
Worst-Case to Average-Case Hardness of LWE:
A Simple and Practical Perspective

Divesh Aggarwal1, Leong Jin Ming2, and Alexandra Veliche3

1 National University of Singapore, Singapore
divesh@comp.nus.edu.sg

2 Imperial College of London, London, U.K.
e0407679@u.nus.edu

3 University of Michigan, Ann Arbor, MI, U.S.A.
aveliche@umich.edu

Abstract. In this work, we study the worst-case to average-case hardness of the Learning with Errors
problem (LWE) under an alternative measure of hardness − the maximum success probability achievable
by a probabilistic polynomial-time (PPT) algorithm. Previous works by Regev (STOC 2005), Peikert
(STOC 2009), and Brakerski, Peikert, Langlois, Regev, Stehle (STOC 2013) give worst-case to average-
case reductions from lattice problems to LWE, specifically from the approximate decision variant of
the Shortest Vector Problem (GapSVP) and the Bounded Distance Decoding (BDD) problem. These
reductions, however, are lossy in the sense that even the strongest assumption on the worst-case hardness
of GapSVP or BDD implies only mild hardness of LWE. Our alternative perspective gives a much
tighter reduction and strongly relates the hardness of LWE to that of BDD. In particular, we show that
under a reasonable assumption about the success probability of solving BDD via a PPT algorithm,
we obtain a nearly tight lower bound on the highest possible success probability for solving LWE
via a PPT algorithm. Furthermore, we show a tight relationship between the best achievable success
probability by any PPT algorithm for decision-LWE to that of search-LWE. Our results not only refine
our understanding of the computational complexity of LWE, but also provide a useful framework for
analyzing the practical security implications.
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1 Introduction

The Learning with Errors (LWE) problem has become one of the most important computational problems in
post-quantum cryptography and computational complexity over the last two decades. Since Regev introduced
this problem in 2005 [Reg09], the LWE problem has been used as the basis of a wide variety of cryptographic
primitives, as well as a tool for proving hardness results in learning theory [Reg06]. Formally, the LWE
problem is defined as follows: The input consists of a uniformly random matrix A ∼ Zm×n

p and a vector
b := As + e ∈ Zm

p , where s ∈ Zn
p is a secret vector chosen uniformly at random from Zn

p and e ∈ Zm
p is an

error vector of small magnitude sampled according to a Gaussian distribution. The goal is to output s. Here
the positive integer p is called the modulus and n is the dimension. In his seminal work, Regev related LWE
to worst-case lattice problems that form the foundation of lattice-based cryptography.

1.1 LWE and Computational Lattice Problems

Lattice Problems. A lattice L is a discrete additive subgroup of Rn that consists of all integer linear combi-
nations of m linearly independent vectors B = {b1,b2, · · · ,bm} ⊂ Rn. Formally, it is defined as

L(B) :=


n∑

i=1

zibi | ∀i ∈ {1, ..., n}, zi ∈ Z

 .



We call m the rank, n the dimension of the ambient space, and B a basis of the lattice. A lattice can have
many possible bases.

The two most important computational lattice problems are the Shortest Vector Problem (SVP) and the
Closest Vector Problem (CVP). In SVP, one is given a basis for a lattice and asked to output a shortest
non-zero lattice vector. We denote the length of a shortest non-zero vector of a lattice L by λ1(L). In the
approximation variant of SVP, denoted by γ-SVP for some γ > 1, the goal is to output a nonzero lattice
vector whose length is at most γλ1(L). In CVP, one is given a target vector and basis for a lattice and asked
to output a closest lattice vector to the target vector. Similarly, in its approximation variant γ-CVP, the goal
is to output a lattice vector whose distance from the target vector is at most γ times the minimum distance
between the target vector and the lattice. There exists a polynomial-time reduction from SVP to CVP, which
preserves the dimension, rank, and approximation factor [GMSS99].

A closely related problem to CVP is the Bounded Distance Decoding (BDD) problem, denoted by BDDα

for some α < 1
2 . This is a promise problem in which the goal is to solve CVP under the promise that the

distance of the target from the lattice is at most αλ1(L). Note that, by the triangle inequality, this promise
ensures that the closest vector to the target is unique. In our work, we only consider length and distance in
the standard Euclidean (ℓ2) norm.

Computational lattice problems are crucial because of their association with lattice-based cryptography.
Specifically, the security of numerous cryptographic systems such as [Ajt96, MR04, Reg06, MR09, Reg09,
Gen09, BV14] relies on the complexity of approximately solving lattice problems to within a polynomial
factor. Aside from cryptosystem design, since the 1980s, solvers for lattice problems have found applications
in cryptanalytic tools [Sha85, Bri83, LO85], algorithmic number theory [LLL82], and convex optimization
[Kan87,FT87].

Algorithms for Lattice Problems. Algorithms for CVP and SVP have been designed and studied extensively
for decades. Kannan proposed an enumeration algorithm [Kan87] for CVP and hence for all lattice problems,
with a time complexity of nO(n) and space requirement of poly(n). Micciancio and Voulgaris introduced a
deterministic algorithm for CVP with a time complexity of 22n+o(n) and space requirement of 2n+o(n) [MV13].
A few years later, Aggarwal, Dadush, Regev, and Stephens-Davidowitz [ADRS14,ADRS15] presented the
current fastest known algorithm for SVP and CVP, which has a time and space complexity of 2n+o(n). The
best-known and proven runtime for an approximation factor γ = nc is approximately 2n/(c+1) for constant
c ≥ 0. For the current state of the art, we refer the reader to [ALS20].

Hardness of Lattice Problems. Both γ-SVP and γ-CVP are known to be NP-hard for nearly-polynomial
approximation nc/log logn for some constant c > 0 [vEB81,DKRS03,Din02,Kho05,HR18]. Through a series
of works, Aggarwal, Bennett, Golovnev, and Stephens-Davidowitz [BGS17,ASD18,ABGSD21], demonstrated
that approximating CVP and SVP to a factor γ slightly greater than 1 is not achievable in time 2o(n) under
variants of the Exponential Time Hypothesis.

Worst-case to Average-case Reduction for LWE. The best known algorithm that solves LWE for dimension
n and modulus p runs in time pO(n/logn) [BKW00]. The decision variant of LWE is the one most directly
related to the security of lattice-based cryptography. In decision-LWE, the goal is to distinguish between an
LWE instance as described above and a uniform sample from Zm×(n+1)

p . Regev [Reg09] gave a polynomial-
time reduction from BDD to LWE. Additionally, Regev gave a quantum polynomial-time reduction from a
decision variant of γ-SVP, known as GapSVPγ , to BDD for γ polynomial in the dimension of the lattice.
Peikert [Pei09] improved this result to a classical reduction from GapSVPγ to LWE, albeit with the modulus
p becoming exponential in the dimension n. Later, Brakerski et al. [BLP+13] gave a reduction from LWE
with dimension n and modulus p exponential in n to LWE with dimension n2 and modulus p polynomial in
n, thus allowing the modulus to shrink from exponential to polynomial.

Overall, these results give us a polynomial-time reduction from lattice problems (GapSVP, BDD) in
dimension n to LWE in dimension n2 with modulus p polynomial in n. This means that even if we assume
that the currently best known algorithms for BDD or GapSVP are the best possible, this reduction only says
that LWE in dimension n cannot be solved faster than in 2Ω(

√
n) time. This is a much worse lower bound than
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one would expect based on the state-of-the-art algorithms for LWE [BKW00]. This leads us to the following
natural question.

Question 1. Is there a tight reduction from worst-case lattice problems (such as BDD) to LWE that gives a
tighter lower bound on the runtime for solving LWE?

1.2 A Novel Perspective on Computational Hardness

In cryptography, security models often assume that all possible adversaries are computationally bounded,
based on the state-of-the-art capabilities of modern computers. Often, when we declare that a cryptographic
scheme is 256-bit secure, we intuitively understand that the fastest algorithm for successfully breaking the
cryptosystem runs in 2256 units of time. What we typically require, however, is that any algorithm that
succeeds in attacking the cryptosystem with probability more than 2−256 cannot do so in a “reasonable”
amount of time.

Unpredictability Entropy. Motivated by this discrepancy, Aggarwal and Maurer [AM11] proposed a different
perspective on studying the complexity of a computational search problem. They introduced the concept
of unpredictability entropy for a computational problem, defined as follows. If p is the maximum success
probability of a probabilistic polynomial-time (PPT) algorithm that solves the problem, the unpredictability
entropy of the problem is log2(

1
p ).

Two closely related properties of a search problem also studied in [AM11] are witness compression and
oracle complexity. A search problem P is said to have witness compression w if there is a PPT reduction
from P to another search problem Q such that the problem Q has a solution/witness of length w. The
oracle complexity of the problem P is defined as the number of arbitrary YES/NO questions needed to get
a solution to the search problem, i.e. find a witness.

It was shown in [AM11] that unpredictability entropy, witness compression, and oracle complexity of
a computational problem are equal, up to lower order additive terms. Notice that these quantities are all
indicative of the number of bits in which the hardness of a computational problem can be captured.

The authors of [AM11] also gave a straightforward polynomial-time algorithm for both SVP and CVP,

that achieves a success probability of 2−n
2/4−o(n2), showing that both these problems have unpredictability

entropy/witness compression/oracle complexity n2/4+ o(n2). These algorithms are straightforward adapta-
tions of the LLL algorithm and Babai’s nearest plane algorithm [LLL82,Bab86]. If we replace [LLL82] with
the slide reduction algorithm [GN08, ALNSD20] with block length O(log n), this still runs in polynomial

time and reduces the search space, giving a success probability 2−Θ(n2/logn). Despite the various algorithmic
techniques available for solving lattice problems, none of these methods appear to improve this further if we
are restricted to PPT algorithms, even if we consider approximation variants of the lattice problems with
approximation factor γ polynomial in the lattice dimension n. Additionally, the close relationship between
BDDα and γ-SVP for 1

α and γ both polynomial in n [LM09], suggests that it is unlikely for a polynomial-
time algorithm for BDD to do much better than current algorithms. With this in mind, it is reasonable to
conjecture the following.

Conjecture 1. For any constants c, c′ > 0, there exists κ = κ(c, c′) > 0 such that no algorithm can solve
BDDγ , γ-SVP, and γ-CVP on an arbitrary lattice for approximation factor γ = nc in time nc′ with success

probability better than 2−n
2/κ logn.

It is easy to see that any algorithm for solving LWE in polynomial time for modulus p and dimension n
has success probability at least p−n. This can be obtained by guessing the secret s uniformly at random and
then checking whether b−As is small. We ask the following natural question, which is a novel perspective
on the worst-case to average-case reductions for LWE.

Question 2. Assuming Conjecture 1, is there a lower bound close to p−Ω(n) on the success probability of
solving LWE via a polynomial-time algorithm?
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In this work, we answer this question in the affirmative. Since the security of cryptosystems is based
on the hardness of decision problems, we need to adapt the question above and formulate the measure of
hardness of a decision problem in terms of the success probability of the best efficient (i.e. PPT) algorithm.

One-Sided Error PPT Algorithms. This question has been well studied particularly in the context of NP-hard
problems, for which we expect any PPT algorithm to be able to distinguish only with a small advantage.
Some previous works, (such as [PP10], and the references therein) have explored the realm of one-sided
error probabilistic polynomial-time (OPP) algorithms for NP-hard decision problems. This relies on the
assumption that when the algorithm is presented with a NO instance, it consistently outputs NO, while for
a YES instance, the algorithm outputs YES with a small success probability α.

However, for decision problems like decision-LWE whose input is chosen according to a distribution, we
cannot hope to output NO with probability 1 even given a NO instance. This is because a NO instance
for this problem is just a random element from Zm×(n+1)

q that will look like a YES instance with non-zero
probability. Thus, it is reasonable to adapt the notion of OPP algorithms to have two parameters α, β such
that α ≫ β, and the algorithm outputs YES with probability at least α, when given a YES instance, and
with probability at most β when given a NO instance. We call such an algorithm an (α, β)-solver for decision
LWE. Using this notation, we ask the following natural question.

Question 3. Assuming that there is no PPT algorithm that succeeds in solving search-LWE with probability
α, can we prove that there is no (α′, β′)-solver for the corresponding decision-LWE problem with α′ ≈ α and
β′ ≪ α′.

We also answer this question in the affirmative.

1.3 Our Contributions

In this paper, we show that if no PPT algorithm can solve BDD on a lattice of rank n with success proba-
bility greater than 2−O(n2)/logn, then no PPT algorithm can solve search-LWE in n dimensions with success
probability greater than 2−O(n2)/logn. Here n is the dimension of the lattice even if we restrict the secret to
be a binary vector. Informally, our first main result is the following.

Theorem 1. (informal) If no PPT algorithm can solve BDDγ for gap γ ∈ (0, 1
2 ) with success probability

greater than 2−n
2/κ logn −4 for some κ > 0, then no PPT algorithm can solve search-LWE for binary secret

and modulus p polynomial in the dimension n with success probability 2−n
2/κ logn.

Note that the above statement can easily be extended to having the secret chosen uniformly at random from
Zn
p using a standard randomization of the secret. We show this explicitly in Section 3.3.
We emphasize here that while our reductions are adaptations of similar reductions in the literature,

adapting these reductions to our setting required great care, since the number of oracle calls made in the
reductions is crucial. In particular, for a reduction from problem P to problemQ that makes k calls to a solver
for problem Q, an upper bound of δ on the success probability for solving problem P in polynomial time
would imply an upper bound of δ1/k on the success probability for solving problem Q in polynomial time. So
for our reductions, we needed to adapt known reductions, which make polynomially many oracle calls, into
reductions that make only one call to the oracle and then guess successfully with a small probability. These
reductions with a single oracle call are known as one-shot reductions. This approach enables us to obtain
meaningful bounds on the success probability of polynomial-time reductions.

Our second main contribution is concretely relating the hardness of solving decision-LWE to that of solving
search-LWE using our new framework. In particular, we show that if no algorithm can solve search-LWE on
a lattice of rank n with modulus p in expected polynomial time with success probability close to α2, then
there is no PPT algorithm that can solve decision-LWE for the same dimension and modulus and answers
correctly with probability close to α, outputs ⊥ with probability 1 − α, and answers incorrectly with the
remaining tiny probability. This relies on the assumption that β is large and close to 1, which requires the
oracle B to be correct with high probability when it does not output ⊥. Intuitively, this means that B admits
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defeat by outputting ⊥ far more often than it guesses the answer incorrectly. Using this framework, we can
informally state our second main result as follows.

Theorem 2. (informal) If no algorithm can solve search-LWE for modulus p polynomial in the dimension n
with success probability α2 in expected polynomial time, then no PPT algorithm can solve decision-LWE for
the same modulus p and dimension n that outputs a correct answer with probability α and outputs ⊥ with
probability 1− α.

To prove our second main result, we use a result by Levin [Lev12] This result is an improvement of the
original Goldreich-Levin Theorem in [GL89] which gives a tight relationship between the success probability
of finding a hard-core bit and that of inverting the corresponding one-way function. In our work, we rig-
orously prove Levin’s result and generalise it from binary {0, 1} to Zp for all but a few values of p. This
required considerable care and can easily find applications elsewhere, so we consider it to be a contribution
of independent interest.

Note that the statement of Theorem 2 is in terms of expected polynomial time, which is a crucial aspect of
the Goldreich-Levin Theorem used in our reduction. Because the runtime is polynomial only in expectation,
we cannot directly combine this result with that of Theorem 1.

1.4 Paper Organization

In Section 2, we give the mathematical background needed for our results and formally define the computa-
tional problems discussed throughout the paper. Section 3 contains the proof of our first main result, where
we use the techniques from [Reg09]. In Section 4, we prove our second main result, where we reduce the
hardness of solving search-LWE to the hardness of solving decision-LWE using our new framework [MW18].
We conclude with future directions and open problems in Section 5.

2 Preliminaries

Let T := R/Z denote the additive group of real numbers modulo the integers, i.e. the interval [0, 1) with
addition modulo 1. R+ and Z+ denote the positive real numbers and positive integers, respectively, which
do not include zero. Let p be any positive integer (not necessarily prime). Zp := Z/pZ denotes the ring of
integers {0, 1, . . . , p− 1} where addition and multiplication are performed modulo p. We implicitly identify
Zp with its natural embedding in Z whenever relevant. For any n ∈ Z+, we denote [n] := {1, ..., n} to be all
the integers between 1 and n, inclusive. We use ⟨·, ·⟩ to denote the standard dot product, so ⟨x,y⟩ = xTy
for column vectors x,y where addition and multiplication are performed according to the domain. We use
lowercase boldface letters (such as v), to denote vectors, uppercase boldface letters (such as B) to denote
matrices, and calligraphic uppercase boldface letters (such as A) to denote algorithms. We use ∥·∥ =∥·∥2 to
denote the Euclidean norm. Throughout this paper, all norms are assumed to be Euclidean unless specified
otherwise. We say that an algorithm is efficient if it runs in time polynomial in the size of the input, and
use the terms “efficient” and “polynomial-time” interchangeably throughout.

We will need the following standard lemma.

Lemma 1. Let Y1, . . . , Yt be pairwise independent Bernoulli random variables where Pr [Yi = 1] = p for
1 ≤ i ≤ t. Then for any c > 0,

Pr


∣∣∣∣∣∣

t∑
i=1

Yi − tp

∣∣∣∣∣∣ ≤ ctp

 ≥ 1− 1

c2tp
.

Proof. Let Y = Y1+· · ·+Yt. The expected value of Y is E[Y ] = tp and the variance of Y is Var[Y ] = tp(1−p).
Then by the Chebyshev inequality, we have

Pr
[
|Y − tp| ≥ ctp

]
≤ tp(1− p)

c2t2p2
=

1− p

c2tp
≤ 1

c2tp
.

□
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2.1 Learning with Errors

Definition 1. (LWE Distribution) Let ϕ be a probability density function on T, and s ∈ Zn
p denote the

unknown secret vector. The Learning with Errors (LWE) distribution As,ϕ is the distribution over Zn
p ×T

obtained by choosing a ∈ Zn
p uniformly at random and e ∈ T according to ϕ, then outputting (a, 1

p ⟨a, s⟩+ e).

The standard Learning with Errors problem has both search and decision variants, defined as follows.

Definition 2. (Search-LWE) The search variant of the Learning with Errors problem, search-LWEn,p,ϕ, is
defined as: given a polynomial number of samples from the distribution As,ϕ, recover the secret s ∈ Zn

p .

Definition 3. (Decision-LWE) The decision variant of the Learning with Errors problem, decision-LWEn,p,ϕ,
is defined as: given a polynomial number of samples either from the distribution As,ϕ or independent and
uniformly distributed samples from Zn

p ×T, output

– YES if the samples are from the LWE distribution As,ϕ, or
– NO if the samples are uniformly random over Zn

p ×T.

Definition 4. (Binary-LWE) The Binary Learning with Errors problem, binLWEn,p,ϕ, is the search-LWEn,p,ϕ

problem with the restriction that the secret s is uniform over {0, 1}n.

2.2 Lattices

Definition 5. (Lattice) Let B = {b1, . . . ,bm} ⊆ Rn be a set of linearly independent vectors. The lattice
L = L(B) generated by B is the set of vectors spanned by B over Z, i.e.

L(B) :=
{ m∑

i=1

zibi

∣∣∣∣ z = (z1, . . . , zn)
T ∈ Zn

}
⊂ Rn .

The basis B is usually expressed as a matrix B whose columns are the vectors of B and we write L(B) :=
L(B). Here m is the rank of the lattice as a free Z-module, and n is the dimension of the ambient space.

Throughout this paper, we assume that the lattices are full-rank, meaning that n = m.

Definition 6. (Determinant) The determinant of lattice L generated by B = (b1, . . . ,bm) ∈ Rn×m is

det(L) :=
√
det(BTB).

Definition 7. (Dual Lattice) The dual lattice of L is

L∗ := {x ∈ Rn | ∀ v ∈ L, ⟨v,x⟩ ∈ Z}.

Given a basis matrix B ∈ Rn×m of a lattice L, we write B∗ to denote the corresponding basis matrix for L∗.
This satisfies (B∗)

T
B = Im.

Definition 8. (Successive Minima) For any k ∈ Z+, the k-th successive minimum of L (in the Euclidean
norm) is

λk(L) := inf{r ∈ R | B(0, r) contains k linearly independent vectors},

where B(0, r) denotes the ball of radius r centered at the origin. In particular, λ1(L) is the length of any
shortest nonzero vector in L.

Definition 9. (Unique Closest Lattice Vector) For any vector v ∈ Rn whose distance from the lattice L is
less than 1

2λ1(L), there is a unique closest lattice vector to v, which we denote by κL(v).
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2.3 Probability and Gaussians

Throughout this paper, we frequently use the standard normal distribution over the real numbers. We use
the standard notation N(µ, σ2) to denote the normal distribution with mean µ and variance σ2.

Definition 10. (Statistical Distance) Let ϕ1 and ϕ2 be probability measures on the space (X,F), where X is
the set of outcomes and F is the collection of events. The statistical distance (a.k.a total variation distance)
between ϕ1 and ϕ2 is

∆(ϕ1, ϕ2) := sup
A∈F
{|ϕ1(A)− ϕ2(A)|}.

In particular, when X = Rn,

∆(ϕ1, ϕ2) =
1

2

∫
Rn

|ϕ1(x)− ϕ2(x)|dx.

IfX and Y are random variables with distributions ϕ1 and ϕ2, respectively, we define ∆(X,Y ) := ∆(ϕ1, ϕ2).
It is immediate that statistical distance satisfies the triangle inequality. Another important property is that
it does not increase under the application of any (possibly random) function f [Vad12], i.e.

∆(f(X), f(Y )) ≤ ∆(X,Y ). (∗)

This means that for any algorithmA, the success probability ofA onX differs from the success probability
of A on Y by at most ∆(X,Y ).

Definition 11. (Gaussian Function) The Gaussian function of width s ∈ R+ is ρs : Rn → R, given by

ρs(x) := e−π∥
x
s ∥2 .

For any countable subset A ⊆ Rn, we write ρs(A) :=
∑

x∈A ρs(x). Furthermore, we denote ρ := ρ1. For any
y ∈ Rn, we define ρs,y(x) := ρs(x− y).

Note that
∫
Rn ρs(x)dx = sn. Hence

νs :=
ρs
sn

is a probability density function on Rn, which we call a continuous Gaussian of width s. Similarly, we write
ν := ν1. Since a sample from νs can be generated by taking n independent samples from the 1-dimensional
Gaussian distribution, we assume that we can sample efficiently from νs.

Definition 12. (Discrete Gaussian) For any countable subset A for which ρs(A) converges, DA,s : A→ R+

is the discrete Gaussian distribution on A defined by

DA,s(x) :=
ρs(x)

ρs(A)
.

Definition 13. (Distribution Ψγ) For any γ ∈ R+, define the distribution Ψγ : T→ R+ by

Ψγ(r) :=
∑
k∈Z

1

γ
e
−π

(
r−k
γ

)2

.

In other words, if X is distributed according to Ψγ and Z ∼ N(0, γ2

2π ), then X is the image of Z modulo 1.

An important property used in [Reg09] is the fact that Ψβ does not change much under a small change in
the parameter β. In [Reg09], it was shown that the statistical distance between Ψβ and another distribution

Ψα, such that β is not too far from α is bounded by a scaling of the ratio β
α . For our reduction, we need a

much tighter bound, so we instead use the ratio between the probability density functions corresponding to
Ψα and Ψβ . Formally, we show the following.
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Lemma 2. Let α ∈ R+ and β := α(1 + ε) for some ε > 0. Denote the probability density functions of
distributions Ψα and Ψβ by gα and gβ, respectively. Then their ratio satisfies

gα(x)

gβ(x)
≤ 1 + ε =

β

α
.

for any x ∈ R.

Proof. Suppose X and X ′ are distributed according to Ψα and Ψβ , respectively. By definition, X is the image

of some Z with distribution N(0, α2

2π ) modulo 1, and similarly, X ′ is the image of some Z ′ with distribution

N(0, β2

2π ) modulo 1. Then the ratio of the probability density functions fα and fβ is the same as the ratio of
the probability density functions of Z and Z ′ modulo 1. By this we obtain

gα(x)

gβ(x)
=

1
αe
−π( x

α )2

1
β e
−π( x

β )2
=

β

α
e
−πx2 1

α2 +πx2 1
β2 =

α(1 + ε)

α
e
−πx2

(
1

α2− 1
α2(1+ε)2

)
= (1 + ε)e

−π x2

α2

(
1− 1

(1+ε)2

)
≤ 1 + ε.

The last inequality follows from the fact that f(x) := e
−πx2 1

α2

(
1− 1

(1+ε)2

)
is a scaling of the Gaussian curve,

so f(x) ≤ 1 for any value of x.

□

Now we prove a multiplicative analog of (∗) for this ratio of probability density functions.

Lemma 3. Let X and Y be continuous random variables in R with probability density functions gX and gY ,
respectively. Suppose that for some fixed δ > 0, their ratio satisfies

gX(x)

gY (x)
≤ δ

for all x. Then for any (invertible) function f : U → V and set S ⊆ V ,

Pr[f(X) ∈ S]

Pr[f(Y ) ∈ S]
≤ δ.

Proof. Consider the set T ∗ :=
{
u ∈ U | Pr[X=u]

Pr[Y=u] > 0
}
. This maximises the ratio Pr[X∈T ]

Pr[Y ∈T ] over all T ⊆ U .

This enables us to write

Pr[f(X) ∈ S]

Pr[f(Y ) ∈ S]
=

Pr[X ∈ f−1(S)]

Pr[Y ∈ f−1(S)]
≤ max

T⊆U

{
Pr[X ∈ T ]

Pr[Y ∈ T ]

}
=

Pr[X ∈ T ∗]

Pr[Y ∈ T ∗]
.

By definition of the probability density function, we have

Pr[X ∈ T ∗]

Pr[Y ∈ T ∗]
=

∫
T∗ gX(x)dx∫
T∗ gY (x)dx

≤
δ
∫
T∗ gY (x)dx∫
T∗ gY (x)dx

= δ.

We remark that the statement can easily be extended to any randomised function f . This means that for any
algorithm A, the success probability of A on X differs from the success probability of A on Y by at most a
multiplicative factor of 1

δ . We will use Lemmas 2 and 3 in Section 3.2 for the reduction from generised-LWE
to standard search-LWE.
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2.4 The Smoothing Parameter

For any lattice L, one can show that ρt(L) converges for all t > 0. In particular, the map s 7→ ρ1/s(L\{0})
is a strictly decreasing continuous map on R+, that satisfies lims→∞{ρ1/s(L\{0})} = 0 and
lims→0{ρ1/s(L\{0})} =∞. This enables us to define the following parameter.

Definition 14. (Smoothing Parameter) Let L ⊂ Rn be a lattice and ε > 0. The smoothing parameter of L
with respect to ε is

ηε(L) := inf{s ∈ R+ | ρ 1
s
(L∗ \{0}) ≤ ε}.

By the above observation on the map s 7→ ρ1/s(L\{0}), the infimum in the definition above can be
achieved with equality. In fact, s 7→ ρ1/s(L \ {0}) is a bijection from R+ to R+ with inverse ε 7→ ηε(L).

Observe that, using the properties of the Gaussian function and the fact that (pL)∗ = p−1 L∗, any scaling
of the smoothing parameter can be rewritten as

p · ηε(L) = inf{ps ∈ R+ | ρ 1
s
(L∗ \{0}) ≤ ε}

= inf{s′ ∈ R+ | ρ p
s′
(L∗ \{0}) ≤ ε}

= inf{s′ ∈ R+ | ρ 1
s′
(p−1 L∗ \{0}) ≤ ε}

= ηε(pL).

The following upper and lower bounds on the smoothing parameter will be used in our reduction.

Lemma 4. (Claim 2.13 from [Reg09]) For any n-dimensional lattice L and ε ∈ R+ we have

ηε(L) ≥

√
1

π
ln

(
1

ε

)
· 1

λ1(L∗)
≥

√
1

π
ln

(
1

ε

)
· λn(L)

n
.

Lemma 5. (Lemma 3.1 from [GPV08], adapted) For any n-dimensional lattice L with basis B = {b1, ...,bn}
and ε ∈ R+ we have

ηε(L) ≤ max
i∈[n]
{∥bi∥} ·

√√√√ 1

π
ln

(
2n

(
1 +

1

ε

))
.

We remark that the original Lemma 3.1 in [GPV08] is tighter, as the maximum is over the Gram-Schmidt
orthogonolization of the basis vectors, b̃1, ..., b̃m, which satisfy ∥b̃i∥≤ ∥bi∥ for all i ∈ [n]. The original
statement takes the minimum of this maximum norm over all possible bases B of the lattice.

The following is an elementary bound on the shortest vector length in the dual lattice.

Lemma 6. (Theorem 3.2 from [Cai98], adapted) For any n-dimensional lattice L with basis B = {b1, ...,bn},

1

λ1(L∗)
≤ max

i∈[n]
{∥bi∥}.

As in the previous lemma, the statement above is weaker than the original statement in [Cai98], as it uses
the weaker bound given by ∥b̃i∥≤∥bi∥ for all i ∈ [n], instead of the smallest maximum length of the Gram-
Schmidt orthogonolization of the basis vectors taken over all possible bases of the lattice. For our purposes,
it suffices to take the weaker versions of these bounds stated in the lemmas above.

2.5 Computational Lattice Problems

Definition 15. (SVP) Let γ ≥ 1. The γ-approximate Shortest Vector Problem in the Euclidean norm,
GapSVPγ , is the decision problem defined as: given an instance (B, d) consisting of a basis matrix B of a
rank-n lattice L and distance parameter d > 0, output

9



– YES if λ1(L) ≤ d, or
– NO if λ1(L) ≥ γd.

Definition 16. (BDD) The Bounded Distance Decoding problem, BDDα, is the search problem defined as:
given a basis matrix B of a rank-n lattice L and a target vector v ∈ Rn with the promise that
dist(v,L) < α · λ1(L), find a lattice vector closest to v, i.e. an x ∈ L such that ∥v − x∥ < α · λ1(L).

Definition 17. (mod-BDD) Let p ∈ Z+. The Modulo-p Bounded Distance Decoding problem, BDDα,p, is
the search problem defined as: given a basis matrix B of a rank-n lattice L and a target vector v ∈ Rn with
the promise that dist(v,L) < α · λ1(L), find the coefficient vector of a lattice vector closest to v modulo p.
i.e. if x ∈ L is closest to v, then the expected output is B−1x (mod p) ∈ Zn

p .

3 BDD to Search-LWE

We now formally state and prove our first main result.

Theorem 3. (BDD→ search-LWE) Let α = α(n) ∈ (0, 1) and γ ∈ (0, 1
2 ). Suppose there exists a polynomial-

time algorithm B that solves LWEn,2n,Ψα with probability q. Then there is a PPT algorithm A that, given
oracle access to B and a basis B for lattice L, solves any BDDγ instance (L,x) where

dist(L∗,x) ≤ αγ

maxi∈[n]{∥bi∥}
·
(
1

π
ln(2n(1 +

1

ε
))

)− 1
2

with probability q(1 + δ)−3 − 6ε for some ε ∈ (0, 1
24 ) and constant δ > 3

4 .

In particular, using Conjecture 1, we assume that q = 2−n
2/κ logn. Then setting δ = 1 and ε = 1

96q, we
obtain

q(1 + δ)−3 − 6ε =
1

8
q − 1

16
q = 2−4q = 2−

n2

κ log n−4 = 2−O( n2

log n ).

So informally, this theorem says that if there is no efficient algorithm that solves BDDγ with probability

2−O(n2/logn), then there is no efficient algorithm for LWEn,2n,Ψα
that succeeds with probability 2−O(n2/logn).

The proof consists of two parts and uses techniques inspired by Regev’s original reduction in [Reg09]. First
we give a one-shot reduction from BDD to a generalised LWE problem in Section 3.1. Then we adapt Regev’s
reduction from this generalised LWE problem to search-LWEwith exponential modulus in Section 3.2, using
the multiplicative, rather than additive, difference in distributions. Lastly, we reduce LWE with exponential
modulus to binary LWE with polynomial modulus in Section 3.3.

3.1 BDD to Generalised LWE

Consider the following generalised version of LWE, as introduced by Regev in [Reg09].

Definition 18. (Generalised LWE) The Generalised Learning with Errors problem, denoted by LWEn,p,D, is
defined as: given a polynomial number of samples from the distribution As,ϕ with modulus p, where ϕ belongs
to the family of distributions D, recover the secret s ∈ Zn

p .

Note that in the definition above, any algorithm for the problem may know D, but is not given the specific
distribution ϕ ∈ D. Furthermore in any instance of the problem, the input samples all come from the same
distribution ϕ. For our proof, we are interested in the family of distributions

Ψ≤α := {Ψβ | 0 < β ≤ α}.

To obtain the desired bound on the success probability, we would like to minimise the number of calls to
the oracle for our target problem. In the chain of reductions BDDγ → BDDγ,p → LWEn,p,Ψ≤α

in [Reg09], a

10



total of n calls is made to the algorithm for BDDγ,p, each of which calls the oracle for LWEn,p,Ψ≤α
once. If

we insist that the modulus is p = 2n, then we can simplify our analysis by allowing the BDDγ algorithm to
call the BDDγ,p oracle exactly once, so that the total number of calls to the LWE oracle is exactly one.

In our one-shot reduction from BDDγ to BDDγ,p, we call the BDDγ,p oracle on the given BDDγ instance
to obtain a coefficient vector that ideally corresponds to the closest lattice vector to the given target v. We
then shift the target vector v by this closest lattice vector and scale it down by p. Then we run Babai’s
nearest plane algorithm from [Bab86] on this shifted and scaled vector to find the closest lattice vector to
v within the specified distance. Intuitively, blowing up the modulus to be exponential in the dimension n
makes it easy for Babai’s nearest plane algorithm to find the exact lattice point we are interested in. Now
we formalise this idea.

Lemma 7. (BDD → Modulo-BDD) Let n ∈ Z+, p = 2n, and γ ∈ (0, 1
2 ). Suppose there is a polynomial time

algorithm B that solves BDDγ,p with success probability q. Then there exists a polynomial time algorithm A
with oracle access to B that solves BDDγ with success probability q.

Proof. Let (B,v) be the given instance of BDDγ . By definition, this defines a lattice L = L(B) ⊂ Rn which
satisfies dist(v,L) < γ · λ1(L). Consider the following algorithm A:

Algorithm 1: BDD to Modulo-BDD Reduction

Input: BDDγ instance (B,v).
Output: Lattice vector x ∈ L.
Run B on (B,v) to get a vector z ∈ Zn

p .

Compute v′ := 1
p (v −Bz).

Run Babai’s Algorithm on (B,v′) to get a vector Bz′ ∈ L.
Output the vector B(pz′ + z).

Since the oracle B and Babai’s Nearest Plane algorithm both run in time polynomial in the dimension
of the lattice n, this algorithm clearly runs in polynomial time.

Now we prove correctness and show that if B answers correctly, then A outputs a correct answer. If oracle
B answers correctly, it outputs z = z (mod p) for some coefficient vector z = B−1x ∈ L, where x ∈ L is a
closest lattice vector to v. This means that

∥v − x∥ =∥v −Bz∥ < γ · λ1(L).

The output of A is correct if and only if
∥∥v −B(pz′ + z)

∥∥ < γ · λ1(L). Since ∥v −Bz∥ < γ · λ1(L), it is
enough to show that z = pz′ + z. Babai’s nearest plane algorithm from [Bab86] guarantees that the output
Bz′ satisfies

∥v′ −Bz′∥≤ 2n · dist(L,v′).

Observe that since z = B−1x and x = Bz ∈ L is a lattice vector, z ∈ Zn must be an integer coefficient vector.
By definition, z = z (mod p) ∈ Zn

p is also a coefficient vector. Combining these two facts and observing that

their coordinates can only differ by a multiple of p, we obtain that 1
p (z − z) ∈ Zn is a coefficient vector.

Hence B 1
p (z − z) ∈ L. By definition, dist(L,v′) ≤

∥∥v′ − u
∥∥ for any lattice vector u ∈ L. This yields the

bound

∥v′ −Bz′∥≤ 2n · dist(L,v′) ≤ 2n
∥∥∥∥v′ −B

1

p
(z− z)

∥∥∥∥ = 2n · 1
p
∥v −Bz∥ < γ · λ1(L),

where the last inequality above follows from the assumption that p = 2n. Thus, the unique closest vector to
v′ is in fact B 1

p (z − z). Therefore, z′ = 1
p (z − z), so we obtain z = pz′ + z as desired. Since the oracle B

is correct with probability q and the algorithm A always answers correctly in this case, the overall success
probability of algorithm A is at least q.

□

11



Note that in order for the reduction above to work, we need the modulus to be exponential p = 2n. We
will reduce this exponential modulus to a polynomial one in Section 3.3. Before we proceed to the second
reduction, we introduce the following intermediate results.

Lemma 8. (Claim 3.8 from [Reg09]) Let L be a rank-n lattice, c ∈ Rn, and ε > 0. For any r ≥ ηε(L),

ρr(L+c) ∈ (rn det(L∗)(1− ε), rn det(L∗)(1 + ε)).

This bounds the Gaussian function of any lattice coset by the determinant of the dual lattice. The following
lemma bounds the statistical distance between two relevant distributions.

Lemma 9. (Corollary 3.10 from [Reg09]) Let L be a rank-n lattice, w,v ∈ Rn be vectors, and r, s ∈ R+.
Define t :=

√
(r∥w∥)2 + s2. Suppose that for some ε ∈ (0, 1

2 )

ηε(L) ≤
1√

1
r2 +

(
1
s∥w∥

)2 .
Define the random variable X := ⟨w,v⟩ + e, where the distribution of v is v ∼ DL+u,r and e ∼ N

(
0, s2

2π

)
,

and let Φ denote the distribution of X modulo 1. Also let Z ∼ N
(
0, t2

2π

)
. Then ∆(X,Z) ≤ 4ε, and hence

∆
(
Φ,Ψt

)
≤ 4ε.

Now we implement the second reduction. Our algorithm requires additional data, namely samples from a
discrete Gaussian. We generate these samples using a subroutine from [BLP+13] as a black-box. In [BLP+13],
the authors give an efficient algorithm that, for any lattice and sufficiently large width, outputs a sample
from a discrete Gaussian distribution. Formally, they prove the following.

Lemma 10. (Theorem 2.3 from [BLP+13], adapted) There exists a PPT algorithm DGS that, given a basis
B of an n-dimensional lattice L = L(B), a vector c ∈ Rn, and a parameter

r ≥ max
i∈[n]
{∥b̃i∥} ·

√
ln(2n+ 4)

π
,

outputs a sample with distribution DL+c,r.

Lemma 11. (Modulo-BDD → Generalised-LWE) Let ε = ε(n) ∈ (0, 1
24 ), q = q(n), α = α(n) ∈ (0, 1),

p = p(n) ∈ Z+, γ ∈ (0, 1
2 ), and k ∈ Z+ be a constant. Suppose there is a polynomial time algorithm B

that, given nk samples from As,Ψ≤α
, solves LWEn,p,Ψ≤α

with success probability q. Then there is a PPT
algorithm A with oracle access to B that, given (B∗,x) corresponding to a lattice L∗ = L(B∗) such that

dist(L∗,x) ≤ αp
√
γ

r for some

r >
p
√
γ
·max
i∈[n]
{∥bi∥} ·

√√√√ 1

π
ln

(
2n

(
1 +

1

ε

))
,

solves BDDγ,p with success probability q − 6ε.

Proof. Let (B∗,x) be the given BDDγ,p instance. By definition, this defines a lattice L∗ = L(B∗) = (L(B))∗

which is the dual lattice of L = L(B). By Lemma 6, the parameter r is bounded by

r ≥ p
√
γλ1(L∗)

·

√√√√ 1

π
ln

(
2n

(
1 +

1

ε

))
≥ p
√
γλ1(L∗)

·

√
1

π
ln

(
1

ε

)
≥ αp
√
γλ1(L∗)

.
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The last inequality here follows from the upper bound on ϵ and the assumption that α < 1. Then for the
given parameters, the distance between the given vector and lattice is bounded by

dist(L∗,x) ≤
αp
√
γ

r
≤

αp
√
γ · √γλ1(L∗)

αp
≤ γ · λ1(L∗).

Thus, (B∗,x) is a valid instance of BDDγ,p.

First we define a subroutine to efficiently sample from a discrete Gaussian distribution. Note that since
ε ∈ (0, 1

24 ) is a constant, we have 1
ε ≥

2
n , so the bound on r satisfies

r ≥ p
√
γ
·max
i∈[n]
{∥bi∥} ·

√√√√ 1

π
ln

(
2n

(
1 +

1

ε

))
≥ max

i∈[n]
{∥bi∥} ·

√
1

π
ln (2n+ 4).

This enables us to run the DGS algorithm from Lemma 10 on this r, the lattice L, and vector c = 0 to
generate samples with distribution DL,r.

The idea for algorithm A is to use x to generate a polynomial number of samples from a distribution Φ
that is a good approximation of As,Ψβ

, for s = (B∗)−1κL∗(x) mod p and some β ≤ α. Recall that κL∗(x)
denotes the unique closest vector in the lattice L∗ to x. We call the oracle B on these generated samples to
obtain the secret vector s with probability close to q. We formally define algorithm A as follows.

Algorithm 2: Modulo-BDD to Generalised-LWE Reduction

Input: (B∗,x) such that dist(L∗,x) ≤ αp
√
γ

r .
Output: s ∈ Zn

p .

for i ∈ {1, ..., nk} do
Run the DGS sampler to obtain a vector v← DL,r.
Compute a := B−1v mod p.

Sample some noise e← N(0, α2γ
2π ).

Define b := 1
p ⟨x,v⟩+ e mod 1.

Define sample Xi := (a, b).
end
Run B on X1, ..., Xnk ∼ Φ to get a vector s ∈ Zn

p .
Output s.

Since this sampling process is efficient and repeated a polynomial number of times, the overall algorithm
is efficient.

Now we prove the correctness of algorithm A. We claim that if B succeeds, A generates a good approx-
imation of samples from As,Ψβ

. Specifically, we show that the statistical distance between the distributions
Φ and As,Ψβ

is ε′ for some β ≤ α. Given a polynomial number of samples from As,Ψβ
, the oracle B is

guaranteed to find s with probability q. If the oracle succeeds, its output is s = (B∗)−1κL∗(x) mod p, which
is precisely the coefficient vector of the closest lattice vector x ∈ L∗ modulo p. Hence it is a solution for the
given BDDγ,p instance. Since the samples input to B are from an approximate distribution Φ that is ε′ away
in statistical distance from the true distribution As,Ψβ

, then by (∗) the success probability suffers a loss of
ε′. Hence, the algorithm A will succeed with probability q − ε′.

We prove our claim by analysing the distributions of a and b for any generated sample Xi. First we
show that the distribution of a ∈ Zn

p is close to uniform. Let Y denote the distribution of a produced in the
algorithm. Fix a ∈ Zn

p . Then the probability that Y takes the value a is

Pr[Y = a] = Pr
v←DL,r

[v = Ba mod p] =
ρr(pL+Ba)

ρr(L)
=

ρ r
p

(
L+ 1

pBa
)

ρr(L)
,

13



by definition of the discrete Gaussian. By Lemma 5, we have r > p
√
2 ·ηε(L). Then since ηε(L) < r, Lemma 8

implies

ρ r
p

(
L+ 1

pBa
)

ρr(L)
∈

rn

pn det(L∗)(1± ε)

rn det(L∗)(1± ε)
=

1

pn

(
1− 2ε

1 + ε
, 1 +

2ε

1− ε

)
.

Then the statistical distance between Y and the uniform distribution U over Zn
p is bounded by

∆(Y,U) = 1

2

∑
a∈Zn

p

∣∣Pr[Y = a]− Pr[U = a]
∣∣

≤ 1

2

ρpn

(
1

pn

(
1 +

2ε

1− ε

)
− 1

pn

)

+ (1− ρ)pn

(
1

pn

(
1− 2ε

1 + ε

)
− 1

pn

)
≤ max

ρ∈[0,1]

{
ρ

ε

1− ε
+ (1− ρ)

ε

1 + ε

}
≤ ε

1− ε
.

Here ρ ∈ [0, 1] is the fraction of values in Zn
p for which Pr[Y] > Pr[U ]. Since ε ∈ (0, 1

24 ), we have ∆(Y,U) ≤ 2ε.
Now we show that the distribution of the second component b of the sample Xi is close to the correspond-

ing LWE distribution. We condition on a and consider the marginal distribution of b. Define x′ := x−κL∗(x).

By construction, we have ∥x′∥≤ dist(L∗,x) ≤ αp
√
γ

r . Then we can write

1

p
⟨x,v⟩+ e =

1

p

〈
κL∗(x),v

〉
+

1

p

〈
x′,v

〉
+ e. (∗∗)

Observe that since (B∗)T = B−1, we can write〈
κL∗(x),v

〉
= κL∗(x)TBB−1v

= κL∗(x)T((B∗)−1)
T
B−1v

= ((B∗)−1κL∗(x))
T
(B−1v)

=
〈
(B∗)−1κL∗(x),B−1v

〉
.

By construction, we have 〈
κL∗(x),v

〉
=
〈
(B∗)−1κL∗(x),B−1v

〉
≡ ⟨s,a⟩ mod p,

so the first term in (∗∗) satisfies
1

p

〈
κL∗(x),v

〉
≡ 1

p
⟨a, s⟩ mod 1.

It remains to consider the second term in the expression (∗∗). Note that conditioned on a and since p
is fixed, the distribution of v is the same as the distribution DpL+Ba,r. Let Z denote the distribution of
1
p

〈
x′,v

〉
+ e mod 1 for v sampled from DpL+Ba,r. By construction, e is sampled according to N

(
0, α2γ

2π

)
.

Since
∥∥∥ 1
px
′
∥∥∥ ≤ α

√
γ

r , we obtain

1√
1
r2 +

(
1

α
√
γ

∥∥∥ 1
px
′
∥∥∥)2

≥ 1√
1
r2 + 1

r2

=
r√
2
> r
√
γ ≥ p · ηε(L) = ηε(pL).
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Here the last equality follows from rewriting the scaled smoothing parameter (see subsection 2.4 for the
proof). Then by Lemma 9, ∆(Z,Ψβ) ≤ 4ε, for

β :=

√√√√(r ∥∥∥∥1px′
∥∥∥∥
)2

+
(
α
√
γ
)2 ≤√α2γ + α2γ = α

√
2γ < α.

Therefore, by the triangle inequality, the statistical distance between Φ and As,Ψβ
is ε′ = 2ε + 4ε = 6ε

for some β ≤ α, as claimed.

□

An immediate corollary of this one-shot reduction is the following bound on the success probability of
any polynomial-time algorithm for BDD.

Corollary 1. (BDD → Generalised-LWE) Suppose there exists an polynomial-time algorithm A that solves
LWEn,p,ϕ, where ϕ is an unknown distribution from the family Ψ≤α, with success probability q = q(n). Then
there is a polynomial-time algorithm B that, given oracle access to A, solves BDDγ for gap γ ∈ (0, 1

2 ) with
probability q − 6ε for some sufficiently small ε = ε(n) ∈ (0, 1

24 ).

Note that the additive loss in success probability can be written as a multiplicative factor:

q − ε′ = q

(
1− ε′

q

)
= q

(
1− 6ε

q

)
.

This probability only makes sense for 0 < q−6ε < 1, which holds if ϵ ∈
(

q−1
6 , q

6

)
. To obtain a small loss, say

q−ε′ = q
2 , we would need ϵ = q

12 . For our application, we are interested in the regime where q = 2−O(n2/logn),
so taking an appropriate ϵ such as this, we can obtain a constant multiplicative loss in success probability.

3.2 Generalised LWE to Standard LWE

In this section, we give a reduction from generalised LWE to LWE by adapting Lemma 3.7 from [Reg09] to
work with multiplicative, rather than additive, loss in success probability. In Regev’s reduction, we itera-
tively choose some Gaussian noise from a discrete interval to obtain some optimal noise that guarantees an
overwhelming success probability. Since we are concerned with polynomial-time adversaries and the success
probability itself, unlike the original reduction, we only sample noise from the interval exactly once. Because
we are limited to a single Gaussian noise sample, choosing the interval and parameters requires considerable
care.

Lemma 12. (Generalised-LWE → Search-LWE) Let α ∈ R+, p = p(n) ∈ Z+, and ε > 3
4 be a constant

parameter. Suppose there is an efficient algorithm B that solves LWEn,p,Ψα
with success probability q. Then

there is a PPT algorithm A that, given oracle access to B, solves LWEn,p,Ψ≤α
with success probability at least

q
(1+ε)3 .

Proof. Suppose that A is given nk samples for some constant k ∈ Z+, distributed according to As,Ψβ
, for

some β ≤ α. For notational convenience, let δ := (1 + ε)2 − 1 = ε2 + 2ε and define

Z :=
{
0, δα2, 2 · δα2, . . . , ⌊δ⌋δα2

}
to be the set of integer multiples of δα2 between 0 and α2. Consider the following algorithm A:
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Algorithm 3: Generalised-LWE to Search-LWE Reduction

Input: Samples X1, ..., Xnk ∼ As,Ψβ
.

Output: Secret vector s ∈ Zn
p .

Sample γ ← Z uniformly at random.
for i ∈ {1, ..., nk} do

Denote (a, b) := Xi.
Sample some noise e← Ψ√γ .
Define Yi := (a, b+ e).

end
Run B on the generated samples Y1, ..., Ynk to get a vector s′ ∈ Zn

p .
Output s′.

Since sampling and transforming nk samples is efficient, and the oracle B is called once, A is efficient.

Now we prove correctness of A. The algorithm is given samples of the form Xi = (a, b) = (a, ⟨a, s⟩+ e),
where e has distribution Ψβ for some unknown β ≤ α. The algorithm knows the value of α, so it attempts to
add noise from Ψ√γ in such a way as to obtain samples with noise distribution Ψα. In this way, it generates
samples of the form Yi = (a, b + e) = (a, ⟨a, s⟩ + e′ + e) where the noise e′ + e has distribution Ψσ for

σ :=
√
β2 + γ. The error between the noise distribution Ψσ generated by A and the target distribution Ψα

is determined by the given error parameter ε. Let γ′ be the smallest element of Z satisfying γ′ ≥ α2 − β2.
Then by construction of Z, we have γ′ ≤ α2 − β2 + δα2 = (δ + 1)α2 − β2. By definition, since ε > 3

4 , we
have δ > 1. Together with the fact that 0 < β ≤ α, this implies that 0 < α2−β2 < (δ+1)α2−β2 < ⌊δ⌋δα2.

Hence, there exists such an element γ′ in Z. There are |Z|= ⌊δ⌋δα2

δα2 ≤ δ elements in Z, so the element

γ sampled by the algorithm is γ = γ′ with probability at least 1
δ . Let σ′ :=

√
β2 + γ′ denote the noise

distribution parameter for this special element γ′. Consider the ratio of the probability generating functions
corresponding to Ψα and Ψσ′ . Using Lemma 2 and the bounds on γ′, this is given by

gα(x)

gσ′(x)
≤ σ′

α
=

√
β2 + γ′

α
≤
√
β2 + (δ + 1)α2 − β2

α
=

α
√
1 + δ

α
=
√

(1 + ε)2 = 1 + ε.

Then by Lemma 3, applying any function to this ratio of probability distribution functions cannot increase
the ratio. This implies that the success probability of A for noise distribution Ψα and the success probability
of A for noise distribution Ψσ′ have the ratio

Pr[A succeeds for Ψα]

Pr[A succeeds for Ψσ′ ]
=

q

Pr[A succeeds for γ = γ′]
≤ 1 + ε.

Hence, for this choice γ = γ′, we know that A successfully outputs s′ = s with probability at least q
1+ε .

Therefore the overall success probability of A is at least

Pr[A succeeds for γ = γ′] · Pr[γ = γ′] ≥ q · 1

1 + ε
· 1
δ
≥ q

(1 + ε)3
.

□

Assuming the success probability of solving LWEn,p,Ψα is q = p−n/κ logn for modulus p = 2n, and setting
the error parameter to be ε = 1, we obtain the following corollary.

Corollary 2. (Generalised-LWE → Search-LWE) Suppose there is no efficient algorithm A for LWEn,2n,Ψ≤α

with success probability 2−n
2/κ logn−3 for some constant c > 0. Then there is no efficient algorithm B for

LWEn,2n,Ψα
with success probability 2−n

2/κ logn.
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3.3 Reducing the Modulus for Search-LWE

In [BLP+13], Brakerski et al. study the trade-off between the modulus and dimension of decision-LWE
instances. In particular, they give a reduction from decision-LWE to decision-LWE that reduces the modulus
arbitrarily while preserving the dimension and incurring only a small loss in advantage. Their reduction can
also be viewed as a search to search reduction that says the following.

Theorem 4. (Theorem 4.1. from [BLP+13], rephrased) Let n ∈ Z+ and α = α(n) ∈ (0, 1) such that 1
α is

bounded by a polynomial in n. Then for some prime p = p(n) such that both p and p
α are nΘ(1), there is a

polynomial-time, one-shot reduction from LWEn,2n,Ψα to binLWEn2,p,Ψα
that preserves the success probability.

Using the trivial reduction from binLWE to LWE for the same dimension, modulus, and noise distribution,
this result allows us to reduce the modulus from exponential to polynomial in n for LWE. For completeness,
we include this simple reduction below.

Lemma 13. (binLWEn,p,ϕ → LWEn,p,ϕ) Suppose there exists an efficient algorithm B that solves LWEn,p,ϕ

with success probability q. Then there exists a PPT algorithm A that solves binLWEn,p,ϕ with success proba-
bility q.

Proof. Let As,ϕ be the input distribution for the given binLWEn,p,ϕ samples, where s ∈ {0, 1}n is a binary
secret vector. Consider the following algorithm A:

Algorithm 4: binLWEto LWE Reduction

Input: Samples X1, ..., Xnk ∼ As,ϕ.
Output: Secret vector s ∈ Zn

p .

Sample a vector r← Zn
p uniformly at random.

for i ∈ {1, ..., nk} do
Denote (a, b) := Xi.
Define Yi := (a, b+ ⟨a, r⟩).

end
Run B on the generated samples Y1, ..., Ynk to get a vector s′ ∈ Zn

p .
Output s′ − r.

This algorithm transforms a polynomial number of samples and the efficient oracle B is called once, so A
is efficient. Now we prove correctness. Observe that each sample Xi has b = ⟨a, s⟩+ e for some noise e with
distribution ϕ, so the transformed samples have the form

Yi = (a, b+ ⟨a, r⟩) = (a, ⟨a, s⟩+ ⟨a, r⟩+ e) = (a, ⟨a, s+ r⟩+ e).

The oracle B succeeds in recovering the secret vector s′ = s+r with probability q, so with the same probability
A outputs the secret binary vector s = s′ − r.

□

4 Search-LWE to Decision-LWE

In this section, we show how to solve search-LWE given an oracle for decision-LWE, under the condition
that the oracle correctly responds YES far more often than it incorrectly responds YES. Formally, show the
following result.

Theorem 5. (Search-LWE→ Decision-LWE) Let n, p, k ∈ Z+ be such that p > 10 is polynomial in n and k
is a constant. Suppose that there exists an efficient algorithm B for decision-LWEn,p,ϕ that,

– given nk LWE samples from As,ϕ, outputs YES with probability γ,
– given nk random samples from Zn

p ×T, outputs YES with probability δ,
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where γ > 5p2δ. Then there is an algorithm A for search-LWEn,p,ϕ with oracle access to B that runs in
expected polynomial time and

– outputs a correct answer with probability 1
5p3 γ and

– outputs ⊥ with probability 1− 1
5p3 γ.

We prove this by making the following key observation: If solving search-LWE is hard, then it is hard to
determine the secret vector s from a given polynomial number of LWE samples of the form (a,b = 1

p ⟨a, s⟩+e).

Intuitively, this means that the function fϕ = (A, 1
pAs+ e) defined by these samples is hard to invert, so it

can be viewed as a one-way function. In their seminal work, Goldreich and Levin show how to construct a
hard-core predicate from any one-way function [GL89]. This tells us that if we can find the inner product of
s and a given vector r, then we can recover the secret vector s.

Inspired by this connection, we define an intermediate problem we call the Goldreich-Levin Learning with
Errors (GL-LWE) problem. We reduce search-LWE with polynomial modulus to GL-LWE, then reduce this
problem to standard decision-LWE under a reasonable condition.

4.1 Search-LWE to GL-LWE

In [GL89], Goldreich and Levin showed that for any one-way function f , the function b(x, z) := ⟨x, z⟩ mod 2
is a hard-core predicate for the function g(x, z) := (f(x), z). Levin later improved this result in [Lev12]
and showed that the success probability of finding the hard-core predicate is determined by the success
probability of inverting the one-way function f . For the formal statement and full proof of Levin’s result, we
refer the reader to Appendix A.

We generalise Levin’s result from modulus 2 to modulus p > 10 using the natural generalisation of a
hard-core predicate for Zp, under a certain condition.

Lemma 14. Let n, p ∈ Z+ such that p > 10 is polynomial in n and let f : Zn
p → Zn

p be an injective one-way
function. Suppose there is an efficient algorithm B that, given y = f(x) for some x ∈ Zn

p and random r ∈ Zn
p ,

guesses ⟨x, r⟩ mod p

– correctly with probability αβ,

– incorrectly with probability α(1− β), and

– outputs ⊥ with probability 1− α,

where β > 1− 1
5p . The probability is taken over the randomness of r, and the randomness of the algorithm.

Then there is an algorithm A that runs in expected polynomial time, that given oracle access to B and
y = f(x) for some x ∈ Zn

p , finds x correctly with probability 1
5p2αβ and outputs ⊥ with probability 1− 1

5p2αβ.

Proof. Let ζ := e
2πi
p denote a primitive p-th root of unity. Note that the group Zp is isomorphic to the mul-

tiplicative group {ζ, ζ2, ..., ζp−1}. Then without loss of generality, the behaviour of the oracle B is equivalent
to that of an oracle that outputs ζa instead of a ∈ Zp and outputs 0 instead of ⊥. For a fixed input y = f(x)
that is clear from the context, we use the shorthand notation B(r) for B(y, r).

Note that the condition on β requires the oracle B to be correct with high probability when it does not
output ⊥. Moreover, since p = poly(n), this β approaches 1 as n increases. Intuitively, this means that B
admits defeat and outputs ⊥ far more often than it guesses the answer incorrectly.

Consider the following algorithm A:
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Algorithm 5: OWF to HCP Reduction

Input: y = f(x) ∈ Zn
p for some x ∈ Zn

p .
Output: x′ ∈ Zn

p or ⊥.
Flip ℓ coins until a 0 is obtained. If ℓ > 2n, abort and output ⊥.
Set k := ℓ+ ⌈logp(4n)⌉.
Sample a random matrix R← Zn×k

p .

for z ∈ Zk
p do

for i ∈ {1, ..., n} do
Define gi(u) := B(Ru+ ei).
Run FFT on gi to compute hi(z) :=

∑
u∈Zk

p \{0}
ζ−⟨z,u⟩gi(u).

if
∣∣hi(z)

∣∣ = 0 then
Output ⊥.

end
Normalise hi(z) to obtain a unit vector h∗i ∈ C.
Find the closest p-th root of unity ζa to h∗i .
Set x′i := a.

end
Set x′ := (x′1, ..., x

′
n).

if f(x′) = y then
Output x′.

end

end
Output ⊥.
Here FFT denotes the Fast Fourier Transform and ei denotes the standard basis vector containing all

zeros except a 1 in the i-th coordinate.
The algorithm flips ℓ coins until it obtains a 0. The probability that ℓ = ℓ′ for some fixed ℓ′ ∈ Z+ is 1

2ℓ′
.

Then ℓ > ℓ′ with probability

Pr
ℓ
[ℓ > ℓ′] =

(
1− Pr

ℓ
[ℓ ≤ ℓ′]

)
=

1−
ℓ′∑
i=1

1

2ℓ′

 =

(
1−

(
1− 1

2ℓ′

))
=

1

2ℓ′
.

The parameter k is set to be k := ℓ+ ⌈logp(4n)⌉. This is large enough if

k > logp

4n

α

(
2 +

p2

β

)
+ 1

⇐= k >

⌈
logp

(
4n

αβ
(2β + p2)

)⌉
.

This occurs if

ℓ >

⌈
logp

(
4n

αβ
(2β + p2)

)⌉
− ⌈logp(4n)⌉ ⇐= ℓ > logp

(
2β + p2

αβ

)
+ 1.

The probability that ℓ is large enough is at least

2
− logp

(
2β+p2

αβ

)
−1

= 2
logp

(
αβ

2β+p2

)
· 2−1 = 2

log2

(
αβ

2β+p2

)
· 2

1
log2(p) · 2−1 ≥ αβ

4β + 2p2
.

Note that since p is polynomial in n, the factor 2
1

log2(p) approaches 1 from above as n increases.
The algorithm iterates through all possible guesses z ∈ Zk

p for xTR, so for some guess we will have

z = xTR. For this z and for any coordinate i, we have

hi(z) =
∑

u∈Zk
p \{0}

ζ−⟨x,Ru⟩B(Ru+ ei) = ζxi

∑
u∈Zk

p \{0}

ζ−⟨x,Ru+ei⟩B(Ru+ ei).
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Normalising this hi(z) gives a point h∗i on the complex unit circle. We show how, under certain conditions,
the closest root of unity to h∗i is ζxi and how in this case we can recover xi with high probability.

Note that for a uniformly random matrixR, the vectorsRu for non-zero u ∈ Zk
p are pairwise independent.

Then the vectors Ru+ei for non-zero u are also pairwise independent. To simplify notation, let m := pk−1
and enumerate these pairwise independent vectors by r1, ..., rm ∈ Zn

p . The sum above can then be rewritten
as

hi(z) = ζxi

m∑
j=1

ζ−⟨x,rj⟩B(rj).

There are three possible cases for each term of this sum. If B outputs 0 for a given rj , then the entire summand

becomes 0 and is eliminated from the sum. If B outputs a correct answer for rj , then we have B(rj) = ζ⟨x,rj⟩

and the summand becomes 1. Otherwise, if B outputs a wrong answer, we have B(rj) = ζaζ⟨x,rj⟩ for some
non-zero a ∈ Zp. Using these three cases, we can write

hi(z) = ζxi

0 +
∑

rj s.t.
B correct

1 +
∑

rj s.t.
B wrong

ζa


= ζxi(c0 + c1ζ

1 + ...+ cp−1ζ
p−1).

for some coefficients c0, c1, ..., cp−1 ∈ R+.
Consider the outputs B(r1), ...,B(rm). Let Yj be the indicator random variable for B(rj) ̸= 0. This is 1

with probability α, so the random variables Y1, ..., Ym have Bernoulli distribution with parameter α. Then
Y :=

∑m
j=1 Yj is the number of non-zero outputs. By Lemma 1, we have

Pr

[
Y <

mα

2

]
≤ Pr

[
|Y −mα| > mα

2

]
≤ 4

mα
.

Hence, with probability at least 1 − 4
mα , at least

mα
2 of the outputs are non-zero. Let E1 denote the event

that the number of non-zero outputs is at least mα
2 .

Let t be the number of non-zero values out of these m outputs. Without loss of generality, assume that
these t non-zero outputs coincide with r1, ..., rt. Now we bound the number of these non-zero outputs that

are correct. Define random variables Z1, ..., Zt where Zj is the indicator random variable for B(rj) = ζ⟨xi,rj⟩.
Since the correctness of these outputs is conditioned on them being non-zero, the probability that any Zj is

1 is αβ
α . Thus the random variables Z1, ..., Zt have Bernoulli distribution with parameter β. Let c > 0 be a

constant to be determined later. Then by Lemma 1, we have

Pr
[
Z < (1− c)tβ

]
≤ Pr

[
|Z − tβ| < ctβ

]
≤ 1

c2tβ
.

Hence, with probability at least 1− 1
c2tβ , the number of correct outputs from among the t non-zero outputs

is at least (1− c)tβ. Let E2 denote the event that the number of correct outputs out of t non-zero outputs
is at least (1− c)tβ.

The probability that both E1 and E2 occur is bounded by

Pr[E1 ∧ E2] = Pr[E1] · Pr[E2 | E1] ≥
(
1− 4

mα

)(
1− 2

c2mαβ

)
> 1− 4

mα
− 2

c2mαβ
.

For m > 4n
α

(
2 + 1

c2β

)
, this bound is at least 1− 1

2n . This happens if k is large enough. Suppose that both

E1 and E2 occur. Then the sum

hi(z) = ζxi(c0 + c1ζ
1 + ...+ cp−1ζ

p−1),
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has coefficients such that c0 ≥ (1− c)tβ and c1 + ...+ cp−1 ≤ t− (1− c)tβ.

Now we show that if this value hi(z) is normalised to h∗i , the closest root of unity is ζxi . Intuitively, the
condition on β and choice of parameter c above make the coefficient c0 much larger than the sum of the
other coefficients c1 + ... + cp−1. This bias ensures that hi(z) is close to a multiple of ζxi and hence h∗i is
close to ζxi . We illustrate this idea in the diagram below.

R

I
c0ζ

xic1ζ
xi+1

c2ζ
xi+2

. . .

. . .
cp−2ζ

xi+p−2

cp−1ζ
xi+p−1

R

I

ζxi

hi(z)

h∗i

Now we formalise this argument. Denote ω := c0 + c1ζ + ...+ cp−1ζ
p−1. Since ζxi is a factor of length 1

in hi(z), it is enough to show that the normalisation ω∗ := ω
|ω| is close to 1. Since the p-th roots of unity are

evenly spaced on the complex unit circle, the angle between any consecutive pair of them is 2π
p . Hence, we

need to show that the angle θ between ω∗ and the root 1 = ζ0 is strictly less than π
p . To do this, we use the

formula for the length of the chord between ω∗ and 1 in terms of θ,

|ω∗ − 1| = 2 sin

(
θ

2

)
. (∗ ∗ ∗)

By the assumption on p, we have π
p < π

2 . Since sin(ϕ) is an injective increasing function for the range 0 ≤

ϕ < π
p , showing that 2 sin

(
θ
2

)
≤ 2 sin

(
π
2p

)
immediately gives us θ < π

p . We prove that |ω∗ − 1| < 2 sin
(

π
2p

)
below.

First we use the triangle inequality to bound the normalisation factor by

|ω| =
∣∣∣c0 + c1ζ + ...+ cp−1ζ

p−1
∣∣∣ ≤ c0 + c1 + ...cp−1.

The assumption on β implies that β > 1
2(1−c) . This ensures that the coefficients satisfy c0 ≥ (1 − c)tβ ≥

t− (1− c)tβ ≥ c1 + ...+ cp−1. Then by applying the triangle inequality again, we obtain the lower bound

|ω| ≥
∣∣∣∣c0 −∣∣∣c1ζ + ...+ cp−1ζ

p−1
∣∣∣∣∣∣∣

≥
∣∣c0 − (c1 + ...+ cp−1)

∣∣
≥ c0 − (c1 + ...+ cp−1)

≥ t(2β(1− c)− 1).
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Using these bounds, we can bound the distance between ω∗ and 1 by

|ω∗ − 1| = 1

|ω|
∣∣ω −|ω|∣∣

≤ 1

|ω|

(
|ω − c0|+

∣∣ |ω| − c0
∣∣)

≤ 1

|ω|

(∣∣∣c1ζ + ....+ cp−1ζ
p−1
∣∣∣+∣∣c0 + c1 + ...cp−1 − c0

∣∣)
≤ 2

|ω|
(c1 + ...+ cp−1)

≤ 2(c1 + ...+ cp−1)

c0 − (c1 + ...+ cp−1)

≤ 2t(1− (1− c)β)

t(2(1− c)β − 1)

=
2− 2(1− c)β

2(1− c)β − 1
.

This bound can be rewritten as

2− 2(1− c)β

2(1− c)β − 1
= −2(1− c)β − 1− 1

2(1− c)β − 1
=

1

2(1− c)β − 1
− 1.

This satisfies

1

2(1− c)β − 1
− 1 < 2 sin

(
π

2p

)
⇐⇒ β >

1

2(1− c)

(
1 +

1

1 + 2 sin( π
2p )

)
.

By the assumption on β and taking c = 1
p , we have

1 > β > 1− 1

5p
>

1

2(1− c)

(
1 +

1

1 + 2 sin( π
2p )

)

for any p > 10. This lower bound is less than 1 for this choice of parameters and has limit 1 as p tends
towards infinity. Since β ∈ (0, 1) by definition, this means that β must be almost 1 for larger p. We set c = 1

p .

Therefore, if both events E1 and E2 occur for every coordinate i ∈ {1, ..., n}, we obtain ζxi as the closest
p-th root of unity to h∗i for every i. So under these conditions, A will output x′ = x.

Now we analyse the runtime of A. The expected number of coin flips needed until a 0 is obtained is 2, so
in expectation, k = 2+⌈logp(4n)⌉ = O(logp(n)). Thus, the algorithm can iterate through all guesses for xTR

in expected time polynomial in n. Running FFT on the coefficients gi to compute hi(z) takes O(pk log pk)
time. Finding the closest p-th root of unity to h∗i can be done by checking if the bound (∗ ∗ ∗) holds for
each root, which takes O(p) time. Since the one-way function f is efficiently computable, the algorithm can
efficiently check if x′ = x. Iterating over all n coordinates of x and by trying all possible values of z, the
total expected runtime of A is

n · pk · (O(pk log pk) +O(p)) = n · pO(logp(n)) ·O(plogp(n) log(plogp(n))) = O(n3 log n).

The success of A depends on k being sufficiently large and hi(z) being non-zero for the sampled R. Then
the probability that A succeeds, over the randomness of the input x and the algorithm’s internal randomness,
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is given by

Pr
x
[A(f(x)) = x] = Pr

x
[k large enough] · Pr

R
[∀i ∈ [n], E1 ∧ E2 | k large enough]

>
αβ

4β + 2p2
·

(
n

(
1− 1

2n

)
− (n− 1)

)

>
αβ

4β + 2p2
· 1
2

≥ 1

5p2
αβ.

SinceA verifies its guess for x and never outputs a wrong answer, it outputs⊥ with the remaining probability.
□

Now we apply this result to our study of the hardness of LWE. First we define an intermediate worst-case
problem inspired by the Goldreich-Levin theorem.

Definition 19. (Goldreich-Levin LWE) The Goldreich-Levin Learning with Errors (GL-LWE) problem, de-
noted by GL-LWEn,p,ϕ is defined as: given a polynomial number of samples from the distribution As,ϕ, where
s ∈ Zn

p is some fixed secret, and a uniformly random vector r ∈ Zn
p , find ⟨s, r⟩ mod p.

We use this to reduce (average-case) search-LWE to (average-case) decision-LWE. First note that search-
LWE trivially reduces to worst-case search-LWE: given LWE samples for a uniformly random secret s, the
reduction algorithm simply runs its oracle for worst-case search-LWE on the given samples and succeeds
in recovering s with the same probability. Now we interpret Lemma 14 as a reduction from worst-case
search-LWE to GL-LWE.

Corollary 3. (Search-LWE → GL-LWE) Let n, p ∈ Z+ such that p > 10 is polynomial in n. Suppose that
there is an efficient algorithm B for GL-LWEn,p,ϕ that, given a polynomial number of samples from As,ϕ for
some fixed secret s ∈ Zn

p , and a uniformly random vector r ∈ Zn
p , outputs a guess for ⟨s, r⟩ mod p

– correctly with probability α∗β∗,
– incorrectly with probability α∗(1− β∗), and
– outputs ⊥ with probability 1− α∗,

where β∗ > 1 − 1
5p . The probability is taken over the randomness of s, r, and the randomness of the algo-

rithm. Then there is an algorithm A for search-LWEn,p,ϕ that runs in expected polynomial time and, given a
polynomial number of samples from As,ϕ for some fixed secret s ∈ Zn

p ,

– correctly outputs s with probability 1
5p2αβ and

– outputs ⊥ with probability 1− 1
5p2αβ.

Proof. Consider the function fϕ : Zn
p → Zn

p given by fϕ(s) := (A, 1
pAs + e), where the rows of A are

uniformly random vectors sampled from Zn
p and e is sampled according to distribution ϕ. This can be used

as an injective function, because with high probability there is a unique s that satisfies the system of equations
determined by any given output (A,b) = (A, 1

pAs+ e). Applying Lemma 14 gives us the desired result.
□

4.2 GL-LWE to Decision-LWE

Finally, we finish our chain of reductions by reducing our worst-case intermediate problem to decision-LWE.
In the following we show that if there is a (γ, δ)-solver (with γ ≫ δ) for decision-LWE, then there is an
algorithm for GL-LWE that Corollary 3 can be instantiated with to complete the reduction from search-LWE
to decision-LWE.
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Lemma 15. (GL-LWE → Decision-LWE) Let k ∈ Z+ be a constant. Suppose that there exists an efficient
algorithm B for decision-LWEn,p,ϕ that,

– given nk LWE samples from As,ϕ for a uniformly random secret s,
outputs YES with probability γ,

– given nk random samples from Zn
p ×T, outputs YES with probability δ.

Then there is an algorithm A that, given oracle access to B and an instance of GL-LWEn,p,ϕ consisting of nk

samples from As,ϕ for a fixed secret s, outputs

– a correct answer with probability 1
pγ,

– a wrong answer with probability p−1
p δ, and

– ⊥ with probability 1− 1
pγ −

p−1
p δ.

Proof. Let s ∈ Zn
p be the fixed secret corresponding to the samples given to A as input. Consider the following

algorithm A:

Algorithm 6: GL-LWE to Decision-LWE Reduction

Input: Samples X1, ..., Xnk ∼ As,ϕ and r ∈ Zn
p .

Output: c ∈ Zp or ⊥.
Sample c← Zp uniformly at random as a guess for ⟨s, r⟩ mod p.
Sample vector t← Zn

p uniformly at random.

for i ∈ {1, ..., nk} do
Denote (a, b) := Xi.
Define a′ := a+ r and b′ := b+ 1

pc+
1
p

〈
a′, t

〉
.

Define Yi := (a′, b′).
end
Run B on the transformed samples Y1, ..., Ynk to obtain an answer.
if B responds YES then

Output c.
end
Output ⊥.

Since we efficiently transform a polynomial number of samples and call B once, algorithm A is efficient.
Now we prove correctness of algorithm A. It is given LWE samples of the form (a, b) as input, where b =
1
p ⟨a, s⟩+ e for some fixed secret vector s ∈ Zn

p and error e ∈ T, according to the distribution As,ϕ.

Suppose the algorithm guesses correctly and c = ⟨s, r⟩ mod p. In this case, the transformed samples
(a′, b′) are LWE samples. This is because a′ = a + r is uniformly random, since r is a uniformly random
vector. We also have

b′ = b+
1

p
c+

1

p

〈
a′, t

〉
=

1

p
⟨a, s⟩+ e+

1

p
⟨r, s⟩+ 1

p
⟨a+ r, t⟩

=
1

p
⟨a+ r, s+ t⟩+ e

=
1

p

〈
a′, s′

〉
+ e,

for a uniformly random secret s′ := s+t. Since c and t were chosen independently and uniformly at random, b′

is uniformly random. Hence, the oracle B is given LWE samples distributed according to As′,ϕ for a uniformly
random secret s′ ∈ Zn

p . Then it correctly responds YES with probability γ. The guess is c = ⟨s, r⟩ mod p

with probability 1
p , so the probability that A outputs a correct answer is 1

pγ.
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The guess is incorrect with probability 1− 1
p . In this case, the transformed samples (a′, b′) are uniformly

distributed over Zn
p ×T. This is because a′ is uniform over Zn

p , since r is a uniformly random vectors, and

b′ = b+ 1
pc+

1
p

〈
a′, t

〉
is uniformly random, since c and t were chosen independently and uniformly at random.

Hence, the oracle B receives uniformly random samples and incorrectly responds YES with probability δ.
Thus, A outputs a wrong answer with probability p−1

p δ.

Then the algorithm outputs ⊥ with the remaining probability 1− 1
pγ −

p−1
p δ.

□

Now we combine Corollary 3 and Lemma 15 to obtain our second main result.

Corollary 4. (Search-LWE → Decision-LWE) Let n, p, k ∈ Z+ be such that p > 10 is polynomial in n and k
is a constant. Suppose that there exists an efficient algorithm B for decision-LWEn,p,ϕ that,

– given nk LWE samples from As,ϕ, outputs YES with probability γ,
– given nk random samples from Zn

p ×T, outputs YES with probability δ,

where γ > 5p2δ. Then there is an algorithm A for search-LWEn,p,ϕ with oracle access to B that runs in
expected polynomial time and

– outputs a correct answer with probability 1
5p3 γ and

– outputs ⊥ with probability 1− 1
5p3 γ.

Proof. Set α := γ+(p−1)δ
p and β := γ

γ+(p−1)δ . Then we have αβ = 1
pγ and α(1−β) = p−1

p δ. By the assumption

that γ > 5p2δ, and since p > 10, we obtain

β =
γ

γ + (p− 1)δ
> 1− p− 1

5p2 + p− 1
> 1− 1

5p
.

Consider the following algorithm A: Given an instance of search-LWE, first run the algorithm from
Lemma 15 to solve the corresponding instance of GL-LWE. Then run the algorithm from Corollary 3 to
solve the corresponding GL-LWE instance. Finally, run the trivial algorithm to solve the given average-case
search-LWE instance. By Corollary 3, for these values of α and β, this algorithm A outputs a correct answer
for the given instance of search-LWE with probability

1

5p2
αβ =

1

5p3
γ,

and outputs ⊥ with the remaining probability.

5 Conclusions and Future Directions

In this paper, we offer a new perspective on the computational complexity of lattice problems by revisiting
the notion of characterizing the hardness of a computational problem in terms of the maximum success
probability achievable by any probabilistic polynomial-time algorithm.

We show how characterising the hardness in such a way enables us to obtain a much tighter reduction
from the worst-case BDD problem for lattices to the average-case search-LWE problem, as well as a tight
reduction from search-LWE to decision-LWE. (See Section 1.3 for precise statements.)

We believe that our work should motivate quantifying the hardness of computational problems − espe-
cially those relevant to cryptography − using a similar metric. We emphasize that such reductions will be
very sensitive to the number of calls made to the oracle, since the success probability will decrease exponen-
tially with the number of oracle calls. In the reductions in this work, our main challenge was to ensure that
our reductions make a single call to the oracle, even if that meant the reduction succeeds with a relatively
small probability.
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STOC ’08, pages 197–â€“206, New York, NY, USA, 2008. Association for Computing Machinery. 9

HR18. Ishay Haviv and Oded Regev. Tensor-based Hardness of the Shortest Vector Problem to within Almost
Polynomial Factors. CoRR, abs/1806.04087, 2018. 2

Kan87. Ravi Kannan. Minkowski’s Convex Body Theorem and Integer Programming. Mathematics of Operations
Research, 12(3):415–440, 1987. 2

Kho05. Subhash Khot. Hardness of Approximating the Shortest Vector Problem in Lattices. J. ACM,
52(5):789–808, Sep 2005. 2

Lev12. Leonid A. Levin. Randomness and Non-determinism. CoRR, abs/1211.0071, 2012. 5, 18, 28
LLL82. Arjen Lenstra, Hendrik Lenstra, and Lovász László. Factoring Polynomials with Rational Coefficients.
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Appendix A Proof of Levin’s Result in [Lev12]

The original statement of Levin’s generalization of the Goldreich-Levin theorem in [Lev12] relates the security
of a one-way function to that of a hard-core predicate. The security of a computational problem is essentially
the minimum of the inverse success probability of any PPT algorithm that tries to solve it. The notion of
security can be naturally extended to the primitive that corresponds to the computational problem. For
example, we say a one-way function f has security σ ≥ 1 if any polynomial-time algorithm that tries to
invert a given element in the image of f will succeed with probability at most 1

σ . This problem of inverting a
one-way function is a search problem. On the other hand, the problem of guessing a hard-core predicate can
be seen as a decision problem (since a hard-core predicate is binary). As discussed in the introduction, the
notion of OPP algorithms needs to be adapted to work for both search and decision problems when studying
reductions from one to another.

Micciancio and Walter [MW18] studied the (bit) security of a computational problem and defined this
to be compatible with both search and decision problems. If the algorithm is allowed to output a special
symbol ⊥ as an alternative to outputting a correct or wrong answer, then it enables the algorithm to express
uncertainty rather than randomly guess an answer that will most likely be wrong. This can often be more
informative than giving a (possibly wrong) binary answer.

Consider an algorithmA for a computational problem that, given any instance, outputs⊥ with probability
1 − α, answers correctly with probability αβ, and answers incorrectly with probability α(1 − β). More
precisely, define the output probability of A to be α := Pr[A ̸= ⊥] and the conditional success probability to
be β := Pr[R(X,A) | A ̸= ⊥], where the probabilities are over the randomness of the entire problem and
the internal randomness of A. (Recall that for our purposes, we considered α ≫ β.) Using this notation,
the success probability of A is given by αβ. For decision problems, we define the conditional distinguishing
advantage of A to be δ := 2βA − 1. Micciancio and Walter define (and prove) the advantage of any A to be
αβ for a search problem and α(2β − 1)2 for a decision problem.

Here we state the original result in [Lev12] and give a formal proof of Levin’s result using the precise
definitions above.

Lemma 16. (adapted from [Lev12]) Let f : {0, 1}n → {0, 1}n be a one-way function family that is length-
preserving, i.e. |f(x)|= |x| for any input x ∈ {0, 1}n, and has security s. Then b : {0, 1}n×{0, 1}n → {−1, 1},
b(x, r) := (−1)⟨x,r⟩ mod 2 is a hard-core predicate for f with security s.

Proof. Suppose that G is a PPT algorithm that, given w ∈ Z+ fair random coins, f(x) for some x ∈ {0, 1}n,
and a vector r ∈ {0, 1}n as input, guesses b(x, r) with success probability

sG,f,b =
Er,x,w[G(f(x), r, w) · b(x, r)]2

Ex,r,w[G(f(x), r, w)2]
>

1

s
.

Since finding the hard-core bit is a decision problem, this success probability is the advantage of G for large
n. We show this explicitly later in the proof.

Let the output of G be in {−1, 0, 1}, where outputting ”0” indicates that G does not know and admits
failure (this is used instead of ⊥). We use this G to construct an algorithm A that, given f(x) for some x
and w random coins, inverts f(x) with success probability

sA,f = Pr
x,w

[A(f(x), w) = x′ ∈ f−1(f(x))] >
1

s

and runs in expected polynomial time.

Fix the input y = f(x) for some x ∈ {0, 1}n and randomness w. For this input, we use the shorthand
notation G(r) := G(y, r, w). Define

c(x) :=
Er[G(r) · b(x, r)]√

Er[G(r)2]
.
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We claim that this c is the Walsh-Hadamard transform of G up to a constant factor. By definition, we can
write

c(x) =

∑
r∈{0,1}n G(r) · (−1)⟨x,r⟩ · Prr[G(r) · b(x, r)]√

Er[G(r)2]
=

1√
Er[G(r)2]

Ĝ(r).

Since r is fixed in the sum, the probability is eliminated, so we obtain a constant (dependent on r) multiple
of Ĝ, the Walsh-Hadamard transform of G.

By definition, we can use the security notation in the preamble to rewrite the following.

E
r
[G(r)2] =

∑
r∈{0,1}n

G(r)2 · Pr[G(r)2]

= Pr
r
[G(r) = 1] + (−1)2 Pr

r
[G(r) = −1] + 0

= Pr
r
[G(r) ̸= 0] = αG .

E
r
[G(r) · b(x, r)] = 0 + Pr

r
[G(r) · b(x, r) = 1] + (−1)Pr

r
[G(r) · b(x, r) = −1]

= Pr
r
[G(r) = b(x, r)]− Pr

r
[G(r) = −b(x, r)].

Dividing these and noticing that G guesses the bit (correctly or not) only if it does not output 0, we obtain

Er[G(r) · b(x, r)]
Er[G(r)2]

=
Prr[G(r) = b(x, r)

Prr[G(r) ̸= 0]
− Prr[G(r) = −b(x, r)

Prr[G(r) ̸= 0]

= Pr
r
[G(r) = b(x, r) | G(r) ̸= 0]− Pr

r
[G(r) = −b(x, r) | G(r) ̸= 0].

But by definition of conditional distinguishing advantage, this is exactly βG − (1 − βG) = 2βG − 1 = δG .
Using this notation and the claim above, we can express c(x) as

√
αGδG . This then implies that the success

probability of G is the same as its advantage for these fixed inputs.
Now we define our inverter. Consider the following algorithm A:

Algorithm 7: OWF to HCP Reduction

Input: y = f(x) for some x ∈ {0, 1}n, w random coins.
Output: x′ ∈ f−1(y) or ⊥.
Flip ℓ = ℓ(w) coins until a 0 is obtained. If ℓ > 2n, abort and output ⊥.
Set k := ℓ+ ⌈log2(4n)⌉.
Sample a random matrix R← {0, 1}n×k.
for z ∈ {0, 1}k do

for 1 ≤ i ≤ n do
Define gi(u) := G(Ru+ ei).
Run FFT on gi to compute hi(z) :=

∑
u∈{0,1}k\{0}(−1)⟨z,u⟩gi(u).

Set x′i := sign(hi(z)).
end
Define x′ := (x′1, ..., x

′
n).

if f(x′) = y then
Output x′.

end

end
Output ⊥.

Here FFT denotes the Fast Fourier Transform. We explain the reasoning behind this algorithm, then
analyse its performance.

Consider the case where c(x) > 0. (Otherwise, δG
√
αG ≤ 0, which implies δ ≤ 0. This means that G has

no distinguishing advantage. We are only interested in the case where G has some advantage, so we ignore
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this case.) The algorithm flips ℓ coins until it obtains a 0. The probability that ℓ = ℓ′ for some fixed ℓ′ ∈ Z+

is 1
2ℓ′

. Then ℓ > ℓ′ with probability

Pr
ℓ
[ℓ > ℓ′] =

(
1− Pr

ℓ
[ℓ ≤ ℓ′]

)
=

1−
ℓ′∑
i=1

1

2ℓ′

 =

(
1−

(
1− 1

2ℓ′

))
=

1

2ℓ′
.

The parameter k is set to be k := ℓ+ ⌈log2(4n)⌉. This is large enough if

k > log2

(
2n

c(x)2

)
⇐⇒ ℓ >

⌈
log2

(
2n

4n · c(x)2

)⌉
≥ log2

(
1

2c(x)2

)
Hence, k is large enough with probability 2c(x)2.

Let m := 2k

αG
. We claim the following: If r1, ..., rm ∈ {0, 1}n are pairwise independent random vectors,

then

Pr
r1,...,rm

 m∑
j=1

(−1)⟨x,rj⟩G(rj) > 0

 > 1− 1

2n
.

Let Zj := (−1)⟨x,rj⟩G(rj) be the corresponding random variables and let Z :=
∑m

j=1 Zj denote their sum.
Since r1, ..., rm are pairwise independent, Z1, ..., Zm are also pairwise independent random variables. Since
these are identically distributed, their expectation is the same c := E[Zj ] = δGαG for all j. This allows us to
rewrite the expectation and variance of Z as

E[Z] =

m∑
j=1

E[Zj ] = m · c = m · √αGc(x).

Var[Z] =

m∑
j=1

Var[Zj ] ≤ m.

Note that the expectation of the random variable Z depends on the success rate of G. The bound on the
variance follows from the fact that Zj is distributed over {−1, 0, 1}. Observe that

Pr
r1,...,rm

[Z ≤ 0] = Pr
r1,...,rm

[Z −mc ≤ −mc] ≤ Pr
r1,...,rm

[|Z −mc|≥ mc].

By the Chebyshev inequality, we obtain

Pr
r1,...,rm

[|Z −mc|≥ mc] ≤ Var[Z]

(mc)2
≤ 1

mc2
.

For our choice of m > 2n
αGc(x)2 , the bound above is less than 1

2n . Therefore we obtain the desired claim.

Note that for pairwise independent r1, ..., rm ∈ {0, 1}n, the vectors r1 + ei,
..., rm + ei are also pairwise independent for any 1 ≤ i ≤ n. For any random matrix R ∈ {0, 1}n×k, the
vectors Ru for non-zero u ∈ {0, 1}k are pairwise independent vectors. Thus the claim holds for the vectors
Ru+ ei, i.e.

Pr
R

 ∑
u∈{0,1}k\{0}

(−1)⟨x,Ru+ei⟩G(Ru+ ei) > 0

 > 1− 1

2n
.

Observe that (−1)⟨x,Ru+ei⟩G(Ru + ei) = (−1)xi(−1)⟨x,Ru⟩G(Ru + ei), where xi is the i-th bit of x. The
sum above is larger than zero if and only if

(−1)xi = sign

 ∑
u∈{0,1}k\{0}

(−1)⟨x,Ru⟩G(Ru+ ei)

 .
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By the claim, this happens for at least a 1− 1
2n fraction of random matrices R. Note that if z := xTR were

known, then the bit xi can easily be computed using the expression above, conditioned on the success of
G in guessing for the input Ru + ei. A iterates through all possible z ∈ {0, 1}k, so we get z = xTR for
some guess. Note that the algorithm can do this efficiently because 2k is only logarithmic in n. Then for this
desired z and for any coordinate i, FFT can be used to compute hi(z), the Walsh-Hadamard transform of
G(Ru+ ei). This requires O(2k log2(2

k)) = O(k2k) operations. Iterating over all n coordinates of x and by
trying all possible z, the total runtime of A becomes

n · 2k ·O(k2k) = O

(
n log2

(
2n

c(x)2

)
4n2

c(x)4

)
= O

(
n3

c(x)4
log2

(
n

c(x)2

))
.

Thus, for large enough c(x)2, A runs in time polynomial in n. Note that the expected runtime of A is
polynomial, but A does not necessarily terminate in polynomial time.

The success of A depends on k being sufficiently large and the sign of hi(z) being (−1)xi for the randomly
sampled R. Taking all this into account, the probability that A succeeds is given by

sA,f = Pr
x,w

[A(f(x), w) = x′ ∈ f−1(f(x))]

= Pr
x,w

[
k > log2

(
2n

c(x)2

)]
· Pr

R

[
∀i, (−1)xi = sign

(
(−1)⟨x,Ru⟩G(Ru+ ei)

)]

≥ 2c(x)2

 n∑
i=1

Pr
R

[
(−1)xi = sign

(
(−1)⟨x,Ru⟩G(Ru+ ei)

)]
− (n− 1)


> 2c(x)2

(
n

(
1− 1

2n

)
− n+ 1

)
= c(x)2.

This is exactly the success probability of G when given input y, w. Therefore, A and G have the same success
probability bound of 1

s via this expected polynomial-time reduction.
□
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