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Abstract. Non-interactive zero-knowledge (NIZK) proof systems are a cornerstone of modern cryptogra-
phy, but their security has received little attention in the quantum settings. Motivated by improving our
understanding of this fundamental primitive against quantum adversaries, we propose a new definition of
security against quantum adversary. Specifically, we define the notion of quantum simulation soundness
(SS-NIZK), that allows the adversary to access the simulator in superposition.
We show a separation between post-quantum and quantum security of SS-NIZK, and prove that both
Sahai’s construction for SS-NIZK (in the CRS model) and the Fiat-Shamir transformation (in the
QROM) can be made quantumly-simulation-sound. As an immediate application of our new notion, we
prove the security of the Naor-Yung paradigm in the quantum settings, with respect to a strong quantum
IND-CCA security notion. This provides the quantum analogue of the classical dual key approach to
prove the security of encryption schemes. Along the way, we introduce a new notion of quantum-query
advantage functions, which may be used as a general framework to show classical/quantum separation
for other cryptographic primitives, and it may be of independent interest.

1 Introduction

The rapid progress in quantum computing and the dramatic effects of a full-scale quantum computer on
cryptography [Sho94] have prompted the community to re-examine traditional assumptions and security
model in cryptography. Even though replacing the quantumly broken computational assumptions with
quantum-hard assumptions is essential, a number of works (e.g., [Wat06, Unr12, DFNS14, KLLN16]) has
shown attacks against cryptographic schemes that could be proven secure classically. Even worse, many of
the current security models fail to capture the quantum nature of the adversary, thus only provide weak, or
over-optimistic guarantees.

This has motivated a fruitful line of research, where new security definitions have been developed in the
superposition-access model [KM10, KM12, Zha12a, DFNS14, BZ13a, BZ13b, ATTU16, KLLN16, AMRS20,
BBC+21, CETU21, ABKM22, EvW22, CEV22] and many cryptographic schemes have been proven (in)secure
in this model. In the superposition-access model, a quantum adversary may be able to run the cryptographic
primitive in superposition of inputs. This is motivated by modeling the attacker’s power realistically, e.g.,
when they are given the description of a hash function modeled as a random oracle, or simply as a worst-
case guarantee, where one wants to minimize physical assumptions regarding the underlying hardware.
Superposition security also becomes relevant further, when cryptographic primitives are used as part of a
(possibly quantum) protocol.

Non-Interactive Zero-Knowledge. Non-Interactive Zero-Knowledge proofs (NIZKs) [GMR85, BFM88]
are a cornerstone of modern cryptography and one of the most well-studied primitives in the field. A NIZK
allows a party to prove the validity of an arbitrary NP statement in a single message (the proof) in a publicly
verifiable way, without revealing anything beyond its validity. NIZKs find applications in basic cryptographic
primitives and are extensively used in the design of privacy-preserving systems (such as credentials and



digital currencies) [BG90, CL01, BCC+09, CKL+16, FHS19] as well as group signatures [Cv91, BBS04, DP06,
BCC+16] and verifiable computation [GGP10, GGPR13, BCG+18].

The notion of simulation-soundness is a strong property satisfied by NIZKs [Sah99a] which has proven
very useful for proofs of protocols in complex security models, such as the universal composability [Can01].
Informally, we say that a NIZK proof system is simulation-sound (SS-NIZK) if a malicious prover that has
observed simulated proofs for a polynomial number of (possibly false) statements is not able to convince
the verifier on either a new false statement or on an old false statement with a new proof. We also note
that simulation soundness implies non-malleability, where an accepting proof cannot be modified into
a different one without knowing the witness. Indeed, simulation-soundness is arguably a property that
one requires when composing NIZK with other protocols to attain provably security guarantees in many
cryptosystem, such as IND-CCA encryption schemes via the Naor-Yung paradigm [NY90, LNPT20] or
signature schemes [Gro06, Unr15, KLS18]. Furthermore, schemes lacking this property have been attacked in
practice (see examples in [DG23]).

1.1 NIZK in a Quantum World

In this work, we initiate the study of NIZK secure against superposition attacks, and in particular we introduce
the notion of quantum simulation-soundness to address the lack of a rigorous definition of quantum security
in the literature. Informally, quantum simulation-soundness implies that the adversary cannot maul NIZK
proofs, even if given superposition access to a prover. Our motivations are:

(i) On the application side, quantum simulation-soundness is needed to prove the security of signature
schemes [Gro06, Unr15, KLS18], with respect to stronger unforgeability definitions developed in [BZ13b,
AMRS20].

(ii) In addition, such a definition would be needed if one wants to prove the security of the Naor-Yung
paradigm [NY90] with respect to a quantum IND-CCA notion that allows quantum challenge queries [CEV22].
Traditional simulation-sound definitions (including Unruh’s post-quantum definition [Unr15]) would fail to
prove the security in these settings, since a CCA adversary would indeed have some degree of superposition
access to the NIZK simulator. Indeed, we note that the Naor-Yung paradigm is a powerful technique,
which is used in many cryptographic constructions and different cryptographic setting, for example,
key-dependent message [CCS09] and key-leakage attacks [NS09]. Thus, having a quantum security
analysis of the Naor-Yung paradigm would be important for many applications.

(iii) Our work is well-aligned with the general motivation for studying security of classical cryptosystems against
superposition attacks. Indeed, one of the main motivations for the study of post-quantum cryptography is
the threat of retroactive attacks, the so-called “store now, decrypt later attacks”. This threat is certainly
relevant in the context of encryption, and only partially effective against digital signatures and other
cryptographic protocols. We argue that if post-quantum security is cryptographically fully relevant (i.e.,
when universal quantum computers become available), it makes sense to say that quantum security
(against superposition attacks) is also relevant. One reason is that, once quantum computers are available,
they should be used in a hybrid computation model together with classical computers.1 In this setting,
our motivation boils down to the final argument below.

(iv) Finally, from a theoretical standpoint, we view this notion as a conservative version of security for NIZK,
where one places minimal assumptions on the underlying hardware: In the world where end users run
quantum computers, the use of “classical computers” boils down to the assumption on the hardware
to ensure that there are no quantum effects in the classical computers running the algorithms. This is
similar to the line of research on device-independent quantum key distribution (QKD) [VV19], where one
does not want to make any assumption on the hardware implementing QKD.

To address these issues, we propose a definition of quantum simulation-soundness for NIZKs, where an
adversary is allowed quantum access to the oracle that is generating simulated proofs. This definition cannot
be cast as a simple translation of the classical variant, because of the no-cloning theorem [WZ82]: The main
1 After all, it is hard to justify that we build quantum computers only to break the current classical cryptography.

2



challenge is that quantumly we cannot keep track of the quantum queries (since it could be just impossible to
copy such states) and therefore it is not clear how to rule out the “trivial” adversary that simply forwards a
simulated proof that they received from the simulator as the output of a query. A crucial observation that
allows us to bypass this hurdle, is to keep track of the randomness in the security definition. This is possible,
since the randomness is in the control of the challenger and it can be recorded since it is classical. We hope
that this insight will be beneficial in similar situations to overcome the quantum recording barrier.

1.2 Organization
The rest of the paper is organized as follows.

First, in Section 2, we discuss the difficulty of defining a sensible quantum simulation-soundness definition
when the quantum adversary has superposition access to the simulator. We explain why the existing
approaches for a similar scenario do not help to achieve our goal. To remedy this, we take a totally different
approach and we use the fact that the randomness used to generate a simulated proof can be classical and
therefore can be recorded. The formal definitions, along with some technical discussions, are presented in
Section 4.

Then, we show that our definition is strictly stronger that the classical definition by giving two separation
results between post-quantum and quantum security in Section 5 and Appendix F. As a side result, we
introduce a new notion of quantum-query advantage functions, which are functions that demonstrate advantages
of quantum queries over classical queries. We believe that our notion of quantum-query advantage functions
can be used to provide a generic framework to show separations of cryptographic primitives between the
classical-query setting and the quantum-query setting.

Next, we show that our quantum simulation-soundness is achievable. More precisely, we prove the
quantum security with respect to our quantum simulation-soundness definition of Sahai’s NIZK protocol [Sah01,
DDO+01] in the CRS model in Appendix E, as well as the quantum security of Fiat-Shamir construction [FS87]
in Section 6.

Finally, we discuss how a quantum simulation-sound NIZK protocol can be used to construct a quantum
IND-CCA secure encryption scheme using the Naor-Yung construction [NY90, Sah99a] in Section 7.

2 Technical Overview

2.1 Definitions: Quantum Simulation-Soundness
Informally, a non-interactive zero-knowledge proof system is said to be simulation-sound if it has the property
that an adversary cannot provide a convincing proof for any false statement, even if it has seen simulated
proofs of arbitrary statements (including false statements).

In the traditional experiments, classical simulation-soundness is defined with respect to a zero-knowledge
simulator. The adversary can obtain a polynomial number of simulated proofs, some of which possibly on
false statements. The simulator would keep a list of statements and simulated proofs, and the adversary
is asked to output a new pair of statement and proof that is outside the list, meaning that it wins if it
manages to give either a proof on a new false statement, or a new proof of an old statement. Definition for
simulation-soundness thus inherently implies recording and comparison of queries.

Translating this definition into the quantum setting is thus highly non-trivial because of several technical
obstacles related to recording and comparison of quantum queries, which are linked to quantum no-cloning
and the destructiveness of quantum measurements.2 We note that the same barrier usually appears when one
wants to define quantum security of classical primitives under superposition attacks, for example, in the case
of message-authentication code [BZ13a], signatures [BZ13b] and encryption [BZ13b, CEV22]. Since one might
find some similarities between the notion of simulation-soundness and the notion of “existential unforgeability
under a quantum chosen message attack” for message authentication codes and signature schemes, we present
below the road that we have taken to reach the final definition start by first giving some discussions on the
existing approaches for defining quantum-secure unforgeability.
2 Zhandry had a partiel success on recording quantum queries for random oracles in [Zha19].
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(n+1) approach. To define quantum-secure unforgeability, Boneh and Zhandry overcame the recording
barrier by allowing the adversary to make n quantum queries to its oracle (respectively the MAC oracle or
the signing oracle) and requiring it to output n + 1 distinct valid classical (respectively (message, tag) or
(message, sign)) pairs as an output [BZ13a, BZ13b]. At first glance, one may think that this technique can be
used to define a quantum simulation-soundness. Namely, the adversary would make n quantum queries to
the simulator and at the end it would be required to output n + 1 distinct valid classical (statement, proof)
pairs. We call this definition (n + 1)-definition.

However, this is not a sensible definition because even when restricted to classical queries, it deviates
from the classical simulation-soundness definition. In more details, a quantum adversary that makes n
classical queries and obtains an extra valid pair (true statement, proof) would break the (n + 1)-definition
but not the classical simulation-soundness definition since the last pair is a proof of a true statement. To
remedy this problem, one naive solution is that we allow the adversary to make n quantum queries on true
statements and m quantum queries on false statements. At the end, the adversary would be required to
return n valid pairs with true statements and m + 1 valid pairs with false statements. We would call this
definition (n + m + 1)-definition. However, a polynomially-bounded simulator would not be able to distinguish
whether a quantum query is a superposition of true statements, or a superposition of false statements, or else
a mix of both true and false statements, without disturbing the query state. Indeed, the adversary would
always be able to win. For example, the adversary could make n− 1 queries on true statements and m + 1
queries on false statements without being detected and use them to break the (n + m + 1)-definition.

Overall, the conclusion is that Boneh-Zhandry’s approach does not work for defining quantum simulation-
soundness due to a subtle difference with their setting. This is because, in our case the simulator gets as
inputs both true and false statements, but the adversary wins if it outputs a different valid pair with a false
statement. In contrast, the inputs to a MAC or signing oracle all belong to a single message space and a new
pair of (message, tag) or (message, signature) is a break of the security.

Strong blind-unforgeability approach. Another approach that might help is to use a notion similar
to “blind-unforgeability” [AMRS20] that is defined for message authentication codes. In a nutshell, in the
blind-unforgeability notion, the oracle blinds a random subset of the domain for the adversary. The adversary
wins if at the end of the execution it returns a forgery for a blinded message. In more details, at the beginning
of the game the oracle chooses a blinded set B randomly by putting a message m in B with probability ϵ.
Then, for any message in B it returns ⊥, otherwise, it answers with the MAC oracle. The adversary wins if it
returns a forgery for a message in B. Then the strong blind-unforgeability is defined similarly with a minor
difference: the blinded set is chosen from the set of all valid pairs (message, tag).

However, this approach also has some limitations. First, since the blinded set is chosen at the beginning
of the protocol before any query has been made and this set is fixed during the execution, in a sense, the
adversary is not able to adaptively influence this set based on the answers it gets. In addition, we are not
certain a bounded reduction adversary can sample a blinded set when the message space is exponential-size.
Of course this is not problematic when we restrict ourselves to classical adversaries — as proven in [AMRS20]
that restricted to classical queries, the blind-unforgeability notion is equivalent to “EUF-CMA” (existential
unforgeability under a chosen message attack) notion — since for each query the oracle can toss a biased coin
with the probability ϵ being blind. Then, it either returns ⊥ or answers with the MAC oracle. But, when
quantum queries are allowed, the blinded set has to be determined at the beginning of the execution since a
single superposition query can contain all the messages.

Another crucial problem with a quantum simulation-soundness definition in the blind-unforgeability style
is the inability to use such a definition in applications like constructing an IND-CCA secure encryption
scheme from a simulation-sound NIZK protocol and an IND-CPA secure public-key encryption scheme (the
Naor-Yung paradigm) [Sah99b]. In particular, the protocol in [Sah99b] encrypts a message m using two
different public keys to get two ciphertexts c0, c1. Then it invokes a NIZK protocol to prove in π that c0, c1
are indeed the encryptions of the same message. In the CCA security proof, when reducing to the CPA
security of the underlying public-key encryption, the reduction adversary has to use only one secret key
to simulate the decryption oracle. This simulation is possible because the adversary can not generate a
new valid pair ((c0, c1), π) where (c0, c1) is not in the language (or where c0, c1 are the encryptions of two
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different messages) by the simulation-soundness property of the NIZK protocol. However, a definition in the
blind-unforgeability style might not fit here because such a definition does not prevent an adversary that
returns a valid pair ((c′0, c′1), π′) /∈ B (where B is the blinded set) where (c′0, c′1) is a false statement and it is
different from the challenge ciphertext. Note that the actual decryption oracle on (c′0, c′1) returns ⊥ but a
simulated decryption oracle that uses one secret key returns a message. Therefore, the reduction adversary
encounters obstacles with a quantum simulation-soundness definition in the blind-unforgeability style.

Our approach. In this paper, we follow a totally different approach. Namely, we take advantage of the fact
that the randomness to compute a proof is chosen by the oracle and can be classical. For each query, we thus
ask the oracle to record the randomness used to respond the query in a list R.

Then, the first idea would be that when the adversary outputs a valid pair (x, π) with a false statement x,
the simulator S would compute proofs for this statement x using all the randomnesses recorded in R. That
is, for any ri ∈ R, πi ← S(x, ri). If none of these computed proofs πi is the same as the proof given by the
adversary, the oracle would declare that the adversary has won.

However, this definition does not work since we observe that restricted to the classical queries, this
definition is weaker than the classical definition. Indeed, if an adversary breaks this definition, it can break the
classical definition as well since the given proof is a new proof that has not been obtained from the simulator.
But the other direction does not always hold. If an adversary breaks the classical definition by outputting a
valid pair (x, π) where x is a new false statement and there exists a recorded randomness that matches with
this pair (that is, ∃ r ∈ R such that S(x, r) = π), we can not use this pair to reject this definition.

Final definition. Lastly, we present our final definition to overcome the issue discussed above. Similarly,
the oracle records the randomnesses in a list R and we assume that it picks a fresh randomness for each
query. At the end, the adversary returns two pairs (x1, π1), (x2, π2) and wins if either of the two following
statements is true:

1. None of the randomnesses in R matches with one of the pairs (x1, π1), (x2, π2) with x1 or x2 being a
false statement.

2. There exists a randomness r ∈ R that matches with these two pairs and one of the statements x1 or x2 is
a false statement.

Intuitively, the first case means that the adversary managed to give a new proof of a false statement.
Since we assume that the simulator picks a fresh randomness for each query, the second case implies either
a malleable attack, or that the adversary managed to give a proof of a new false statement. Restricted to
classical queries, this definition is stronger than the classical simulation-soundness definition. In more details,
an adversary that breaks the classical definition outputs a new pair (x, π) where x is a false statement. If x
has not been queried before, the reduction adversary can break one of the two cases above. If x has been
queried before but π is a new proof, the randomness to generate π should not be in R and the reduction
adversary breaks case 1. A formal proof of this claim is given in Lemma 1.

2.2 Separation

Separation I. The core of idea is to introduce a new notion of quantum-query advantage functions, which
are functions that demonstrate advantages of quantum queries over classical queries, motivated by the recent
notion of quantum advantage functions, introduced by [LMQW22].3These objects are then used to show a
separation between quantum simulation-sound NIZKs and classical (post-quantumly secure) simulation-sound
NIZKs. This separation relies on the hardness assumption of the Learning with Errors problem [Reg05]
against quantum computers.

An overview idea of our construction of quantum-query advantage functions is as follows. We start with
interactive proof of quantumness protocols [BCM+18]. Very briefly, an interactive proof of quantumness
3 The notion defined in [LMQW22] demonstrate a quantum advantage with only classical queries, showing separations

between classical security and post-quantum security.
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protocol is a demonstration of quantum unsoundness and classical soundness: a quantum prover can easily
make a classical verifier accepts, but no efficient classical prover can make the verifier accepts. Since the
verifier in an interactive proof of quantumness protocol is classical, we note that the communication of
the protocol is also classical. Our main observation is that an interactive proof of quantumness protocol
(specifically the one given in [BCM+18]) can also be used to show quantum unsoundness and semi-quantum
soundness: a quantum prover interacting with a quantum verifier using quantum communication can make the
protocol accepts, while no efficient quantum prover with only classical communication can make the protocol
accepts. We formalize this idea by introducing the notion of quantum-query advantage functions, and use it
to show separation between the quantum and post-quantum security settings for SS-NIZK. In particular, our
separation is constructed by carefully embedding instances of interactive quantum-query advantage into the
simulator of the NIZK system. The key conceptual insight is that although we are considering non-interactive
proof systems, the security game for simulation-soundness is interactive, allowing us to use a quantum
adversary that makes the quantum-query advantage function accept to also break the simulation-soundness:
an efficient quantum adversary given classical oracle access to the quantum-query advantage function cannot
cause it to ever output accept, while it can do so by only making 2 quantum queries.
Separation II. We also present an ad-hoc separation construction which holds unconditionally with no extra
assumptions (see Appendix F). To this aim, we start with constructing a new pseudorandom function that
is periodic with some large, secret period. Classical adversaries will not be able to detect the period, and
thus cannot distinguish this new function from random. However, an adversary making quantum queries
can detect the period, and thus distinguish our new function from random. In more detail, inspired by the
idea of [KZM+15] with some modifications, our second separation’s construction makes use of a one-time
signature scheme. A pair of one-time signing/verification keys are generated for each proof such that in
the zero-knowledge proof, a simulator (simulated prover) is required to provide ctF = FskPRF(x) (where the
function F is a periodic pseudo-random function with a secret key skPRF) and ctpk = fskPRF(pk) (where f is a
pseudo-random function with a secret key skPRF and pk is a public key of an underlying public key encryption
scheme). Then we require the prover to sign the statement together with the proof, the cipher-text, ctpk, and
ctF. Then, briefly, due to the security of the signature scheme, the adversary must use a different x and pk
from the ones returned from oracle queries. Thus, for a statement to pass the verifier without a proper witness,
the classical prover must generate FskPRF(x) and fskPRF(pk) without the knowledge of skPRF (thus breaking the
pseudo-random function F and f). But given quantum queries and by using Simon’s quantum algorithm, the
quantum adversary can find the period of the pseudo-random function F and thus obtain skPRF and breaks
the simulation sound property.

2.3 Constructions

The CRS-based. For the first construction, in the common reference string model (CRS), we consider
Sahai’s construction of unbounded simulation-sound NIZK [Sah01, DDO+01], based on Naor commitment
scheme [Nao90], and we show that when instantiated with quantum-secure one-time signature scheme
(Definition 15), this scheme is also quantum simulation-sound.
The QROM-based. For our quantum simulation-sound NIZK in the quantum random oracle model model„
we start with specific class of public-coin interactive proof systems for NP languages, called Σ-protocols.

Recall that, Σ-protocol Σ = (P,V) for an NP language L is a three-round public-coin interactive proof
system between the prover P and the verifier V where the first message α, called commitment, is sent by
P and then, alternatively, the parties exchange the other messages β and γ, called (respectively) challenge
and response. Furthermore, the challenge β is public-coin. Roughly speaking, a Σ-protocol satisfies (i)
completeness: states for any statement x ∈ L, any proper execution of the protocol between P and V ends with
the verifier accepting P’s proof. (ii) Honest-verifier zero knowledge (HVZK): there exists a QPT algorithm
S, called zero-knowledge simulator, such that for any (x, w) ∈ RL and any QPT distinguisher D the proof
simulated by S and the one generated by the real prover are computationally indistinguishable. (iii) Soundness:
If x /∈ L then any malicious (even unbounded) prover P∗ is accepted only with negligible probability.

We introduce a new property, so-called randomness collision-resistance for Σ-protocols. This property
states that a QPT adversary A who runs the simulator S in superposition, cannot extract two pairs of
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{(xi, πi)}2
i=1 such that they are both computed using the same randomness r from the simulator. More

formally, randomness collision-resistance states:

Definition 1. Assume for each query, the simulator S stores the (classical) randomness used to answer the
query in a list R. For any QPT adversary A, we require that:

Pr
[

∃ r ∈ R :
S(1λ, xi; r) = πi ∀ i ∈ J1, 2K

∣∣∣∣{(xi, πi)}2
i=1 ← A|S(1λ,·)⟩(1λ)

]
≤ negl(λ) .

Then, we prove that in the quantum random oracle model, the Fiat-Shamir transformation [DFMS19, LZ19]
is quantum simulation-sound, if the underlying Sigma protocol satisfies the new and strong property,
randomness collision-resistance. To this aim, we show that the randomness collision-resistance property is
achievable. Namely, we give a compiler that transform any Σ-protocol into a randomness collision-resistance
Σ-protocol. Our compiler makes use of quantum-secure one-time signature schemes and is very simple. In the
first prover message, the prover also generates a key pair of the signature scheme, and in last message, the
prover uses the signing key and signs all the messages that have been exchanged so far (including the one
from the original protocol in the last round).

2.4 Applications

Finally, we present and prove quantum security of a simple modification of the classical Naor-Yung
scheme [NY90, Sah99a]. In particular, we give a construction of building quantum chosen-ciphertext
secure encryption schemes from quantum chosen-plaintext secure schemes and quantum simulation-sound
NIZK proof systems. It is a combination of quantum-secure IND-CPA encryption schemes and a family of
invertible pseudorandom functions.

3 Preliminaries

Notation. Throughout this paper, λ denotes the security parameter. The notation negl(λ) denotes any
function f such that f(λ) = λ−ω(1), and poly(λ) denotes any function f such that f(λ) = O(λc) for some
c > 0. For a, b ∈ R, [a, b] := {x ∈ R | a ≤ x ≤ b } and Ja, bK := {x ∈ Z | a ≤ x ≤ b } will denote the closed
real and integer interval with endpoints a and b. With an abuse of notation, we will write JnK as shorthand
for J0, n− 1K. For a set I = {i1, . . . , iℓ} ⊆ JnK and a n-bit string x ∈ {0, 1}n, we write x|I := xi1 · · ·xiℓ

. When
sampling uniformly at random a value a from a set U , we employ the notation a

$← U . When sampling a
value a from a probabilistic algorithm A, we employ the notation a← A. Let |·| denote either the length of a
string, or the cardinal of a finite set, or the absolute value. By PPT we mean a polynomial-time non-uniform
family of probabilistic circuits, and by QPT we mean a polynomial-time family of quantum circuits. For a
probabilistic algorithm f , we write f(x; r) to denote the computation of f on input x with randomness r
drawn uniformly at random. We sometimes omit the randomness and just write f(x).

3.1 Quantum Computation

We assume familiarity with quantum information and computation, and refer to [NC11] and Appendix A.1
for the definition of basic concepts.

3.2 Non-interactive Zero-knowledge Proof Systems

For a NP relation R ⊆ X ×W, we let L(R) := {x : ∃w, (x, w) ∈ R}.

Definition 2. A non-interactive zero-knowledge (NIZK) proof system for an NP relation R in the common
reference string (CRS) model consists of three PPT algorithms NIZK = ⟨Setup,P,V⟩:
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• crs← Setup(1n, 1λ). On input a statement of length n and the security parameter λ, the setup algorithm
Setup outputs a common reference string crs.
• π ← P(crs, x, w). On input the common reference string crs, an instance x and a witness w such that

(x, w) ∈ R, the proving algorithm P outputs a proof π.
• b← V(crs, x, π). On input the common reference string crs, an instance x and a proof π, the verification

algorithm V outputs a bit b ∈ {0, 1}. If b = 1, we say that V accepts, otherwise we say that V rejects.

The proof system NIZK must satisfy the following requirements for all λ ∈ N.

• Completeness. For every (x, w) ∈ R, we have that

Pr
[
V(crs, x,P(crs, x, w)) = 1 | crs← Setup(1|x|, 1λ)

]
= 1,

where the probability is taken over the randomness of Setup and P.
• Statistical soundness. There exists a negligible function negl(λ) such that for any n ∈ N,

Pr
crs←Setup(1n,1λ)

[∃(x, π∗) s.t. V(crs, x, π∗) = 1 ∧ x /∈ L] ≤ negl(λ) .

• (Adaptive) post-quantum computational zero-knowledge. There exists a QPT simulator S =
(S1,S2) such that for all QPT malicious verifier V∗ = (V∗1 ,V∗2 ), for every n ∈ N,∣∣∣∣∣∣Pr

V∗2 (crs, x, π, ζ) = 1 ∧ x ∈ L

∣∣∣∣∣∣
crs← Setup(1n, 1λ)
(x, w, ζ)← V∗1 (crs)

π ← P(crs, x, w)


−Pr

V∗2 (crs, x, π, ζ) = 1 ∧ x ∈ L

∣∣∣∣∣∣
(crs, td)← S1(1λ)

(x, w, ζ)← V∗1 (crs)
π ← S2(td, x)

∣∣∣∣∣∣ ≤ negl(λ) ,

where ζ is the internal state of V∗.

Definition 3 (Unbounded Simulation-Soundness). A zero-knowledge proof system is said to be
(unbounded) simulation-sound if it has the property that an adversary cannot provide a convincing proof for
any false statement, even if it has seen simulated proofs of arbitrary statements (including false statements).
More precisely, an NIZK proof is simulation sound if for all QPT adversaries A, we have:

Pr
[

(xi, πi) ̸∈ Q ∧ x ̸∈ L
∧ V(crs, x, π) = 1

∣∣∣∣ (crs, td)← S1(1λ)
(x, π)← AS2(td,·)(crs)

]
≤ negl(λ) ,

where Q is the list of simulation queries and responses (xi, πi).

Definition 4 (NIZKs in the (quantum) random oracle model). A definition for NIZK proof systems
in the (quantum) random oracle model can be defined similarly as in Definition 2, except that the setup
algorithm Setup outputs an empty string, and all parties have (quantum) access to a random oracle OH .
Completeness, soundness, zero-knowledge and simulation-soundness can be defined similarly with respect to
this change in the model.

3.3 Pseudorandom Functions

A family of pseudorandom functions (PRFs) consists of two polynomial time classical algorithms ⟨KeyGen, PRF⟩.
KeyGen is a randomized procedure that takes as input the security parameter and outputs a random key
k ∈ K. PRF takes as input a key k ∈ K and an input x ∈ X , and deterministically outputs a classical string
y ∈ Y. In this paper, we also consider the notion of invertible pseudorandom function which is an injective
PRF whose inverse function PRF−1 can be computed efficiently (given the secret key). We recall the formal
security definition of (invertible) PRFs in Appendix A.2.
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3.4 One-time Signatures

A signature scheme consists of three polynomial time classical algorithms Sig = ⟨KeyGen, Sign, Verif⟩. KeyGen
is a randomized procedure that takes as input the security parameter and produces a secret key and public
key pair (pk, sk)← KeyGen(1λ). Sign takes as input the secret key and a message m, and produces a signature
σ ← Sign(sk, m). Finally, Verif takes as input the public key, a message m, and a supposed signature σ on m,
and either accepts or rejects. We recall the formal security definition of one-time signatures in Appendix A.3.

4 Quantum Security Definition for Simulation-Sound Non-Interactive
Zero-Knowledge

In this section, following the ideas described in Section 2, we present our definition of quantum simulation-
soundness, and give some discussions on these definitions.

4.1 Quantum-Secure Zero-Knowledge

We give below the definition for quantum-secure zero-knowledge in both the common reference string model
and the quantum random oracle model. Our definition is a quantum counterpart of the classical definition
for post-quantum zero-knowledge: the only difference is that now the adversary can query the simulator in
superposition.

Definition 5. Let L be a language in NP. A proof system NIZK := ⟨Setup,P,V⟩ for L is (adaptive) quantum-
secure zero-knowledge if there exists a QPT simulator S = (S1,S2) such that for all QPT distinguisher
D∗ = {D∗λ, ρλ}λ∈N, for every n ∈ N, and for every λ ∈ N:∣∣∣Pr

[
D∗λ(ρλ, param)|PO(param,·,·)⟩,|O⟩ = 1

∣∣∣param← Setup(1n, 1λ)
]

−Pr
[
D∗λ(ρλ, param)|S2(td,·)⟩,|O⟩ = 1

∣∣ (param, td)← S1(1λ)
]∣∣ ≤ negl(λ) ,

where

− D∗ can make quantum queries to the oracles.
− param is an empty string if we consider NIZK in the quantum random oracle model, or crs in the common

reference string model.
− O is an empty oracle if we consider NIZK in the common reference string model, or a random oracle OH

in the quantum random oracle model.
− P(param, ·, ·) is the prover algorithm and S2(td, ·) only acts on its private trapdoor td, the input statement

x ∈ Lyes ∩ {0, 1}n and its private random tape.

Randomness. We recall the following discussion from [BZ13b]. If an oracle O implements a classical
randomized algorithm, there are several choices for how the randomness is used in each query if the oracle is
queried in superposition. One option is to choose fresh randomness for each message in the superposition.
Another option is to choose a single randomness value for each query, and generate output in the superposition
with that randomness. We note that there is a simple transformation that converts an oracle requiring
independent randomness for every message into a scheme that is secure when a single randomness value
is used for an entire query: for each query, choose a fresh random key k for a quantum pseudorandom
function (QPRF) ([Zha12a]). This will be the single per-query randomness value. Each message m in the
superposition will be answered using randomness obtained by applying the QPRF to m using the key k.
From the adversary’s point of view, this is indistinguishable from choosing independent randomness for
each message. Indeed, Zhandry [Zha12b] shows that we can replace the QPRF with a function drawn from
a pairwise independent function family, which allows us to achieve perfect simulability. For this reason,
requiring global randomness per query does not change the oracle from the adversary’s point of view, but
greatly simplifies its implementation. In this work, we choose the second approach and all randomized oracles
are implemented this way.
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Construction. We note that any perfect adaptive post-quantum zero-knowledge proof system is also (perfect)
quantum-secure zero-knowledge proof system. In Appendix D, we also give a brief discussion on the feasibility
of achieving computationally quantum-secure zero-knowledge proof systems from known constructions.

4.2 Quantum Simulation-Soundness

Definition 6 (Quantum Simulation-Sound NIZK). Let L be a language in NP. Consider a proof system
⟨Setup,P,V⟩ for L with zero-knowledge simulator S := (S1,S2). In each query, S2 stores the randomness
used to answer the query in a list R. A QPT adversary A after making polynomial numbers of quantum
queries to S2 outputs two pairs {(xi, πi)}2

i=1. The adversary A wins if either of the following two cases hold:

1. There exists i ∈ J1, 2K such that xi /∈ L, for all r ∈ R, S2(xi, r) ̸= πi and V(crs, xi, πi) = 1.
2. There exists a randomness r ∈ R such that S2(x1, r) = π1 and S2(x2, r) = π2 and at least one of x1 or

x2 is not in L.

Formally, we say an NIZK proof is quantum simulation-sound if for all λ ∈ N, for all QPT adversaries A,
i, j ∈ J1, 2K we have:

Pr


V |O⟩(param, xi, πi) = 1∀ i ∧

∃ i :
((

xi /∈ L
)
∧(

(S2(td, xi, r) ̸= πi ∀ r ∈ R)∨
(∃ r ∈ R : S2(td, xj , r) = πj ∀ j)

))
∣∣∣∣∣∣∣∣∣∣

(param, td)← S1(1λ)
{(xi, πi)}2

i=1 ← A|S2(td,·)⟩,|O⟩(param)


≤ negl(λ) ,

where param,O are defined similarly as in Definition 5.

Next, we show that our quantum simulation-soundness (with respect to only classical queries) implies the
standard classical simulation-soundness.

Lemma 1. The classical restriction of our quantum simulation-soundness (where the adversary can only
make classical queries to the simulator) implies the standard classical simulation-soundness (Definition 3).

Proof. We show that if there is an adversary A that breaks the standard classical simulation-soundness
(Definition 3), we can use A to build another adversary B that breaks our quantum simulation-soundness
restricted to classical queries.
B simply forwards all (classical) queries from A to its oracle, and keeps a list T of A’s queries and responses

(since now they are all classical). When A outputs a pair (x, π), B picks at random a pair (x′, π′) from T and
outputs (x, π) and (x′, π′). There are two cases:

• If x ∈ T , then (x, π) breaks the case 1 of our quantum simulation-soundness. This is because, in this
case π cannot be an answer from the oracle: that is, π /∈ T (this is by definition of the standard classical
simulation soundness). Then the pair (x, π) would pass the check of the first condition: Note that with
the randomness r and input a statement x, the proof generation function (computed by the simulator) is
a deterministic function of r and x, so if the output proof π is not the one generated by the simulator,
the randomness used to generate π must not also be in the list of randomness kept by the simulator.
• If x /∈ T , this breaks either one of the two cases. If there is no collision on the randomness used to

compute (x, π) with the recorded list R of the simulator’s randomness, this breaks case 1. Otherwise,
with probability 1

q (where q is the number of the queries), (x, π) and (x′, π′) would be computed with the
same randomness and this breaks case 2. We note that in the latter case, there is a security loss growing
with the number of queries.
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4.2.1 Some Technical Discussions
We now remark on a few details on the notion of quantum simulation-soundness. First, it might seem that
our definition does not capture all possible quantum attacks. Consider the following adversary A. A makes a
quantum query to the simulator and obtains a superposition of statements and proofs as

∑
x ̸=x0,y αx,y |x, y ⊕ π⟩,

where x0 /∈ L. We assume that the simulator answered the query with a classical randomness r, that is
hidden from A. (Note that, if r is not hidden, there is a trivial attack.) A then performs some quantum
computation to come up with a proof for x0, with the same randomness r, and during the process, A also
destroys the original state, thus A cannot procedure two pairs of {(xi, πi)}2

i=1 that are computed using the
same randomness. Essentially, the adversary makes one or more quantum queries but then must consume the
post-query states completely in order to make a single, but convincing, forgery. Obviously, if such an adversary
A exists, this might consider a quantum attack against quantum simulation-soundness, but Definition 6 does
not capture this. However, this so-called attack is inherited from the nature of quantum queries and can be
applied in similar scenarios, for instance, the (n + 1)-definition proposed in [BZ13b, BZ13a]. We also note
that the blind-unforgeability definition of [AMRS20] is designed to avoid this kind of attacks, however, it is
unknown whether blind-unforgeability is stronger than (n+1)-definition.4 The second condition in Definition 6
is thus used to capture classical attacks rather than quantum attacks. We leave this as an open problem,
either to find a concrete example for this type of attack, or to show that (in most of the cases) this is not
possible.

Secondly, our definition also captures some “malleability” attack that is not captured by the classical
definition. In particular, imagine that if the adversary makes a query to the simulator for a statement x1 /∈ L,
and outputs a proof for a statement x2 ∈ L with the same randomness used by the simulator. This attack
does not violate the classical simulation-soundness, but it is captured by our definition. This is because it is
not possible in general to distinguish which statement was queried by the adversary in the quantum setting.
We note that the “inverse” case (that is, x1 ∈ L and x2 /∈ L) is obviously an attack and it is captured in both
classical and quantum notions.

5 Separation Between Post-Quantum and Quantum Security for SS-NIZK

In this section, we introduce a new notion of quantum-query advantage functions, which are functions that
demonstrate advantages of quantum queries over classical queries. After recalling the definition of interactive
proof of quantumness protocols in Section 5.1, we give the definition and construction for quantum-query
advantage functions in Section 5.2, and we use them to show a separation between quantum simulation-sound
NIZKs and classical simulation-sound NIZKs in Section 5.3.

Unconditional separation. The separation we present below in Section 5.3 holds under the hardness
assumption of the Learning with Errors problem [Reg05] against quantum computers. In Appendix F, we
present an ad-hoc separation construction which holds unconditionally with no extra assumptions.

5.1 Preliminaries: Interactive Proof of Quantumness

We first recall the definition of interactive proof of quantumness protocols with 4 messages in total, which corre-
sponds to the best round complexity known for interactive proofs of quantumness in the plain model [BCM+18].

Definition 7. An interactive proof of quantumness is an interactive protocol Πipq between a prover P and a
verifier V using classical communication, with the following properties:

• Quantum completeness: there exists a QPT quantum prover P such that for all λ ∈ N:

Pr
[
(P,V)(1λ) = 1

]
≥ 1− negl(λ) .

4 The conference version of [AMRS20] claimed that blind-unforgeability implies (n + 1)-definition, which was removed
in [AMRS23].
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• Classical soundness: for any PPT classical prover P∗, for all λ ∈ N:
Pr[(P∗,V) = 1] ≤ negl(λ) .

In a 4-round interactive proof of quantumness protocol, the first message is sent by the verifier to the
prover. Let v1, v2 (resp. p1, p2) denote the messages sent by the verifier (resp. the prover) during the execution
of an interactive proof of quantumness Πipq. An interactive proof of quantumness Πipq can furthermore satisfy
the following optional property:
• Public-coin second verifier message: the second verifier message v2 consists of uniformly and

independently sampled random coins.
• Semi-quantum soundness: for any QPT quantum prover P∗, for all λ ∈ N:

Pr
[
(P∗,Vsemi)(1λ)

]
≤ negl(λ) ,

where the verifier Vsemi is defined as follows.
− Let P denote the efficient quantum prover for Πipq such that

Pr
[
(P,V)(1λ)

]
≥ 1− negl(λ) .

We further assume that the first message generation algorithm of P is a QPT algorithm in the
following form: this algorithm runs a classical PPT algorithm P1 in superposition of inputs (possibly
followed by a measurement in the computational basis).

− Vsemi runs V to obtain the first verifier message v1.
− Whenever Vsemi receives a classical message x from P∗, it runs P1 on (v1, x) and obtains a classical

message p1.
− P∗ is allowed to send a classical message x to Vsemi and receive back a tuple of classical message

(p1, v2) where v2 is the second verifier message. Then it outputs a classical message p2.
− Vsemi outputs the output of V on (v1, p1, v2, p2).

Intuitively, semi-quantum soundness guarantees that no efficient quantum prover can cheat when the first
prover message is generated by a classical prover.

Lemma 2. Under the LWE assumption, there exists a 4-message interactive proof of quantumness protocol
satisfying: (1) public-coin second verifier message and (2) semi-quantum soundness.
The proof of this lemma can be found in Appendix B.

5.2 Quantum Advantage with Quantum Query Algorithms
Definition 8 (Quantum-Query Advantage Functions). A quantum-query advantage function is a pair
of PPT algorithms ⟨Setup, QAF⟩ with the following properties:
• (pp, sk) ← Setup(1λ). On input a security parameter λ, the setup algorithm Setup outputs a public

parameter pp and a secret key sk. Without loss of generality, we will consider that the secret key sk
includes the public parameter pp.
• QAF(sk, x). On input a secret key sk and a message x, the (randomized) evaluation algorithm QAF

outputs either a message y, or a special “accept” symbol denoted accept, or a special “reject” symbol
denoted reject. For our applications later, we require that by default QAF(sk, ·) is stateless.
We additionally require the following properties:

1. q-Quantum-query easiness. For any λ ∈ N, there exists a QPT oracle algorithm A|QAF(sk,·)⟩(pp) such
that:

Pr
[
QAF(sk, x) = accept | x← A|QAF(sk,·)⟩(pp)

]
= 1− negl(λ) ,

where A|QAF(sk,·)⟩ makes q quantum queries in total to QAF(sk, ·) before outputting x, and the probability
is taken over (pp, sk)← Setup(1λ).

2. Classical-query hardness. For any λ ∈ N, for all QPT oracle algorithm AQAF(sk,·)(pp) such that:

Pr
[
QAF(sk, x) = accept | x← AQAF(sk,·)(pp)

]
≤ negl(λ) ,

over (pp, sk)← Setup(1λ).
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Construction. Let Πipq be a 4-message interactive proof of quantumness, in the form of Definition 7
in Section 5.1 with public-coin second verifier message and semi-quantum soundness properties. Let PRF be
a one-wise independent PRF. We define our quantum-query advantage function as follows.

Construction 1 (A quantum-query advantage function from interactive proof of quantumness.).

• Setup(1λ):
− Run the first verifier message for Πipq to obtain (v1, r), where v1 is the first verifier message and r is

the private coin of the verifier of Πipq.
− Sample a uniformly random key k $← {0, 1}λ for PRF.
− Set pp as an empty string and sk := (pp, k, v1, r) and output (pp, sk).

• QAF(sk, ·): on input a message x, we consider several distinguished cases (all cases are considered with
appropriate input length):
− If x is of the form (0∥u): compute the semi-quantum verifier message for Πipq on (v1, u) to obtain

(v1, p1, v2), where v2 ← PRF(k, p1). Output (p1, v2).
− If x is of the form (1∥p1∥p2): compute v2 ← PRF(k, p1). If the verifier of Πipq accepts the transcript

(v1, p1, v2, p2) with the secret state r, output accept, otherwise output reject.
− Otherwise output ⊥.

Theorem 1. Let Πipq be a 4-message interactive proof of quantumness satisfying the properties specified
in Lemma 2: public-coin second verifier message and semi-quantum soundness. Then there exists a quantum-
query advantage function satisfying 2-quantum-query easiness (Definition 8).

Its formal proof is given in Appendix G.1. Combined with Lemma 2, we obtain the following:

Corollary 1. Assuming the (classical) hardness of LWE, there exists a quantum advantage function satisfying
2-quantum easiness (Definition 8).

5.3 Separation between Post-Quantum Security and Quantum Security

Following the ideas presented in Section 2, we use our quantum-query advantage functions to give an example
of a NIZK proof system that is classically simulation-sound but not quantum simulation-sound.

Construction 2. Let L′ be a language in NP, with the associated relation R′. Let L denote the NP language
defined in Equation (1). Let Π = ⟨Setup,P,V⟩ be a post-quantum simulation-sound non-interactive zero-
knowledge proof system for L, and ⟨Setup, QAF⟩ be a quantum-query advantage function. We define the
following NIZK proof system Π = ⟨Setup,P,V⟩ for L as follows.

• Setup(1λ) : Output pp← Π.Setup(1λ). (We note that pp = crs in the CRS model, and pp is a token that
allow the parties to make quantum queries to the random oracle in the QROM.)
• P(pp, x, w) : Compute (pp′, sk)← Setup(1λ). Compute y ← QAF(sk, x). Generate a proof π using Π for

the statement (x, y) ∈ L. Output (y∥π).
• V(pp, x, π) : Parse (y∥π)← π. Output V(pp, (x, y), π).

We define the following augmented language L of R′:

L := {(x, y) : ∃ (sk, r, w) : R′(x, w) = 1 ∧ (y = reject ∨ y = QAF(sk, x; r))}. (1)

It is easy to see that completeness and soundness of Π follow directly from those of Π.
We now construct a simulator S for zero-knowledge property of Π, which is later on also used in the proofs

of simulation-soundness. Let S := (S1,S2) be a zero-knowledge simulator of Π. The simulator S := (S1,S2)
works as follows.

• S1 : Output S1.
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• S2 : Initialize an empty list Q. On the input a statement x,
− For each pair (pp′i, ski) ∈ Q, compute yi ← QAF(ski, x).

∗ If yi = reject ∀ i, set y = reject.
∗ If there exists an index i such that yi = accept, set y = accept.
∗ Otherwise, compute (pp′, sk)← Setup(1λ), store (pp′, sk) in Q and compute y ← QAF(sk, x).

− Run S2 on input (x, y) to obtain a simulated proof π.
− If y = accept, generate a simulated proof π′ for a random false statement x′ ∈ L (by sampling

x′ ∈ {0, 1}n uniformly at random, where n is the length of a statement in L) and output (π, (x′, π′)).
Otherwise, output (y∥π).

Claim 1. Assume that ⟨Setup, QAF⟩ satisfies classical-query hardness (Definition 8), then Π is zero-knowledge.
Proof. We define the following hybrid experiment:
Game G1: We modify the behavior of the simulator S2. It computes y and π as normal. However, if
y = accept, it aborts. Otherwise, it outputs y∥π.

For any classical-query QPT adversary P∗, the probability of P∗ making a query with some input x that
makes the simulator S2 abort in G1 is negligible by classical-query hardness of ⟨Setup, QAF⟩. Therefore the
output of the simulator for Π is indistinguishable from its output in G1. Now the zero-knowledge property in
G1 follows directly from the zero-knowledge property of Π, where the reduction samples (pp, sk)← Setup(1λ),
computes y ← QAF(sk, x) on its own and efficiently generates a proof π for the statement (x, y) for each
query.

Using the simulation S, we show that our definition is strictly stronger than the classical one below.
Claim 2. Assume that ⟨Setup, QAF⟩ satisfies quantum-query easiness (Definition 8), then Π is not quantum
simulation-sound.
Proof. Let A be the QPT algorithm associated to the quantum-query easiness of ⟨Setup, QAF⟩. Define P∗ as
follows.
1. Run A by first making a query to S2. Note that the response registers of the query have two component:

one to record the output of QAF, the other to record the output of S2. The first component is initialized
as the all-zero string |0⟩, while the second component is initialized as the uniform superposition state
|+⟩ to remove the entanglement between the two registers so that after the query, the second response
register can be discarded.

2. Continue the execution of A (with an input x) and obtain a triple (π, (x′, π′)). Output two pairs (x, π)
and (x′, π′).

By definition of S2 and the quantum-query easiness of ⟨Setup, QAF⟩, both two pairs output by P∗ are valid,
and furthermore x′ is a false statement, showing that Π is not quantum simulation-sound.

Notice that here x can be an arbitrary statement. Our attack breaks the winning condition (1) of Defini-
tion 6: the claim is that the pair (x′, π′) will break this condition. The reason is that since x′ is a random
string, it cannot make the QAF accept except with negligible probability, thus the re-computation of S2 on
x′ will not output π′ except with negligible probability.
Claim 3. Assume that ⟨Setup, QAF⟩ satisfies classical-query hardness (Definition 8), then Π is classically
simulation-sound.
Proof. The proof of this claim follows in an almost identical manner as that of Claim 1.

6 Constructions of Quantum SS-NIZK

6.1 Construction of Quantum SS-NIZK in the CRS Model
In Appendix E, we show that in the common reference string model, Sahai’s construction of unbounded
simulation-sound NIZK [Sah01, DDO+01], when instantiating with quantum-secure one-time signature scheme
(Definition 15), is also quantum simulation-sound.
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6.2 Construction of Quantum SS-NIZK in the QROM

We devote this section to show that in the quantum random oracle model, the Fiat-Shamir transforma-
tion [DFMS19, LZ19] is quantum simulation-sound, if the underlying Sigma protocol satisfies a strong property
that we call randomness collision-resistance.

6.2.1 Interactive Proof Systems

In this section, we are mainly interested in a specific class of public-coin interactive proof systems for NP
languages, called Σ-protocols. Σ-protocols have a 3-move shape where the first message α, called commitment,
is sent by the prover and then, alternatively, the parties exchange the other messages β and γ, called
(respectively) challenge and response. Furthermore, the challenge β is public-coin. A formal definition is
given below.

Definition 9 (Σ-protocols). A Σ-protocol Σ = (P,V) for an NP language L is a three-round public-
coin interactive proof system where P = (P0,P1) and V = (V0,V1) are PPT algorithms, with the following
additional properties:

• Completeness. If x ∈ L, any proper execution of the protocol between P and V ends with the verifier
accepting P’s proof.
• Honest-verifier zero knowledge (HVZK). There exists a QPT algorithm S, called zero-knowledge

simulator, such that for any QPT distinguisher D = (D0,D1) and for any (x, w) ∈ RL, the view of the
following two experiments (Figure 1), real and simulated, are computationally indistinguishable:

Expt0
Σ(1λ,D)

(x, w, state)← D0(1λ)
π ← ⟨P(1λ, x, w),V(1λ, x)⟩
b← D1(π, state)

Expt1
Σ(1λ,D)

(x, w, state)← D0(1λ)
π ← S(1λ, x)
b← D1(π, state)

Fig. 1. Honest-verifier zero knowledge security experiments.

where ⟨P(x, w),V(x)⟩ denotes the verdict returned at the end of the interaction between P and V on
common input x and private input w.
• Soundness. If x /∈ L then any malicious (even unbounded) prover P∗ is accepted only with negligible

probability.

We say (P,V) is non-trivial if the first message α is computationally indistinguishable from a uniformly
random string [FKMV12]. Furthermore, in the classical setting, the following property is also usually required
to achieve simulation soundness. This turns out that we also need it for the quantum setting.

Definition 10 ((Strict) Unique Response). A Σ-protocol has unique responses if for any A and for any
security parameter λ it holds:

Pr
[

(x, α, β, γ, γ′)← A(1λ) : V(x, α, β, γ) = V(x, α, β, γ′) = 1 ∧ γ ̸= γ′
]

= 0.

In this paper, we also consider a non-standard property of Σ-protocols that we call randomness collision-
resistance property, which requires that a QPT adversary A who runs the simulator S in superposition, cannot
extract two pairs of {(xi, πi)}2

i=1 such that they are both computed using the same randomness from the
simulator. The definition is formally given as follows.
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Definition 11 (Randomness collision-resistance). In the following, for each query, the simulator S
stores the (classical) randomness used to answer the query in a list R. For any QPT adversary A, we require
that:

Pr
[

∃ r ∈ R :
S(1λ, xi; r) = πi ∀ i ∈ J1, 2K

∣∣∣∣{(xi, πi)}2
i=1 ← A|S(1λ,·)⟩(1λ)

]
≤ negl(λ) .

Remark 1. If the zero-knowledge property of the Σ-protocol requires its simulator to use independent
randomness for every statement, there is a simple transformation that converts that simulator into another
simulator that is secure when a single randomness value is used for an entire query: for each query, choose
a fresh random key k for a quantum pseudorandom function (PRF). This will be the single per-query
randomness value. To answer a query in superposition, answer each statement x in the superposition using
randomness obtained by applying the PRF to x using the key k. From the adversary’s point of view, this is
indistinguishable from choosing independent randomness for each statement.

6.2.2 Removing Interaction
The Fiat-Shamir paradigm [FS87] applies to any Σ-protocol (and more generally to any three-round public-coin
proof system): we start from an interactive protocol (P,V) and remove the interaction between P and V
by replacing the challenge, chosen at random by the verifier, with a hash value H(α, x) computed by the
prover, where H is a hash function modeled as a random oracle, and α is the prover’s first message. Thus, the
interactive protocol (P,V) is turned into a non-interactive one: The resulting protocol, denoted (PH ,VH), is
called Fiat-Shamir proof system.

In this section, we will assume the existence of Σ-protocols with randomness collision-resistance, and
prove that the corresponding Fiat-Shamir proof system is quantum simulation-sound. The construction of
Σ-protocols with randomness collision-resistance is given in Section 6.2.3.

We note that the security of the Fiat-Shamir transformation in the quantum random oracle model has
been proven in [LZ19, DFMS19]. We refer the reader to [DFMS19] for the description of the Fiat-Shamir
simulator, for now let us call this simulator the canonical simulator.

Notation. Let H : X ′ → C is a hash function with a domain X ′ that contains all pairs (x, α) with x ∈ {0, 1}n

and α produced by P, and the range C is the challenge space of the Σ-protocol. A proof of a Fiat-Shamir
system for a statement x ∈ L is of the form π := (α, H(x, α), γ).
Theorem 2 (Quantum simulation soundness of the Fiat-Shamir transform). Consider a non-
trivial three-round public-coin HVZK interactive proof system (P,V) for a language L ∈ NP, with randomness
collision-resistance property and super-polynomially sized challenge space. In the quantum random oracle model,
the proof system (PH ,VH) derived from (P,V) via the Fiat-Shamir transform is a quantum simulation-sound
NIZK (as defined in Definition 6) with respect to its canonical simulator S.

Proof. Completeness, soundness and post-quantum zero-knowledge of the Fiat-Shamir transformation in the
quantum random oracle have been proven in [DFMS19, LZ19].

Here, we prove the quantum simulation-soundness. We first recall the measure-and-reprogram in the
quantum random oracle lemma introduced in [DFMS19].
Lemma 3 ([DFMS19, Theorem 2]). Let X ,Y be finite non-empty sets. There exists a black-box quantum
polynomial-time two-stage quantum algorithm S with the following property. Let A be an arbitrary oracle
quantum algorithm that makes q queries to a uniformly random H : X → Y and that outputs some x ∈ X and
a (possibly quantum) output z. Then, the two-stage algorithm SA outputs some x ∈ X in the first stage and,
upon a random Θ ∈ Y as input to the second stage, a (possibly quantum) output z, so that for any x⋆ ∈ X
and any predicate V :

Pr
Θ

[
x = x⋆ ∧ V (x, Θ, z) = 1 | (x, z)← ⟨SA, Θ⟩

]
≥ 1
O(q2 ) Pr

H

[
x = x⋆ ∧ V (x, H(x), z) = 1 | (x, z)← AH

]
− ϵx⋆ ,
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where the additive error term ϵx⋆ is equal to 1
2q|Y| when summed over all x⋆.

Suppose there exists a QPT adversary A that breaks the quantum simulation-soundness of the non-
interactive protocol with non-negligible probability ϵ. Let {(xi, πi)}2

i=1 be the output pairs of A. For
simplicity, we denote the canonical simulator S as (S1,S2), in which S1 simulates answers to the random
oracle H, and S2 generates simulated proofs. Let q be the number of queries that A makes to S1. Without
loss of generality, we assume that whenever A succeeds and outputs two accepting proofs {(αi, γi)}2

i=1, it
has previously queried the oracle S1 on input (xi, αi). The argument for this is that it is straightforward to
transform any adversary that violates this condition into an adversary that makes two additional classical
query to S1 and wins with the same probability.

Recall that A wins if its output satisfies either one of the two conditions defined in Definition 6. If A wins
by the first condition, we denote this event as con1, and similarly the second by the event con2. Apparently,
we have that ϵ := Pr [A wins ] = Pr [A wins ∧ con1 ] + Pr [A wins ∧ con2 ].

When con1 happens. This is the case where at least one of the output of A is computed from a fresh new
randomness that were not used by the simulator S2. Denote this pair as (x⋆, π⋆).

We will consider the following two complement events. We denote the first by the event exist. exist
happens when there exists a randomness r ∈ R where R is the list of randomness used by S such that:
(π′ := (α⋆, γ′)) = S(x⋆; r). That is, the simulated proof for x⋆ using the randomness r has the same prefix as
π⋆. The second event, denoted by exist, is the complement event of exist.

In the first case (when exist happens), we observe that A wins with a proof π⋆ = (α⋆, γ⋆) implies that
the output β of the random oracle simulated by S1 on (x⋆, α⋆) is such that H(x⋆, α⋆) = β. This forces A
to use such values for producing a proof (x⋆, π⋆). Thus, the fake proof output by A must be of the type
π⋆ = (α⋆, γ⋆) such that H(x⋆, α⋆) = β. On the other hand, such a proof cannot be the same returned by the
simulator by the hypothesis. And thus γ′ ̸= γ⋆. Since both proofs π⋆ and π′ are accepted, this is a violation
of the strict unique response property. We thus conclude Pr [ exist ] = 0.

In the case exist does not happen, we will use this adversary A to build an adversary that breaks the
soundness of the underlying Σ protocol. Our observation here is that the output of the random oracle on
(x⋆, α⋆) has not been evaluated by S2, and thus we can “reprogram” the oracle on this input using Lemma 3. We
fix a family H of 2(q+2)-wise independent hash functions and let S1 simulates the random oracle by choosing a
random function H ∈ H. Furthermore, we observe that, for any fixed xo, the family {H ∗Θxo | H ∈ H, Θ ∈ C},
is a family of 2(q + 2)-wise independent hash functions as well, where H ∗Θxo denotes the following function:

(H ∗Θxo)(x) =
{

H(x) if x ̸= xo,

Θ if x = xo.

We will use the fact that (even computationally unbounded) q-query adversary A cannot distinguish a random
function H ∗Θxo in that family from a truly random function H [Zha12a].

Now, we can apply Lemma 3 and make a reduction to the standard definition of soundness of the
underlying Σ protocol. Formally, recall that (x⋆, π⋆ = (α⋆, γ⋆)) such that V(x⋆, H(x⋆, α⋆), γ⋆) = 1. We will
use (x⋆, α⋆) in the execution with the verifier V of the Σ-protocol. In order to do that, we apply Lemma 3,
with (x⋆, α⋆) playing the role of what is referred to as x in the lemma statement, the verifier V is as the
predicate V , to obtain the existence of a simulator SA that produces (x⋆, α⋆) in a first stage, and upon
receiving a random challenge β⋆ (from the verifier V of the Σ-protocol) produces γ⋆, such that:

Pr
β⋆

[
x = x⋆ ∧ V(x, α⋆, β⋆, γ⋆) = 1 | (x, α⋆, β⋆, γ⋆)← ⟨SA, β⋆⟩

]
≥ 1
O(q2 ) Pr

H

[
x = x⋆ ∧ V(x, α⋆, H(x, α⋆), γ⋆) = 1 | (x, α⋆, γ⋆)← AH

]
− ϵx⋆ .
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This can be written as

Pr
[

x = x⋆ ∧ v = accept | (x, v)← ⟨SA,V⟩
]

≥ 1
O(q2 ) Pr

H

[
x = x⋆ ∧ VH(x, π⋆) = 1 | (x, π⋆)← AH

]
− ϵx⋆ , (2)

where v denote the verifier’s output.
We build a reduction P∗ breaking the soundness of the underlying interactive scheme as follows. P∗ uses

SA (which uses A as a black-box) to simulate S1. Whenever A makes queries to S2, P∗ runs the HVZK
simulator of the interactive protocol (in superposition). It is easy to see that P∗ perfectly simulates the
canonical simulator S. Finally, P∗ outputs whatever SA outputs.

We note that by the assumption that the Σ-protocol is non-trivial, the probability that in when simulating
S2, the probability that P∗ returns (x⋆, α⋆, ·) to A is negligible. (Note that this is true even when x⋆ is the
input of the query sent by A.) This means that (x⋆, π⋆) must have been computed using a fresh randomness
which was not used by P∗. From Equation (2), it thus follows that Pr [A wins ∧ con1 ] is negligible.

When con2 happens. This is the case where both pairs are computed by the same randomness that were
used by the simulator S2. We will reduce this case to the randomness collision-resistance property of the
underlying Σ protocol. Specifically, consider a QPT algorithm P∗ which runs A internally as a black-box.
The description of P∗ is as follows.

• P∗ answers the queries to S1 using a random 2(q + 2)-wise independent hash function H.
• P∗ keeps a list R of all randomness used to answer queries to S2. Note that except with exponentially

small probability, all the randomess will be distinct.
• Whenever A outputs fake proofs {(xi, πi = (αi, γi))}2

i=1, P∗ checks if there exists a randomness r ∈ R
such that S2(xi, r) = π2 for i ∈ J1, 2K. It then computes βi = H(xi, αi).
• P∗ outputs {xi, (αi, βi, γi)}2

i=1.

Observe that P∗ perfectly simulates A, and thus P∗ breaks the randomness collision-resistance property
of the Σ protocol with the same probability that con2 happens. We obtain Pr [A wins ∧ con2 ] ≤ negl(λ).
Overall we have shown that ϵ is negligible, completing the proof.

On the unique responses condition. We remark that in the classical setting, a weaker version of the
unique response property where the same requirement is stated for PPT adversaries is enough to establish
simulation-soundness property [FKMV12]. Roughly speaking, the reduction to weak unique response is done
by efficiently simulating A and recording all the classical queries made by A to S1,S2 and then constructing
a prover P̂ using the recorded queries to break the weak unique response property. When considering the
classical proof in the quantum setting, the first obstacle is that we cannot record the list of quantum queries
made by A. Even worse, by using a similar argument as in Section 4.2.1, it might be possible that A makes
a superposition query with exponentially small amplitude on x⋆, and is able to generate a fake proof that
violates the weak unique response property. However, in this case, it is not clear how the reduction can
extract x⋆ from the query. Finally, we note that weak unique response has not been studied even in the
post-quantum setting, to our best of knowledge. On the other hand, strict unique response is stated in the
statistical setting, thus it will hold also in the quantum setting unconditionally.

6.2.3 Randomness Collision-resistance Σ-protocols
In this section, we give a compiler that transform any Σ-protocol into a randomness collision-resistance
Σ-protocol. Our compiler makes use of quantum-secure one-time signature schemes and is very simple. In the
first prover message, the prover also generates a key pair of the signature scheme, and in last message, the
prover uses the signing key and signs all the messages that have been exchanged so far (including the one
from the original protocol in the last round). The proof of the compiler is almost identical to that of Claim 12,
we omit the details.

18



7 Application to Quantum-Secure Naor-Yung Construction for CCA Security

In this section, we present and prove quantum security of a simple modification of the classical Naor-Yung
scheme [NY90, Sah99a]. In Section 7.1, we give some preliminaries on quantum security of encryption with
classical and quantum challenge queries. Then in Section 7.2, we give our construction of building quantum
chosen-ciphertext secure encryption schemes from quantum chosen-plaintext secure schemes and quantum
simulation-sound NIZK proof systems.

7.1 Preliminaries: Chosen-ciphertext Security with Quantum Challenge Queries

We recall here a succinct definition of chosen-ciphertext security with quantum challenge queries introduced
in [CEV22]. Their definition is defined in the real-or-random paradigm. Very informally, in the challenge
phase, the adversary receives (in superposition) either encryption of his query, or encryption of random
messages (by applying a random function H to the adversary’s query first then encrypting). What makes
it possible is that by using the compressed random oracle technique introduced by Zhandry [Zha19], the
challenger can record the adversary’s query in the random world. For decryption queries, in the real world,
the challenger uses the secret key to answer the decryption queries normally. Only in the random world, by
using the recorded database D, the challenger can return the original message if the query is a challenge
one. For more details on the notions, we refer the reader to that paper, and refer to Appendix A.4 for other
security notions used in the paper.

Notation. We define the following oracles.

• Let OEncrypt(pk,·) the encryption oracle in the real world.
• Let REncrypt(pk,·) the encryption oracle in the random world. This oracle is augmented with a database

D = ((x1, u1, y1), (x2, u2, y2), . . . , (xq, uq, yq), (⊥, 0, 0), . . . , (⊥, 0, 0)), containing the adversary’s queries in
which xi is the adversary’s query, ui is a random string in the message space and yi is an encryption of
ui. D is kept hidden from the adversary and yi is used to answer the queries.
• Let ODecrypt(sk,·) the decryption oracle in the real world.
• Let RDecrypt(sk,·) the decryption oracle in the random world, which is defined as follows. We define a

classical procedure FindImage which takes as input a ciphertext y ∈ Y , and a database D. Then, it looks
for a tuple (x, (u, y)) ∈ D. If found, it outputs (b = 1, w = x), otherwise, it outputs (b = 0, w = 0). The
oracle RDecrypt(sk,·) is defined using FindImage as follows. It maps the basis state |y, z⟩ ⊗ |D⟩ to:{

|y, z ⊕ Decrypt(sk, y)⟩ ⊗ |D⟩ if FindImage(y, D) = (0, 0),
|y, z ⊕ w⟩ ⊗ |D⟩ if FindImage(y, D) = (1, w).

We define a real-or-random oracle allowing quantum queries and the decryption oracle in the second
learning phase as follows.

RR(b) =
{
OEncrypt(pk,·) if b = 1,

REncrypt(pk,·) if b = 0,
DEC(b) =

{
ODecrypt(sk,·) if b = 1,

RDecrypt(sk,·) if b = 0.

Definition 12 (qIND-qCPA, qIND-qCCA1, qIND-qCCA2). Let E = (KeyGen, Encrypt, Decrypt) be a public-
key encryption scheme and let A = (A1,A2) be a quantum adversary. For qatk ∈ [qcpa, qcca1, qcca2], we
define the following game, where the oracles O1,O2 are defined according to qatk:

Experiment Exptqind-qatk−b
E (λ,A):

1 : (pk, sk)← KeyGen(λ)

2 : |Φ⟩ ← AO1
1 (pk)

3 : b′ ← ARR(b),O2
2 (|Φ⟩)

4 : return b′

qatk

qcpa

qcca1
qcca2

Oracle O1

∅
ODecrypt(sk,·)

ODecrypt(sk,·)

Oracle O2

∅
∅
DEC(b)
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We define A’s advantage by

Advqind-qatk
A,E (λ) :=

∣∣∣Pr
[
Exptqind-qatk−1

E (λ,A) = 1
]
− Pr

[
Exptqind-qatk−0

E (λ,A) = 1
]∣∣∣ .

We say E is secure in the sense of qIND-qatk if A being QPT implies that Advqind-qatk
A,E (λ) is negligible.

7.2 Construction

Construction 3. Our construction uses the following ingredients:

• Let E = ⟨KeyGen, Encrypt, Decrypt⟩ be an qIND-qCPA encryption scheme.
• Let E ′ = ⟨KeyGen, Encrypt, Decrypt⟩ be an IND-qCPA encryption scheme.
• Let iPRF be a family of invertible pseudorandom functions.
• Let Π = ⟨Setup,P,V,S = (S1,S2)⟩ be a quantum-simulation-sound NIZK proof system for the language
L of consistent pairs of encryptions, defined formally in Equation (3).

L := {(pk0, pk1, y0, y1, y2) : ∃ (x, k, r0, r1) : (3)
y0 = E .Encrypt(pk0, x; r0)
∧ y1 = E ′.Encrypt(pk1, k; r1) ∧ y2 = iPRF(k, x)}.

We construct a new encryption scheme E as follows.

KeyGen(1λ) :

1 : crs← Π.Setup(1λ)

2 : (pk0, sk0) $← E .KeyGen(1λ)

3 : (pk1, sk1) $← E ′.KeyGen(1λ)
4 : pk = (crs, pk0, pk1)
5 : sk = (crs, sk0, sk1)
6 : return (pk, sk)

Encrypt(pk, x) :

1 : k← iPRF.Setup(1λ)
2 : y0 ← E .Encrypt(pk0, x; r0)
3 : y1 ← E ′.Encrypt(pk1, k; r1)
4 : y2 ← iPRF(k1, x)
5 : π ← Π.P(crs, (y0, y1, y2), (x, k, r0, r1))
6 : return (y0, y1, y2, π)

Decrypt(sk, (y0, y1, y2, π)) :

1 : b← Π.V(crs, (y0, y1, y2), π)
2 : if b = 0 then
3 : return ⊥
4 : return E .Decrypt(sk0, y0)

Theorem 3. The encryption E described in Construction 3 above is qIND-qCCA2 secure.

Proof. Let A be a QPT adversary. The proof proceeds by a sequence of games where G0 is defined in which A
can make quantum queries to S2 (defined in Figure 3), and the winning condition is defined as in Definition 6.
For any game Gi, we denote by Advi(A) the advantage of A in Gi, that is, Pr

[
Gi(1λ,A) = 1

]
, where the

probability is taken over the random coins of Gi and A. The changes in each game are depicted in Figure 10.

Game G0: This is the real-world experiment. In particular, the challenge encryption oracle and the decryption
oracle are implemented as follows.

RREncrypt(pk,·) |x, y⟩ 7→ |x, y ⊕ Encrypt(pk, x)⟩ ,

and
ODecrypt(sk,·) |y, x⟩ 7→ |z, x⊕ Decrypt(sk, y)⟩ .
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Game G1: This is identical to G0, except that now in the decryption oracle, instead of using sk0, we use sk1,
combining with the fact that iPRF is invertible for the decryption.

Claim 4. For any adversary A, |Adv1(A)− Adv0(A)| ≤ negl(λ).

Proof. The proof of the claim follows from the correctness of encryption schemes E , E ′, the statistical
soundness of Π and the fact that iPRF is invertible. In particular, the soundness of Π guarantees that any
queried ciphertext is valid (i.e., its components are encryption of the same plaintext), with overwhelming
probability.

Game G2: This is identical to G1, except that now in the challenge encryption oracle, we use the simulator
S of Π to generate the proof instead of using the real prover P.

Claim 5. For any QPT adversary A, |Adv2(A)− Adv1(A)| ≤ negl(λ).

Proof. The indistinguishability between G1 and G2 follows from zero-knowledge property of Π.

Game G3: This is identical to G2, except now in the challenge encryption oracle, instead of encrypting using
the actual encryption algorithm E .Encrypt, we use the encryption oracle in the random world of E . Denote
this oracle as REncrypt(pk0,·).

Claim 6. For any QPT adversary A, |Adv3(A)− Adv2(A)| ≤ negl(λ).

Proof. We note that in G2 and G3, the secret key sk0 is not used at all. The indistinguishability between G2
and G3 follows immediately from qIND-qCPA security of E .

We note that starting from G3, the challenge encryption oracle can be implemented as a compressed
encryption oracle (sine we are now in the random world of E). Concretely, the challenge encryption oracle
implements the following map:∑

x,y

αx,y |x, y⟩ 7→
∑
x,y

∑
u

αx,y |x, E .Encrypt(pk0, u)∥E ′.Encrypt(pk1, k)∥iPRF(k, x)∥π⟩ ⊗ |D⟩

where D is the database of the compressed random encryption oracle for E . In particular, D will be in
superposition of tuples (x, u, y0) (if D(x) ̸= ⊥). Furthermore, we note that if D(x) ̸= ⊥, we can re-compute
(y1, y2, π) and also store these values in the corresponding slot in D. The reason is that from x ∈ D, these
values can be computed with the classical randomness used in the challenge encryption oracle of E .

Game G4: This is identical to G3, except that now instead of using sk1 in the decryption oracle, we use sk0
and D.

Claim 7. For any QPT adversary A, |Adv4(A)− Adv3(A)| ≤ negl(λ).

Proof. We show that if A can distinguish the two games G3 and G4 with non-negligible probability ϵ, the we
can construct a QPT adversary B that runs A internally as a black-box and breaks the quantum simulation-
soundness of Π with non-negligible probability. Notice that the only way A can distinguish G3 and G4 is to
submit an “invalid” decryption query in which the proof π if of a false statement but the verification passes.

Formally, B runs A and randomly measure one of A’s decryption queries to obtain a tuple y∗ =
(y∗0 , y∗1 , y∗2 , π∗). If A makes at most q decryption queries, then with probability at least ϵ/q, y∗ will be a pair
of statement and proof such that the statement is a false statement but π∗ passes the verification of Π. Then
B measure its own database D to obtain another tuple y = (y0, y1, y2, π) which is supposed to be generated by
the simulator of Π. By the definition of Decrypt5, we have that y ̸= y∗. Thus by outputting (y, y∗), B breaks
the quantum simulation-soundness of Π with probability ϵ/q, which completes the proof of the claim.

We note that from starting from this game, the secret key sk1 is not used any more.
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Game G5: This is identical to G4, except that now in the challenge encryption oracle, we change the
encryption E ′.Encrypt(pk1, k) for some random key k by an encryption E ′.Encrypt(pk1, 0).

Claim 8. For any QPT adversary A, |Adv5(A)− Adv4(A)| ≤ negl(λ).

Proof. The indistinguishability between G4 and G5 follows immediately from IND-qCPA security of E ′. Note
that since here the encryption is a classical encryption of a classical random key k (which is independent
from A’s query), we only need qCPA security against classical challenge query of E ′.

Game G6: This is identical to G5, except that now in the challenge encryption oracle, instead of computing
y2 as iPRF(k, x), we compute y2 ← iPRF(k, u) where u is extracted from the database D (note that u ∈ D(x)).
We abuse the notation and write D(x) = u. Furthermore, for consistency, we also allow E ’s encryption
algorithm to take as input the database D.

Claim 9. For any QPT adversary A, |Adv6(A)− Adv5(A)| ≤ negl(λ).

Proof. The indistinguishability between G5 and G6 follows immediately from (weak) quantum-pseudorandomness
of iPRF. We note that here we only need weak security notion, since iPRF−1 is never invoked in the decryption
oracle.

Game G7: This is identical to G6, except that now in the challenge encryption oracle, instead of computing
y1 as an encryption of 0, we change it back to encryption of a random key k, that is y1 ← E ′.Encrypt(pk1, k).

Claim 10. For any QPT adversary A, |Adv7(A)− Adv6(A)| ≤ negl(λ).

Proof. The indistinguishability between G6 and G7 follows immediately from IND-qCPA security of E ′.

Game G8: This is identical to G7, except that now in the challenge encryption oracle, we use the real prover
P of Π to generate the proof instead of using the simulator.

Claim 11. For any QPT adversary A, |Adv8(A)− Adv7(A)| ≤ negl(λ).

Proof. The indistinguishability between G7 and G8 follows from zero-knowledge property of Π.

In this final game G8, we have the challenge encryption oracle implements exactly as the one in the
random-world of E . Overall, we complete the proof of the theorem.
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Supplementary Material

A Preliminaries

A.1 Quantum Information

We use H to denote an arbitrary finite-dimensional Hilbert space, and use indices to differentiate between
distinct spaces. We let |ϕ⟩ denote an arbitrary pure quantum state, let |x⟩ denote an element of the standard
(computational) basis. A mixed state will be denoted by lowercase Greek letters, e.g., ρ. We let |+⟩ denote
the uniform superposition, that is |+⟩ :=

∑
x |x⟩.

A pure state |ϕ⟩ can be manipulated by performing a unitary transformation U to the state |ϕ⟩, which
we denote U |ϕ⟩. The identity on a n-bit quantum system is denoted In. Given two quantum systems A, B,
with corresponding Hilbert spaces HA,HB , let |ϕ⟩ = |ϕ0, ϕ1⟩ be a state of the joint system. We write UA |ϕ⟩
to denote that we act with U on register A, and with identity I on register B, and we write UAB to denote
that we act with U on both registers A, B simultaneously, that is UAB = UA ⊗ UB .

Partial Measurement. Given two quantum systems A, B, with corresponding Hilbert spaces HA,HB , let
ρAB be the density matrix of the joint system. We write TrB(ρAB) for the state obtained by tracing out
system A.

Quantum Computations. Let Q be a n-bit quantum system over Zq for some integer q. The Quantum
Fourier Transform (QFT) performs the following operation efficiently:

QFT |x⟩ := 1√
qn

∑
y∈{0,1}n

ωx·y
q |y⟩ ,

where ωq := exp( 2πi
q ), and x · y denotes the dot product. In this paper, we usually consider q = 2, so that

ωq = (−1).
Given a function f : X → Y, we model a quantum-accessible oracle O for f as a unitary transformation

Of acting on three registers X, Y, Z with the property that Of : |x, y, 0⟩ 7→ |x, y ⊕ f(x), 0⟩, where ⊕ is some
involutive group operation (so-called quantum query model). Given an algorithm A, we sometimes write
y ← AO1,O2,...(x) for the event that a quantum adversary A takes x as input, makes quantum queries to
O1,O2, . . ., and finally outputs y.

A.2 Pseudorandom Functions

Definition 13 (Pseudorandom Function). A pseudorandom function (PRF) is a tuple of PPT algorithms
⟨KeyGen, PRF⟩ such that:

• k← KeyGen(1λ). The key generation algorithm KeyGen takes a security parameter λ as input and outputs
a random key k ∈ K.
• y ← PRF(k, x). The PRF algorithm takes as input a key k ∈ K and an input x ∈ X , and deterministically

outputs a classical string y ∈ Y.

We require the following properties.

• Pseudorandomness. For every QPT adversary A, and every λ ∈ N, the following holds:∣∣∣∣∣ Pr
k $←KeyGen(1λ)

[
A|PRF(k,·)⟩(1λ) = 1

]
− Pr

[
A|OH⟩(1λ) = 1

]∣∣∣∣∣ ≤ 1
2 + negl(λ) ,

where the probability is taken over the randomness of KeyGen, and OH is a random function from
F := {F | F : X → Y }.
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We will optionally require the following property:

• One-wise Independence. Let X = {0, 1}n(λ) and Y = {0, 1}m(λ). We say ⟨KeyGen, PRF⟩ is 1-wise
independent if for any input x ∈ X and any y ∈ Y:

Pr [ PRF(k, x) = y ] = 1
2m

,

where the probability is over k← KeyGen(1λ).

Definition 14 (Invertible Pseudorandom Functions). An invertible pseudorandom function (IPF)
with key-space K, domain X , and range Y consists of two functions iPRF : K×X → Y and iPRF−1 : K×Y →
X ∪ {⊥}. An IPF can also include a setup algorithm iPRF.Setup(1λ) that on input the security parameter λ,
outputs a key k ∈ K. The functions iPRF and iPRF−1 satisfy the following properties:

• Both iPRF and iPRF−1 can be computed by deterministic polynomial-time algorithms.
• For all security parameters λ and all keys k output by iPRF.Setup(1λ), the function iPRF(k, ·) is an injective

function from X to Y. Moreover, the function iPRF−1(k, ·) is the (generalized) inverse of iPRF(k, ·).
• (Weak) Quantum Pseudorandomness. An IPF iPRF : K×X → Y is secure if for all QPT adversaries
A, ∣∣∣∣∣ Pr

k $←iPRF.Setup(1λ)

[
A|iPRF(k,·)⟩(1λ) = 1

]
− Pr

R
$←InjFuncs[X ,Y]

[
A|R(·)⟩(1λ) = 1

]∣∣∣∣∣ ≤ negl(λ) ,

where InjFuncs[X ,Y] is the set of all injective functions from X to Y.

A quantum-secure construction of invertible pseudorandom function is given in Appendix C.

A.3 One-time Signatures

A signature scheme consists of three polynomial time classical algorithms Sig = ⟨KeyGen, Sign, Verif⟩. KeyGen
is a randomized procedure that takes as input the security parameter and produces a secret key and public
key pair (pk, sk)← KeyGen(1λ). Sign takes as input the secret key and a message m, and produces a signature
σ ← Sign(sk, m). Finally, Verif takes as input the public key, a message m, and a supposed signature σ on m,
and either accepts or rejects.

A signature scheme is correct if Verif accepts signatures outputted by Sign such that

Pr
[

Verif(pk, m, σ) = 1
∣∣∣∣ (sk, pk)← KeyGen(1λ)

σ ← Sign(sk, m)

]
≥ 1− negl(λ) .

For security, we will for simplicity only consider one-time signature schemes where the adversary only
receives a single superposition of messages. Furthermore, for simplicity we assume that the signing function is
a deterministic function of the secret key and message; this can be made without loss of generality by using a
pseudorandom function to generate the randomness.

Boneh-Zhandry security. Boneh and Zhandry [BZ13b] give the following definition of security for signatures
in the presence of quantum adversaries. Let A be a quantum adversary, and consider the following experiment
between A and a challenger:

• The challenger runs (sk, pk)← KeyGen(1λ), and gives pk to A.
• A makes a quantum superpositions query to the function Sign(sk, ·) as |m, u⟩ 7→ |m, u⊕ Sign(sk, m)⟩.
• A outputs two classical message/signature pairs ((m0, σ0), (m1, σ1)).
• The challenger accepts and outputs 1 if and only if (1) m0 ̸= m1, and (2) Verif(pk, mb, σb) for both

b ∈ {0, 1}. Denote this output by W-BZ-Expλ(A).

Definition 15 (Boneh-Zhandry [BZ13b]). A signature scheme is one-time weakly BZ-secure if, for any
quantum polynomial time adversary A, W-BZ-Expλ(A) is negligible.
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A.4 Public-key Encryption

A public-key cryptosystem E = (KeyGen, Encrypt, Decrypt) consists of three PPT algorithms.

• KeyGen(λ) is a probabilistic key generation algorithm which takes as input the security parameter λ and
outputs a pair (pk, sk) of matching public and secret keys.
• Encrypt(pk, x; r) is a probabilistic encryption algorithm which takes as input a public key pk, a plaintext

x ∈ X (where X is some fixed message space), samples a random coin on each invocation r ∈ R (where
R is the randomness space), and outputs a ciphertext y. We sometimes omit the random coin and write
Encrypt(pk, x).
• Decrypt(sk, y) is a deterministic decryption algorithm which takes as input a secret key sk and a ciphertext

y, and outputs a message x ∈ X ∪ {⊥}, where ⊥ is a distinguished symbol indicating decryption failure.

Security Definitions. Similar to the symmetric setting, we first give a Real-or-Random security definition
for public-key encryption in the classical setting, then Boneh-Zhandry’s definitions. For any subset D of the
ciphertext space C, we define the “punctured” decryption oracle D̃ecrypt

D

(sk, y) which returns Decrypt(sk, y)
if y /∈ D, else it returns ⊥.

Definition 16 (Real-or-Random IND-CPA, IND-CCA1, IND-CCA2).
Let E = (KeyGen, Encrypt, Decrypt) be an public-key encryption scheme and let A = (A1,A2) be a classical
adversary. Let F is the family of all functions over X . For atk ∈ [cpa, cca1, cca2], we define the following
game, where the oracles O1,O2 are defined according to atk:

Experiment Exptind-atk−b
E (λ,A):

1 : (pk, sk)← KeyGen(λ)

2 : (x, state)← AOEncrypt(pk,·),O1
1 (λ)

3 : h
$← F

4 : y∗ ← OEncrypt(pk,·)(h1−b(x))

5 : b′ ← AOEncrypt(pk,·),O2
2 (y∗, state)

6 : return b′

atk

cpa

cca1
cca2

Oracle O1

∅
Decrypt(sk, ·)
Decrypt(sk, ·)

Oracle O2

∅
∅
Decrypt∗(sk, ·)

Here, Decrypt∗(sk, y) returns x if y = y∗, otherwise it decrypts normally.
We define A’s advantage by

Advind-atk
A,E (λ) :=

∣∣∣Pr
[
Exptind-atk−1

E (λ,A) = 1
]
− Pr

[
Exptind-atk−0

E (λ,A) = 1
]∣∣∣ .

We say E is secure in the sense of IND-atk if A being PPT implies that Advind-atk
A,E (λ) is negligible.

Definition 17 (IND-qCPA, IND-qCCA1, IND-qCCA2 [BZ13b]).
Let E = (KeyGen, Encrypt, Decrypt) be an public-key encryption scheme and let A = (A1,A2) be a quantum
adversary. For qatk ∈ [qcpa, qcca1, qcca2], we define the following game, where the oracles O1,O2 are defined
according to qatk:

Experiment Exptind-qatk−b
E (λ,A):

1 : (pk, sk)← KeyGen(λ)

2 : |x0, x1⟩ |ϕ⟩ ← AO1
1 (pk)

3 : if |x0| ≠ |x1| then return 0
4 : y∗ ← Encrypt(pk, xb)

5 : b′ ← AO2
2 (|y∗⟩ |ϕ⟩)

6 : return b′

qatk

qcpa

qcca1

qcca2

Oracle O1

∅
Decrypt(sk, ·)

Decrypt(sk, ·)

Oracle O2

∅
∅

D̃ecrypt
D

(sk, ·) with D = {y∗}
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We define A’s advantage by

Advind-qatk
A,E (λ) :=

∣∣∣Pr
[
Exptind-qatk−1

E (λ,A) = 1
]
− Pr

[
Exptind-qatk−0

E (λ,A) = 1
]∣∣∣ .

We say E is secure in the sense of IND-qatk if A being QPT implies that Advind-qatk
A,E (λ) is negligible.

B The Quantum Certification Protocol [BCM+18]

The protocol relies on a post-quantum secure trapdoor claw-free (TCF) family of functions with adaptive
hard-core bit property f0, f1 : {0, 1}n → {0, 1}m. A TCF pair is a pair of functions which are injective, with
the same image, and satisfy the following property. With knowledge of a secret trapdoor it is possible to
efficiently (classically) compute the two pre-images x0 and x1 of a given y (f0(x0) = f1(x1) = y), but without
the trapdoor, there is no efficient quantum algorithm that can compute such a triple (x0, x1, y), referred to
as a claw, for any y. The adaptive hardcore bit property states that it is also hard to hold both a single
pre-image xb, as well as a string d ∈ {0, 1}b \ 0b and a bit c such that c = d · (x0 ⊕ x1).

We note that while the quantum device cannot compute a claw or break the adaptive hard-core bit
property, nevertheless it can simultaneously hold an image y as well as a superposition 1√

2 (|0, x0⟩+ |1, x1⟩)
over the two pre-images of y, simply by evaluating f on a uniform superposition over all inputs and measuring
the image register y. Then by either measuring the state in the computational basis or the Hadamard basis,
the device can obtain either a random pre-image xb of y, or a pair (c, d) such that c = d · (x0 ⊕ x1).

A high-level description of the [BCM+18] protocol is given below.

Construction 4.

1. The verifier generates a TCF pair, along with a trapdoor, and sends just the function pair to the prover.
2. The prover returns an image y of the TCF pair.
3. The verifier challenges the prover by randomly asking for either a pre-image of y, or a bit c and an n-bit

string d such that d · (x0 ⊕ x1) = c.
4. The prover measures in the computational or Hadamard basis to return the requested output and the

verifier checks the validity by using the trapdoor to compute the two pre-images x0, x1 of y.

Lemma 4 (Lemma 2, restated). Under the LWE assumption, there exists a 4-message interactive proof
of quantumness protocol satisfying: (1) public-coin second verifier message and (2) semi-quantum soundness.

Proof. The protocol we use in the proof is the n-fold parallel repetition of Construction 4. Construction 4 has
soundness error 1/2, and parallel repetition amplifies the soundness of this protocol, which has been shown
in [RS20].

By inspecting the [BCM+18] protocol, we note that the verifier’s second message is public coin. What
remains is to argue that the protocol is also semi-quantum sound: in the [BCM+18] protocol, the crucial
point is that the prover can compute a quantum state to obtain its first message p1 on its own, and later
this quantum state will be either measured in the computational basis or the Hadamard basis to answer the
challenge from the verifier. In particular, p1 is an image of the TCF function obtained by running the TCF
function in superposition over all input and then measuring in the computational basis. Now consider the
security game of semi-quantum soundness: the prover can only compute p1 via sending a classical query to
Vsemi: that is, the prover sends a classical input x and receives back the image p1 of x. Since this is a classical
query, no efficient quantum prover can give a valid answer in the Hadamard basis for a fixed pair (v1, p1).
Formally, we can construct a simulator S which simulates the malicious semi-quantum prover P∗ and plays
the role of the prover in the [BCM+18] protocol. S makes a copy of (v1, x, p1) (where x is the input of P∗’s
query) and later sends (v1, p1, v2) to P∗. Finally S outputs whatever P∗ outputs. One can see that now if
P∗ breaks the semi-quantum soundness, S breaks the “adaptive hard-core bit” property of the [BCM+18]
protocol.

30



C Quantum-Secure Invertible Pseudorandom Functions

We show a construction for invertible pseudorandom functions from standard pseudorandom functions. The
construction is the one given in [BKW17]. We first recall the construction and show that if the underlying
pseudorandom functions are quantum-secure, then this construction is also weakly quantum-secure.

Construction 5. Let PRF1 : K1 ×X → Y and PRF2 : K2 ×Y → X be two pseudorandom functions. Define
the following invertible iPRF on domain X using a key k := (k1, k2) ∈ K1 ×K2:

iPRF((k1, k2), x)
y1 ← PRF1(k1, x)
y2 ← PRF2(k2, y1)⊕ x

return (y1, y2)

iPRF−1((k1, k2), (y1, y2))
x← PRF2(k2, y1)⊕ y2

if y1 ̸= PRF1(k1, x)
return ⊥

else return x

Fig. 2. [BKW17]’s invertible pseudorandom functions construction.

Theorem 4. Assume that PRF1, PRF2 are quantum-secure (according to Definition 13), then iPRF in Con-
struction 5 is weakly quantum-secure (according to Definition 14).

Proof. We note that in the weak pseudorandom security, the adversary has only quantum access to an
evaluation oracle iPRF, and not an inversion oracle iPRF−1. The proof of the theorem follows from the
standard hybrid argument, where we first replace PRF1 with a truly random function, and then we replace
PRF2 with another truly random function. We omit the details.

D Quantumly Computational Zero-Knowledge Proof Systems

In this section, we briefly show that some known non-interactive zero-knowledge proof systems in literature
satisfy the stronger notion of quantumly computational zero-knowledge. The construction we consider is
the one given in [BP15]. At a high-level overview, their construction is a concrete instantiation of the
Goldwasser-Ostrovsky transformation [GO93] which gives NIZKs from invariant signatures.

Informally, invariant signatures are digital signatures where all valid signatures of any message are either
identical, or share a common property. Concretely, we say that a signature scheme is invariant if there is
some efficiently computable property P of signatures such that for any message m∗ and any verification key
vk there is a unique value Pvk(m∗) such that P (σ) = Pvk(m∗) for any valid signature σ with respect to vk.
Furthermore, it is required that for every message m∗, for an honestly generated verification key (sampled
independently of m∗), the property value Pvk(m∗) is pseudo-random, even given the verification key and a
signature oracle on messages m ̸= m∗. We can also consider a relaxed notion of invariant signatures in the
common random string model (CRS).

The Goldwasser-Ostrovsky transformation is based on the construction of Feige, Lapidot and Shamir [FLS90]
of NIZKs in the hidden-bits model. In this model, a random hidden string is available to the prover but is
hidden from the verifier. The prover can reveal to the verifier specific bits of the hidden string in the locations
of its choice, but it cannot change the value of these bits. Very briefly, the transformation is as follows: we
interpret the CRS (available to both prover and verifier) as containing a CRS for the invariant signature, as
well as a sequence of messages {mi} and one-time pad bits {si} where every (mi, si) will be used to obtain a
single hidden bit bi. The prover will sample keys (vk, sk) for the invariant signature and send the verification
key vk to the verifier as part of the proof. The hidden bit bi is then defined as the bit Pvk(mi), the property
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value of the message mi, XORed with the the one-time pad bit si. To reveal the bit bi, the prover sends to
the verifier a signature σi on mi. The verifier can compute bi by computing P (σ) = Pvk(mi).

The simulator can be defined based on this strategy, where first we run the simulator of the proof system
in the hidden model to obtain a proof π and a set of revealing bits {bi}. The CRS will be generated exactly
as in the real execution, except that the one-time pad bits {si} are computed as Pvk(mi)⊕ bi.

The proof of zero-knowledge is essentially based on pseudo-randomness property of the signature, so that
each hidden bit in the simulation is computationally indistinguishable from a uniformly random bit as in the
real execution.

There are two important points that make the proof also works in the quantum setting:

• A NIZK proof system in the hidden-bit model can achieve both perfect soundness and perfect zero-
knowledge [HU19].
• The computational indistinguishability only appears in the proof of the CRS generation in the real

execution and the simulation, which is classical and independent from the adversary’s queries.

Since perfect zero-knowledge implies quantum zero-knowledge, the classical proof also carries to the quantum
setting, when the building blocks are post-quantumly secure. For more details, we refer the reader to the
(classical) proof given in [BP15].

E Sahai’s Construction

The Naor commitment scheme. We first recall the bit commitment protocol of Naor [Nao90] based
on pseudorandom generators, which will be used later in the construction. Let PRG be a pseudorandom
generator stretching λ bits to 3λ bits. The Naor commitment procedure commits to a bit b as follows, using
randomness r ∈ {0, 1}3λ and s ∈ {0, 1}λ.

Commit(b; (r, s)) =
{

(r, PRG(s)) if b = 0,

(r, PRG(s)⊕ r) if b = 1.

We note that if PRG is post-quantumly secure (against QPT adversaries with classical access to PRG) then
the Naor commitment scheme is also post-quantumly computationally hiding and statistically binding.

Sahai’s construction. Let PRF be a family of pseudorandom functions mapping {0, 1}∗ to {0, 1}λ. Let
Sig := ⟨KeyGen, Sign, Verif⟩ be a one-time signature scheme. Finally, let Π′ be a single-theorem adaptive NIZK
systems for a language L′ described below, associated with a QPT simulator S ′ := (S ′1,S ′2). The construction
for a simulation-sound NIZK system Π for some NP language L is given in Construction 6.

Construction 6.

• Common random string. The random reference string consists of three parts crs1, crs2 and crs3.
− crs1 is of length 6λ2, and breaks up into λ pairs (r1, c1), . . . , (rλ, cλ).
− crs2 is of length 3λ.
− crs3 is a common random string of Π′.

• Prover. We define the language L′ to be the set of tuples (x, u, v, crs1, crs2) such that at least one of the
following three conditions hold:
− x ∈ L
− crs1 consists of commitments to the bits of the λ bit string s: formally, there exists s = s1 · · · sλ with

si ∈ {0, 1} for all i ∈ J1, λK, and there exists a1, . . . , aλ ∈ {0, 1}λ such that (ri, ci) = Commit(si; ri, ai).
Furthermore, u = PRF(s, v).

− There exists d ∈ {0, 1}λ such that crs2 = PRG(d).
On input a statement x, a witness ω and the common random string CRS := (crs1, crs2, crs3), the prover
P does the following:
1. Generate a key pair for the one-time signature scheme: (sk, vk)← Sig.KeyGen(1λ).
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2. Sample a uniformly random u
$← {0, 1}λ.

3. Using crs3 as the common random string and ω as the witness, run the prover of Π′ to generate a
proof that (x, u, v, crs1, crs2) ∈ L′. Denote this proof by π′.

4. Output π := (vk, x, u, π′, Sig.Sign(sk, (x, u, π′))).
• Verifier. The verification procedure, on input the instance x, and a proof π := (vk, x, u, π′, σ), with

respect to CRS := (crs1, crs2, crs3) does the following:
1. Verify the validity of the one-time signature: Sig.Verif(vk, (x, u, π′), σ) = 1.
2. Verify that π′ is a valid proof that (x, u, vk, crs1, crs2) ∈ L′.

• Simulator. We now describe the two phases of the simulator S := (S1,S2) in Figure 3. S1 outputs a
reference string crs along with some trapdoor information td. S2 takes as input this trapdoor information,
the reference string, and an instance x, and outputs a simulated proof for x.

S1(1λ)
s

$← {0, 1}λ

ri
$← {0, 1}3λ, ai

$← {0, 1}λ for i ∈ J1, λK
gi ← Commit(si; ri, ai) for i ∈ J1, λK
crs1 := {g1, · · · , gλ}
crs2

$← {0, 1}3λ

crs3 ← Π′.Setup(1λ)
crs := (crs1, crs2, crs3)
td := (s, a1, · · · , aλ)
return (crs, td)

S2(crs, td, x)
(vk, sk)← Sig.KeyGen(1λ)
u← PRF(s, vk)
π′ ← Π′.S ′

2
(
crs3, (x, u, vk, crs1, crs2),

(s, a1, · · · , aλ)
)

σ ← Sig.Sign(sk, x, u, π′)
return (vk, x, u, π′, σ)

Fig. 3. The simulator of Π.

We note that quantum-secure PRFs and the Naor commitment scheme is post-quantumly-secure if
quantum-secure one-way functions exist [Zha12a].
Theorem 5. If Π′ is a single-theorem quantum NIZK proof system for L′, Sig is a quantum-secure one-time
signature scheme and quantum-secure one-way functions exist, the proof system Π described above is an
unbounded quantum simulation-sound NIZK proof system for L.

Proof. Completeness follows by inspection. Soundness follows by the fact that if crs is chosen uniformly at
random, then the probability that crs1 can be interpreted as a commitment to any string is exponentially small,
and likewise the probability that crs2 is in the image of the pseudorandom generator PRG is exponentially
small.

For the proof of adaptive unbounded zero-knowledge, we note that the only difference in the common
random string crs between the real protocol and the simulation is crs1. However, by post-quantum security of
the commitment scheme, the two are computationally indistinguishable. (We note that the commitments
are classical.) Thus, since the simulator for Π uses only a different witness to prove the same statement, the
view of the adversary in the simulator experiment is computationally indistinguishable from the view of the
adversary in the modified prover experiment. Thus, adaptive unbounded zero-knowledge follows.

Quantum simulation-soundness proof. The proof of simulation-soundness follows almost identical as
the one in the classical setting [Sah01], except for some small modifications on the reductions to quantum
security of building blocks. We give the full proof as follows.

Let A be a QPT adversary. The proof proceeds by a sequence of games where G0 is defined in which A
can make quantum queries to S2 (defined in Figure 3), and the winning condition is defined as in Definition 6.
For any game Gi, we denote by Advi(A) the advantage of A in Gi, that is, Pr

[
Gi(1λ,A) = 1

]
, where the

probability is taken over the random coins of Gi and A.
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Game G0: This is the actual adversary experiment, in which A can make quantum queries to the simulator
S2 and outputs two pairs {(xi, πi)}2

i=1. Let R be the list of all classical randomness S2 used to answer each
adversarial query during the experiment. We say A wins if either of the following holds:
(a) There exists i ∈ J1, 2K such that xi /∈ L, for all r ∈ R, S2(xi, r) ̸= πi and V(crs, xi, πi) = 1.

(b) There exists a randomness r ∈ R such that S2(x1, r) = π1 and S2(x2, r) = π2 and at least one of x1 or x2
is not in L.

Game G1: In this game, we change the winning condition. The winning condition is now defined as:
(a) There exists i ∈ J1, 2K such that xi /∈ L, for all r ∈ R, S2(xi, r) ̸= πi and V(crs, xi, πi) = 1.

Claim 12. For any QPT adversary A, |Adv0(A)− Adv1(A)| ≤ negl(λ).

Proof. We show that the probability that the adversary wins by the second condition is negligible, otherwise
it must be able to break the unforgeability of the one-time signature. Assume that A wins by the second
condition with non-negligible probability ϵ.

Let T be the list of verification keys output by the simulator. We note that since verification keys (as well
as signing keys) are classically and independently from the adversary’s queries, T is well-defined as a list of
classical strings. Furthermore, with all but exponentially small probability, these verification keys will all
be distinct. First, we note that if the output of the adversary can be computed from the same randomness
r ∈ R, it means that the verification keys vk1 and vk2 (as parts of the proofs) output by the adversary also in
T , and furthermore it must be the case that vk1 = vk2, and at least one of the two proofs is a forgery of the
signature scheme. Denote this verification key as vk∗, and the forge as (m, t).

We show how to use A to break the (weak) unforgeability of Sig (the security game W-BZ-Exp as defined
in Definition 15). Specifically, assume that the adversary A makes at most q queries to the simulator. The
reduction algorithm picks a random index i ∈ J1, qK and uses A’s i-th query in the game W-BZ-Exp. With
probability 1/q, this verification key returned by the challenger in the game W-BZ-Exp is vk∗. In this case, the
reduction just returns A’s output pairs {(xi, πi = (vk∗, xi, ui, π′i, σi))}2

i=1. If follows that with probability ϵ/q,
{((xi, ui, π′i), σi)}2

i=1 are valid forges of Sig (with respect to vk∗). We note that x1 ̸= x2 by the assumption.
This probability is non-negligible if ϵ is non-negligible. The proof of the claim follows.

Game G2: In this game, we continue changing the winning condition, as follows:
(a) There exists i ∈ J1, 2K such that for all r ∈ R, S2(xi, r) ̸= πi and V(crs, xi, πi) = 1 and u = PRF(s, vk)

where (u, vk) is parts of the output of the proof πi and s is a part of the trapdoor information td.
We note that now this game can be implemented in quantum-polynomial-time.

Claim 13. For any QPT adversary A, |Adv1(A)− Adv2(A)| ≤ negl(λ).

Proof. Since crs2 is a uniformly random string, there is a string d such that crs2 = PRG(d) with only negligible
probability. By the definition of the language L′ and the fact that Π′ is a proof system for L′, we conclude
that if x /∈ L, the only way the adversary’s proof can be accepted is if PRF(s, vk) = u with overwhelming
probability. This is because the adversary never sees a valid proof for a false statement of L′ (the simulator is
generating the simulated proofs using the commitment witness), thus any adversary that outputs a valid
proof for a false statement of L′ (which means x /∈ L ∧ PRF(s, vk) ̸= u) would break the soundness of Π′.
Therefore, the winning conditions in G1 and G2 are exponentially close.

Game G3: In this game, we make crs2 to be pseudorandom. That is, instead of sampling crs2 uniformly at
random, we compute crs2 by using a pseudorandom generator PRG. The change is described in Figure 4.

Claim 14. For any QPT adversary A, |Adv2(A)− Adv3(A)| ≤ negl(λ).

Proof. The indistinguishability between G2 and G3 follows directly from post-quantum security of PRG.

Game G4: In this game, the trapdoor information also includes the seed d of PRG. Furthermore, the
simulator S ′2, instead of using the witness of the commitments (that is, (s, a1, · · · , aλ)), uses the seed d for
crs2 to generate the proof π′. The change is described in Figure 5.
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S1(1λ)

d
$← {0, 1}λ

s
$← {0, 1}λ

ri
$← {0, 1}3λ, ai

$← {0, 1}λ for i ∈ J1, λK
gi ← Commit(si; ri, ai) for i ∈ J1, λK
crs1 := {g1, · · · , gλ}

crs2
$← PRG(d)

crs3 ← Π′.Setup(1λ)
crs := (crs1, crs2, crs3)
td := (s, a1, · · · , aλ)
return (crs, td)

S2(crs, td, x)
(vk, sk)← Sig.KeyGen(1λ)
u← PRF(s, vk)
π′ ← Π′.S ′

2
(
crs3, (x, u, vk, crs1, crs2),

(s, a1, · · · , aλ)
)

σ ← Sig.Sign(sk, x, u, π′)
return (vk, x, u, π′, σ)

Fig. 4. The simulator of game G3.

S1(1λ)
d

$← {0, 1}λ

s
$← {0, 1}λ

ri
$← {0, 1}3λ, ai

$← {0, 1}λ for i ∈ J1, λK
gi ← Commit(si; ri, ai) for i ∈ J1, λK
crs1 := {g1, · · · , gλ}
crs2

$← PRG(d)
crs3 ← Π′.Setup(1λ)
crs := (crs1, crs2, crs3)
td := (s, a1, · · · , aλ, d )
return (crs, td)

S2(crs, td, x)
(vk, sk)← Sig.KeyGen(1λ)
u← PRF(s, vk)
π′ ← Π′.S ′

2
(
crs3, (x, u, vk, crs1, crs2),

(d)
)

σ ← Sig.Sign(sk, x, u, π′)
return (vk, x, u, π′, σ)

Fig. 5. The simulator of game G4.
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Claim 15. For any QPT adversary A, |Adv3(A)− Adv4(A)| ≤ negl(λ).

Proof. The indistinguishability between G3 and G4 follows the quantum zero-knowledge property (Definition 5)
of Π′ (which implies witness-indistinguishability): instead of using witness (s, a1, · · · , aλ), we now use witness
d to generate the proof.

Game G5: In this game, we make crs1 independent of s: we choose two independent uniformly random
strings s, s′ and make crs1 into a commitment to s′ rather than s. The change is described in Figure 6.

S1(1λ)
d

$← {0, 1}λ

s, s′ $← {0, 1}λ

ri
$← {0, 1}3λ, ai

$← {0, 1}λ for i ∈ J1, λK

gi ← Commit( s′
i ; ri, ai) for i ∈ J1, λK

crs1 := {g1, · · · , gλ}
crs2

$← PRG(d)
crs3 ← Π′.Setup(1λ)
crs := (crs1, crs2, crs3)
td := (s, a1, · · · , aλ, d)
return (crs, td)

S2(crs, td, x)
(vk, sk)← Sig.KeyGen(1λ)
u← PRF(s, vk)
π′ ← Π′.S ′

2
(
crs3, (x, u, vk, crs1, crs2),

(d)
)

σ ← Sig.Sign(sk, x, u, π′)
return (vk, x, u, π′, σ)

Fig. 6. The simulator of game G5.

Claim 16. For any QPT adversary A, |Adv4(A)− Adv5(A)| ≤ negl(λ).

Proof. The indistinguishability between G4 and G5 follows the computational hiding property of the Naor’s
commitment scheme.

Game G6: In this game, we replace PRF with a truly random function H (lazy-sampling). The change is
described in Figure 7.

S1(1λ)
d

$← {0, 1}λ

s, s′ $← {0, 1}λ

ri
$← {0, 1}3λ, ai

$← {0, 1}λ for i ∈ J1, λK
gi ← Commit(s′

i; ri, ai) for i ∈ J1, λK
crs1 := {g1, · · · , gλ}
crs2

$← PRG(d)
crs3 ← Π′.Setup(1λ)
crs := (crs1, crs2, crs3)
td := (s, a1, · · · , aλ, d)
return (crs, td)

S2(crs, td, x)
(vk, sk)← Sig.KeyGen(1λ)

u
$← {0, 1}λ

π′ ← Π′.S ′
2
(
crs3, (x, u, vk, crs1, crs2),

(d)
)

σ ← Sig.Sign(sk, x, u, π′)
return (vk, x, u, π′, σ)

Fig. 7. The simulator of game G6.
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Claim 17. For any QPT adversary A, |Adv5(A)− Adv6(A)| ≤ negl(λ).

Proof. The indistinguishability between G5 and G6 follows pseudorandomnesss of PRF. Note that here since
vk is classical, we only need classical pseudorandomess of PRF against quantum adversaries.

Claim 18. For any adversary A, Adv6(A) ≤ 2−λ.

Proof. Since we only consider the case where vk∗ /∈ T , for any vk∗ output by A, H(vk∗) will be a uniformly
selected value that is totally independent of everything the adversary sees. Denote this value as u′. Then the
probability that the proof output by A having u = u′ is exactly 2−λ. The claim follows.

Overall, we conclude the proof of the theorem.

F Separation II: Simulation Sound NIZK in the CRS Model

In this section, we construct a simulation sound (extractable) NIZK5 in the CRS model that is secure against
a classical adversary. Then we show our separation result that is the simulation sound property of the
construction can be broken if the adversary allows making superposition queries. Formally, we prove the
following theorems:

Theorem 6. Assume that the underlying NIZK scheme satisfies perfect completeness, computational sound-
ness, and computational zero-knowledge, that the encryption scheme is semantically secure and perfectly
correct, that the pseudo-random function family is secure, that the commitment scheme is perfectly binding and
computational hiding, and that the one-time signature scheme is strongly unforgeable. Then the construction
ΠSE is a zero-knowledge proof system satisfying perfect completeness, computational zero-knowledge, and
simulation sound extractability.

Theorem 7. If secure simulation (extractable) sound NIZKs exist, then there are standard-secure simulation
(extractable) sound NIZKs that are not secure simulation (extractable) sound when an adversary queries in
superpositions of the statement.

Before describing our protocol formally, we first recall some notation and the primitives used in the
construction.
Ingredients and notation.

• An encryption scheme E is semantically secure and perfectly correct.
• A pseudo-random function family F is standard-secure PRFs.
• A pseudo-random permutation family PRP is standard-secure PRPs.
• A commitment scheme Com is perfectly binding and computational hiding.
• A one-time signature scheme Sig is strongly unforgeable.
• A NIZK scheme NIZK satisfies perfect completeness, computational soundness, and computational

zero-knowledge.

F.1 Periodic PRFs

Our construction makes use of a pseudo-random function that is a PRF to be a standard-secure pseudorandom
function with key-space K, domain X, and co-domain Y . We will construct a new pseudorandom function
that is periodic with some large, secret period. Classical adversaries will not be able to detect the period,
and thus cannot distinguish this new function from random. However, an adversary making quantum queries
can detect the period, and thus distinguish our new function from random.
5 The stronger notion of simulation sound is called simulation sound extractability [Gro06], which is a combination of

the definitions of simulation soundness introduced by Sahai [Sah01] and proofs of knowledge from De Santis and
Persiano [?].

37



We now construct a new pseudo-random function F as follows,

FskPRF(x) = fskPRF(x)⊕ fskPRF(x ⊕ pPRF),

where skPRF
$← {0, 1}λ is the secret key of the PRF. The function f(.) is a PRF function . The value pPRF

is the perodic of the function F which later we set pPRF = skPRF.
Let K be the key space, and X and Y are the domain and range. K, X, and Y are implicit functions of

the security parameter λ. Assume without loss of generality that Y contains at least N/2 elements (if not,
we can construct a new pseudorandom function with a smaller domain but larger range in a standard way).
In theorem 8, we prove that the function F is a pseudorandom function : K ×X → Y .

Theorem 8. Assume a function f is a standard-secure PRF. Then the pseudo-random function F is
standard-secure PRFs and periodic.

Proof. Pseudo-randomness property: it directly follows from the pseudo-random function f. Perodic peroperty:
The function F is periodic with value pPRF iff FskPRF(x) = FskPRF(x ⊕ pPRF). We observe that FskPRF(x ⊕ pPRF) =
fskPRF(x ⊕ pPRF)⊕ fskPRF(x⊕ pPRF ⊕ pPRF) = fskPRF(x ⊕ pPRF)⊕ fskPRF(x) = FskPRF(x).

F.2 Construction

Before describing our protocol formally, to help the exposition, we first give a brief intuition of the construction.
Intuition. For the simulation extractable property, a prover must always provide encryption of a witness.
Inspired by the idea of [?, ARS20, ?, KZM+15] with some modifications, our construction makes use of a
one-time signature scheme. A pair of one-time signing/verification keys are generated for each proof such
that in the zero-knowledge proof, a simulator (simulated prover) is required to provide ctF = FskPRF(x) (where
the function F is the pseudo-random function introduced in section F.1) and ctpk = fskPRF(pk) (where f is a
pseudo-random function). Then we require the prover to sign the statement together with the proof, the
cipher-text, ctpk, and ctF. Then, briefly, due to the security of the signature scheme, the adversary must use
a different x and pk from the ones returned from oracle queries. Thus, for a statement to pass the verifier
without a proper witness, the prover must generate FskPRF(x) and fskPRF(pk) without the knowledge of skPRF
(thus breaking the pseudo-random function F and f).
Construction. Let L be a NP language for a relation R. Define a language L′ to be the language that
(x, , ct, ctF, pks, pke, ctc, ctr), (r, r0, w, a, b) ∈ RL iff

ct = Epke
(w, r0) ∧ (x, w) ∈ L ∨ (ctF = FskPRF(x) ∧ ctpk = fskPRF(pks)∧

ctc = Com(skPRF, r) ∧ ctr = PRPskPRF(r)),

where the function F is a pseudo-random function introduced in section F.1. PRP is a pseudo-random
permutation function with the key skPRF.

Now, we show the construction from NIZKs to simulation (extractable) sound NIZKs. The construction
is similar to the construction in [KZM+15] but with some modification in a way that.

• crs.KGen(1λ,L): On input a security parameter λ and a language L compute,
− NIZK.crs← NIZK.KGen(1λ,L′);
− pke, ske)← E .KGen(1λ);
− skPRF, r

$← {0, 1}λ, set the periodic value pPRF = skPRF (that is the periodic value of the PRF function
F). Compute ctc = Com(skPRF, r) and ctr = PRPskPRF(r).

Set crs′ := (NIZK.crs, pke, ctc, ctr).
• P(crs′, x, w): On input a CRS crs′, a statement x, and a witness w,
− Parse crs′ = (NIZK.crs, pk2, ctc). If (x, w) ̸∈ RL then abort;
− Run (pks, sks)← Sig.KGen(1λ) and sample z0, z′0, z1, z2, r0

$← {0, 1}λ. Set ctF := z0 and ctpk := z′0
− Compute ct← Epke

(w, r0);
− Compute NIZK.π ← NIZK.P(NIZK.crs, (x, ct, ctF, pks, pke, ctc, ctr), (r0, z1, w, z2));
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− Compute σ ← Sigsks
(x, ct, ctF, ctpk, NIZK.π);

Return π := (ct, ctF, ctpk, NIZK.π, pks, σ).
• V(crs′, x, π): On input a CRS crs′, a statement x, and a proof π, check,
− Parse crs′ := (NIZK.crs, pke, ctc, ctr) and π := (ct, ctF, ctpk, NIZK.π, pks, σ);
− Abort if 0← Sig.V(pks, (x, ct, ctF, ctpk, NIZK.π), σ);
− Abort if 0← NIZK.V(NIZK.crs, (x, ct, ctF, ctpk, pks, pke, ctc, ctr), NIZK.π).

• S(1λ,L): It contains two algorithms S1 and S2. The algorithm S1(1λ,L) runs the crs.KGen(1λ,L) and
outputs crs′, sets a trapdoor td := (skPRF, r), and an extraction key ek := skc. The algorithm S2(crs′, x, td)
works as follows:
− Parse crs′ = (NIZK.crs, pke, ctc, ctr) and td := (skPRF, r);
− Run (pks, sks) ← Sig.KGen(1λ) and sample z3, r0

$← {0, 1}λ. Compute ctF ← FskPRF(x) and ctpk ←
fskPRF(pks).

− Compute ct← Epke
(z3, r0);

− Compute NIZK.π ← NIZK.P(NIZK.crs, (x, ct, ctF, ctpk, pks, pke, ctc, ctr), (r0, z3, td = (r, skPRF)));
− Compute σ ← Sigsks

(x, ct, ctF, ctpk, NIZK.π);
− Return π := (ct, ctF, ctpk, NIZK.π, pks, σ).

F.3 Security Proof

Next, we prove Theorem 6. The completeness is straight forward from the construction. Next we prove it is
also simulation sound (extractable) and zero-knowledge.

Proof. Simulation sound (extractable). We prove it in several games. We recall the experiment for
simulation sound extractable in Fig. 8 and we highlight changes by pointing to the line numbers in the
experiment or the oracle.

Exp(1λ,L)
NIZK.crs← NIZK.KGen(1λ,L′);
(pke, ske)← E .KGen(1λ);
skPRF, r

$← {0, 1}λ;
ctc = Com(skPRF, r);
ctr = PRPskPRF (r);
crs′ := (NIZK.crs, pke, ctc, ctr)
{(xi, πi)}2

i=1 ← AO(.)(crs′);
if V(crs, xi, πi) = 1∀ i ∧
(∃i : xi /∈ L);∧(

O(xi, r) ̸= πi ∀ r ∈ R)
)
∨

(∃r ∈ R : O(xj , r) = πj ∀ j) for i, j ∈ J1, 2K return 1
else return 0

O(x)
Parse crs′ = (NIZK.crs, pke, ctc, ctr) and td :=
(skPRF, r);
(pks, sks)← Sig.KGen(1λ)
z3, r0

$← {0, 1}λ;
ctF ← FskPRF (x); ctpk ← fskPRF (pks);
ct← Epke

(z3, r0);
NIZK.π ← NIZK.P(NIZK.crs, (x, ct, ctF,
ctpk, pks, pke, ctc, ctr), (r0, z3, td));
σ ← Sigsks

(x, ct, ctF, ctpk, NIZK.π);
return
π := (ct, ctF, ctpk, NIZK.π, pks, σ).

Fig. 8. Experiment Exp(1λ,L) for the simulation-sound proof of Theorem 6.

Game G0: This is the original experiment in Fig. 8.

Game G1: This game is the same as G0 but we relax the return condition as follows: let T be the set of
verification keys generated by O(.). The experiment Exp1 outputs 1 iff:
• V(crs, xi, πi) = 1∀ i ∧ ∃i : (O(xi, r) ̸= πi ∀ r ∈ R) ∨ (∃r ∈ R : O(xj , r) = πj ∀ j) for i, j ∈ J1, 2K
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• ∧ pks /∈ T ∧ ctpk = fskPRF(pks) ∧ ctF = FskPRF(x).

Claim 19. If the underlying one-time signature scheme is strongly unforgeable, and that the underlying NIZK
is sound, then we have any PPT adversary A, |Adv0(A)− Adv1(A)| ≤ negl(λ).

Proof. We know that if (i) x and π are not queried before and (ii) pks has been generated by the oracle
O(ů), then the (x, ct, ctF, ctpk, NIZK.π) is a valid message/signature pair. Hence by the unforgeability of the
signature scheme, we know that (i) and (ii) happen with negligible probability, thus, we focus on pks ̸∈ T .
Furthermore, if some witness (the decrypted w is unique for all valid witnesses) is valid for L and that
(x, w) /∈ RL, then it has to be the case that there exists some sk′PRF, such that ctc is a valid commitment of
sk′PRF and that ctpk = fsk′

PRF
(pks), which implies ctpk = fskPRF(pks), by the perfectly binding property.

Game G2: This game is the same as G1 but for generating the NIZK.π, instead of the NIZK.P we run the
simulator NIZK.S of the underlying NIZK. Thus, the experiment Exp2 has the following changes:
• (NIZK.crs, tdNIZK.crs)← NIZK.KGen(1λ,L′);

• O(x): NIZK.π ← NIZK.S(NIZK.crs, (x, ct, ctF, ctpk, pks, pke, ctc, ctr), (r0, z3, tdNIZK.crs)).

Claim 20. If the underlying NIZK is zero-knowledge, then we have that for any PPT adversary A, |Adv2(A)− Adv1(A)| ≤
negl(λ).

Proof. The proof follows directly from the zero-knowledge property of the underlying NIZK.

Game G3: This game is the same as G2 but we use different skPRF in ctc than the one used in ctF, ctpk, and
ctr. Thus, the experiment Exp3 has the following changes:
• sk′PRF, skPRF, r

$← {0, 1}λ;

• ctc = Com(sk′PRF, r);

Claim 21. If the underlying commitment scheme is computationally hiding, then we have any PPT adversary
A, |Adv3(A)− Adv2(A)| ≤ negl(λ).

Proof. By the hiding property, no polynomial algorithm can distinguish the commitment of two elements.

Game G4: This game is the same as G3 but we replace PRP with a true random permutation PRP′. Thus,
the experiment Exp4 has the following changes:
• ctr = PRP′skPRF

(r);

Claim 22. If the underlying PRP scheme is secure, then we have any PPT adversary A, |Adv4(A)− Adv3(A)| ≤
negl(λ).

Proof. The proof follows directly from the security of the PRP scheme.

Game G5: This game is the same as G4 but we replace PRF with a truly random function f′. Thus, the
experiment Exp5 has the following changes:
• O(x): ctF ← f ′(x); ctpk ← f ′(pks);

• Outputs 1 iff: ∧ pks /∈ T ∧ ctpk = f ′(pks) ∧ ctF = f′(x).

Claim 23. If the underlying PRF is secure, then we have that for any PPT adversary A, |Adv5(A)− Adv4(A)| ≤
negl(λ).

Proof. As the PRF is secure, the outputs of f′ are indistinguishable from f and F. This completes the
proof.
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Exp(1λ,L)
NIZK.crs← NIZK.KGen(1λ,L′);
(pke, ske)← E .KGen(1λ);
skPRF, r

$← {0, 1}λ;
ctc = Com(skPRF, r);
ctr = PRPskPRF (r);
crs′ := (NIZK.crs, pke, ctc, ctr)
b← AO(.)(crs′);
return b

O(x, w)
Abort if (x, w) ̸ RL;
Parse crs′ = (NIZK.crs, pke, ctc, ctr) and td :=
(skPRF, r);
(pks, sks)← Sig.KGen(1λ)
z3, r0

$← {0, 1}λ;
ctF ← FskPRF (x); ctpk ← fskPRF (pks);
ct← Epke

(z3, r0);
NIZK.π ← NIZK.P(NIZK.crs, (x, ct, ctF,
ctpk, pks, pke, ctc, ctr), (r0, z3, td));
σ ← Sigsks

(x, ct, ctF, ctpk, NIZK.π);
return
π := (ct, ctF, ctpk, NIZK.π, pks, σ).

Fig. 9. Experiment Exp(1λ,L) for the zero-knowledge proof of Theorem 6.

Finally, since pks /∈ T then f(pks) has not been queried before. Thus, we may view f(pks) as newly
generated random bits independent from ctpk. So, it concludes that Pr[Exp5] ≤ negl(λ). This completes the
proof.

Zero-knowledge. We prove this by showing a series of indistinguishable hybrids. We recall the experiment
for zero-knowledge in Fig. 9 and we highlight changes by pointing to the line numbers in the experiment or
the oracle.

Game G0: This is the original experiment in Fig. 9.

Game G1: This game is the same as G0 but for generating the NIZK.π, instead of the NIZK.P we run the
simulator NIZK.S of the underlying NIZK. Thus, the experiment Exp1 has the following changes:
• (NIZK.crs, tdNIZK.crs)← NIZK.KGen(1λ,L′);

• O(x): NIZK.π ← NIZK.S(NIZK.crs, (x, ct, ctF, ctpk, pks, pke, ctc, ctr), (r0, z3, tdNIZK.crs)).

Claim 24. If the underlying NIZK is zero-knowledge, then we have that for any PPT adversary A, |Adv1(A)− Adv0(A)| ≤
negl(λ).

Proof. The proof follows directly from the zero-knowledge property of the underlying NIZK.

Game G2: This game is the same as G1 but the oracle O encrypts the true witness. The experiment Exp2
has the following changes:
• O(x): ct← Epke

(w, r0)

Claim 25. If the underlying encryption scheme is semantically secure, then we have any PPT adversary A,
|Adv2(A)− Adv1(A)| ≤ negl(λ).

Proof. The proof follows directly from the semantical security of the encryption scheme.

Game G3: In his game we only use different skPRF in ctc than the one used in ctF, ctpk, and ctr. Thus, the
experiment Exp3 has the following changes:
• sk′PRF, skPRF, r

$← {0, 1}λ;

• ctc = Com(sk′PRF, r);
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Claim 26. If the underlying commitment scheme is computationally hiding, then we have any PPT adversary
A, |Adv3(A)− Adv2(A)| ≤ negl(λ).

Proof. The proof follows directly from the hiding property of the commitment scheme.

Game G4: This game is the same as G3 but we only replace PRP with a true random permutation PRP′.
Thus, the experiment Exp4 has the following change:
• ctr = PRP′skPRF

(r);
Claim 27. If the underlying PRP scheme is secure, then we have that for any PPT adversary A, |Adv4(A)− Adv3(A)| ≤
negl(λ).

Proof. The proof follows directly from the security of the PRP scheme.

Game G5: This game is the same as G4 but we replace PRF with a truly random function f′. Thus, the
experiment Exp5 has the following changes:
• O(x): ctF ← f ′(x); ctpk ← f ′(pks);

Claim 28. If the underlying PRF is secure, then we have that for any PPT adversary A, |Adv5(A)− Adv4(A)| ≤
negl(λ).

Proof. As the PRF is secure, the outputs of f′ are indistinguishable from f and F. This completes the
proof.

Game G6: In this game, we replace the real proverP(w, x) to generate the proof π := (ct, ctF, ctpk, NIZK.π, pks, σ).
Thus, the experiment Exp6 has the following changes in the O(x):
• Samplez0, z′0, z1, z2, r0

$← {0, 1}λ; Set ctF := z0 and ctpk := z′0

• NIZK.π ← NIZK.P(NIZK.crs, (x, ct, ctF, pks, pke, ctc, ctr), (r0, z1, w, z2));
Claim 29. If the underlying NIZK is zero-knowledge, then we have that for any PPT adversary A, |Adv6(A)− Adv5(A)| ≤
negl(λ).

Proof. The last experiment is exactly the definition. This concludes the proof for the zero-knowledge part.

This concludes the proof.

F.4 Separation Result: Non-Secure SS-NIZK Against Superpositions Query

In this section, we show our separation result in Theorem 7 that is the standard-secure simulation (extractable)
sound NIZKs that are not secure simulation (extractable) sound when an adversary query in superpositions
of the statement. We prove Theorem 7 as follows:

Proof. Let a quantum adversary A against the pseudo-random function F. Let F be a standard-secure
pseudorandom function (introduced in Section F.1). By using Simon’s quantum algorithm, given quantum
queries, the quantum adversary A can find the period of the pseudo-random function F and thus obtain
pPRF = skPRF. Let B be a quantum adversary against simulation (extractable) sound property with allowing
quantum queries on the statement x. The adversary B(crs′, π) for x′ ̸∈ L works as follows:
• Run the adversary A(ctF) and return back the PRF’s secret key skPRF. Extract the randomness r from

ctr. Set the trapdoor td = (skPRF, r).
• Run (pks, sks) ← Sig.KGen(1λ) and sample z3, r0

$← {0, 1}λ. Compute ctF ← FskPRF(x) and ctpk ←
fskPRF(pks);
• Compute ct← Epke

(z3, r0);
• Compute NIZK.π ← NIZK.P(NIZK.crs, (x′, ct, ctF, ctpk, pks, pke, ctc, ctr), (r0, z3, td = (r, skPRF)));
• Compute σ ← Sigsks

(x, ct, ctF, ctpk, NIZK.π);
• Return π := (ct, ctF, ctpk, NIZK.π, pks, σ).

This concludes the proof.
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G Missing Proofs

G.1 Proof of Theorem 1

The proof of Theorem 1 follows from Lemma 5 and Lemma 6 stated below.

Lemma 5 (Quantum-query easiness). Suppose Πipq satisfies quantum completeness (Definition 7).
Then Construction 1 satisfies quantum-query easiness.

Proof. Let P denote the efficient quantum prover for Πipq such that

Pr
[

(P,V)(1λ) = 1
]
≥ 1− negl(λ) .

Define the following QPT algorithm P:

• Make a (quantum) query
∑

x |0∥x, 0⟩ to QAF(sk, ·).
• Measure the response register to get a classical string p1.
• Run P on p1, v2 and the post-measurement state to obtain p2.
• Output p1∥p2.

Since PRF is one-wise independent, P perfectly simulates the view of P in an instance of Πipq. By the
completeness of Πipq, QAF(sk, ·) outputs accept with probability 1− negl(λ).

Lemma 6 (Classical-query hardness). Suppose Πipq has public-coin second verifier messages and has
semi-quantum soundness (Lemma 2). Then Construction 1 satisfies classical hardness.

The proof of this lemma follows the same idea as in [LMQW22]. The only difference is that we reduce to
the semi-quantum soundness of Πipq defined above.

G.2 Applications
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G1 : Decrypt(sk, (y0, y1, y2, π))
b← Π.V(crs, (y0, y1, y2), π)
if b = 0 then return ⊥
k← E ′.Decrypt(sk1, y1)

return iPRF−1(k, y2)

G2 : Encrypt(pk, x)

k $← iPRF.Setup(1λ)
y0 ← E .Encrypt(pk0, x; r0)
y1 ← E ′.Encrypt(pk1, k; r1)
y2 ← iPRF(k, x)
π ← Π.S(crs, (y0, y1, y2))
return (y0, y1, y2, π)

G3 : Encrypt(pk, x)
k $← iPRF.Setup(1λ)
y0 ←REncrypt(pk0,·)(x)
y1 ← E ′.Encrypt(pk1, k; r1)
y2 ← iPRF(k, x)
π ← Π.S(crs, (y0, y1, y2))
return (y0, y1, y2, π)

G4 : Decrypt(sk, (y0, y1, y2, π), D)
b← Π.V(crs, (y0, y1, y2), π)
if b = 0 then return ⊥
if ∃(x, (y0, y1, y2, π)) ∈ D then
return x

return E .Decrypt(sk0, y0)

G5 : Encrypt(pk, x)
k $← iPRF.Setup(1λ)
y0 ←REncrypt(pk0,·)(x)
y1 ← E ′.Encrypt(pk1, 0; r1)
y2 ← iPRF(k, x)
π ← Π.S(crs, (y0, y1, y2))
return (y0, y1, y2, π)

G6 : Encrypt(pk, x, D)
u← D(x)

k $← iPRF.Setup(1λ)
y0 ←REncrypt(pk0,·)(x)
y1 ← E ′.Encrypt(pk1, 0; r1)
y2 ← iPRF(k, u)
π ← Π.S(crs, (y0, y1, y2))
return (y0, y1, y2, π)

G7 : Encrypt(pk, x, D)
u← D(x)
k $← iPRF.Setup(1λ)
y0 ←REncrypt(pk0,·)(x)
y1 ← E ′.Encrypt(pk1, k; r1)
y2 ← iPRF(k, u)
π ← Π.S(crs, (y0, y1, y2))
return (y0, y1, y2, π)

G8 : Encrypt(pk, x, D)
u← D(x)
k $← iPRF.Setup(1λ)
y0 ←REncrypt(pk0,·)(x; r0)
y1 ← E ′.Encrypt(pk1, k; r1)
y2 ← iPRF(k, u)
π ← Π.P(crs, (y0, y1, y2), (x, r0, r1))
return (y0, y1, y2, π)

Fig. 10. Description of the changes in games Gi for i ∈ J1, 8K. In each program, the changes relative to the previous
program are highlighted in light gray.
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