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Abstract. Modern blockchain-based consensus protocols aim for efficiency (i.e., low communication
and round complexity) while maintaining security against adaptive adversaries. These goals are usually
achieved using a public randomness beacon to select roles for each participant. We examine to what
extent this randomness is necessary. Specifically, we provide tight bounds on the amount of entropy a
Byzantine Agreement protocol must consume from a beacon in order to enjoy efficiency and adaptive
security. We first establish that no consensus protocol can simultaneously be efficient, be adaptively
secure, and use O(logn) bits of beacon entropy. We then show this bound is tight and, in fact, a
trilemma by presenting three consensus protocols that achieve any two of these three properties.

1 Introduction

Consensus is a cornerstone of distributed computing, with research spanning over four decades [32,28]. In
the consensus problem, n players (or nodes) with respective inputs must engage in communication in order
to reach agreement on a value. The challenge stems from the presence of at most f corrupted (eq. Byzantine)
players, which may deviate from any given protocol in arbitrary ways.

The consensus problem has been considered under a myriad of constraints and allowances across various
axes, including network synchrony, setup assumptions, the use of randomness by honest players, and the
capabilities of the adversary (Garay and Kiayias [20] provide a detailed survey). With the renewed interest
in this problem due to its foundational role in blockchains, two properties of particular importance from a
practical point of view have been efficiency and adaptive security.
Efficiency. We consider an efficiency notion motivated by modern blockchain-based consensus protocols.

We say that a protocol has low communication (or in other words, is laconic) if in every round few of the
players (i.e., o(n) << n) send messages. A protocol has low latency if it requires at most o(n) rounds. We
refer to a protocol as efficient if it has both low communication and low latency. Our efficiency notion is
essential for consensus protocols to scale to thousands of players and finalize transactions quickly. Indeed,
most modern blockchain systems (e.g., Bitcoin and Ethereum) are efficient in this sense.

Adaptive Security. We say that a consensus protocol is secure against an adaptive adversary if it solves
consensus even when the adversary may choose to corrupt players “on the fly,” based on its observations
thus far. We consider both a basic adaptive adversary which can corrupt up to f players at any point
based on the current transcript of the protocol, but cannot un-corrupt them, and a mobile blocking
adversary which can choose potentially new players to target in each round but can only block their
messages, and not cause arbitrary behavior.

Observe that either of these properties is straightforward to achieve without the other: if efficiency is not im-
portant, classical Byzantine fault-tolerant consensus protocols [10] are adaptively secure. If adaptive security
is not important, Nakamoto-style consensus [31] with round-robin leader election is efficient.

In practice, the vast majority of blockchains, including Ethereum and Bitcoin, aim to achieve both of the
above properties. They do so by relying on a source of shared randomness for the players, for tasks such as
leader election and committee sampling [5,31,14]. Such a primitive that provides access to fresh randomness



at every point in time is referred to in the literature as a randomness beacon [33]. Implementing such a
beacon, however, is an expensive task, with current constructions either employing delay functions [29,7],
requiring many rounds or much communication [36,12,34,24], or achieving a sub-optimal version of the ideal
functionality subject to manipulation [22,5].

On the other hand, it turns out, that the use of unpredictable randomness is essential to the design of
efficient consensus protocols [17,6,1]. Dolev and Reischuk [17] show that any deterministic protocol must
have Ω(n2) communication complexity. Bar-Joseph and Ben-Or [6] show that against a computationally
unbounded adaptive adversary that can view the local state of all players, any (even randomized) synchronous
BA protocol requires Ω̃(

√
n) rounds. Abraham et al. show that without unpredictable randomness, any

consensus protocol must use Ω(n2) communication.

1.1 Our Setting

The goal of this paper is to quantify the precise amount of randomness must be drawn from such a beacon to
allow for efficient and adaptively secure consensus protocols. We make minimal auxiliary assumptions, focus-
ing on the information-theoretic (i.e., a computationally unbounded4 adversary and no PKI), synchronous
setting. Specifically, we consider the following ideal functionality for a beacon: At each round t, a fresh,
uniformly random string is revealed to all players.

Such an assumption, referred to as an idealized common coin or randomness beacon is a common assump-
tion in the BA protocols for asynchronous networks [15,30]. We say that a protocol has low beacon entropy if
it can be implemented using a randomness beacon that generates O(log n) bits in total during the protocol.
We stress that it is important that the random string revealed to all players at round t is not only uniform,
but also is unpredictable prior to round t. In other words, no adversary can predict the contents of the string
of round t prior to round t. Abraham et al. [1] show that any protocol secure against an adversary that can
predict the content of the beacon ahead of time, must use Ω(n2) communication. We emphasize that our
lower bound applies even when the protocol has access to our beacon with stronger unpredictability.

1.2 Our Results

We provide a complete and tight characterization of efficiency, adaptive security, and low beacon randomness:

Impossibility (Section 4, Theorem 1 and Corollary 1): We show that no consensus protocol can si-
multaneously achieve all three properties. That is, any efficient, adaptively secure consensus protocol
must use a randomness beacon that outputs ω(log n) bits. Our impossibility result holds against a com-
putationally unbounded adversary in a broadcast communication model.

Possibility (Section 5, Lemmas 2, 5 and 6): We show that the above impossibility is tight by present-
ing three consensus protocols, each realizing exactly two of the above three properties. Our protocols
work against a computationally unbounded adversary in a peer-to-peer communication model. Together,
they demonstrate a trilemma: consensus protocols can achieve any two of efficiency, adaptive security
and low-entropy, but not all three.

2 Related Work

A long line work considers a computationally bounded adversary [13,2,18,21]. Protocols in this setting employ
cryptographic tools to enable adaptive secure consensus protocols with as few asO(1) rounds (in expectation).
This research culminates in the work of Ghinea, Goyal and Liu-Zhang [21], which matches the decades-old
lower bound Chor, Merritt, and Shmoys [13] which states that any r round consensus protocol has error
probability at least Ω( 1

rr ).
Coming back to an unbounded adversary, other works [26,35,8,1,16] consider relaxed versions of the adap-

tive adversary, and design consensus protocols that circumvent the aforementioned round and communication
lower bounds of [1,6].

4 Under computational assumptions, e.g., using a delay function, a beacon can be constructed. The unbounded
adversary setting enables us to isolate the utility of the beacon.
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Adaptively secure consensus. By Abraham et al. [1], any protocol that is secure against a strongly
adaptive adversary must use Ω(n2) bits of communication. This bound is known to be tight in the setting
of a computationally bounded adversary by the work of Abraham et al. [2]. The protocol of work this also
achieves optimal O(1) round complexity, in expectation.

Adversary Relaxations. On the road to circumventing the lower bounds of [1,6], various relaxations to
the strongly rushing adversary have been considered.

– A typical relaxation is that if the adversary chooses to corrupt a player p at round r, player p still
performs the honest behaviour of round r prior to the adversary taking control of p (at which point
the adversary can send additional messages, still in round r). Protocols achieving o(n2) communication
complexity under this assumption include the work of King and Saia [26], and the follow up work by King,
Lonargan, Saia and Trehan [25] in which they show protocols with O(n1.5) communication complexity.
Additional cryptographic assumptions allow the design of protocols with nearly linear communication
complexity [8,11,2,9]. Another class of protocol circumventing the communication lower bound of [1] are
motivated by blockchain applications, and make use using proof-of-work or proof-of-stake assumptions
[16,31].

– Another line of work considers a late adaptive adversary. Roughly, this is an adaptive adversary with
an outdated view of the state of the protocol. At each round the adversary may choose players to
corrupt based on all information available so far, however the actual corruption occurs several rounds
later. Most of these works consider relaxed variants of the consensus problem, e.g., almost-everywhere
consensus [35,4,3,27].

Randomness beacon entropy. As mentioned, the idealized randomness beacon assumption, also known
as a common coin, is extensively used in consensus protocol design in asynchronous networks (See [30] and
references within). A recent work [23] studies a similar question to ours. Specifically, they consider protocols
secure against an adaptive omission failure adversary, and characterize the trade-off between the required
number of oracle calls to a random beacon and the round complexity.

3 Preliminaries

Notation. We let λ denote the security parameter. If a function f(λ) is O(1/poly(λ)) for every polynomial
in λ, we say f is negligible in λ. We write f = negl(λ). We let log(x) denote the logarithm base 2 of x. If X
is a random variable, we denote the min-entropy of X by H∞(X) = minx∈Supp(X)

1
Pr[X=x] .

Model. We consider a network of n players (eq. nodes or participants). We focus here on the permissioned
setting, in which the set of n players is fixed and known to all players in advance. At most f players can can
be corrupt. We further assume that communication takes place over a synchronous network with maximum
message delay of ∆, i.e. a player p at round t has received all messages sent to it up to round t − ∆. For
simplicity of exposition, we assume that ∆ = 1, but all our results extend naturally the general case of delay
parameter ∆. Throughout the paper we consider two models for a communication network. In the peer-to-
peer model, players may send different messages to different players during each round. In the broadcast
model, players (including corrupted players) may only broadcast a message, which is received by all other
players.

Specifically, the latter model does not allow corrupt players to equivocate. Our lower bound holds even
in the more generous broadcast model, and our upper bounds hold even in the more restrictive peer-to-peer
model of communication.

Adversary model. All of the adversaries considered in the paper are computationally unbounded, and in
particular we assume no PKI (though we do assume authenticated channels between participants). Specifi-
cally, we consider three types of adversaries, static, adaptive, and mobile blocking. Let f be the adversary’s
corruption budget. It is useful for us to consider an adversary as a pair of algorithms A = (A0,A1), where
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A0 is responsible for choosing the identities of up to f corrupted players at every round t, and A1 is the
adversary participating in the protocol. A bit more formally, at each round t, A0 may observe (Π, t,Trt) and
output a set Ft of at most f players. Here, Π is a description a protocol and Trt refers to the transcript of
a protocol up to round t (see Definition 2). Each adversary type we consider imposes different restrictions
on either A0 or A1.

5

– Static. The static adversary chooses the identities of f corrupt players at round t = 0, and this choice is
fixed throughout the execution of the protocol. The adversary has complete control over the behaviour
of the corrupted players. In other words Ft = F0 for all t. There are no restrictions on A1.

– Adaptive. At the beginning of each round t, the adversary chooses the identities of ft < f players to
corrupt in that round, based on its observations of the transcript of the protocol and the players it has
corrupted thus far. These players stay corrupted for the rest of the execution. In other words, Ft ⊆ Ft+1

for all t. There are no restrictions on A1.
– Mobile blocking. A mobile blocking adversary can, at every round, observe (Π, t,Trt), where t is a round,

and Trt is the transcript of Π up to round t, and output a set Ft of at most f players that are prohibited
from sending messages at round t. We emphasize that unlike the adaptive adversary which is constrained
by the total number of corruptions, the mobile adversary may corrupt up to f players in each round
regardless of how many players it has corrupted in the past. A mobile blocking adversary is also captured
by the (A0,A1) notation via A0(Π, t,Trt) = S, and A1 be an adversary behaviour in which corrupted
players send no messages.

In any adversary variant, we say that an adversary corrupting at most f = ρn players is ρ-bounded.

Randomness. The protocols we consider in this work have two main sources of randomness. For both of
them, we assume an ideal functionality as our goal is to reason about the nature and amount of randomness
required to design consensus protocols.

1. Common Random String (CRS). We assume that at round t = 0, an arbitrarily long (as per the
protocol’s specification) uniformly random string CRS is revealed to all players. A static adversary must
choose the identities of corrupt players prior to the CRS being revealed. An adaptive or mobile adversary
can choose the identities of corrupt players after CRS is revealed.

2. Randomness Beacon. A randomness beacon is an oracle that at every round t, produces a fresh
uniformly random string seedt of an arbitrary length (as per the protocol’s specification). In particular,
for each round t, an adaptive or a mobile adversary must choose the identities of corrupted players prior
to the revelation of seedt.

Clearly, in the presence of an adaptive adversary the latter source of randomness is significantly more
powerful than the former. It is precisely the latter source of randomness that is the main focus of this paper.

Authenticated Channels. Similarly to prior work [26,8], we assume that communication channels in our
network are authenticated. Intuitively, this means that each player knows the identity of the sender for any
message received. This can be formalized by instantiating communication channels with a map that maps a
message m to the tuple (m, p), where p is the sender of m. This mapping is fixed and can not be tampered
with by the adversary.

Executions. An execution is a tuple E = (Π,A, r) where Π is the protocol run by honest players. A is
a particular adversary, i.e. A is an algorithm that chooses corrupt players (only at t = 0 if static, otherwise
A0 chooses at every round t) based on the transcript of the protocol and internal state of corrupt players,
and instructions for the behaviour of the environment. r denotes the random coins of all players. Given a
protocol Π we say that E is an execution of Π if the first component of E is Π.

We say that an execution is admissible in the adaptive model if for all rounds t ≥ 0 it holds that ft <
1
3n.

In the static model we further demand that the identities of corrupt players remain fixed throughout the

5 One might ask about the possibility of a mobile adversary capable of corruption, but this is tricky to reason about
as it requires a notion of “un-corrupting” players.

4



execution of the protocol. At times we abuse notation and refer to an execution also as the random variable
(Π,A) which is a distribution over executions in which Π is the protocol run by honest players, and A is
the adversary (corrupt players in each round, and actions taken by them). We denote this random variable
by EA.

The specification of the consensus problem we consider takes the form of the well known Byzantine
Agreement problem [32,28].

Byzantine Agreement (BA). In the BA task, n players must come to an agreement on a bit under some
constraints. Each player Pi has an input bi ∈ {0, 1}, and produces an output oi ∈ {0, 1}. We say that a
protocol Π solves the BA task if the following three properties are guaranteed by Π, except for with negl(λ)
probability.

1. Termination. There exists t such that all honest players have produced an output by round t.
2. Agreement. For any pair of honest players Pi, Pj , the probability (over the randomness of the adversary

and the protocol) that these players output different values is at most negl(λ).
3. Validity. If all honest players have the same input bit b, then all honest players always output b.

An additional critical notion relating to a BA protocol is latency, which is defined as follows. Intuitively,
latency captures the expected number of rounds it takes for Π to terminate.

Definition 1 (Latency). Let Π be a protocol solving BA, and let Ti,A denote the random variable indi-
cating the round in which player i terminates given an adversary A corrupting some subset of the players.
Given an execution E = (Π,A, r), let HE denote the set of players that remain honest throughout the entire
execution. Π has expected latency ℓ given f corruptions if for all adversaries A corrupting at most ℓ players,

max
E=(Π,A,r)

A corrupts at most f players

E
E

[
max
p∈HE

Tp,A

]
≤ ℓ.

Randomness beacon. In this paper, we consider an ℓ-bit randomness beacon to be an n-party protocol Π
that satisfies termination and agreement and, on input 1λ, outputs a string s of length ℓ(λ). Furthermore, the
value output by the honest parties must be computationally indistinguishable from random. That is, let A
be any (computationally unbounded) adversary corrupting f out of n players. Let B by any computationally
bounded adversary. Denote by v ← ΠA the output of the honest parties from an execution of Π with the
adversary A. For any such A,B it must hold that:∣∣∣Pr[B(1λ, v) = 1 : v ← ΠA]− Pr[B(1λ, r) : r ← {0, 1}ℓ(λ) ]

∣∣∣ ≤ negl(λ).

We say that Π is secure against a static/adaptive/mobile blocking adversary if the above holds and A
is a static/adaptive/mobile blocking adversary respectively. We note that the definition of a randomness
beacon varies throughout the literature; here, we consider a weak notion where the adversary corrupting
parties during the protocol execution is different from the adversary attempting to distinguish the beacon
output from random. This notion is still nontrivial.

4 Impossibility Result

In the following, we define formal notions in order to rigorously discuss the amount of common randomness
consumed by a BA protocol with adaptive security and low communication. We begin with defining the
transcript of a protocol.

Definition 2 (Transcript). Consider a BA protocol Π for a network of n players, and let A = (A0,A1)
denote some adversary. Denote by EA the random variable of executions under (Π,A). We define the tran-
script TrEA to be the random variable that indicates the identities and contents of the players speaking in
each round. Formally, we have
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– TrEA =
{
TrtEA

}
t∈N

– TrtEA
= (ItEA

, Ct
EA1

, At
A, seedt,CRS), where ItEA0

⊆ [n] is a subset of honest players at round t, and

Ct
EA
∈

(
{0, 1}∗

)It
EA denotes the messages of those players. Furthermore, an honest player pi speaks in

round t iff i ∈ ItEA
, and the message it sends is consistent with Ct

EA
. At

A contains the identities of the
adversarial parties speaking at round t and the contents of their messages

We consider the following notion of unpredictability, that intuitively says that the probability that an
adaptive adversary can guess correctly the set of speaking parties in every round, given the transcript of the
protocol up to that round is negligible.

Definition 3 (Adversary’s guess of speaking parties). Let Π be a consensus protocol, and let A =

(A0,A1) be an adversary. We define the adversary’s guess to be a series (Î0A, Î
1
A, Î

2
A, ...) given by an algorithm

A2 of the adversary’s choice where for each t ∈ N,

ÎtA,A2
← A2(Π,

{
TriEA

| 0 ≤ i ≤ t− 1
}
, t)

Given the above definition, we can now define global leader unpredictability:

Definition 4 (Global leader unpredictability). Let Π be a BA protocol. We say that Π has global
leader unpredictability if for any adversaries A = (A0,A1) and A2,

Pr
[
∀t, ÎtA,A2

= ItEA0
| CRS

]
=

∞∏
t=0

Pr
[
ÎtA,A2

= ItEA0
|
{
IiEA0

| 0 ≤ i < t
}
,CRS

]
≤ negl(λ)

We now prove that if a protocol Π satisfies global leader unpredictability, then its transcript contains a
significant amount of min-entropy.

Lemma 1. Let Π be a BA protocol that satisfies global leader unpredictability. Then for any constant c > 0
and any adversary A = (A0,A1),

∞∑
t=0

H∞(TrtEA
|
{
TriEA

| 0 ≤ i < t
}
,CRS) ≥ c log n.

Proof. Assume towards a contradiction that there exist a constant c > 0 and an adversary A = (A0,A1)
such that

∞∑
t=0

H∞(TrtEA
|
{
TriEA

| 0 ≤ i < t
}
,CRS) < c log n.

In particular, this implies that

∞∑
t=0

H∞(ItEA
|
{
TriEA

| 0 ≤ i < t
}
,CRS) < c log n,

where above we have replaced TrtEA
from the last equation with ItEA

. Now let Xt denote the random variable(
ItaEA
|
{
TriEA

| 0 ≤ i < ta
}
,CRS

)
. Now, observe that for any pair ta ̸= tb, the random variables Xta and Xtb

are independent. Therefore,

∞∑
t=0

H∞(Xt) = H∞ ({Xt}∞t=0) .

That is, the sum of min-entropies of the speaking sets is equal to the min-entropy of the tuple of speaking
sets. By definition of min-entropy, there exist sets S0, S1, . . . such that

Pr
[
∀t ∈ N, ItEA

= St |
{
TriEA

| 0 ≤ i < t
}
,CRS

]
≥ 1

nc
.
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Finally, we observe that

Pr
[
∀t ∈ N, ItEA

= St | CRS
]
≥ Pr

[
∀t ∈ N, ItEA

= St |
{
TriEA

| 0 ≤ i < t
}
,CRS

]
.

Now note that an adversary A2 that predicts at round t the set St can realize this success probability,
thus violating the global leader unpredictability condition, as required. Such an adversary is realizable both
in the adaptive and mobile blocking models since the adversary at round t has definitive knowledge of the
transcript up to and including round t− 1, including CRS. ⊓⊔

We would now like to prove that the lack of the global unpredictability condition, combined with low
communication, implies susceptibility to attacks by adaptive adversaries. With the notion of a transcript in
hand, we can also now formally define relevant notion for this paper of low communication.

Definition 5 (Low communication). Let Π be a consensus protocol, and let A = (A0,A1) be an ad-
versary. We define the communication complexity of Π to be the random variable C =

∑
t∈N
|ItEA
|. We say

that the communication is uniform if there exists T such that except for with negl(λ) probability it holds that
|ItEA
| = O(CT ) for all t ≤ T and |ItEA

| = 0 for all t > T . We refer to C
T as the uniform communication

complexity of Π.

The goal of defining uniform communication, as opposed to just considering the general number of bits
exchanged between players in the protocol, is to speak rigorously about protocols in which only a few players
speak in each round. We now aim to prove the following theorem, which says that any BA protocol in which
few players speak in every round, uses low beacon entropy, and is adaptively secure, requires many rounds. In
other words, no BA protocol can simultaneously be efficient, adaptively secure, and use low beacon entropy.

Theorem 1. Let Π be a protocol that has the following properties:

– Π does not satisfy global leader unpredictability.
– Except for O(1) initial rounds, Π has uniform communication complexity k

Then Π w.p. 1
p(n) for some polynomial n, Π requires Ω(ρnk ) rounds in the presence of a ρ-bounded adaptive

adversary, for any ρ ≥ k
n . Furthermore, if a mobile blocking adversary is considered, then Π does not exist

for any ρ ≥ k
n .

Proof. By the assumption that Π does not satisfy global leader unpredictability, we deduce that there exist
a polynomial p(n) and adversaries A = (A0,A1) and A2 such that

Pr[∀t, ÎtA,A2
= ItEA0

| CRS] ≥ 1

p(n)
.

Now consider the following adversary B = (B0,B1), acting as follows. Let r = O(1) be the number of
initial rounds which may have high communication complexity. In the following, we employ a well-known
fact [13], that any BA protocol with r rounds has error probability of at least Ω( 1

nr ), with the adversary

needing to corrupt at most r players [13]. In our case, Ω( 1
nr ) = 1/nO(1).

1. For the first r rounds, employ the adversary strategy [13], corrupting at most r players in the process.
2. B0 acts as follows: At the beginning of any round t > r, use A2(Π,

{
TriEA

| 0 ≤ i < t
}
) to obtain ÎtA,A2

. In

the case of the adaptive adversary, corrupt of all the players in ÎtA,A2
until the total number of corrupted

parties has reached the corruption budget ρn. In the case of a mobile blocking adversary, corrupt them
for round t.

3. B1 sends no messages by the corrupted players; that is, the players in ÎtA,A2
. Note that this is compatible

behaviour with the mobile blocking adversary, in addition to the adaptive adversary.
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Condition on the event that A2 has guessed correctly the identity of speakers at all rounds, which occurs
w.p. at least 1

p(n) , by assumption. Due to the strategy of [13], we have that with at least inverse polynomial

probability, Π does not solve BA up to round r of the execution. For the following Ω(ρnk ) rounds, no progress
is made since the adversary corrupts all parties participating in the protocol for those rounds. Thus at least
with inverse polynomial probability, Π requires Ω(ρnk ) rounds, as required. In the case of a mobile blocking
adversary, no progress is made at all, indefinitely, and so in particular the protocol either has no termination,
or has error probability at least Ω( 1

nr·p(n) ), which is a contradiction. ⊓⊔

We now show that global leader unpredictability implies a randomness beacon. This randomness beacon
simply runs Π and computes the hash of the identities that spoke in each round. Since these identities are
unpredictable, given enough parties there is sufficient randomness to construct a beacon.

Corollary 1. Let Π be an n-party protocol satisfying global leader unpredictability. If n ≥ λ, there exists a
randomness beacon Π ′ such that:

– Π ′ has the same communication complexity and latency as Π.
– Π ′ outputs λ bits that are indistinguishable from random by any efficient adversary in the random oracle

model.

Proof. First, observe that Π ′ trivially has the same communication complexity and latency as Π, since it
involves only running Π and applying a function to its transcript. Let H : {0, 1}∗ → {0, 1}λ be a hash
function which we model as a random oracle. Let Π ′ be the protocol obtained by running Π and outputting
the hash of the identities of the parties that speak in each round of Π. Since we operate in the broadcast
setting with authenticated channels, all parties know these identities of speaking parties. Recall that global
leader unpredictability states that this tuple of speaking parties has at least c log n min-entropy for any
constant c. Therefore, for any fixed string s, the probability that this tuple of identities equals s is at most
1/λc for any constant c. Let B be a computationally bounded adversary making a polynomial number of
queries to the random oracle O. The probability that B queried the tuple of speaking parties to O is smaller
than the inverse of any polynomial, which is negligible. Therefore, except with negligible probability the hash
of the tuple of speaking parties is a freshly random value from the perspective of B. ⊓⊔

5 Possibility Results

Having established the above trade-off, we turn to showing that it exactly captures the role of randomness in
efficient and adaptively secure BA. Specifically, we present three protocols solving BA, all simplified versions
of known protocols from the literature, and prove that each of them satisfies two of the three properties we
described above. To make our results as strong as possible, throughout this section, we consider a model where
players are deterministic and all players are given access to an ideal randomness beacon and a CRS. Recall (see
Section 3) that an adaptive adversary must make corruption choices for round r prior to seeing the beacon
output of round r. While for the lower bound result we assumed a broadcast model of communication, we
assume a peer-to-peer network for the upper bounds, to make our results as strong as possible. In particular,
corrupt players can equivocate. We formally describe our framework and general BA protocol in the following
section, and then showcase how this framework is instantiated in three ways to obtain protocols:

1. Efficiency and adaptive security. We show that when entropy from a beacon is not limited, there
exists a protocol that is adaptively secure and efficient. The details, along with our general framework,
are in Section 5.1.

2. Low beacon entropy and adaptive security. If one is willing to forgo low communication, we show
that there is an adaptively secure, low beacon entropy protocol that also has O(1) expected round
complexity. The details are in Section 5.2.

3. Low beacon entropy and efficiency. If one wishes to forgo adaptive security, then there exists an
efficient protocol that uses low beacon entropy that is secure against a static adversary. The details are
in Section 5.3.
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Mobile blocking adversary. All the proofs relating to security against an adaptive adversary in this
section can easily be modified to work for a mobile blocking adversary, with the same protocols. The main
observation is that against an adversary that can only silence players, none of our proofs use the property
that the same parties are corrupted between rounds, and also that in our protocols, the actions of an honest
player depend only on the messages received from the previous round, and not any other round in the past.

5.1 Efficiency and Adaptive Security

In this section we describe our general framework for BA protocol design, along with one instantiation of
it to obtain a BA protocol that has low communication(i.e. O(λ) parties talk in each round) and is secure
against an adaptive adversary, as long as 3ft +1 < (1− ϵ)n for all t ∈ N and constants ϵ. Formally, we prove
the following in this section:

Lemma 2. For all ϵ > 0, assuming a randomness beacon, there exists a protocol Π that except for with
negl(λ) probability, solves the BA task in the presence of an adaptive adversary that satisfies 3ft+1 < (1−ϵ)n
for all t ∈ N.
Furthermore, the protocol has O(1) expected latency, and the protocol has uniform O(λ) communication
complexity, in expectation.

As mentioned, we assume access to a randomness beacon. I.e. at each round t ∈ N, a uniformly random
string of length α is given to all players, completely independent of all other strings provided to the players.
This protocol makes no use of the given CRS. Denote the string distributed at round t to the players by the
randomness beacon by seedt. We choose α = O(λ log n), where λ is the security parameter, and we treat
seedt as seedt = (ℓt, comt) where ℓt ∈ [n] is the identity of a player, which is referred to as the leader of
round t, and comt ⊆ [n] is a subset of size O(λ) of players, indicating the committee of round t.

Our general framework, with which all three of our protocols are designed, resembles that of Gafni and
Losa [19] of interlacing executions of the commit-adopt task and leader election. The main differences are the
use of the randomness beacon to ensure both low communication and security against an adaptive adversary,
and the consideration of a stronger adversary (Losa and Gafni assume a non equivocating adversary). With
this in mind, we describe the general framework and the its concrete implementation to obtain Lemma 2.
The following sections explain how to modify the implementation to obtain the other two protocols. Our
framework is comprised from the interlacing of two components.

– Commit-Adopt (CA). The CA protocol consists of 2-rounds. In each of these rounds, only the committee
comt speaks. If the CA step fails to achieve consensus, players proceed to the second phase of the protocol.

– Conciliator (CO). Intuitively, the goal of the Conciliator task is to bring back the honest players into
a consistent view after the previous CA failed. This is done by running an additional CA and a leader
election, and then outputting a value to continue with for the subsequent CA.

We now formally define the two procedures CA, and CO.

Definition 6 (Commit-Adopt). In the commit-adopt task (CA), each player receives an input value
z, and must produce an output of the form commit(z′) or adopt(z′) for some value z′, with the following
guarantees.
1. Agreement. If an honest player outputs commit(z) for some value z, then all honest players must output

either commit(z) or adopt(z).
2. Validity. If all honest players input the same value z, then all honest players must output commit(z).
3. Termination. There exists a round r ∈ N such that by round r, all awake honest players have submitted

an output.

Definition 7 (Conciliator). In the conciliator task (CO), each player has an input value z and must
produce an output with the following guarantees.
1. Validity. If all honest players input the same value z, then all honest players output z.
2. Termination. There is a round r ∈ N such that all honest players output by round r.
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3. Probabilistic Agreement. With probability at least 2
3 , all players output the same value z inputted by some

honest player.

Our generic protocol alternates between executions of CO and CA until BA is solved. We denote the i-th
execution of CA and CO by CA[i] and CO[i], respectively. We now provide formal descriptions of the protocols
for CA and CO using ℓt, comt as explained above to obtain Lemma 2. The following sections explain how
these implementations are modified to obtain our other protocols.

Algorithm 1 (CA) We employ the following adopt-commit protocol executed by all honest players p with
input zp.

1. At round t = 0, if p ∈ com0, p broadcasts its input ⟨zp⟩p. Otherwise, do nothing.
2. At round t = 1, if p ̸∈ com1, do nothing. Otherwise, let m be the number of players in com0 from which

p received a signed value. If there exists a value z that p has received from more than 2m
3 of the players

in com0. p broadcasts ⟨vote(z)⟩p along with signed messages from all the players that sent p the value z.
Otherwise broadcast ⟨no− vote⟩p.

3. At round t ≥ 2, p decides on its output as follows.
(a) Let n be the number of players in com1 that p received a valid6 vote(z) message for some value z or

no − vote. If there exists value z such that p has received vote(z) from at least 2n
3 of the players in

com1, output commit(z).
(b) Else Let z be a unique value that p received a valid voze(z) from some player in com1. If such a value

exists, output adopt(z).
(c) Else, output adopt(zp).

We now prove that the above procedure solves the CA problem in the presence of an adaptive adversary,
as long as there is a constant ϵ > 0 s.t. 3ft + 1 < (1 − ϵ)n for all t ∈ N. We begin with the following
observation, which is used liberally throughout the section. We denote the above protocol by Π.

Observation 2 Let A = (A0,A1) be an adaptive adversary. Then for all t it holds that

Pr

[
|A0(Π, t,Trt) ∩ comt| ≥

|comt|
3

]
= negl(λ)

Proof. The proof follows from standard concentration bounds. Specifically we get that the expected number

of corrupted players in comt is upper bounded by |comt|
3 (1 − ϵ), and thus by a Hoeffding bound we get the

probability that the number of corrupted players in comt exceeds
|comt|

3 is at most e−Ω(ϵ2|comt|) = e−Ω(ϵ2λ).
For this we use the facts that |comt| = Ω(λ), ϵ is a constant, the choice of each player in comt being
independent, and the independence of A0(Π, t,Trt) on comt. ⊓⊔

We thus assume from here on in for the remainder of the analysis that an honest super-majority assump-

tion holds at all rounds amongst the committee members, i.e. |A0(Π, t,Trt) ∩ comt| < |comt|
3 holds for all t.

With that in mind all that is left is to prove that the above protocol solves the CA problem.

Lemma 3. For any constant ϵ > 0, except for with negl(λ) probability, Algorithm 1 solves the CA task
whenever 3ft + 1 < (1− ϵ)n.

Proof. Termination is clear from the behaviour of the protocol. We move on to Validity, assume that all
honest parties start the protocol with input z, and let com0, com1 be as in the protocol. Then in particular,
all honest players in com0 broadcast z. The above observation implies that any honest player in com1 observes
the value z from at least half of the players in com0 it has heard of. Thus all honest players in com1 broadcast
a valid vote(z) message. Which in turn causes all honest players to output commit(z) at t = 2, as required.
For Agreement, let commit(z) be the value output by some honest player p. Which means that p observed

6 A vote message is valid w.r.t. a player p if the accompanying signed messages constitute at least 2
3
of the players

in com0 that p heard a value from.
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a majority of vote(z) from members of com1. Note now that since every honest player in com0 broadcasts
exactly one value, and because com0 has more than 2

3 fraction of honest players, no other valid vote(z′) for
any z ̸= z′ can be sent by a corrupt players, as that would imply that an honest player broadcasted two
messages with 2 different values. In particular, no other honest players output commit(z′) for any z′ ̸= z.
Furthermore, if p output commit(z), it implies that any honest q ̸= p saw more than 1

3 vote(z) messages
from honest players in com1, and since no valid vote(z′) message can be sent, the value z is the unique value
for which q received a valid vote(z) message from a player in com1. Thus q outputs adopt(z), as required. ⊓⊔

We now proceed to designing a protocol for the CO task.

Algorithm 2 (CO) We employ the following conciliator protocol executed by all honest players p with input
zp.

1. If t ∈ [0, 2], run according to CA protocol with input value z.
2. If r = 3, if p = ℓ3 or p ∈ com3, broadcast CA output.
3. if r ≥ 4, then:

(a) If p received commit(z) from more than 1
3 of the players in com3 it has heard from for some value

z, then p outputs z.
(b) Else, if p received adopt(z) or commit(z) for some value z from ℓ3, then output z
(c) Else, output zp.

We now proceed to prove the correctness of the above procedure.

Lemma 4. For any constant ϵ > 0, except for with negl(λ) probability, Algorithm 2 solves the CO task
whenever 3ft + 1 < (1− ϵ)n.

Proof. Termination is clear from the behaviour of the protocol. For Validity, if z is the input of all honest
players, then by the Validity of CA, we get that by round 3, all honest players output commit(z). For
probabilistic agreement, We first prove that all honest players that output according to item (a), agree. Let
p be an honest player that output according to item a, which implies that p observed more than 1

3 fraction
of commit(z) messages for the same value z from the players in com3. In particular this implies that at least
one of those players is honest. Thus by the Consistency property CA, we have that all honest players output
either commit(z) or adopt(z). Thus no player in com3 sends commit(z′) for any value z ̸= z′. In particular
this means that no honest player views more than a 1

3 fraction of commit(z′) for any z′ = z. Thus, all honest
players that output according to item (a) agree. Denote that value by z. Now note that w.p. at least 2

3 , ℓ3 is
honest, and if this is the case, then ℓ3 also output either commit(z) or adopt(z), by the agreement property
of CA, and all other honest players output z according to item b in that case. Thus, w.p. at least 2

3 , all honest
players agree on the output, as required. ⊓⊔

We denote by Lc, Lca the number of rounds required to run the CO,CA tasks, respectively. We can now
describe the generic BA protocol we employ. The following protocol is executed by every honest player p
with input z.

Algorithm 3 1. For i = 0, ..., D:
(a) If t ∈ [(Lc +Lca)i, (Lc +Lca)i+Lc], run as in CO[i] with input being the output of CA[i− 1] or z if

i = 0 .
(b) If r ∈ [(Lc + Lca)i+ (Lc + 1), (Lc + Lca + 1)i] run as in CA[i] with input being p’s output in CO[i].
(c) let o be the output of CA[i].

i. If o = commit(v) for some value, then output v as BA decision. Participate in the protocol for
one more iteration with inputs to all subroutines being fixed to v.

ii. Else, move on to i+ 1.

With the above instantiations of CA and CO in mind, we now prove that the above protocol proves
Lemma 2.
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Proof. For Termination, consider an iteration i of the protocol above. By probabilistic agreement of CO, we
have that w.p. at least 2

3 , all honest players agree on the output of CO[i]. Denote it by z. Conditioned on
agreement, Validity of CA guarantees that all honest players output commit(z), and thus they all terminate
at the end of CA[i]. Thus for every iteration i, w.p. at least 2

3 , all honest players terminate at the end of
iteration i+ 1. Thus, w.h.p. all honest players terminate after O(log n) iterations. For Validity, consider the
case where al players have the same input z. The Validity properties of both CO and CA imply that at end
of iteration 1, all honest players output commit(z) from CA[1] and output z, as required. For Agreement,
Let p be the first honest player to output, with output z. I.e. there exists an i such that p output commit(z)
from CA[z], and no honest player has output commit(z′) for any z at any iteration i∗ < i. In particular, this
implies, by the consistency of CA, that all other honest players output either commit(z) or adopt(z) from
CA[i]. Which implies that all honest players enter iteration i+ 1 with input z. The Validity of an iteration,
proven above, implies thus that by the end of iteration i+ 1, all honest players output z.

Combining the fact that for every iteration i, w.p. at least 2
3 , all honest players terminate at the end

of iteration i + 1 with the small size of comt for all t, we obtain that the protocol halts in O(1) rounds in
expectation, and has O(λ) uniform communication complexity, in expectation, as required. ⊓⊔

Note that we have essentially proved that Algorithm 3 solves BA whenever the number of honest partic-
ipants in each round exceeds a 2

3 fraction. Furthermore, it has expected latency of O(1).

Nakamoto Consensus Note that Nakamoto consensus [31], also gives an efficient protocol with adaptive
security. In each round, a leader is elected from a beacon. The leader adds a block to a chain, and consensus
is reached on a prefix of the current longest chain. The prefix discards k = O(λ) blocks. This implies that
the beacon needs to emit k · log(n) random bits to reach consensus. We note that the classic implementation
of Nakamoto does not satisfy the validity condition of BA. This is easily remedied with a single invocation
of CA prior to the initiation of the Nakamoto protocol. While CA requires Ω(n2) communication, note that
out lower bound (Theorem 1) applies even when the protocol has O(1) initial rounds of high communication.

5.2 Adaptive security and low beacon entropy

Next, we showcase a protocol that is secure against an adaptive adversary and does not satisfy Definition 4
(i.e., has low beacon entropy). This, of course, as per Theorem 1, implies that this protocol has to have high
communication. Specifically, all n parties send messages in every round. Specifically, we prove the following
lemma.

Lemma 5. For every ρ < 1
3 , and assuming a randomness beacon there exists a ρ-secure consensus proto-

col against an adaptive adversary, with O(1) expected latency. Furthermore, the protocol does not satisfy
Definition 4.

We once again in this protocol make no use CRS, as we aim to be secure against an adaptive adversary.
The protocol Π is going to follow the same structure of Algorithm 3, with the following modifications.

– All players participate in every round of Algorithm 3. In particular, the randomness beacon is not used
for committee sampling.

– The random beacon is still being used to sample a uniformly random leader during the CO task. That
is the only use of the randomness beacon

Correctness of the protocol and its security against an adaptive adversary are immediate from the proof
of correctness for Algorithm 3, and the adversary being ρ-bounded for ρ < 1

3 . The last item to prove is the
following.

Claim. Algorithm 3 when implemented without committees, satisfies that there exists a constant c > 0 such
that

∞∑
t=0

H∞(TrtEA
|
{
TriEA

| 0 ≤ i < t
}
) ≤ c log n
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Proof. Note that the only source of entropy in the modified protocol is the leader election in the CO sub-
routine. Besides that, all content of all messages is a deterministic function of the inputs of the players.
Furthermore, we have that for each iteration i, w.p. at least 2

3 , all honest players terminate by the end of
iteration i + 1. Thus, We get that For any adversary A and any execution E, and for every iteration i > 0
w.p. at least 1 − 1

3i−1 , I
t
EA

= ∅ where t is any round during iteration i. In particular we then get that the
total min entropy of the transcript of the protocol Π during iteration i, for all i > 1 is upper bounded by

log( 3i−1

3i−1−1 ). For i = 0, 1, the transcript is determined by the identity of the random leader, hence both of
these iterations provide log n min entropy each. In total, we get that

∞∑
t=0

H∞(ItEA
|
{
TriEA

| 0 ≤ i < t
}
,CRS) < 2 log n+

∞∑
t=2

log(
3t−1

3t−1 − 1
) < 2 log n+ 1

as required. ⊓⊔

5.3 Efficiency and low beacon entropy

In this section, we showcase a protocol achieving both low communication and low Randomness beacon
entropy usage, which in particular implies that it doesn’t have global leader unpredictability (see Definition 4).
This is the only protocol in which we make use of the CRS. Specifically, we run Algorithm 3 but instead of
using seedt to select committees and a leader for CO[i], all the information about the committees and leaders
for each iteration are taken from CRS. We assume that CRS is sufficiently long to encode such information.
We recall that a static adversary makes its choice of corruption before observing the CRS. Formally, we prove
the following.

Lemma 6. For every ϵ > 0 and ρ < 1−ϵ
3 , and assuming a CRS, there exists a ρ-secure consensus proto-

col against a static adversary with O(1) expected latency and O(λ) uniform communication complexity, in
expectation.

For simplicity, we abuse notation and refer to ℓt, comt for the purposes of this lemma also as the leader
and the committee of round t as per described in the CRS.

Observation 3 Let A = (A0,A1) be a static adversary. Then for all t it holds that

Pr

[
|A0(Π, t) ∩ comt| ≥

|comt|
3

]
= negl(λ)

when comt is taken from the CRS.

The observation follows from the same arguments as Theorem 2.

Proof. The proof of the lemma follows from the correctness of Algorithm 3 whenever the honest fraction of
participating parties in every round exceeds 2

3 . Algorithm 3 was shown to have O(1) expected latency and
by the size of comt for all t we get that the communication complexity of the protocol is uniform O(λ) on
expectation, as required. ⊓⊔
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