remains unresolved: copyright protection.
Specifically, the concern arises when a misappropriator (MO),
after acquiring data from a legitimate owner (LO), make
minimal modifications or leave it unaltered, and then re-
mint it as a novel NFT (known as copymint) for reselling
to a normal data consumer (DC) as shown in Fig. 1. The
minimal modifications may contain color adjustment, noise
addition, filtering for image data and character replacement,
text rearrangement, synonym replacement for text data. Such
actions could not only sever the NFT traceability, but also
infringe upon the intellectual property rights of LO.

Previous studies that have utilized data as an NFT, such

2

as those referenced in [12], [13], have not considered the
copyright protection problem. Specifically, the work presented
in [12] employed NFT to provide dynamic data traceability,
privacy and exchange fairness. It is noteworthy that they
designed an efficient generic transformation protocol to verify
all transformations with zero-knowledge proofs. However, this
system is vulnerable to disruption if a malicious buyer were
to re-mint a data as a new NFT after obtaining the data
without acquiring the NFT ownership, thereby severing the
transformation relationship. Similarly, the research in [13]
utilized digital watermarking alongside NFT to ensure data
traceability against malicious resales. However, their approach
fails to prevent a malicious buyer from listing the data as a
new NFT, which bypasses any linkage to the previous owner.
In summary, this action not only undermines the original
creator’s copyright but also disrupts the intended traceability
and ownership verification mechanisms.

In the industry, there are many copymint cases in nowa-
days NFT marketplace. For instance, Bored Ape Yacht Club
(BAYC) has a collection of 10,000 original NFTs and more
than 4 million counterfeit NFTs [17]. Opensea [18], currently
the largest NFT marketplace, self-reported that more than 80%
of its NFTs minted for free were unoriginal or fake [19].

However, the current NFT market and its underlying
blockchain infrastructure face significant challenges in de-
tecting unauthorized data alterations and preventing the sub-
sequent re-minting of data as new NFTs. According to
OpenSea’s copymint policy [20], the process of verifying
potential copymints involves both image detection technology
and human review. This approach, while necessary to combat
infringement, reintroduces an element of centralization into
the NFT trading lifecycle, which contradicts the decentralized
ethos of blockchain technology.

Confronted with the aforementioned copyright protection
challenge, we propose a novel data trading protocol named
NMFT based on NFT and Merkle Feature Tree (MFT).
This protocol offers a decentralized solution to the copyright
challenge in the current data trading landscape. Specifically,
a reconstructed Merkle Tree, called the MFT, is designed to
capture the features of the underlying data and embed them
into the Merkle root. A verifiable random-selection mechanism
is introduced to ensure the randomness of the chosen data
and feature samples, thereby preventing data owner fraud. The
randomly selected samples are then subjected to a copyright
challenge to verify the legality of NFT ownership by smart
contract, using feature similarity. This approach aligns more
closely with Web3 decentralized principles compared to cur-
rent solutions that rely on third-party and manual oversight for
validation. The main contributions of this paper are summa-
rized as follows:

• We propose NMFT, a novel data trading protocol that
integrates NFT with MFT to address copyright protection
in blockchain-based data exchanges. By extending the
traditional exchange fairness to include copyright fair-
ness and ownership transfer fairness, NMFT provides a
comprehensive solution for secure and fair data trading.

• We introduce the MFT, an enhanced version of the tradi-
tional Merkle Tree that incorporates AI-extracted features

TABLE I: COMPARISON WITH EXISTING WORKS.

Scheme Data Exchange Copyright Data
Traceability2 Fairness Protection1 Privacy

[12] Native ✓ None ✓
[13] Native ✓ Reactive ×
[14] Native ✓ None ✓
[15] Native ✓ None ✓

[21] None ✓ None ✓
[22] None ✓ None ✓
[23] None ✓ None ✓
[24] None ✓ None ✓

[25] Auxiliary ✓ Reactive ✓
[26] Auxiliary ✓ Proactive ✓
[27] Auxiliary ✓ Reactive ×
[28] Auxiliary ✓ Reactive ✓
[29] Auxiliary ✓ Proactive ✓

Our NMFT Native ✓ Proactive ✓

1 For “Copyright Protection”: None means no specific protection mechanism;
Reactive indicates post-hoc detection and punishment of infringement; Proac-
tive provides prevention of infringement before it occurs.
2 For “Data Traceability”: None means only recording transactions on
blockchain without ownership verification; Auxiliary represents using addi-
tional auxiliary techniques like watermarking, perceptual hashing, or crypto-
graphic proofs to assist ownership verification, but lacks native uniqueness
guarantees; Native indicates native support for unique ownership and transfer
verification through NFTs.

above the data layer. This structure embeds distinctive
data features within the Merkle root, which is immutably
recorded on the blockchain, enabling efficient copyright
verification even when data has been slightly modified.

• We implement an efficient on-chain similarity com-
putation scheme that compresses AI-extracted high-
dimensional feature vectors into single uint256 integers
using Locality-Sensitive Hashing (LSH). This makes
copyright verification practically feasible on blockchain
while maintaining its effectiveness.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III presents the preliminaries.
Section IV shows the system model, the threat model and
the design goals. Section V describes the detailed design of
NMFT. Section VI gives the system analysis. Section VII
shows the experimental results and the last section summarizes
the paper.

II. RELATED WORK

In this section, we review the existing works on data trading
with respect to data NFTs, exchange fairness and copyright
protection, with a focus on studies that incorporate blockchain
technology. The comparison between our schemes and the
existing works is shown in Table I.

A. Data NFTs

In recent years, both the academic and industrial sectors
have explored and applied the concept of digitizing data assets
as NFTs, taking advantage of their unique traceability feature.

Within the academic community, a number of studies
have been introduced to exploit the traceability of NFTs.

3

For example, Song et al. [12] focused on tracking data
transformation processes in machine learning scenarios. Their
system, ZKDET, enables the tracing of data transformations
(e.g., aggregation, partitioning) and verifies the correctness
of these transformations using zero-knowledge proofs. This
allows data owners to monetize not only the raw data but
also its derived products through model training and data
mining. Furthermore, to protect data privacy while ensuring
verifiable transformations, they proposed a generic transforma-
tion protocol that employs zero-knowledge proofs. However,
ZKDET primarily focuses on verifying data transformations in
machine learning applications and does not consider copyright
protection in direct data trading. In another study, Ranjbar
et al. [13] proposed a watermark-based NFT framework that
enables royalty payments to original data owners in subsequent
resales. They provide a reactive protection mechanism where
original owners can report copyright violations by verifying
the embedded watermarks. Nevertheless, their system relies
on a trusted third party to embed robust watermarks into
the data prior to NFT minting, which requires exposing the
original data to the third party and potentially compromises
data privacy. Neither of these systems provides proactive
mechanisms to prevent unauthorized NFT trading, which could
lead to parallel markets of duplicated data NFTs and disrupt
the proper valuation of data assets.

In the realm of industry, different approaches to NFT-
based data ownership have emerged. Ocean Protocol [14]
is a decentralized data exchange protocol that incentivizes
the publishing of data for use in the training of AI models.
Data assets are treated as data NFTs and exchanged by its
own datatokens which live on multiple blockchains including
Ethereum, Polygon, BNB Chain, etc. Additionally, a tool
called Compute-to-Data within Ocean Protocol is provided to
share or monetize one’s data without compromising privacy.
Nonetheless, there is an absence of explicit evidence to suggest
that Ocean Protocol has implemented robust strategies to
mitigate the occurrence of copymint activities.

Itheum [15] is another data exchange protocol built on
blockchain that transforms the data asset ownership landscape.
In the process of minting a data NFT on Itheum, data owners
are granted the capability to stipulate the quantity of copies,
denoting the total number of identical replicas of the data NFT
that can be minted. However, this mechanism does not extend
its efficacy to preclude instances of copymint behaviors that
involve minimal modifications to the original asset.

B. Exchange Fairness

Exchange fairness is a basic requirement of a data trading
protocol. Researchers have proposed numerous solutions to
tackle this issue [21]–[24]. Dziembowski et al. [21] proposed
a protocol which allows fair sale of a witness where a
judge smart contract verifies concise proofs of misbehavior.
Delgado-Segura et al. [22] provided a fair protocol for data
trading based on the private key locked transaction on Bitcoin
network. Chenli et al. [23] introduced a novel atomic data
exchange protocol named Fair2Trade, which utilizes a veri-
fiable statement protocol based on the idea of Merkle Tree

and hash chain structures, thus ensuring both exchange and
distribution fairness. Abla et al. [24] proposed a data trading
protocol to achieve fairness by combining the probabilistic
approaches with fully homomorphic encryption.

C. Copyright Protection
Copyright protection is another critical aspect within data

trading. Various strategies have been proposed to address
this challenge, with digital watermarks and fingerprints being
predominant solutions [25]–[27]. Sheng et al. [25] devel-
oped CPChain, a blockchain-based crowdsourcing data trad-
ing framework that combines digital fingerprints with ho-
momorphic encryption. Although their system preserves data
privacy during trading, the copyright protection mechanism
relies on post-hoc detection through fingerprint tracing rather
than proactive prevention. Xiang et al. [26] introduced five
algorithms designed to proactively safeguard data copyright
through watermark-based policies and smart contracts, effec-
tively preventing unauthorized redistribution, combination, and
leakage of data. However, both of [25] and [26] assumed that
there exists robust watermark or fingerprint method. Wang
et al. [27] focused on copyright protection within a medical
image data trading platform. They utilized a U-Net-based [30]
CNN [31] architecture to segment medical images into regions
of interest and non-interest, embedding watermarks in the
latter to safeguard copyright without compromising diagnostic
integrity. However, their approach requires a trusted third party
for watermark generation and embedding, which introduces
privacy risks as the original data must be exposed to this third
party.

However, the incorporation of digital watermarks or finger-
prints for copyright protection can potentially compromise the
integrity of the original data. Furthermore, there is a risk that
malicious buyers may attempt to circumvent the protective
measures by manipulating the data, thereby diminishing the
effectiveness of the watermarks or fingerprints.

In addition to the aforementioned methods, alternative tech-
niques have been explored for safeguarding copyrights. Wang
et al. [28] proposed a protocol for copyright-preserving data
trading, incorporating a novel perceptual hashing algorithm
based on ResNet-18 [32]. Chen et al. [29] presented a
blockchain-driven copyright protection scheme, which incor-
porates double-authentication-prevention signatures and non-
interactive zero-knowledge proofs to proactively detect and
deter illegal copyright transfers.

III. PRELIMINARIES

A. Merkle Tree and Merkle Proof
The Merkle Tree [33] is a binary tree where each leaf

node contains the hash of a data block, and each non-leaf
node contains the hash of its children. This process continues
recursively until reaching the Merkle root.

The Merkle proof efficiently verifies whether a specific data
block is included in a Merkle Tree. As shown in Fig. 2,
to verify data block B, one only needs hA and H(hC |hD)
(shaded in grey). The verification involves hashing B and
iteratively combining with these nodes to compare with the
root.

4

Fig. 2: The structure of Merkle Tree where H(·) denotes a public one-way
hash function and “|” represents the concatenation between two hash values.

B. Merkle Feature Tree

We propose the Merkle Feature Tree (MFT) that adds
a feature layer above the data layer as shown in Fig. 3.
The feature layer extracts vectors using models like MP-
Net [34], MiniLM [35] for text, and DINOv2 [36], Swin
Transformer [37] for images. These vectors are then hashed
following standard Merkle Tree procedures.

The integration of a feature layer introduces a critical
advantage in maintaining data ownership. When MO presents
a feature vector from modified data, LO can counter with a
similar vector registered earlier, along with its Merkle proof.
This proves legitimate ownership by showing precedence on
the blockchain. All submitted vectors must have valid Merkle
proofs linking to recorded Merkle roots, preventing arbitrary
submissions.

Fig. 3: The structure of Merkle Feature Tree (MFT) where H(·) and
F (·) denote a public one-way hash function and feature extraction method
respectively, and “|” represents the concatenation between two hash values.

C. Non-Fungible Tokens

Non-fungible Tokens (NFTs) are a type of digital asset cre-
ated via smart contracts on the blockchain. Different from fun-
gible tokens like BTC in Bitcoin [6] or ETH in Ethereum [7],
which are interchangeable and divisible, each NFT is distinct
and cannot be exchanged with another NFT on a one-to-one
basis. The uniqueness is ensured through a distinct identifier,
known as tokenID generated by the smart contract. Due to
the high storage costs associated with the blockchain, a hybrid

approach of on-chain and off-chain method is typically used.
Specifically, the actual digital asset is usually stored in off-
chain distributed storage systems like IPFS [38], while the
corresponding storage address and some metadata are recorded
on the blockchain.

D. Hash Chain

A hash chain [39] is constructed by iteratively applying a
hash function H(·) on a random seed s:

{s,H(s), H2(s), H3(s), ...,Hn−1(s), Hn(s)},

where Hi+1(s) = H(Hi(s)), and Hn(s) is called the tip.
Given the preimage resistance of H(·), one with computational
limitations cannot derive previous values from Hi(s), but can
easily compute subsequent values to the tip.

IV. MODEL AND DESIGN

A. System Model

In the proposed data trading protocol, three key entities
are identified: the data owner, the data buyer, and the data
trading smart contract denoted by SC. The data owner is
further divided into two distinct sub-entities: the legitimate
data owner represented by LO and the data misappropriator
abbreviated as MO. LO possesses valuable data assets with
the intention to monetize them through sale. Conversely, MO
engages in potentially malicious behaviors by purchasing data
from other data owners without acquiring the NFT ownership.
Subsequently, they may re-mint this data as a new data NFT,
possibly with minor data modifications, in an attempt to profit
illegally. Meanwhile, the data buyer is seeking the desired
data from the data owner. SC serves as a trusted third party,
facilitating the connection between the data owner and the data
buyer to fulfill data trading. Importantly, it has the capability
to distinguish between LO and MO. The proposed data trading
protocol includes the following five phases:

• P1: Setup. In this phase, the administrator deploys a data
trading smart contract named SC.

• P2: Mint data NFT. The data owner mints his data
NFT via the deployed SC with some essential meta data
recorded on the blockchain.

• P3: Request data. The data buyer sends a data request
to SC in order to acquire the desired data or the data
NFT in this phase.

• P4: Challenge. In this challenge phase, the data buyer
issues a challenge to the owner to verify both the validity
of the data and the legitimacy of the copyright. The
owner must respond with the corresponding data blocks
and feature vectors for verification by the buyer and
potentially other owners acting as challengers.

• P5: Batch payment. The data owner delivers the data to
the buyer in batches, and upon each round of confirmation
for data validity, the buyer transfers a verifiable payword
to the owner. Once the entire data transfer is complete,
the last payword and the completed batch number are
submitted to SC to process the payment.

5

B. Threat Model

In all five phases of the data trading protocol, there is a
possibility of malicious behavior among the three key entities.
As previously mentioned, the data trading smart contract SC
is considered a trusted entity, as it is deployed on a secure
blockchain. Therefore, our focus is on the potential malicious
behaviors that may occur between the data owner and the data
buyer.

• Malicious data owner: The malicious behaviors can
consist of the following types: 1) as a copyright infringer:
acquiring data from legitimate owners and reselling the
data to gain profit; responding with incorrect challenge
messages during the copyright challenge phase; transfer-
ring incorrect data or mixing fake data with real ones
during batch data transfer; 2) as a challenger: attempting
to falsely claim ownership during copyright challenges
without possessing legitimate data.

• Malicious data buyer: The malicious behaviors can
include: 1) refusing to deliver paywords or sending in-
valid paywords after receiving data batches; 2) trying to
bypass the legitimate owner by submitting the payword
directly to the smart contract; 3) attempting to obtain NFT
ownership without completing all required payments.

C. Design Goals

Based on exchange fairness requirements and NFT incor-
poration, we propose enhanced exchange fairness and data
privacy as key design goals.
Definition 1: (Enhanced exchange fairness). A data trading
protocol achieves enhanced exchange fairness if: 1) basic
exchange fairness: buyer accesses data only after payment,
owner gets paid only after data transfer; 2) copyright fairness:
owner verified as LO before payment; 3) ownership transfer
fairness: buyer acquires NFT ownership only after full pay-
ment including transfer fee, owner receives complete payment
only after NFT ownership transfer.
Definition 2: (Data privacy). A data trading protocol achieves
data privacy if: 1) data known only to owner before exchange;
2) minimal data exposure for validation during trading; 3)
buyer accesses complete/partial data post-exchange based on
payment extent.

V. SYSTEM DESIGN

A. Data Trading Type and Transfer Type

Data treated as an NFT offers the benefit of establishing
clear ownership and tracking its history. We summarize two
types of data trading:

• Trade data itself (TDI): For buyers seeking to access a
subset of the data without taking over the NFT ownership.
The data owner retains the NFT and can continue trading
with other buyers.

• Trade data & ownership (TDO): For buyers interested
in both the data and NFT ownership. Upon completion,
the original owner can no longer sell the data, as the
buyer becomes the new owner.

These two trading types lead to different pricing structures:
TDI solely accounts for the price of the partial data, whereas
TDO encompasses the price of the whole data plus an addi-
tional fee for NFT ownership transfer.

For data transfer, we advocate batch transfer in NMFT,
utilizing a micropayment protocol [40], [41] to mitigate gas
fees. This approach enables incremental verification, allowing
buyers to assess each batch for quality and relevance.

B. Workflow of Protocol

Fig. 4 illustrates the comprehensive protocol design, which
is structured into five distinct phases as follows.
Setup.

1⃝ Admin deploy smart contract: The administrator de-
ploys a data trading smart contract on the blockchain with
specific parameters initialized.

Mint data NFT.
2⃝ Owner calculate MFT and hashes: The data owner di-

vides data D into nd blocks D = {di}, where i ∈ [1, nd],
and computes MFT with Merkle root r. The block size
is standardized across all data owners (e.g., 100 lines of
CSV or 10 images per block). The owner stores MFT
locally for similarity computation and ownership proof,
and calculates hash values Hd = {H(di)} for all blocks.

3⃝ Owner mint data NFT: The data owner mints NFT via
SC, recording Merkle root, block count, data description,
block price and NFT transfer fee in the NFT metadata.
The generated tokenID of the NFT will then be main-
tained by SC. Upon data update, the owner recalculates
MFT and refreshes metadata with current r and nd values.

Request data.
4⃝ Buyer request data: The data buyer initiates a request

via SC with trading parameters: data trading type dtype,
number of data blocks per batch ne, batch price pb,
desired batch number nb, challenge size nc, NFT transfer
fee po and owner penalty amount pp. After consensus, the
owner can access this request on blockchain.

5⃝ Owner confirm request: The data owner confirms all
trading parameters (dtype, ne, pb, nb, nc, po, pp) via
SC.

6⃝ Buyer deposit money: The data buyer deposits payment
into SC: nb · pb for TDI or nb · pb + po for TDO.

7⃝ Owner deposit money: The data owner deposits penalty
amount pp into SC as potential MO security.

8⃝ Transfer hash values: The data owner transfers precal-
culated Hd to buyer through secure off-chain channel.

Challenge.
9⃝ Buyer initiate challenge: The data buyer generates a

random challenge list Lc = {j} with length nc. To reduce
gas costs, the buyer sends Lc to the data owner through
off-chain channel and initiates a challenge transaction
via SC. This challenge consists of two parts: a validity
challenge to verify data authenticity, and a copyright
challenge to verify ownership legitimacy.

10⃝ Owner respond validity challenge: After receiving Lc,
the data owner extracts the corresponding challenge data

6

Fig. 4: Workflow of NMFT, where the data owner (light red box) is exposed as MO and one challenger (light green box) succeeds as LO. Steps 2⃝ and 3⃝
for challengers are identical to those of the data owner.

blocks Dc = {dj}, where dj = D[j] and j ∈ Lc. The
owner then transfers Dc to the buyer through a secure
off-chain channel to minimize on-chain costs.

11⃝ Owner respond copyright challenge: Using the chal-
lenge data Dc, the owner extracts feature vectors Vc =
{vj}, where vj = F (dj) is computed using prede-
fined feature extraction method F (optimized in Sec-
tion VII-C). The owner then submits Vc, corresponding
Merkle proofs Pc, Merkle roots Rc, and tokenID to SC
following Algorithm 1. To win the copyright challenge,
the owner must use the earliest registered root r in Rc.

12⃝ Buyer verify validity challenge: The buyer first verifies
that both Dc and Vc have length nc. Then computes
hash values Hc = {H(dj)} and compares them with
previously received Hd[j] (j ∈ Lc) to verify data authen-
ticity. The buyer also checks if Dc meets requirements D
and recalculates feature vectors to verify Vc correctness.
Algorithm 2 details this process, after which the buyer
updates the bool variable isDataOK in SC.

13⃝ Other owners respond copyright challenge: Anyone
interested in engaging in this copyright challenge is called
the copyright challenger (denoted by CC), and must
identify the related data NFT with a data description
that matches their own data NFT. Subsequently, he/she
obtains the challenge feature vectors Vc associated with
the identified data NFT to proceed the following step
of data similarity calculation. For any feature vector
v ∈ Vc, CC computes the cosine similarity (optimized
in Section VII-C) between v and his local feature vectors

Algorithm 1 Copyright Challenge Response
▷ Data Owner
Input: Dc, tokenID

1: initialize Vc ← []
2: for d in Dc do
3: v ← F (d)
4: append v to Vc

5: Pc ← GetMerkleProofs(Vc, tokenID)
6: Rc ← GetMerkleRoots(Vc, tokenID)
7: SendToSC(Vc, Pc, Rc, tokenID)

▷ Copyright Challenger CC
Input: Vc, Vl, tokenIDs and η

1: Initialize Vs ← []
2: for v in Vc do
3: vs ← QueryMostSimilarVec(Vl, v)
4: c← CalcSimilarity(vs, v)
5: if c < η then
6: break
7: else
8: append vs to Vs

9: if len(Vs) == len(Vc) then
10: Ps ← GetMerkleProofs(Vs, tokenIDs)
11: Rs ← GetMerkleRoots(Vs, tokenIDs)
12: SendToSC(Vs, Ps, Rs, tokenIDs)

7

Algorithm 2 Validity Challenge Verification
▷ Data Buyer
Input: D, Hd, nc, Dc, Lc and Vc

Output: isDataOK
1: Initialize isDataOK ← True
2: if (nc ̸= len(Dc)) or (nc ̸= len(Vc)) then
3: isDataOK ← False
4: return isDataOK
5: for i = 1 to nc do
6: d← Dc[i]
7: j ← Lc[i]
8: if H(d) ̸= Hd[j] then
9: isDataOK ← False

10: return isDataOK
11: for i = 1 to nc do
12: d← Dc[i]
13: if d /∈ D then
14: isDataOK ← False
15: return isDataOK
16: for i = 1 to nc do
17: d← Dc[i]
18: v ← Vc[i]
19: if F (d) ̸= v then
20: isDataOK ← False
21: return isDataOK
22: return isDataOK

Vl, which were previously stored locally when calculating
the MFT. This comparison is conducted to ascertain
whether a highly similar vector vs exists, defined by a
similarity that exceeds a predetermined threshold η. This
indicates that the underlying data blocks are close to each
other. Finally, if CC successfully identifies all the most
similar vectors denoted by Vs, he/she then sends Vs,
corresponding Merkle proofs Ps, Merkle roots Rs and
tokenIDs to SC as described in Algorithm 1. Here we
use a different subscript “s” to denote the values of CCs.
To succeed in the copyright challenge, CC also needs to
use the earliest registered r in Rs.

14⃝ SC verify copyright challenge: The copyright challenge
verification process consists of three main stages: owner
verification, challenger verification, and final resolution
as shown in Algorithm 3.
Owner verification: Upon reception of the challenge
response from the data owner, SC initially validates
whether the dimensions of Vc, Pc and Rc match nc.
Subsequently, for each triplet (v, p, r) ∈ (Vc, Pc, Rc),
SC performs two verifications: 1) confirms the authen-
ticity of Merkle root r within the NFT metadata us-
ing VerifyMerkleRoot(r, tokenID); 2) verifies the in-
tegrity of the correspondence between v, p, and r using
VerifyMerkleProof(H(v), p, r). If all triplets pass these
checks, the status variable isV ecOK is set to True.
Challenger verification: When receiving responses from
CCs, SC first checks the status variables isV ecOK and
isDataOK. Subsequently, SC carries out the identical

verification procedure that was applied during the owner
verification stage. SC further performs three steps: 1)
computes similarities between vectors in Vc and Vs;
2) verifies if all similarities exceed threshold η; 3) for
multiple qualifying CCs, selects the winner based on
the cumulative time difference ∆t. This ∆t is calculated
as the sum of the individual time differences for each
challenged data block. Each individual time difference is
the duration between the Merkle root recording times of
the CC’s and the data owner’s corresponding data blocks.
The CC with the largest ∆t is chosen as the winner.
Final resolution: The outcome is handled as follows:
1) if LO is found, the challenged owner’s deposit pp
is distributed evenly between the buyer and LO; 2)
LO’s ID ownerIDs is associated with tokenID on the
blockchain; 3) if no CCs respond or pass verification
within period T , the challenged owner is deemed LO
by default. Note that in subsequent phases,“data owner”
refers to LO.

Batch payment.

15⃝ Buyer generate hash chain: The data buyer generates
a random string s locally and creates a hash chain H,
whose length is equal to nb + 1. Then the buyer invokes
the tip recording function within the smart contract by
passing the tip Hnb(s) and tokenID as arguments.

16⃝ Exchange data and payword: The data owner transfers
data in batches as mentioned in Sec. V-A via secure
communication channels. For simplicity, we standardize
the size of each batch to match the size of a single
data block. Within the i-th round of data and payword
exchange, the data buyer verifies both the hash and the
content of the received batch data, as outlined in phase
12⃝. Upon successful verification, the data buyer sends the
previous hash Hnb−i(s) in the hash chain to the owner
as a payword. The owner then confirms the validity of
the payword by checking whether H(Hnb−i(s)) matches
Hnb−i+1(s), which received at the (i − 1)-th round. If
the validation is successful, the following batch of data
is then sent to the buyer.

17⃝ Owner submit payword: After data transfer, the owner
receives a hash chain Hr, which may be a sub-chain of
the original chain H if the buyer stops payment (e.g.,
when finding data unsatisfactory). Let p denote the first
element of Hr (last received payword) and np denote
its length (completed batch number). The owner submits
(p, np, tokenID, buyerID) to SC, and can continue
submitting until the cumulative sum of np reaches the
desired batch number nb.

18⃝ SC transfer tokens: Upon receiving the tuple
of (p, np, tokenID, ownerID, buyerID), SC checks
whether the owner identified by ownerID is LO of
the NFT, which is identified by tokenID. Then SC
iteratively computes the hash value of p for np times,
and compare the result with the pre-stored tip on the
blockchain. If the two values match, SC retrieves the
historical sum of np (denoted as Np). If Np + np and
dtype are equal to nd and TDO respectively, SC transfers

8

Algorithm 3 Copyright Challenge Verification
▷ Smart Contract SC
Input: Vc, Pc, Rc, tokenID, Vs, Ps, Rs, tokenIDs,

isDataOK, nc, η, T, pp, ownerID and buyerID

1: Initialize ∆t ← 0
2: Initialize isV ecOK ← False
3: Initialize hasWinner ← False

▽ Owner verification
4: upon receiving (Vc, Pc, Rc, tokenID) do
5: if (nc ̸= len(Vc)) or (nc ̸= len(Pc)) or (nc ̸=

len(Rc)) then
6: return
7: for i = 1 to nc do
8: v, p, r ← Vc[i], Pc[i], Rc[i]
9: vr ← VerifyMerkleRoot(r, tokenID)

10: vp← VerifyMerkleProof(H(v), p, r)
11: if (vr == False) or (vp == False) then
12: return
13: isV ecOK ← True

▽ Challenger verifiction
14: upon receiving (Vs, Ps, Rs, tokenIDs) do
15: if (isV ecOK == False) or (isDataOK == False)

then
16: return
17: if (nc ̸= len(Vs)) or (nc ̸= len(Ps)) or (nc ̸=

len(Rs)) then
18: return
19: for i = 1 to nc do
20: v′, p′, r′ ← Vs[i], Ps[i], Rs[i]
21: vr ← VerifyMerkleRoot(r′, tokenIDs)
22: vp← VerifyMerkleProof(H(v′), p′, r′)
23: if (vr == False) or (vp == False) then
24: return
25: for i = 1 to nc do
26: Initialize ∆′

t ← 0
27: v ← Vc[i]
28: v′ ← Vs[i]
29: c← CalcSimilarity(v, v′)
30: t← GetMerkleRootTime(r, tokenID)
31: t′ ← GetMerkleRootTime(r′, tokenIDs)
32: if (c < η) or (t′ ≥ t) then
33: return
34: ∆′

t ← ∆′
t + t− t′

35: if ∆′
t > ∆t then

36: hasWinner ← True
37: ∆t ← ∆′

t

38: ownerIDs ← GetOwner(tokenIDs)
39: return

▽ Final resolution
40: upon elapsed time reaches T do
41: if hasWinner == True then
42: RecordWinner(tokenID, ownerIDs)
43: TransferToken(pp/2, ownerID, ownerIDs)
44: TransferToken(pp/2, ownerID, buyerID)
45: else
46: RecordWinner(tokenID, ownerID)

np · pb + po to the owner’s address and simultaneously
changes the ownership of the NFT to the buyer. Other-
wise, SC only sends np · pb to the owner. The detailed
process can be found in Algorithm 4.

Algorithm 4 Token Transfer
▷ Smart Contract SC
Input: p, np, tokenID, ownerID, buyerID,

pb, po, nd, dtype
1: upon receiving (p, np, tokenID, ownerID, buyerID)

do
2: if ownerID ̸= GetWinner(tokenID) then
3: return
4: t← GetTip(tokenID, ownerID, buyerID)
5: t′ ← p
6: for i = 1 to np do
7: t′ ← H(t′)
8: if t′ ̸= t then
9: return

10: Np ← GetNPSum(tokenID, ownerID, buyerID)
11: if Np + np == nd and dtype == TDO then
12: token← np · pb + po
13: TransferToken(token, buyerID, ownerID)
14: ChangeNFTOwner(ownerID, buyerID, tokenID)
15: else
16: token← np · pb
17: TransferToken(token, buyerID, ownerID)
18: UpdateTip(tokenID, buyerID, p)

VI. SYSTEM ANALYSIS

In this section, we provide system analysis for NMFT to
show how we achieve the design goals defined in Sec. IV-C.

A. Enhanced Exchange Fairness

Theorem 1: The data buyer can only access the data after
paying the corresponding fee to the owner, except that a small
batch of data may be available for free.

Proof: We prove Theorem 1 by demonstrating how the
protocol prevents malicious behaviors where buyers attempt
to acquire data without payment.

Firstly, when the buyer is malicious, he/she may not deliver
the corresponding payword to the owner. Recall that the batch
transfer is utilized in NMFT. Thereby, upon not receiving the
payword, the owner can decide not to send the next batch of
data. In such a case, only a batch of data is disclosed which
is very small.

Secondly, the buyer might attempt to transfer a fake pay-
word to the owner. However, this attack is prevented as the
owner can verify the authenticity of the received payword by
computing its hash value and comparing it with either the
previously obtained payword or, in the case of the first batch
transfer, the tip recorded on the blockchain.

Thirdly, since the buyer possesses the initial hash chain,
they might attempt to submit paywords directly to SC before
the owner does. However, this attack is prevented by SC as

9

shown in Algorithm 4, which verifies that only LO (who has
succeeded in the copyright challenge) can submit paywords
for payment. □
Lemma 1: Given a cryptographically secure hash function,
it is computationally infeasible for anyone with polynomial-
time capabilities to forge a valid (p, np)-pair that passes the
verification of SC when submitting payword.

Proof: The proof follows from the preimage resistance
property of cryptographic hash functions. During the batch
payment initialization, the buyer records the tip Hnb(s) on
the blockchain. For anyone to successfully forge a (p, np)-
pair, it must satisfy Hnp(p) = Hnb(s) where np ≤ nb. If there
existed a polynomial-time algorithm FindPNPair(Hnb(s)) that
could generate such a pair (p, np), it would directly violate the
preimage resistance of the hash function. Therefore, forging
a valid (p, np)-pair that passes SC’s verification is at least as
hard as finding a preimage for a cryptographically secure hash
function, which is assumed to be computationally infeasible.
□
Theorem 2: With Lemma 1, the data owner can receive
payment only after both successfully transferring the desired
data to the buyer and being verified as LO.

Proof: We prove this theorem by demonstrating that all
potential malicious behaviors by the data owner to obtain
payment without proper data delivery will fail.

Firstly, a malicious owner might attempt to suspend data
transfer after receiving partial payment. However, this strategy
fails as the buyer can immediately halt payword delivery upon
detecting such behavior.

Secondly, a malicious owner might attempt to send incorrect
data. This attack is prevented because the buyer has already
received the hash values Hd of all data blocks at step 8⃝.
The buyer can verify both the integrity of received data by
comparing its hash with Hd and validate that the data content
meets his requirements D.

Thirdly, an owner might attempt to forge a valid (p, np)-
pair through brute force calculation to pass SC’s verification.
However, as established in Lemma 1, this is computationally
infeasible given a cryptographically secure hash function.

Fourthly, an owner might attempt to misappropriate data
from others and resell it as a new NFT, which represents
the copyright protection problem addressed in this paper.
However, as shown in Algorithm 4, SC verifies that only
LO who has succeeded in the copyright challenge can submit
paywords for payment, which prevents such misappropriation.
□
Theorem 3: MO cannot succeed in the copyright challenge
when LO participates.

Proof: MO may attempt to succeed in the copyright chal-
lenge through two primary strategies.

Firstly, they could attempt to manipulate the challenge
process by sending the unauthorized challenge data Dc to the
buyer while simultaneously submitting fraudulent challenge
vectors V ′

c to the blockchain. This strategy would theoretically
prevent CC from finding any matching vector set Vs, as they
would be attempting to match against forged vectors. However,
this manipulation is prevented by the validity challenge step
(Algorithm 2). During this step, the buyer independently re-

computes the challenge vectors Vc from the received Dc and
verifies them against those recorded on the blockchain. Any
discrepancy between the computed vectors and the blockchain-
recorded vectors V ′

c will set isDataOK to False, causing the
copyright challenge to fail.

Secondly, MO might attempt to modify the original mis-
appropriated data through minimal modifications. With nf

modified blocks in a dataset of size nd, the probability of
success is bounded by:

Pr(MO succeeds) = 1−
(
nd−nf

nc

)(
nd

nc

) ,

where
(
n
m

)
represents the binomial coefficient. Let rc = nc/nd

denote the challenge ratio and rf = nf/nd the fake data ratio.
As shown in Fig. 5, to achieve a meaningful probability of
success, MO would need to modify a substantial portion of the
data (rf ≳ 10% for large datasets and rf ≳ 60% for smaller
datasets). This level of modification far exceeds the scope of
minimal modifications considered in this paper. Therefore, our
scheme effectively prevents copyright infringement through
minimal modifications of the original data. □

10 3 10 2 10 1 100

Fake Data Ratio
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Su

cc
es

s P
ro

ba
bi

lit
y

nd = 500, rc = 0.01

nd = 1000, rc = 0.01

nd = 10000, rc = 0.01

nd = 10000, rc = 0.005

Fig. 5: Success probability of copyright challenge versus fake data ratio for
MO.

Lemma 2: Given a cryptographically secure hash function, it
is computationally infeasible for anyone with polynomial-time
capabilities to generate a valid Merkle proof for a modified
vector.

Proof: According to Algorithm 3, the verification of a
vector’s inclusion in a Merkle Tree is performed using
VerifyMerkleProof(H(v), p, r), where v is the vector, p is its
Merkle proof, and r is the Merkle root. For a modified vector
v′, generating a valid Merkle proof p′ would require satisfying
VerifyMerkleProof(H(v′), p′, r) = True.

The verification function consists of iterative applications
of MidHash(Hl|Hr) = H(Hl|Hr), where Hl and Hr are the
hash values of left and right child nodes in the Merkle Tree.
If a polynomial-time algorithm existed to generate a valid
proof p′ for v′, it would imply the existence of an algorithm
FindChildren(MidHash(Hl|Hr)) = (H ′

l , H
′
r) that satisfies:

MidHash(Hl|Hr) = MidHash(H ′
l |H ′

r).

This would be equivalent to finding a second preimage for
the hash function in polynomial time, which contradicts the

10

security properties of a cryptographically secure hash function.
Therefore, generating a valid Merkle proof for a modified
vector is at least as hard as finding a second preimage collision
in the underlying hash function. □
Theorem 4: With Lemma 2, CC without the legitimte data
cannot succeed in the copyright challenge against LO.

Proof: Let us proceed by contradiction. Suppose CC could
successfully pass the copyright challenge against LO. Accord-
ing to Algorithm 3, this would require CC to possess a vector
set Vs satisfying two conditions: 1) The hash values of Vs must
correspond to a set of Merkle roots Rs that were recorded
on the blockchain earlier than LO’s roots. 2) The vectors in
Vs must be sufficiently similar to the challenge vectors Vc

published by LO on the blockchain.
Since the challenge vectors Vc are randomly selected by

the buyer and CC does not possess the legitimate data, the
probability of CC naturally having such a matching vector set
Vs is negligible. The only alternative would be for CC to: 1)
find an existing vector set V ′

s with earlier recorded Merkle
roots R′

s. 2) modify V ′
s to match Vc while maintaining valid

Merkle proofs Ps for R′
s

However, by Lemma 2, generating valid Merkle proofs
for modified vectors is computationally infeasible given a
cryptographically secure hash function. Therefore, our initial
assumption must be false, and CC cannot successfully com-
plete the copyright challenge against LO. □
Theorem 5: The data buyer cannot obtain ownership of the
data NFT without paying both the full data price and the NFT
ownership transfer fee.

Proof: Let us consider two scenarios in the payment veri-
fication process as described in Algorithm 4: 1) For regular
batch payments (when Np + np < nd), SC only executes
the payment transfer operation. 2) For the final batch with
NFT transfer (when Np + np == nd and dtype == TDO),
SC executes an atomic operation that combines the token
transfer and NFT ownership transfer operations together. This
atomic operation ensures that either both the payment and NFT
ownership are transferred successfully, or the entire transaction
is reverted if either transfer fails. Therefore, it is impossible
for the buyer to obtain NFT ownership without completing
both the full data payment and the NFT transfer fee payment.
□

Combined with Theorems 1-5, this completes the proof of
enhanced exchange fairness as defined in Section IV-C.

B. Data Privacy

Theorem 6: With Theorems 1 and 2 as foundational, NMFT
ensures the preservation of data privacy.

Proof: Let us analyze data privacy across each phase of the
protocol.

During the Setup, Mint data NFT and Request data phase,
the complete dataset remains exclusively in the possession of
the data owner, with no exposure to any other participants.

In the Challenge phase, data exposure is strictly limited. The
buyer receives only a small random subset Dc for verification
purposes, while other CCs access solely the feature vectors
Vc, not the actual challenge data Dc.

For the Batch payment phase, based on Theorems 1 and
2, the buyer is entitled to receive data in proportion to the
payment made except for a possible small batch of data
obtained for free.

Throughout the entire protocol, complete data access is
restricted to legitimate participants, data exposure is mini-
mized and controlled, and unauthorized access is prevented
through the payment mechanism. In a summary, the data
privacy defined in Sec. IV-C is satisfied in the proposed NMFT
protocol. □

VII. EXPERIMENTAL RESULTS

A. Implementation

To evaluate the performance of our NMFT data trading pro-
tocol, we conducted a series of experiments on the Ethereum
Sepolia testnet [42]. Sepolia is a proof-of-stake testnet that
closely mimics the behavior of the Ethereum mainnet, pro-
viding a realistic environment for our tests. We utilized the
Hardhat development framework (version 2.22.11) to deploy
and interact with our smart contracts, which were written in
Solidity (version 0.8.27). Our smart contracts are available at
https://github.com/tenondvpn/nmft.

B. Metrics

To rigorously evaluate the efficiency and scalability of
NMFT protocol, we defined and measured the following key
metrics across various experimental conditions:

• Transaction performance: This includes both gas con-
sumption (measured in gas units) and transaction latency
(time from submission to confirmation) for each of the
five phases, as described in Section IV. These metrics
provide insights into the cost-efficiency and responsive-
ness of our protocol in different operations.

• Scalability: According to Algorithm 3, the challenge size
nc will affect the performance of the Challenge phase
(P4), as both the data owner and CC need to upload nc

feature vectors to the smart contract for verification and
similarity calculation. According to Algorithm 4, the new
completed batch number np, or the batch number nb will
impact the performance of the Batch payment phase (P5).
Threrefore, we evaluated how transaction performance
scales with these two key protocol parameters.

C. Optimization

For feature extraction during the challenge phase, we
use pre-trained models that output high-dimensional vectors
(384-dim for MiniLM [35], 768-dim for MPNet [34] and
DINOv2-base [36]). However, these floating-point vectors
pose challenges in blockchain environments: Solidity lacks
native floating-point support, and storing high-dimensional
vectors incurs substantial gas costs.

We address these challenges using Locality-Sensitive Hash-
ing (LSH) [43] to compress the high-dimensional vectors
(including vA−D in Fig. 3 and those denoted by lowercase
v with various subscripts) into single uint256 integers. This
reduces storage from nv · nc floating points to nc integers

https://github.com/tenondvpn/nmft

11

per challenge, where nv denotes the dimension of the vectors
before LSH. For a vector v, the compression is:

LSH(v) =

nv∑
i=1

1(v · ri > 0) · 2i mod 2256,

where ri are random but fixed projection vectors of the same
dimension as v, 1(·) is the indicator function that outputs 1 if
the condition is true and 0 otherwise, and the result LSH(v)
is a uint256 integer.

LSH preserves similarity relationships as similar vectors
produce similar bit patterns. For compressed vectors v1 and
v2 (each as a uint256 integer), the function CalcSimilarity in
Algorithms 1 and 3 is implemented as:

CalcSimilarity(v1, v2) =
L− HD(v1 ⊕ v2)

L
× 100%,

where L = 256 is the length of compressed vectors, HD(·)
denotes the Hamming distance (number of set bits) of a binary
number, and ⊕ represents the bitwise XOR operation. This
computation is highly efficient and gas-friendly in smart con-
tract environments, as it only involves basic bitwise operations.

We evaluated this scheme on both text and image data. For
text, we used 200 samples across 5 similarity levels (ultra-high,
high, medium-high, medium, and low similarity) with MiniLM
and MPNet models. For images, we used random selected 100
CIFAR-10 images [44], each with 9 different modifications1,
resulting in 1000 total images. Features were extracted using
DINOv2 [36] and Swin [37] models.

As shown in Fig. 6 and Fig. 7, LSH compression exhibits
an asymmetric effect: it increases similarities below approxi-
mately 0.8 but slightly decreases those above. This benefits our
copyright challenge mechanism. For example, with threshold
η = 0.9, only genuinely similar data passes the challenge
while false positives are prevented.

Fig. 6: LSH compressed similarity versus original cosine similarity for
different text embedding models: (a) MiniLM-L6-v2 [35] and (b) MPNet-
base-v2 [34].

To further reduce costs, we store compressed vectors as
contract events rather than contract state, keeping only their
hash values for verification.

D. Transaction performance
To evaluate the performance of our NMFT protocol, we

performed experiments to measure gas consumption and trans-
action latency in different phases of the protocol. For our

1Including rotation, brightness/contrast adjustment, translation, color satu-
ration, sharpness, cropping, scaling, and noise.

Fig. 7: LSH compressed similarity versus original cosine similarity for
different image embedding models: (a) DINOv2-base [36] and (b) Swin
Transformer-base [37].

baseline experiments, we set the challenge size nc = 10
and desired batch number nb = 100. All smart contract
functions within each phase are executed 10 times. As illus-
trated in Table II, the gas consumption across phases P1 to
P5 demonstrates high consistency over the 10 test iterations,
with a notable exception in P2 (Mint data NFT). Phases
P1 and P3 exhibit invariant gas consumption, with identical
minimum and maximum values. For P2, we observed that
the first execution consumed significantly more gas (232,532)
compared to subsequent executions (around 198,332). This is
typical behavior in smart contracts, where the first execution
of certain operations (like minting the first NFT) often requires
additional gas for initialization processes. Phases P4 and P5
show minimal variation, with differences between minimum
and maximum values of 590 and 12 gas units respectively. In
contrast to the relatively stable gas consumption, the latency
data exhibits considerable fluctuations across all phases. These
variations in transaction latency are primarily attributed to the
inherent network volatility of the Sepolia testnet.

TABLE II: GAS CONSUMPTION AND LATENCY BY PHASE.

Phase Gas consumption Latency (min)
Min Max Min Max

P1 4,421,929 4,421,929 0.129 0.386
P2 198,332 232,532 0.185 0.405
P3 349,072 349,072 0.793 1.461
P4 419,361 419,951 0.787 1.389
P5 179,230 179,242 0.382 0.834

Fig. 9 presents a breakdown of gas consumption and trans-
action latency across the five phases (P1-P5) of our NMFT
protocol. This visualization is based on the median values of
gas consumption and latency from 10 experimental runs for
each phase.

The breakdown of gas consumption reveals that P1 domi-
nates, consuming 79% of the total gas. This is expected due to
the complex initialization processes and state variable setups
involved in deploying the smart contract. It is important to
note that P1 only needs to be executed once during the initial
deployment of the smart contract, and this high gas cost is not
incurred in subsequent operations of the protocol. P4 follows
at 8%, while P3 accounts for 6%. P2 consumes 4% of the gas,
and P5 uses the least at 3%. These latter phases represent the
ongoing operational costs of the protocol.

12

0 250 500 750 1000
Batch Number

105

106

107

Ga
s C

on
su

m
pt

io
n

P1: Setup
P2: Mint data NFT
P3: Request data

P4: Challenge
P5: Batch payment

(a) Gas consumption varying batch
number.

0 250 500 750 1000
Batch Number

0.0

0.5

1.0

1.5

2.0

Tr
an

sa
cti

on
 L

ate
nc

y
(m

in
) P1: Setup

P2: Mint data NFT
P3: Request data

P4: Challenge
P5: Batch payment

(b) Transaction latency varying batch
number.

20 40 60 80 100
Challenge Size

105

106

107

Ga
s C

on
su

m
pt

io
n

P1: Setup
P2: Mint data NFT
P3: Request data

P4: Challenge
P5: Batch payment

(c) Gas consumption varying chal-
lenge size.

20 40 60 80 100
Challenge Size

0.0

0.5

1.0

1.5

2.0

Tr
an

sa
cti

on
 L

ate
nc

y
(m

in
) P1: Setup

P2: Mint data NFT
P3: Request data

P4: Challenge
P5: Batch payment

(d) Transaction latency varying chal-
lenge size.

Fig. 8: Gas consumption and transaction latency under different batch numbers and challenge sizes.

In contrast, the latency breakdown shows a more balanced
distribution. P3 takes the largest share at 37% of the total
latency, followed by P4 at 35%. This suggests that these phases
involve more time-consuming operations. P5 accounts for 15%
of the latency, while P1, despite its high gas consumption, only
contributes 6% to the overall latency. And P2 shows a latency
of 7%.

This analysis highlights the disparity between gas consump-
tion and time efficiency across different phases. Although P1
dominates in terms of gas consumption, it is relatively quick
to execute. In contrast, P3 and P4 are more time-consuming
but less gas-consuming.

79%

4%
6%

8%3%

The gas consumption
 breakdown

6%
7%

37% 35%

15%

The transaction latency
 breakdown

P1: Setup
P2: Mint data NFT
P3: Request data

P4: Challenge
P5: Batch payment

Fig. 9: Breakdown of gas consumption and transaction latency across different
phases of the NMFT protocol, based on median values from 10 experimental
runs.

E. Scalability
To evaluate NMFT’s scalability, we conducted two analyses:

(1) varying batch number nb from 100 to 1000 in steps of 100,
with fixed nc = 10, and (2) varying challenge size nc from
10 to 100 in increments of 10, with fixed nb = 100.

As shown in Fig. 8a and 8c, gas consumption for P5 and
P4 increases linearly with nb and nc respectively, while other
phases remain constant. When nb increases 10-fold (100 to
1000), P5’s gas consumption grows only 2.6 times (179,230
to 464,646 gas units). Similarly, a 10-fold increase in nc (10
to 100) leads to a 4.6-fold increase in P4’s gas consumption
(419,878 to 1,926,618 gas units). This sublinear growth sug-
gests efficient handling of larger batches and challenges.

Transaction latency remains stable across different nb and
nc values (Fig. 8b and 8d), as network latency dominates
processing time.

The scaling behavior of nb is advantageous for buyers to
seek large data volumes. For a fixed total data volume require-
ment, buyers tend to purchase fewer batches by increasing the
data volume per batch. However, it may be unfavorable for
the owners, as larger volumes could lead to greater losses if
buyers refuse to send a payword upon receiving the data.

On the other hand, the scaling behavior of nc permits a
wide range of challenge size. Larger nc can benefit MOs who
mix fake data, increasing their chances of winning copyright
challenges, but this incurs higher gas fees for uploading larger
Vc. In contrast, smaller nc favor buyers and CC by enhancing
their chances of obtaining stakes from MOs while avoiding
higher gas fees.

VIII. CONCLUSION

In this paper, we present NMFT, a blockchain-based data
trading protocol that addresses the critical issue of copyright
protection in NFT-based data exchanges. The core of our
protocol is the Merkle Feature Tree, which incorporates an AI-
powered feature layer above the data layer of the traditional
Merkle Tree. Copyright verification is achieved through a
three-step process: verifying the Merkle proofs of features,
comparing the on-chain timestamps of Merkle roots, and com-
puting feature similarity. To make this verification practically
feasible on blockchain, we employ Locality-Sensitive Hashing
(LSH) to compress high-dimensional floating-point feature
vectors into single uint256 integers, which are recorded as
contract events in the blockchain logs to further optimize
storage costs.

Extensive experiments with multiple well-established fea-
ture extraction models for both text and image data demon-
strate that our LSH compression scheme effectively preserves
similarity relationships. Particularly, when setting a high sim-
ilarity threshold, the compression characteristics ensure that
only genuinely similar data can pass the copyright challenge
while preventing false positives. Experimental results on the
Ethereum Sepolia testnet show that NMFT demonstrates good
scalability with sublinear growth in gas consumption as batch
numbers and challenge sizes increase, while maintaining stable
transaction latency. These characteristics make NMFT partic-

13

ularly suitable for large-scale data trading scenarios where
copyright protection is crucial.

REFERENCES

[1] L. Faridoon, W. Liu, and C. Spence, “The impact of big data
analytics on decision-making within the government sector,” Big Data,
vol. 0, no. 0, p. null, 2023, pMID: 38193755. [Online]. Available:
https://doi.org/10.1089/big.2023.0019

[2] A. O. Adewusi, U. I. Okoli, E. Adaga, T. Olorunsogo, O. F. Asuzu, and
D. O. Daraojimba, “Business intelligence in the era of big data: a review
of analytical tools and competitive advantage,” Computer Science &
IT Research Journal, vol. 5, no. 2, pp. 415–431, Feb. 2024. [Online].
Available: https://www.fepbl.com/index.php/csitrj/article/view/791

[3] X. Wu, W. Li, and H. Tu, “Big data and artificial intelligence in cancer
research,” Trends in Cancer, vol. 10, pp. 147–160, 2023.

[4] Datacoup, “Datacoup,” https://datacoup.com/, 2024, accessed: Aug. 26,
2024.

[5] Qlik, “Qlik,” https://www.qlik.com/, 2024, accessed: Aug. 26, 2024.
[6] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[7] G. Wood et al., “Ethereum: A secure decentralised generalised trans-

action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[8] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” 2014, white paper, vol. 3, no. 37, pp. 2–1.

[9] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, pp. 398–461, 2002.

[10] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hot-
stuff: Bft consensus with linearity and responsiveness,” in Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing.
ACM, 2019, pp. 347–356.

[11] Q. Wang, R. Li, Q. Wang, and S. Chen, “Non-fungible token
(nft): Overview, evaluation, opportunities and challenges,” 2021,
arXiv:2105.07447.

[12] R. Song, S. Gao, Y. Song, and B. Xiao, “: A traceable and privacy-
preserving data exchange scheme based on non-fungible token and zero-
knowledge,” in 2022 IEEE 42nd International Conference on Distributed
Computing Systems (ICDCS), 2022, pp. 224–234.

[13] S. Ranjbar Alvar, M. Akbari, D. M. X. Yue, and Y. Zhang,
“Nft-based data marketplace with digital watermarking,” in Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, ser. KDD ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 4756–4767. [Online]. Available:
https://doi.org/10.1145/3580305.3599876

[14] O. P. Foundation, “Ocean protocol: Tools for the web3 data economy,”
https://oceanprotocol.com/tech-whitepaper.pdf, 2022, accessed: Aug. 26,
2024.

[15] Itheum.io, “Itheum whitepaper,” https://dev.to/itheum/
itheum-data-dex-whitepaper-ooo, 2021, accessed: Aug. 26, 2024.

[16] Datum, “Datum whitepaper,” https://datum.org/assets/
Datum-WhitePaper.pdf, 2017, accessed: Aug. 26, 2024.

[17] Cointelegraph, “Ai has a role to play in detecting fake nfts,” 2023,
accessed: 2024-08-27. [Online]. Available: https://cointelegraph.com/
news/ai-has-a-role-to-play-in-detecting-fake-nfts

[18] Opensea, “Opensea,” https://opensea.io/, 2024, accessed: Aug. 26, 2024.
[19] S. B. Journal, “Opensea self-reports that 80% of

its nfts were unoriginal or illegitimate,” 2022,
accessed: Aug. 26, 2024. [Online]. Available: https:
//www.sportsbusinessjournal.com/Daily/Issues/2022/01/31/Technology/
opensea-self-reports-that-80-of-its-nfts-were-unoriginal-or-illegtimate.
aspx

[20] Opensea, “What is opensea’s copymint policy?” 2024, accessed: Aug.
26, 2024. [Online]. Available: https://support.opensea.io/en/articles/
8867065-what-is-opensea-s-copymint-policy

[21] S. Dziembowski, L. Eckey, and S. Faust, “Fairswap: How to fairly
exchange digital goods,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 967–
984.

[22] S. Delgado-Segura, C. Pérez-Solà, G. Navarro-Arribas, and J. Herrera-
Joancomartı́, “A fair protocol for data trading based on bitcoin trans-
actions,” Future Generation Computer Systems, vol. 107, pp. 832–840,
2020.

[23] C. Chenli, W. Tang, H. Lee, and T. Jung, “Fair2trade: Digital trading
platform ensuring exchange and distribution fairness,” IEEE Transac-
tions on Dependable and Secure Computing, pp. 1–16, 2024.

[24] P. Abla, T. Li, D. He, H. Huang, S. Yu, and Y. Zhang, “Fair and
privacy-preserved data trading protocol by exploiting blockchain,” IEEE
Transactions on Information Forensics and Security, pp. 1–1, 2024.

[25] D. Sheng, M. Xiao, A. Liu, X. Zou, B. An, and S. Zhang, “Cpchain:
A copyright-preserving crowdsourcing data trading framework based
on blockchain,” in 2020 29th international conference on computer
communications and networks (ICCCN). IEEE, 2020, pp. 1–9.

[26] Y. Xiang, W. Ren, T. Li, X. Zheng, T. Zhu, and K.-K. R. Choo, “A multi-
type and decentralized data transaction scheme based on smart contracts
and digital watermarks,” Journal of network and computer applications,
vol. 176, p. 102953, 2021.

[27] B. Wang, W. Huang, B. Li, Y. Yuan, F. Yang, and Z. Hu, “Blockchain-
based medical image data trading platform with copyright and privacy
protection,” in 2024 27th International Conference on Computer Sup-
ported Cooperative Work in Design (CSCWD). IEEE, 2024, pp. 224–
229.

[28] B. Wang, B. Li, Y. Yuan, C. Dai, Y. Wu, and W. Zheng, “Cpdt: A
copyright-preserving data trading scheme based on smart contracts and
perceptual hashing,” in 2022 IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom).
IEEE, 2022, pp. 968–975.

[29] X. Chen, A. Yang, J. Weng, Y. Tong, C. Huang, and T. Li, “A
blockchain-based copyright protection scheme with proactive defense,”
IEEE Transactions on Services Computing, vol. 16, no. 4, pp. 2316–
2329, 2023.

[30] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th international con-
ference, Munich, Germany, October 5-9, 2015, proceedings, part III 18.
Springer, 2015, pp. 234–241.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[33] R. C. Merkle, “Secrecy, authentication, and public key systems,” Ph.D.
Thesis, Stanford University, Stanford, CA, USA, 1979.

[34] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “Mpnet: Masked and
permuted pre-training for language understanding,” Advances in neural
information processing systems, vol. 33, pp. 16 857–16 867, 2020.

[35] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “Minilm:
Deep self-attention distillation for task-agnostic compression of pre-
trained transformers,” Advances in Neural Information Processing Sys-
tems, vol. 33, pp. 5776–5788, 2020.

[36] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov,
P. Fernandez, D. Haziza, F. Massa, A. El-Nouby, M. Assran, N. Ballas,
W. Galuba, R. Howes, P.-Y. Huang, S.-W. Li, I. Misra, M. Rabbat,
V. Sharma, G. Synnaeve, H. Xu, H. Jegou, J. Mairal, P. Labatut,
A. Joulin, and P. Bojanowski, “Dinov2: Learning robust visual features
without supervision,” 2023, arxiv:2304.07193.

[37] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 10 012–10 022.

[38] J. Benet, “Ipfs - content addressed, versioned, p2p file system,” 2014,
arXiv:1407.3561.

[39] L. Lamport, “Password authentication with insecure communication,”
Commun. ACM, vol. 24, no. 11, p. 770–772, nov 1981. [Online].
Available: https://doi.org/10.1145/358790.358797

[40] R. L. Rivest and A. Shamir, “Payword and micromint: Two simple
micropayment schemes,” in Proceedings of the 4th Security Protocols
International Workshop, ser. Lecture Notes in Computer Science, vol.
1189. Berlin: Springer-Verlag, 1996, pp. 69–87.

[41] M. Elsheikh, J. Clark, and A. M. Youssef, “Short paper: Deploying
payword on ethereum,” in Financial Cryptography and Data Security,
A. Bracciali, J. Clark, F. Pintore, P. B. Rønne, and M. Sala, Eds. Cham:
Springer International Publishing, 2020, pp. 82–90.

[42] Ethereum Sepolia Implementation Reference, “Sepolia testnet,” https:
//github.com/eth-clients/sepolia, 2024, accessed: Aug. 26, 2024.

[43] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing. ACM, 1998, pp.
604–613.

[44] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

https://doi.org/10.1089/big.2023.0019
https://www.fepbl.com/index.php/csitrj/article/view/791
https://datacoup.com/
https://www.qlik.com/
https://doi.org/10.1145/3580305.3599876
https://oceanprotocol.com/tech-whitepaper.pdf
https://dev.to/itheum/itheum-data-dex-whitepaper-ooo
https://dev.to/itheum/itheum-data-dex-whitepaper-ooo
https://datum.org/assets/Datum-WhitePaper.pdf
https://datum.org/assets/Datum-WhitePaper.pdf
https://cointelegraph.com/news/ai-has-a-role-to-play-in-detecting-fake-nfts
https://cointelegraph.com/news/ai-has-a-role-to-play-in-detecting-fake-nfts
https://opensea.io/
https://www.sportsbusinessjournal.com/Daily/Issues/2022/01/31/Technology/opensea-self-reports-that-80-of-its-nfts-were-unoriginal-or-illegtimate.aspx
https://www.sportsbusinessjournal.com/Daily/Issues/2022/01/31/Technology/opensea-self-reports-that-80-of-its-nfts-were-unoriginal-or-illegtimate.aspx
https://www.sportsbusinessjournal.com/Daily/Issues/2022/01/31/Technology/opensea-self-reports-that-80-of-its-nfts-were-unoriginal-or-illegtimate.aspx
https://www.sportsbusinessjournal.com/Daily/Issues/2022/01/31/Technology/opensea-self-reports-that-80-of-its-nfts-were-unoriginal-or-illegtimate.aspx
https://support.opensea.io/en/articles/8867065-what-is-opensea-s-copymint-policy
https://support.opensea.io/en/articles/8867065-what-is-opensea-s-copymint-policy
https://doi.org/10.1145/358790.358797
https://github.com/eth-clients/sepolia
https://github.com/eth-clients/sepolia

	Introduction
	Related Work
	Data NFTs
	Exchange Fairness
	Copyright Protection

	Preliminaries
	Merkle Tree and Merkle Proof
	Merkle Feature Tree
	Non-Fungible Tokens
	Hash Chain

	Model and Design
	System Model
	Threat Model
	Design Goals

	System Design
	Data Trading Type and Transfer Type
	Workflow of Protocol

	System Analysis
	Enhanced Exchange Fairness
	Data Privacy

	Experimental Results
	Implementation
	Metrics
	Optimization
	Transaction performance
	Scalability

	Conclusion
	References

