
Forking the RANDAO: Manipulating Ethereum’s
Distributed Randomness Beacon

Ábel Nagy
∗

Eötvös Loránd University

Budapest, Hungary

János Tapolcai
†

University of Technology and Economics

Budapest, Hungary

István András Seres
‡

Eötvös Loránd University

Budapest, Hungary

Bence Ladóczki
§

University of Technology and Economics

HUN-REN Information Systems Research Group

Budapest, Hungary

ABSTRACT
Proof-of-stake consensus protocols often rely on distributed ran-

domness beacons (DRBs) to generate randomness for leader selec-

tion. This work analyses the manipulability of Ethereum’s DRB

implementation, RANDAO, in its current consensus mechanism.

Even with its efficiency, RANDAO remains vulnerable to manipula-

tion through the deliberate omission of blocks from the canonical

chain. Previous research has shown that economically rational play-

ers can withhold blocks – known as a block withholding attack or

selfish mixing – when the manipulated RANDAO outcome yields

greater financial rewards.

We introduce and evaluate a new manipulation strategy, the

RANDAO forking attack. Unlike block withholding, whereby val-

idators opt to hide a block, this strategy relies on selectively forking

out an honest proposer’s block to maximize transaction fee rev-

enues and block rewards. In this paper, we draw attention to the fact

that the forking attack is significantly more harmful than selfish

mixing for two reasons. Firstly, it exacerbates the unfairness among

validators. More importantly, it significantly undermines the relia-

bility of the blockchain for the average user by frequently causing

already published blocks to be forked out. By doing so, the attacker

can fork the chain without losing slots, and we demonstrate that

these are later fully compensated for. Our empirical measurements,

investigating such manipulations on Ethereum mainnet, revealed

no statistically significant traces of these attacks to date.

1 INTRODUCTION
Randomness is indispensable for (permissionless) consensus [15,

20]. Ethereum [31], the second-largest cryptocurrency by mar-

ket capitalisation and the largest by transaction volume, pseudo-

randomly selects block proposers using cryptographic algorithms

and protocols. New validators are chosen using a DRB called RAN-

DAO, introduced in [33]. While the RANDAO is an efficient DRB

protocol, it is not robust against strategic manipulations [1, 29].

In Ethereum Proof-of-stake (PoS), blocks are published at fixed

time intervals (i.e., at every 12 seconds), referred to as slots, with

32 slots comprising one epoch. The RANDAO mechanism selects

validators who publish the blocks in the subsequent epoch on the

epoch boundaries (i.e., at every 384 seconds). In each slot, there

∗
nagyabi@gmail.com

†
tapolcai@tmit.bme.hu

‡
seresistvanandras@gmail.com

§
ladoczki.bence@vik.bme.hu

is only one uniquely determined validator who should publish a

block. Should it fail to do so, the slot is marked as missed in the

canonical chain. As the output of the randomness beacon depends

on these missed slots, this creates an opportunity for an attack.

Validators colluding within staking pools might find it profitable to

intentionally miss blocks if this influences the RANDAO outcome

such that, in upcoming epochs, more slots are allocated to validators

of the given staking pool. The effect of these missed slots is only

predictable before the epoch boundaries, at the so-called tail slots.

The first analysis on the manipulability of the current RANDAO

protocol was conducted in a blog post by Wahrstätter [29]. He

examined the aforementioned attack (selfish mixing) and demon-

strated that major staking entities could have manipulated RAN-

DAO dozens of times since the genesis of Ethereum PoS by strate-

gically publishing or omitting tail slots. Alpturer and Weinberg,

applying Markov Decision Processes (MDP), determined optimal

selfish mixing strategies in [1] to maximise the number of blocks

proposed. According to previous results, a staking pool controlling

20% of the total stake can gain an additional 0.7% of slots with

selfish mixing [1] and when a strategic player mounts a selfish mix-

ing attack roughly every 340
th
slot will be missed, causing a 0.3%

reduction in transaction throughput. This can potentially increase

transaction costs due to network congestion [8]. However, such

issues alone do not pose a threat to the operation of the blockchain.

In this paper, we introduce a new class of RANDAOmanipulation

strategies that pose a much greater threat to the average user. Our

main observation is that a strategic validator can fork out honest

(tail) blocks from the canonical chain to manipulate the RANDAO

outcome. First, this manipulation significantly increases the bias

in the DRB, potentially doubling the attacker’s gain in extra slots

when combined with selfish mixing. What further exacerbates the

situation is that it undermines trust in the chain’s ecosystem. By

forking blocks, transactions in the discarded blocks are removed,

and the attacker can hijack the Maximum Extractable Value (MEV)

of that block.

Forking is already a serious issue, but it becomes even more

severe when linked to strategic RANDAO manipulations. As we

will discuss later, in some epochs, the attacker has a direct incentive

to fork out other validators’ blocks, as this provides short-term

profits in addition to more MEV.

We argue that malicious players can perform short-range forks

when they have multiple adversarial slots surrounding honest

blocks. The attack is initiated as follows: The adversary privately

1

https://orcid.org/0009-0006-0932-5591
https://orcid.org/0000-0002-3512-9504
https://orcid.org/0000-0003-0143-4057
https://orcid.org/0000-0002-5056-4184

Preprint, January 2025, Ábel Nagy, János Tapolcai, István András Seres, and Bence Ladóczki

Slot 29

Honest

Slot 30

Adversary

Slot 31

Honest

Slot 0

Adversary

Publish

Block𝑛

Do not

publish

Block𝑛+1

Publish

Block𝑛+1

Publish

Block𝑛+2

Fork Block𝑛+1

Receives 𝛼 votes in

Slot 29 and another

𝛼 votes in Slot 30

Receives

1 − 𝛼 votes

Epoch boundary

Figure 1: Illustration of an attack where the adversary (A) is
selected to propose blocks in Slot 30 of the current epoch and
the first slot of the next epoch, with the final slot assigned
to an honest validator. This scenario is called AH·A forking
attack. Assume 𝛼(≥ 0.2) denotes the adversary’s voting power,
while 1 − 𝛼 denotes the honest voting power.
The attack proceeds as follows: First, A secretly builds and
votes for its block in Slot 30. This block is kept hidden from
honest validators. Hence, they think that the block in Slot 29

is the head of the chain and vote for it. Second, the honest
validator publishes a block in Slot 31 and builds it on top of
Slot 29. Meanwhile, the validators controlled by A vote for
the adversary’s secret block during Slot 31, pretending to be
unaware of the honest block published in Slot 31. Finally,
in Slot 0 of the next epoch, A publishes its two-block fork
(illustrated in the first row of the figure), and the honest
block in Slot 31 is successfully forked out from the canonical
chain [26], thus not contributing to the RANDAO output.

builds a fork and purposefully ignores the next few blocks pro-

posed by the honest players. Finally, the adversary forks out the

“surrounded” honest block(s) by building on the private fork. As a

side effect, this forking attack leads to slots missing from the canon-

ical chain. In general, blockchain consensus mechanisms might try

to thwart forking attacks. However, it is usually not a punishable

offense because it sometimes happens naturally due to network

delay. This study investigates under what circumstances such an

attack can be economically rational. To understand the inner work-

ings of these forking attacks, we must delve into the Ethereum PoS

consensus protocol [22]. The current Ethereum PoS protocol has

evolved throughout the years: the consensus protocol has been

revised multiple times as new practical attacks were discovered,

challenging its presumed liveness and safety [26]. The original

protocol, LMD-GHOST (Latest Message Driven Greedy Heaviest

Observed Sub-Tree) was introduced in [7]. In LMD-GHOST, val-

idators attest to a block in each slot, and the chain with the most

accumulated attestations becomes the canonical chain, considering

only the latest received messages. To counter block withholding

attacks, proposer boost has been introduced to artificially increase

the weight of a block that has been proposed on time.

We elucidate the details of a forking attack in Figure 1. Note

that this attack is possible only when the adversary controls at

least 20% of the total stake and when the tail slots are ordered as

adversary-honest, with the next epoch starting with an adversarial

slot (denoted asAH·A in our notation). This is because, in the LMD-

GHOST protocol, the adversary’s branch has a weight 2𝛼 + pboost,
(at the time of writing pboost = 0.4) while the honest branch has

a weight 1 − 𝛼 . If 𝛼 ≥ 0.2, the A’s branch has more attestations,

forcing honest validators to choose that adversarial branch and

attest to the block in Slot 0 as the head of the chain. As a result, the

honest block proposed in Slot 31 gets forked out.

This example highlights some key differences between forking

and selfish mixing. First, the adversary does not necessarily need

to control the tail slot; controlling the beginning of the next epoch

may be sufficient. This complicates the attack strategy as it depends

on the validators’ actions across two epochs. In other words, when

the attacker manipulates the RANDAO outcome to enable further

attacks in future epochs, the necessary preparations for two further

attacks are being made, accounting for two simultaneous attacks:

one at the beginning of the new epoch and another at the end of

that epoch.

This work formalises these RANDAO forking attacks and analy-

ses howmuch financial gain they lead to by applying these strategic

manipulation techniques. Similar to [1], we use a Markov Decision

Process (MDP) to compute the optimal strategy (or policy) that

an attacker should follow to potentially manipulate the RANDAO

outcome. This approach maximises the immediate reward and the

opportunities for future attack-related rewards in upcoming epochs

as well. In the case of forking attacks, the MDP expands consid-

erably compared to scenarios involving only selfish mixing. This

is partly due to the larger degrees of freedom with many possi-

ble strategies and the fact that many attacks extend across epoch

boundaries. As a result, the states of the MDP extend across two

consecutive epochs, creating an extensive directed graph. Evalu-

ating this MDP poses a significant computational challenge and

proving its optimality remains unattainable.

Our contributions.We provide the following contributions.

• We create a formal model applying Markov Decision Pro-

cesses (MDP) to compute the extent (expected number of

proposed blocks) to which a strategic player can bias the

RANDAO output in its favour employing both selfish mixing
and forking strategies. Our RANDAO manipulation results

are currently the best known; see Table 2.

• We collect and process traces from the beacon chain to in-

vestigate whether RANDAO manipulation attacks occur. We

search for both one- and multi-epoch RANDAO manipula-

tions. We have not yet found statistically significant evidence

for multi-epoch manipulations. However, since the protocol

currently lacks cryptographic guarantees to prevent such

attacks, they are likely to occur in the future, given that

validators act as economically rational agents.

• For the sake of reproducibility, we release all our program

codes in an open-source repository.
1

The rest of this paper is organised as follows. In Section 2, we

describe the pertinent parts of Ethereum’s proof-of-stake proto-

col. Section 3 describes the RANDAO manipulation strategies we

consider in this work. In Section 4, we formalize and compute

the advantage of an adversary applying our RANDAO manipu-

lation techniques. In Section 5, the results of our empirical tests

on Ethereum mainnet are presented. We discuss countermeasures

in Section 6 and review related work in Section 7. We conclude our

paper with open problems and future directions in Section 8.

1
https://github.com/nagyabi/forking_randao_manipulation.

2

https://github.com/nagyabi/forking_randao_manipulation

Forking the RANDAO: Manipulating Ethereum’s Distributed Randomness Beacon Preprint, January 2025,

2 PRELIMINARIES AND SYSTEM MODEL
This section introduces the pertinent parts of the Ethereum proof-

of-stake consensus protocol. We focus on randomness generation

and leader selection and omit irrelevant protocol details. A compre-

hensive overview of the full protocol can be found in [22].

2.1 Notations
Arrays are written in lowercase bold, e.g., v. We use a Python-

like notation for array elements and slices, e.g., v[0] or v[𝑖 : 𝑗],

which is non-inclusive on the right, i.e., v[𝑗] /∈ v[𝑖 : 𝑗]. We denote

counterfactual values—those that are reorged or not part of the

canonical chain—with a superscript star (∗).
For instance, the RANDAO output at epoch 𝑒 is denoted as 𝑅𝑒 .

However, due to adversarial bias, it could take on various other

counterfactual values, denoted as 𝑅𝑒,∗. Let𝑋 ∼ Binom(𝑁, 𝑝) denote

a binomial distribution with parameters 𝑁, 𝑝 . Typically, we use

(𝑁, 𝑝) = (32, 𝛼). 𝑥 ← 𝑆 denotes sampling 𝑥 from distribution 𝑆 .

See Table 1 for a summary of the used notations.

2.2 Leader selection in Ethereum
Block proposers in the Ethereum PoS protocol are selected by a

distributed randomness beacon called RANDAO. The RANDAO

outputs a pseudorandom value 𝑅𝑒 ∈ {0, 1}256
at the end of each

epoch 𝑒 . An epoch consists of 32 slots, we number the slots from 0

to 31, where slot 31 is called the tail slot. In each slot, a single valida-

tor, identified by their public key, can propose a block. Each valid

proposed block contains a 96-byte value called randao_reveal, the
BLS signature of the epoch number generated using the proposer’s

private key. As part of block verification, this value is validated

against the proposer’s public key. This information cannot be de-

termined until the block is published unless the proposer’s private

key is compromised. Furthermore, the BLS signature scheme is de-

terministic [5] to prevent the signer from manipulating it (grinding

attacks). The final random output is calculated as the bitwise XOR of

the hashes of all randao_reveal values from each previous block,

all theway back to the genesis block. Formally, the RANDAObeacon

output at epoch 𝑒 is calculated as 𝑅𝑒 := 𝑅𝑒−1⊕
(⊕

31

𝑖=0
ℎ(𝑟𝑒

𝑖
)

)
,where

ℎ(𝑟𝑒
𝑖

) ∈ {0, 1}256
is the 𝑖th randao_reveal’s hash in epoch 𝑒 . The

initial condition is 𝑅0
:= 0

256
. Missed blocks are excluded from the

calculation, formally a missed block is taken as ℎ(𝑟𝑒
𝑖

) := 0
256

.

The RANDAO output 𝑅𝑒 defines the proposers’ list
2
in epoch

𝑒 + 2.
3
Specifically, the proposer list is shuffled using a pseudo-

random permutation [17], where the permutation seed 𝑠 is further

randomised with the epoch number, i.e., 𝑠 := ℎ(𝑒 | |𝑅𝑒). This ensures

that even if all proposers selected in the current epoch are offline

(i.e., 𝑅𝑒 = 𝑅𝑒−1
), the proposer list will differ in the next epoch. Let

v𝑒+2

𝑅
denote the proposer list in epoch 𝑒 + 2 if the RANDAO output

in epoch 𝑒 is 𝑅𝑒 , formally, v𝑒+2

𝑅
= [𝐹𝑠 (v)[𝑗]]31

𝑗=0
. Let us write the

number of blocks allocated to validator 𝑖 in a certain epoch 𝑒 for a

2
The current protocol is somewhat more complex, but the details are immaterial to

our discussions. Specifically, validator effective balances are also taken into account.

3
Occasionally, we use the terms ’future epoch’ or ’next epoch’ loosely, even though

the current 𝑒 th epoch’s RANDAO output determines the validators in epoch 𝑒 + 2 in

the protocol.

Table 1: Summary of notations used throughout the paper.

Variable Description

𝛼 The adversary A’s staking power (0 ≤ 𝛼 < 1

2
)

𝑒 Epoch number (𝑒 ∈ N)
𝑟𝑒
𝑖

A validator’s beacon contribution in 𝑖th slot of epoch 𝑒

𝑅𝑒 The RANDAO beacon’s output in epoch 𝑒

v𝑒
𝑅

The chosen validators in epoch 𝑒 from 𝑅 (|v𝑒
𝑅
|= 32)

RANDAO output 𝑅𝑒 be as:

𝑝(𝑒 + 2, 𝑅𝑒 , 𝑖) . (1)

Observe that 𝑝(𝑒, ·, 𝑖) is a discrete probability distribution in the

RANDAO output 𝑅𝑒 of epoch 𝑒 , with a range 0 ≤ 𝑝(𝑒, ·, 𝑖) ≤ 32.

Moreover, 𝑝(𝑒, ·, 𝑖) ∼ Binom(32, 𝛼𝑖) assuming cryptographic build-

ing blocks are idealised, where 𝛼𝑖 is validator 𝑖’s staking power.

Each slot has a duration of 12 seconds, during which a selected

proposer can publish a new block. Due to stringent latency require-

ments, each block must be published no later than the 4
th
second of

the slot. Otherwise, it is deemed as a “missing” block [16]. If a block

is published on time, it receives virtual votes, called proposer boost

(pboost). At the time of writing, pboost = 0.4, i.e., a newly published

block receives virtual votes that equals 40% of the total stake. Note

that the proposal boost only exists for the current slot of the block.

Blocks published late do not receive proposer boost.

2.3 System model and manipulation objectives
In our model, we assume two parties, an adversarial entity A with

staking power 𝛼 (i.e., owns 𝛼 portion of all validators), and an hon-

est entity H with staking power (1 − 𝛼). Based on the RANDAO

output 𝑅𝑒−2
of epoch 𝑒−2, v𝑒

𝑅
defines the list of proposers for epoch

𝑒 . The proposers controlled by the adversaryA (or strategic player)

are denoted by A, and the slots assigned to the honest entityH are

denoted as H. Using these notations for the slots, we define a string

called the chain string (cs), which is a continuously growing string

over time. More precisely, at the end of epoch 𝑒 , we extend cs using
a {A,H}32

string based on v𝑒+2

𝑅
, called the (𝑒 + 2)

th epoch string.
When the same character repeats, we typically indicate the number

of repetitions in the exponent. From a RANDAO manipulation per-

spective, the slots immediately before and after the epoch boundary

are the most important. The potential attacks will be defined using

these string fragments, which we refer to as attack string:

Definition 1 (Attack string). Let (𝑚,𝑛) ∈ N2. Let the set
of attack strings be denoted by AS𝛼 (𝑚,𝑛), where each attack string
as ∈ {A,H}≤𝑚 + ·+{A,H}≤𝑛 , where “ ·” denotes the epoch boundary
separating epoch 𝑒 and 𝑒 +1. We refer to the substring before the epoch
boundary as tail(as) and the substring after the epoch boundary as
head(as). AST𝛼 (𝑚) denotes the set of possible tail slots in AS𝛼 (𝑚,𝑛).
Additionally, upon reaching the first slot A can already calculate at
least one potential RANDAO outcome 𝑅𝑒,∗. An empty string is denoted
by 𝜖 , and AS𝛼 (𝑚,𝑛) includes an attack string called the honest attack
string H·.

Individual slots of an attack string are referred to by their slot

number in the subscript, i.e., the tail slot would be H
31

in Figure 1.

3

Preprint, January 2025, Ábel Nagy, János Tapolcai, István András Seres, and Bence Ladóczki

The block

was published

Not published

during the slot

Part of the

Canonical chain H: proposed P: private forking

Not part of the

canonical chain

R: reorged M: missed regret

Figure 2: The four block states in a RANDAO manipula-
tion with their colour encodings in the figures. Slot statuses,
(non)canonical, are denoted as N,C.

We assume that the stake distributions remain constant through-

out the duration of the attack. Furthermore, in each slot, the ad-

versary has exactly 𝛼 fraction of the voting power. Considering

the law of large numbers, this simplification must make sense. The

honest entityH always broadcasts a block when it is selected to

do so. Moreover, honest blocks are always built upon the latest

public head of the blockchain. In contrast, the adversary A may

miss proposing blocks in the allotted slot. Furthermore, the adver-

sary might strategically fork the blockchain, i.e., propose blocks
on blocks that are parents of the current head of the blockchain.

We work in a synchronous network model and we assume that the

upper bound on message delivery is less than one-third of a slot’s

duration (4 seconds). Finally, we rely on idealised cryptographic

building blocks.

We aim to maximise the number of adversarial blocks. We denote

the number of missed tail blocks in epoch 𝑒 (sometimes referred to

as sacrificed blocks) corresponding to a RANDAO output 𝑅𝑒 as

𝑠(𝑒, 𝑅𝑒 ,A) . (2)

An economically rational validator A applying policy 𝜋 is incen-

tivised to manipulate the RANDAO output 𝑅𝑒 to maximise the

expected number of obtained blocks in the future, i.e.: 4

Γ𝜋 := lim

𝑁→∞
E
[

1

𝑁

𝑁∑︁
𝑒=1

𝑝(𝑒 + 2, 𝑅𝑒 ,A) − 𝑠(𝑒, 𝑅𝑒 ,A)

]
. (3)

This is the most natural RANDAO manipulation objective of a

validator, which is a policy to maximise the expected number of

proposed blocks without sacrificing too many present gains, e.g.,
missing to propose too many blocks. We do not use discount factors

in our reward function Γ𝜋 , i.e., 𝛾 = 1: slots in the distant future are

equally valuable as the ones in the imminent future.

3 RANDAO MANIPULATION STRATEGIES
From the perspective of RANDAO manipulation, a block can have

four states, see Figure 2.

H: proposed The validator successfully proposed a valid block

accepted by the supermajority of the validators (i.e., 2/3) into

the canonical chain. Honest validators always follow this

behaviour in our analysis, while adversarial validators may

consider additional options, such as withholding blocks.

R: reorged The validator proposed a valid block; however, it

ended up on a non-canonical branch of the blockchain. It is

no longer considered canonical by the supermajority of the

validators’ stake, e.g., Slot 31 in Figure 1.

4
We define the parameter of the reward functions, i.e., our MDP policy in Section 4.1.

Slot 29

Honest

Slot 30

Adversary

Slot 31

Adversary

Publish

Block𝑛

Publish

Block𝑛+1

Publish

Block𝑛+2

{H𝑒
30
,H𝑒

31
}

{H𝑒
30
,M𝑒

31
}

Publish

Block𝑛+2

{M𝑒
30
,H𝑒

31
}

{M𝑒
30
,M𝑒

31
}

Figure 3: Decision tree for the selfish-mixing with attack
string A2·. A computes 𝑅𝑒 for all four scenarios and selects
the most lucrative one.

M: missed A validator fails to publish a block in its designated

slot. For an honest validator, this is typically caused by con-

nectivity or other operational issues (e.g., large computa-

tional overhead due to validating attestations).

P: private The validator builds a block but does not publish it

on time during its allotted slot. An adversarial validator then

shares the block only with the validators within its staking

pool. Later, the private block either becomes part of the

canonical chain by forking the next block (a strategy known

as an ex-ante reorg attack) or, depending on the RANDAO

outcome, the attacker might decide not to publish the block

at all – an action we refer to as regret, see Figure 4.

Block statuses are denoted as H𝑒
𝑖
,R𝑒

𝑖
,M𝑒

𝑖
, P𝑒

𝑖
indicating that the

block in the 𝑖th slot in epoch 𝑒 was proposed, reorged, missed, built

privately, respectively. As indicated in Figure 2, reorged andmissed
blocks do not contribute to the RANDAO output 𝑅𝑒 since they are

not part of the canonical chain. In general, RANDAO manipulation

strategies can take advantage of this fact. This study examines two

strategies—selfish mixing and forking—that enable an adversary to

manipulate the RANDAO output.

3.1 Selfish mixing
The adversary can selectively propose or miss blocks to manipu-

late the RANDAO output [29]. Assume that A is assigned with 𝑡

consecutive tail blocks, formally A𝑡 · of epoch 𝑒 , thenA can choose

arbitrarily between 2
𝑡
RANDAO outputs by missing or proposing

each tail block. Thus it is trivial, that A𝑡 · ∈ AS𝛼 (𝑚,𝑛) for 0 ≤ 𝑡 ≤ 𝑚,

asA can compute 𝑅𝑒 corresponding toC𝑡
. The manipulative power

for 𝑡 = 2 is the decision tree shown in Figure 3, e.g., the adversary
chooses option {H𝑒

30
,M𝑒

31
} if the calculated 𝑅𝑒 eventually leads to

the highest number of blocks. In this case, sacrificing Slot 31 is

worthwhile, as it results in a significantly higher number of blocks

in epoch 𝑒 + 2. When evaluating selfish mixing, the adversary has

all the necessary information to make decisions. This is not the case

for forking, as we will see next, leading to more complex decision

trees and evaluations.

3.2 Ex-ante reorging honest blocks
A RANDAO manipulator can selectively reorg out honest blocks

from the canonical chain to influence the output of the randomness

beacon. The attack strategy can be more complex than just missing

tail slots. The simplest forkingmanipulation is illustrated in Figure 4

when A is given the attack string AH·A, which is the same attack

4

Forking the RANDAO: Manipulating Ethereum’s Distributed Randomness Beacon Preprint, January 2025,

Slot 29

Honest

Slot 30

Adversary

Slot 31

Honest

Slot 0

Adversary

Publish

Block𝑛

Do not

publish

Block𝑛+1

Publish

Block𝑛+1

Publish

Block𝑛+2

{P𝑒
30
,R𝑒

31
}

Publish

Block𝑛+2

{M𝑒
30
,H𝑒

31
}

If the outcome

of {P𝑒
29
,R𝑒

30
}

is small

Publish

Block𝑛+1

Publish

Block𝑛+2

Publish

Block𝑛+3

{H𝑒
30
,H𝑒

31
}

Figure 4: Decision tree for the forking RANDAO manipula-
tion, see Section 3.2 with attack string AH·A. IfA has 𝛼 > 0.2,
it can choose from three scenarios, each with different RAN-
DAO outputs. Note, A needs to make the decision before
seeing the honest party’s RANDAO contribution 𝑟𝑒

31
. Conse-

quently, A may regret its decision.

described in Figure 1. In this scenario, A can ex-ante fork out the

tail slot H if 𝛼 ≥ 0.2.A must decide to fork out H before seeing its

randao_reveal 𝑟𝑒
31
. After seeing 𝑟𝑒

31
, A can reconsider its forking

plans. Specifically,A can decide in the first slot of the next epoch to

build A
0
on top of either A

30
(i.e., finalise the ex-ante reorg), or on

top of H
31

incurring the sacrifice of A
30
. Note A has no incentive

to withhold A
0
as it holds no manipulative power.

A must make a decision in Slot 30, relying solely on the RAN-

DAO output corresponding to {P𝑒
30
,R𝑒

31
}. The adversary’s strategy

involves using stochastic methods to approximate the unknown

RANDAO outcome and comparing these approximations with the

known values. In other words, if {P𝑒
30
,R𝑒

31
} results in a sufficiently

high revenue, A will privately build the block in its allotted ad-

versarial Slot 30; otherwise, A will propose it. The exact value of

𝑟𝑒
31

will only be known after Slot 31, and it is possible that A may

regret the forking decision made in Slot 30.

The forking attack becomes truly effective when combined with

selfish mixing. This combination occurs recursively, e.g., consider a
variation of the previous attack with the epoch boundary shifted

by one, resulting in AHA· and 0.2 ≥ 𝛼 . In this case, as shown

in Figure 5, each branch of the decision tree offers an opportunity

for an additional selfish mixing attack. This increases the number

of possible RANDAO outcomes from three to five as follows:

{H𝑒
29
,H𝑒

30
,H𝑒

31
}: Parties publish blocks in their allotted slots.

{H𝑒
29
,H𝑒

30
,M𝑒

31
}: A misses its tail slot to selfish mix.

{P𝑒
29
,R𝑒

30
,H𝑒

31
}: A can reorg the honest block if 𝛼 ≥ 0.2. This

attack realisation is shown in Figure 1.

{M𝑒
29
,H𝑒

30
,H𝑒

31
}: A foregoes forking after the 30th slot, i.e., A

misses to propose in the 29th slot but publishes in the last

slot. Colloquially, we refer to this action as regret.
{M𝑒

29
,H𝑒

30
,M𝑒

31
}: A may forego forking after the 30th slot and

miss proposing blocks in both of its allotted slots. We refer

to this branch (and the previous one) as “regretted forking”.

Although there are five possible outcomes, the attacker can

choose from at most three, depending on a prior decision. Later,

in Appendix A.2, we provide a general description of how to con-

struct decision trees recursively.

Definition 2 (Slot status). The slot status can be either:
• C - Canonical, the slot is proposed or private.

Slot 28

Honest

Slot 29

Adversary

Slot 30

Honest

Slot 31

Adversary

Publish

Block𝑛

Do not

publish

Block𝑛+1

Publish

Block𝑛+1

Publish

Block𝑛+2

{P𝑒
29
,R𝑒

30
,H𝑒

31
}

{M𝑒
29
,H𝑒

30
,M𝑒

31
}

Publish

Block𝑛+2

{M𝑒
29
,H𝑒

30
,H𝑒

31
}

If the outcome of

{P𝑒
29
,R𝑒

30
,H𝑒

31
}

is large enough

Publish

Block𝑛+1

Publish

Block𝑛+2

{H𝑒
29
,H𝑒

30
,M𝑒

31
}

Publish

Block𝑛+3

{H𝑒
29
,H𝑒

30
,H𝑒

31
}

Figure 5: Decision tree for the forking and selfish mixing
RANDAO manipulation with attack string AHA· and 𝛼 > 0.2.
A needs tomake two decisions: first, before seeing the honest
party’s RANDAO contribution 𝑟𝑒

30
, and afterwards.

• N - Non-canonical, the slot is reorged or missed.

We refer to the strings c ∈ {C,N}≤32 as realisation strings corre-
sponding to the 𝑒th epoch’s tail slots’ statuses producing a different
RANDAO outcome 𝑅𝑒,∗.

For instance, for A2·, the four possible realisation strings are

{C2,N2,CN,NC} and for as = AH·A; c = {C3,CNC,NCC}.

3.2.1 Ex-ante reorgs in a stronger adversarial model. Ex-ante reorgs
are possible for a wider range of attack strings, which we analyse in

this paper. However, they require a stronger adversarial model that

we refrained from incorporating into our systemmodel. Specifically,

the following ex-ante reorg is possible if we assume that network

delay is under adversarial control. Evaluating these types of ex-ante

reorgs could provide valuable insights for future work. IfA is given

tail slots AAH·H,A can fork out the H tail slot with 𝛼 ≥ 0.2 stakes

as follows. First, A secretly builds both its assigned slots and does

not publish them. Naturally, A votes for both blocks; thus, this

fork accumulates 2𝛼 votes. The honest players do not see this fork;

hence, they vote for the first block preceding AA as the head of the

blockchain. Moreover, they build H on top of the block proposed

in Slot 28. When the block H
31

is published, it immediately obtains

the proposer boost, pboost = 0.4. A immediately publishes its own

secret fork totalling 2𝛼 votes. Assuming A controls the network

delay and its fork reaches honest players faster, honest nodes will

vote for the adversarial fork as the heaviest subtree despite the

virtual proposer boost helping the honest player. Such a robust

adversarial model is frequently encountered in the PoS consensus

literature [26].

3.2.2 Ex-ante reorg attack strings. As stated in Definition 1, an

attack string must meet the condition that by the time A reaches

its first slot it should be able to calculate one possible 𝑅𝑒,∗. This
is only possible if the future RANDAO reveals corresponding to

the honest blocks do not contribute to 𝑅𝑒,∗ and A can fork them

out. The following theorem describes a condition under which A
can perform ex-ante reorgs in our model. The proof is deferred

to Appendix A.1.

Theorem 1 (Condition for forking). Given A𝑎1 slots followed
by HXA, (where X ∈ {A,H}ℎ−1, 𝑎1, ℎ > 0) A can perform an

5

Preprint, January 2025, Ábel Nagy, János Tapolcai, István András Seres, and Bence Ladóczki

ex-ante reorg with 0 < 𝛼 < 0.5 stakes forking out HX if

𝑎1 ≥
ℎ(1 − 2𝛼) − pboost

𝛼
. (4)

Strings in the form as ∈ A𝑎1Hℎ1·Hℎ2A (ℎ1 > 0) are attack strings

if Equation (4) is true for ℎ = ℎ1 + ℎ2. If A forks out Hℎ1+ℎ2
, the

RANDAO reveals of Hℎ1
do not contribute to 𝑅𝑒,∗.

Theorem 2 (Recursive attack strings). Given any 𝑆 ∈ AS𝛼 ,
for a forking string A𝑎1HℎA where Equation (4) holds, A𝑎1HℎA𝑆 is
also an attack string, i.e., A𝑎1HℎA𝑆 ∈ AS𝛼 .

Due to space constraints, the proof is deferred to Appendix A.1.

3.3 Ex-post reorging honest blocks
In contrast to ex-ante reorgs, ex-post reorgs allowA to fork honest

blocks out after they were proposed. A validator could be motivated

to fork out blocks a posteriori if they contain unusually high transac-

tion fees [8]. However, at the time of writing, no reliable technique

is known for non-majority entities (i.e., 𝛼 < 0.5) to perform ex-post

reorgs [26]. Therefore, we do not consider this forking manipula-

tion in our theoretical model. Consequently, strings starting withH
are not attack strings, as the randao_reveal corresponding to H is

computationally hard to derive given that BLS signatures are exis-

tentially unforgeable. For convenience, we will make an exception

by referring to “H·” as a valid attack string. Nevertheless, ex-post

reorgs can occur in practice, see Section 5.2.2 and could be used

for RANDAO manipulation. If a validator fails to propose a block

in time, it might receive a small fraction 𝜖 of the attestations. If

the subsequent block’s proposer sees this and 𝜖 < pboost, then A
can fork out the preceding block for any 𝛼 . At the time of writing,

similar mechanics i.e., honest reorgs [27] are implemented in the

consensus protocol, though following them is optional. Reorging

happens when the previous block was proposed late and received

few attestations i.e., 𝜖 < 0.2, except for some edge cases. We do not

model honest reorgs in our MDP because a strategic player cannot

force honest validators to propose blocks late in our adversarial

model.

3.4 Detectability of RANDAO manipulations
Not all RANDAO manipulations are created equal from a detection

point of view. In some cases, A can plausibly deny that they have

manipulated the beacon output in their favour.

3.4.1 Detecting the selfish mixing manipulation. If the adversary
misses one of its tail blocks, say A·, then one cannot recompute the

counterfactual RANDAO output 𝑅𝑒,∗ that also contains the contri-

bution 𝑟𝑒
31
. This is because 𝑟𝑒

31
is not publicly available and is hard

to compute. Therefore, one cannot decide whether the adversary

has missed a block on purpose (i.e., to manipulate the RANDAO for

its own gains) or by accident, e.g., network outage. More generally,

if the adversary owns 𝑘 tail slots and misses 𝑛 ≤ 𝑘 of them, then

one can only recompute 2
𝑘−𝑛

RANDAO counterfactual outputs

𝑅∗,𝑒 out of the 2
𝑘
counterfactual outputs that the adversary sees.

This greatly limits the detectability of the selfish mixing manip-

ulation strategy. We note, however, that if a validator misses tail

blocks enough times, one could apply a binomial statistical test (e.g.,

Student’s 𝑡-test, 𝑍 -test) to check whether the validator manipulates

the RANDAO output for its own gains, see Section 5.1.3.

3.4.2 Detecting manipulations for reorged blocks. Since reorged
blocks had been proposed, they contain valid RANDAO contribu-

tions. For the sake of concreteness, consider the attack string AH·A
and suppose the adversary reorgs block H

31
in the tail slot with

RANDAO contribution 𝑟𝑒
31

by building its block A on top of each

other. Now, one could recompute how many blocks the adversary

would have won with (𝑅𝑒 ⊕ ℎ(𝑟𝑒
31

)) or without (𝑅𝑒) the honest tail

block. Therefore, these RANDAO manipulations are publicly verifi-

able. See our measurements of these manipulations on Ethereum

main net in Section 5.2.1.

4 RANDAO MANIPULATION PROFITABILITY
Moving further, we describe how to devise a stochastic strategy in

our RANDAO manipulation model, which considers selfish mixing

and forking strategies. Finally, we evaluate the efficacy and other

properties of this policy.

4.1 RANDAO manipulations strategies
A detailed analysis of RANDAO manipulations, focusing solely on

the selfish mixing strategy, can be found in [1]. The authors show

that RANDAO manipulation is profitable not only because of

immediate rewards: it leads to more A slots in epoch 𝑒 + 2,

but also because of

future rewards: it enhances the attacker’s ability to further

manipulate RANDAO in epoch 𝑒 + 2, potentially yielding

additional A slots in epoch 𝑒 + 4, and so on.

Should one disregard future rewards, the attacker’s strategy is

straightforward: given the opportunity for RANDAO manipulation,

simply calculate the possible epoch strings and choose the one that

yields the most A slots in epoch 𝑒 + 2, subtracting the missed slots

sacrificed in epoch 𝑒 . To evaluate this strategy one can explicitly

calculate the strategy’s reward, similar to how selfish mining was

evaluated for Bitcoin PoW [12].

However, to account for future rewards an attack strategy has

to be calculated. This involves more advanced game-theoretical

tools, specifically the Markov Decision Process (MDP). Alpturer and

Weinberg [1] point out that for selfish mixing, the optimal strategy

is simple to describe due to a massive reduction in state space in the

Markov chain. The future reward is an additive value, represented

by a utility function for each attack string, which also depends

on the stake 𝛼 . The attacker’s best strategy (policy) is to choose

the RANDAO outcome that maximises the sum of the immediate

rewards and the corresponding attack strings’ utility.

The RANDAO manipulation MDP for selfish-mixing is defined

as a tuple consisting of states, action space, policy, transition prob-
abilities, and rewards. The states represent selfish-mixing attack

strings, such as A𝑡 ·, for 𝑡 ∈ {0, . . . , 32}. The action space allows the

adversary, for each slot A in the attack string, to choose between

proposing (H) or withholding (M) the adversarial slot.

As discussed in [1], the determination of the policy reduces to

finding a utility function over the attack strings. The transition

probabilities are determined by a game-like process, modeled using

off-the-shelf stochastic methods whereby the attacker selects the

6

Forking the RANDAO: Manipulating Ethereum’s Distributed Randomness Beacon Preprint, January 2025,

RANDAO outcome (the observation) that maximises the sum of

the immediate rewards and the utility of the corresponding attack

string. Specifically, the RANDAO outcome is sampled by assuming

that each slot in epoch 𝑒 + 2 is drawn independently, proportional

to the stake 𝛼 . This transition’s reward is given by its immediate

rewards. Finally, a technique called policy iteration is applied to

find a strategy that can be shown to be optimal as it satisfies the

Bellman equations.

Next, we overview how the MDP of selfish mixing can be gener-

alised to account for forking strategies. The situation is significantly

more complex in the case of forking for the following two reasons:

(1) The attack strings may span the epoch boundary cf. Figure 4.
(2) Some attacks require decisions before seeing all the possible

RANDAO outputs cf. Figures 4 and 5.

To tackle 1) we define the extended attack string, i.e., a string
that also considers the beginning of the next epoch.

Definition 3 (Extended attack string). For (𝑚,𝑛) ∈ N2, the
set of extended attack strings EAS𝛼 (𝑚,𝑛) consists of all possible strings

{as + ∗ + as𝑡 | (as, as𝑡) ∈ AS𝛼 (𝑚,𝑛) × AST𝛼 (𝑚)} ,

where ∗ denotes some wildcard characters.

Note that, the number of extended attack strings is

|EAS𝛼 (𝑚,𝑛)| = |AS𝛼 (𝑚,𝑛)|·|AST𝛼 (𝑚)| ≤ 2
2𝑚+𝑛 .

An example extended attack string is eas = AH·A ∗A ∈ EAS𝛼 (2, 1).

Notice that this eas extends the attack string example of Figure 4.

The end of the first epoch in eas allows the adversary to ex-ante

fork the chain, while the end of the second epoch provides a selfish

mixing opportunity. Intuitively, an eas ∈ EAS𝛼 (𝑚,𝑛) string captures

the fact that only the beginning and the end of an epoch string can

contribute to the manipulative power of a strategic player. Looking

ahead, our MDP will have eas strings as its states. We chose𝑚 = 6,

𝑛 = 2 to keep our MDP state manageable. We let ∥es∥A denote the

number of adversarial slots in an epoch string es ∈ {A,H}32
.

Handling (2) is more complex, so for now, we focus on evaluating

the case presented in Figure 4. For this, it is sufficient to build an

MDP for the 𝐸𝐴𝑆(2, 1) attack strings. In the following subsection,

we examine this in detail. This also serves as a small illustrative

example involving only 16 states. We can solve the MDP to obtain

an optimal strategy, i.e., value iteration converges. As a result, we

derive an optimal strategy that essentially consists of only four

attack strings (H·, A·, AA·, AH·A). Surprisingly, for 𝛼 ≥ 0.2 this

strategy outperforms (by ∼ 0.05 more slots) the one based on selfish

mixing [1]
5
, which included 33 attack strings (A𝑡 ·, for 𝑡 ∈ [0, 32]).

4.2 A generalised MDP model for 𝐸𝐴𝑆(2, 1)

To illustrate our model of A’s behaviour, we introduce the main

concepts using the smallest possible extended attack string space

that makes forking attacks possible, i.e., 𝐸𝐴𝑆(2, 1).

Recall that an MDP is a tuple 𝑀𝛼 = (𝑆,𝐴,Π, {𝑃𝜋 }𝜋 , {𝑅𝜋 }𝜋) of

states 𝑆 , action space 𝐴, policy Π : 𝑆 → 𝐴, transition probabilities

{𝑃𝜋 : 𝑆 × 𝑆 → R}𝜋 and rewards {𝑅𝜋 : 𝑆 × 𝑆 → R}𝜋 . If we were
to model all possible attack scenarios by an MDP, one would need

to create a separate state for each possible point in time where

5
The term "optimal" refers to a specific set of attack strings.

a decision or an observation can be made, and the states should

contain information about the observables. This leads to a massive

increase in state space, making standard policy iteration techniques

infeasible.

Such an explosion of space was also observed in [1], where the

following insight is used. Let the state space consist of extended at-

tack strings (number of tail slots), and consider the observables (the

possible RANDAO outcomes from various selfish mixing decisions)

during state transitions only. Informally, this means that an action

(i.e., which slots to miss), the corresponding transition probabilities,

and the collected immediate rewards depend not only on the policy

and the current state but also on the outcome of an experiment

performed in that state. Technically, this is not an MDP any more

since applying the same policy and getting the same state transition

could potentially lead to different rewards. However, as observed

there, this model is still suitable for policy iteration, which yields

utility values for states, leading to a profitable policy.

We adopt the strategy above of keeping the state space as small

as possible at the price of making state transitions more compli-

cated. Our model consists of a state space of extended attack strings

(cf. Section 4.2.1), an action space (cf. Section 4.2.2) and a policy

(cf. Section 4.2.3). Note that our policies, as opposed to classical

MDPs, yield randomised state transitions, as they result from a “vir-

tual decision tree” corresponding to each state (cf. Appendix A.2).
We apply a utility function assigning a real number to each state

which describes the long-term benefit of being in this state. Imme-

diate rewards and transition probabilities are output as the result of

actions (cf. Section 4.2.4). In the presentation below, we assume that

a utility function𝑈 (𝑠) is already available for the extended attack

strings 𝑠 and formalize how one can derive them to the states of

the decision trees. In this subsection, we assume that 0.2 ≤ 𝛼 to

ensure that the forking attack shown in Figure 4 is feasible.

4.2.1 The simplest MDP’s states. We have four attack strings, i.e.,
AS𝛼 (2, 1) := {H·,A·,AA·,AH·A}, which we refer to as the honest

attack string, two selfish mixing attack strings, and a forking at-

tack string, respectively. The set of possible tail slots is defined

as AST𝛼 (2) := {H,A,AA,AH}, and we have extended them to

length-2 strings for a cleaner notation. Next, we generate 𝐸𝐴𝑆(2, 1)

as in Definition 3 to obtain 4 · 4 = 16 different extended attack

strings, see Figure 6. Let 𝑆 := 𝐸𝐴𝑆(2, 1).

4.2.2 The MDP’s action space.

Definition 4 (Attack actions). An attack action denotes a basic
action A can do. Let B := {Prop,Miss,Hide, Fork,Regret}, where
• Prop𝑒𝑠 - A proposes a block in Slot 𝑠 .
• Miss𝑒𝑠 - A misses in Slot 𝑠 ; i.e., does not publish a block.
• Hide𝑒𝑠 - A builds a block in Slot 𝑠 but does not publish it.
• Fork𝑒𝑠 - A builds a block in Slot 𝑠 on the last hidden block.
• Regret𝑒𝑠 - A “forgets” its private blocks, foregoes forking.

Amore detailed description of each action can be found in Algorithm 2.
Subscripts are omitted whenever they are clear from the context.

Let 𝐴 := B∗. To illustrate the previously introduced attack ac-

tions on the decision trees shown in Section 3.2. In case of a selfish
mixing attack string (A𝑡 , 𝑡 ∈ {1, . . . , 32}), cf. Figure 3, each 2

𝑡

out-edges correspond to the {Prop,Miss}𝑡 actions. Forking attack

7

Preprint, January 2025, Ábel Nagy, János Tapolcai, István András Seres, and Bence Ladóczki

0.2 0.3 0.4
0

2

4

𝛼

U
t
i
l
i
t
y
V
a
l
u
e

H· ∗
AA

H· ∗
HA

H· ∗
AH

H· ∗
HH

(a) Attack strings with prefix H·

0.2 0.3 0.4
0

2

4

𝛼

A· ∗
AA

A· ∗
HA

A· ∗
AH

A· ∗
HH

(b) Attack strings with prefix A·

0.2 0.3 0.4
0

2

4

𝛼

AH
·A ∗

AA

AH
·A ∗

HA

AH
·A ∗

AH

AH
·A ∗

HH

(c) Attack strings with prefix AH·A

0.2 0.3 0.4
0

2

4

𝛼

AA
· ∗ A

A

AA
· ∗ H

A

AA
· ∗ A

H

AA
· ∗ H

H

(d) Attack strings with prefix AA·

Figure 6: The utility function for each of the 16 extended attack string of 𝐸𝐴𝑆(2, 1).

strings admit a richer action space. For the sake of concreteness and

simplicity consider the forking eas = AH·A.A has two decisions to

make. The first decision is beforeA sees the RANDAO contribution

𝑟𝑒
31
, and the second decision is after the publication of H31

𝑒 .

• Prop𝑒
30
: A behaves honestly, i.e., A publishes the block A𝑒

30
.

• Hide𝑒
30
:A starts forking by privately building A𝑒

30
. After 𝑟𝑒

31

is published, A makes another decision:

– Fork𝑒+1

0
: completes forking by proposing A𝑒+1

0
upon A𝑒

30
.

– Regret𝑒+1

0
Prop𝑒+1

0
: the so-called “regret” branch of the de-

cision tree. A foregoes forking by proposing A𝑒+1

0
on top

of H𝑒
31
, essentially forfeiting A𝑒

30
.

For a more detailed description of A’s action, see Algorithm 2.

4.2.3 The MDP’s policy. We assign a decision tree to each state

to describe a policy, which we do in Appendix A.3. A in epoch 𝑒

constructs a decision tree based on eas𝑒 , walks through this tree

(e.g., Figures 4 and 5), which yields 𝑅𝑒 and the next state eas
𝑒+1

.

At a high level, we briefly describe now the structure of the de-

cision trees corresponding to forking attack strings (starting with

A𝑎1HℎA𝑎2
). A decides to behave honestly based on a threshold

(cf. Definition 6) or starts forking. If A decides to start forking

(e.g., by privately building all 𝑎1 blocks: Hide𝑎1
), after Hℎ

, A can

finish ex-ante reorging or “regret” the attack by abandoning A𝑎1
.

An important observation is that, in both cases, after a successful

forking or regretted attack,A still aims to maximise the utility until

the epoch boundary, regardless of the sacrificed previous blocks. This
recursive structure lets us describe the new state with a shorter

attack string from the remaining slots in epoch 𝑒 , cf. Section 4.3.

This observation holds for the case of “no forking” as well, since

after proposing A𝑎1Hℎ
, A still seeks to maximise the utility. We

define (the multisets of) observations to model each decision sit-

uation. Intuitively, whenever A could manipulate the RANDAO,

it observes and arbitrarily chooses from different RANDAO out-

puts 𝑅𝑒,∗ along with their corresponding extended attack strings

eas, actions act leading towards 𝑅𝑒,∗ and the number of sacrificed

blocks sac. However, for the action of behaving honestly, there are

no observations, the expected utility is compared to the derived

utilities of the observations.

Definition 5. Let O := {(c, act, eas, sac) ∈ {C,N}𝑚 × B∗ ×
𝐸𝐴𝑆(𝑚,𝑛)×N} be the observation set, where c is the realisation string
yielding eas and sac, while act is the corresponding action towards c.
Ω denotes the set of all possible multisets of observations.

We compute the immediate reward by evaluating cnt(eas, 𝑠𝑎𝑐) :=

∥eas[−32 :]∥A −𝑠𝑎𝑐 by choosing a certain eas. A policy Π is defined

as a total ordering on Ω and a threshold corresponding to the “no

forking” action, cf.Definition 6. For selfish mixing states 𝑠 with 𝑡 tail

slots, one can evaluate the utility𝑈 (𝑠) = max𝑖∈[1,2𝑡]
(cnt(eas

𝑖
, sac𝑖)+

𝑈 (eas
𝑖
)) where each (eas

𝑖
, sac𝑖) corresponds to the 𝑖th observation.

There are different actions A can perform: it can either decide not

to build a private chain, referred to as the “no forking” action, or it

can choose to build a private chain, which can be done in multiple

ways. Next, we define utility thresholds based on which A decides

which action to choose.

Definition 6 (No forking threshold). For any MDP state
𝑠 ∈ 𝑆 , we define (cf. [25, Eq.(17.4)]) a threshold for the “no forking”
action 𝑎 ∈ 𝐴(𝑠) (the action 𝑎 is defined by the corresponding eas
forking string): N𝛼 (𝑠) :=

∑
𝑠′∈𝑆 𝑃 (𝑠′ |𝑠, 𝑎)𝑈 (𝑠′). Here, 𝑠′ is the states

reached after the “no forking” action, i.e.,A proposes a block honestly
in all its assigned slots A𝑎1 . Note that this threshold does not depend
on the observations of 𝑠 .

Definition 7 (Forking threshold). For a given MDP state 𝑠 ,
and forking action 𝑎 ∈ 𝐴(𝑠),A can observe a set of observables𝑂 ∈ Ω.
The forking threshold is defined as F𝛼 (𝑠, 𝑎,𝑂) :=

∑
𝑠′∈𝑆𝑂 𝑃 (𝑠′ |𝑠, 𝑎)𝑈 (𝑠′).

Here, 𝑆𝑂 is the set of states in𝑂 , i.e., the observable states in the deci-
sion tree after the forking action 𝑎.

Theorem 3. For any forking eas of a state 𝑠 and observations
𝑂 ∈ Ω, the following equation holds for the optimal utility:

𝑈 (𝑠) = max({N𝛼 (𝑠), F𝛼 (𝑠, 𝑎1,𝑂), . . . , F𝛼 (𝑠, 𝑎𝑛,𝑂)}) , (5)

where {𝑎1, . . . , 𝑎𝑛} ⊂ 𝐴(𝑠) are the actions where A starts ex-ante
reorging in a specific way.

The proof is deferred to Appendix A.1.

Naturally, A chooses the action with the largest utility. We

already discussed the utility corresponding to ex-ante reorging,

but onceA started it by hiding some of its A𝑎1
blocks, after Hℎ

,A
can regret forking. From the new observations A can decide to do

so accordingly in the shorter eas𝑒
′
. Recall, that we could describe a

new state still in epoch 𝑒 after a regretted or successful forking with

the remaining slots, adjusting with the already sacrificed blocks.

4.2.4 The MDP’s transition probability and reward functions. The
following functions describes the state transition between EAS𝛼 (𝑚,𝑛).

Definition 8 (The next(·) function). The function nextΠ
𝑅,(𝑚,𝑛)

:

EAS𝛼 (𝑚,𝑛)→ Z × EAS𝛼 (𝑚,𝑛) gets eas𝑒 , the current RANDAO state
𝑅 ∈ {0, 1}256 and produces the immediate reward cnt and the next
eas

𝑒+1
according to Π.

8

Forking the RANDAO: Manipulating Ethereum’s Distributed Randomness Beacon Preprint, January 2025,

In the following, we do not denote the parameters Π, 𝑅 and (𝑚,𝑛)

of next(·), as they will be obvious from the context.

One can compute an optimal MDP with value iterations solely

on EAS𝛼 (𝑚,𝑛). Two following equation formally gives the required

steps after an initialising𝑈0 (e.g.,𝑈0 ≡ 0):

𝑈𝑖+1(eas𝑒) = E𝑅 (cnt +𝑈𝑖 (eas𝑒+1
)) , (6)

where (cnt, eas
𝑒+1

) = next(eas𝑒).

Definition 9 (Stochastic Observations). An observation cor-
responding to a realisation string c and to the current state described
by eas𝑒 yields a sacrifice (constant) and eas𝑒+1

. The epoch string of
epoch 𝑒 + 2: eas

𝑒+1
[−32 :] consists of 32 independent Bernoulli trials,

where each trial yields A with probability 𝛼 and H with probability
1 − 𝛼 . We denote this distribution as 𝑋eas,c (c ∈ {C,N}𝑚).

Recall that we assume𝑈 is given on EAS𝛼 (2, 1).

Honest attack strings. Here, A cannot manipulate the RAN-

DAO. Thus, O is a singleton set; O := {(𝜖, 𝜖, eas
1
, sac1)}. The new

state is eas := eas
1
and rewards += cnt(eas

1
, sac1).

Selfish mixing eas. Let 𝑡 denote the adversarial tail length

in eas[: −32]. Then, O = {(c𝑖 , act𝑖 , eas𝑖 , sac𝑖)
2
𝑡

𝑖=1
}. A chooses the

observation 𝜔 𝑗 = (c𝑗 , act𝑗 , eas𝑗 , sac𝑗) ∈ O according to 𝑈 (·). The
new state eas := eas

𝑗
and rewards += cnt(eas

𝑗
, sac𝑗).

Forking attack strings. In a forking state 𝑠 , which corresponds

to eas𝑠 starting with attack string AH·A. A can only observe

𝜔 𝑓 = (CN,Hide, eas
𝑓
, 0) ← 𝑋eas𝑠 ,CN according to which A de-

cides to fork or not. If A decides not to fork, the remaining attack

string will be “·A” after proposing AH, thus A would observe

(·, ·, eas𝑛, 0) ∼ 𝑋eas𝑠 ,C2 . The threshold of this action is N𝛼 (𝑠) =

E(cnt(eas𝑛, 0) +𝑈 (eas𝑛)). Whether A starts forking also depends

on the threshold F𝛼 (𝑠,Hide, {𝜔 𝑓 }). Let 𝑢𝑓 := cnt(eas
𝑓
, 0) +𝑈 (eas

𝑓
)

denote the utility of the state of completing the ex-ante reorg,

thus reaching the realisation string CN. Recall that A may regret

forking, leading to eas𝑟 , where (·, ·, eas𝑟 , 1) ∼ 𝑋eas𝑠 ,NC , which A
can only sample in Slot 30. The random variable of its utility is

𝑢𝑟 := cnt(eas𝑟 , 1)+𝑈 (eas𝑟), whichA compares to𝑢𝑓 in the first slot

of the next epoch. Finally, the forking threshold can be computed

as F𝛼 (eas𝑒 ,Hide, {𝜔 𝑓 }) = E(max(𝑢𝑓 , 𝑢𝑟)).

4.3 Forking attacks’ recursive characterization
The advantage of the 𝐸𝐴𝑆(2, 1) example was that it included only a

single forking attack. As shown in Figure 5, many more such attack

strings exist, and they can be recursively reduced to one another.

Recall that Figure 5 extended the example of Figure 4 by including

the possibility of selfish mixing attacks on two branches. In our

evaluation, we employed a recursive construction to characterise

these attacks. Next, we highlight the key ideas; the details of our

recursive approach are deferred to Appendices A.2 and A.3.

The following examples illustrate some of the intricacies of fork-

ing attack strings that make their analysis challenging.

Self-forking at the head slot (AHA·A) The tail-forking at-

tack can be even more profitable if the adversary also controls the

next head slot. In such cases – surprisingly – the decision tree for

𝛼 > 0.32 includes a branch where it may be more profitable for the

adversary to miss its own block A
31
. Put differently, if 𝛼 > 0.32,

then {P𝑒
29
,R𝑒

30
,M𝑒

31
,H𝑒+1

0
} is a viable configuration. A may be in-

centivised to prolong the forking attack and miss its own block A
31
,

akin to the sacrificed blocks in selfish mixing.

Different decision tree for tail forking depending on 𝛼

(A2HA·) If 0.15 ≤ 𝛼 < 0.2, then A must start building a branch

fromA
28

precedingH
30

for forking.A is able to fork outH
30
, while

selfish mixing at the same time. Consider the two possible slot

statuses {P𝑒
28
, P𝑒

29
R𝑒

30
H𝑒

31
} and {P𝑒

28
,M𝑒

29
,R𝑒

30
,H𝑒

31
}. In other words,

A can fork outH
30

even sacrificingA
29
. On the other hand, if 0.2 ≤

𝛼 , A can minimize the sacrifice of a regretted fork while reaching

the same 𝑅𝑒,∗ with {H𝑒
28
, P𝑒

29
,R𝑒

30
,H𝑒

31
} by proposing A

28
. This way,

when A builds on top of A
28
, only sacrificing A

29
. Finally, A can

fork out H
30
, while missing A

28
, because A can gather enough

votes even if the forking starts forking in Slot 28. A generalization

of how much slot is required before H is stated in Theorem 1.

0.1 0.2 0.3 0.4

0

5

10

15

20

Stakes (𝛼)

E
x
p
e
c
t
e
d
n
u
m
b
e
r
o
f
s
l
o
t
s

Selfish mixing and forking (this work)

All adversarial slots

Forked honest blocks

Honest

Selfish mixing [1]

Figure 7: Efficacy of various RANDAO manipulation strate-
gies. Note that a strategic player who applies both forking
and selfish mixing strategies outperforms the RANDAO ma-
nipulator using only selfish mixing. As a result of RANDAO
manipulation, chain quality is also reduced, i.e., see the in-
creased number of forked honest blocks.

Recursive (forking) attack strings As Theorem 2 suggests

attack strings can be built recursively. We illustrate this recursion

with the attack string as = AHAAHA·. Each action A performs,

reduces the attack string to a shorter as′ we already evaluated.

• Prop
26

yields A2HA· (since H
27

is always proposed). Thus

the realisation string(∈ {C,N}6) it will start with C
26
C

27
.

• Hide
26

action produces the following possibilities:

– Fork
28
: realisation string will start with C

26
N

27
C

28
and

A has to maximise the utility in AHA.

– Regret
28
: in this case, the realisation string starts with

c = N
26
C

27
. Afterwards, A maximises the utility in the

attack string A2HA· regardless of the lost block A
26
.

4.4 Results
We solved our generalised MDP for the extended attack strings

described in Appendix A.2, i.e., for EAS𝛼 (6, 2). We observe that

RANDAO manipulations with forking strategies already outper-

form selfish mixing with 𝛼 = 0.08, cf. Figure 7. A RANDAO ma-

nipulator staker with 𝛼 = 41.95% staking power could obtain 50%

9

Preprint, January 2025, Ábel Nagy, János Tapolcai, István András Seres, and Bence Ladóczki

of the proposed slots. In contrast, selfish mixing alone would re-

quire an 𝛼 = 46.24% to get half of the slots. We see in Figure 12

that a RANDAO manipulator validator significantly decreases the

blockchain throughput by missing blocks in its own slots and by

forking out honest blocks. For example,A with 𝛼 = 0.33% decreases

the blockchain’s throughput by 3.86%. The decreased transaction

throughput is a negative externality for every user of the system.

In Figure 8, we analyze the probability distribution of the different

actions in our generalised MDP’s stationary distribution. For exam-

ple, for𝛼 = 0.30, we see that a strategicA performs an ex-ante reorg

in 18.94% of the epochs, regrets forking in 3.31% of the epochs, self-

ish mixes in 15.99% of the epochs and only acts honestly in 61.76%

of the epochs. In actuality, a blockchain network using an unbiased
randomness beacon should only incentivise honest behaviour.

0 0.1 0.2 0.3 0.4 0.5

0

50

100

Stakes (𝛼)

P
r
o
b
a
b
i
l
i
t
y
(
%
)

Forking

Regret

Selfish mixing

Honest

Figure 8: The probability of each strategic behaviour in the
stationary distribution. If A ex-ante reorged once at the
epoch, it counts as Forking, if regretted an attack but did not
fork, it counts to to the Regret category etc. Large staking
entities are often incentivised to manipulate the RANDAO.
For instance, an economically rational staker with 𝛼 = 0.3

manipulates the RANDAO in 38.24% of epochs.

Table 2 compares strategic players’ manipulative power in PoS

Ethereum and PoW Bitcoin using selfish mixing with/without fork-

ing and selfish mining. Observe that the corresponding effective

stakes with the forking strategy surpass that of selfish mixing alone

when the attacker has large stakes, and it can efficiently fork out

honest blocks. Currently, the largest staking pool controls 28.1%
6
of

the stakes. This staking power can be increased by 8.37% with our

combination of block withholding and forking attacks. By compar-

ing the numbers in Table 2 we can say that the current DRB in the

Ethereum network is less biasable than that of a PoW blockchain.

5 RANDAO MANIPULATIONS IN PRACTICE:
EMPIRICAL MEASUREMENTS

This section focuses on whether any RANDAO manipulation at-

tacks have occurred. We present our measurements, which were

performed to find empirical evidence of such attacks. Primarily, we

examined those epoch boundaries where there are missed slots at

the beginning or end of an epoch. To effectively investigate these

6
See: https://beaconcha.in/pools.

Stake Ethereum PoS Bitcoin PoW

(𝛼)
Selfish

Mixing

(SM) [1]

This work

SM+forking

Selfish Mining

[12, 𝛾 = 1 in (3)]

1% 1.0011% 1.0011% 1.0099%

5% 5.0483% 5.0483% 5.2387%

10% 10.1881% 10.1882% 10.9194%

15% 15.3996% 15.4243% 17.0110%

20% 20.6777% 20.9583% 23.5165%

25% 26.0247% 26.6090% 30.4878%

30% 31.4516% 32.8356% 38.0622%

35% 36.9735% 40.2870% 46.5560%

40% 42.6244% 47.4946% 56.7442%

45% 48.4918% 53.7777% 70.9423%

Table 2: Advantages in terms of staking power of strategic
RANDAO manipulators. We compare this work and prior
work by Alpturer and Weinberg [1] for various stake sizes.

attacks, we need to group validators and assume that the attacker

is part of one or more of these groups. Each block proposer can be

identified by their public key. Note that this data alone is insuffi-

cient to perform statistical tests because a staking entity typically

controls numerous validators. Luckily, some entities reveal their

public keys, and a mapping between proposers and entity identities

can be constructed. To that end, we use public data obtained us-

ing various APIs,
7
and process the blocks over a two-year period,

from September 22, 2022, to October 1, 2024 (epochs in the range

[148412, 314998]),
8
extracting the actual block proposers and the

number of missed blocks for each epoch.

5.1 Selfish mixing
First, we search for statistical evidence of systematic RANDAO

manipulations using selfish mixing on the Ethereum mainnet.

5.1.1 Missing consecutive tail slots. Major staking entities have

had numerous opportunities to conduct selfish mixing RANDAO

manipulations, see Figure 9. We found that the biggest staker, Lido,

could have manipulated the RANDAO with selfish mixing 47 694

times. In particular, Lido had 4 consecutive tail slots in 737 different

epochs and missed at least one slot in 3 of these instances.

5.1.2 Not missing tail slots. We focus on consecutive tail slots,

where entities did not miss any tail slots. Recall that in this case, all

counterfactual RANDAO outputs 𝑅𝑒,∗ in epoch 𝑒 are computable

by anyone, cf. Section 3.4.1. Given 𝑡 tail slots, the adversary could

have chosen from 2
𝑡
RANDAO outputs. We label the realised 𝑅𝑒 as

BEST if not missing any slot was a better strategy for maximizing

the reward (𝑝(𝑒 + 2, 𝑅𝑒 ,A)− 𝑠(𝑒, 𝑅𝑒 ,A)). We call a RANDAO output

NEUTRAL for the tail slot owner if there were other achievable

configurations (i.e., by missing tail slots) that would have yielded

the same number of slots. Finally, the RANDAO output is labelled

as WORSE if the adversary could have chosen a configuration

7
https://beaconcha.in/, https://beaconscan.com/, https://etherscan.io/.

8
Before the merge (September 2022) the beacon chain and the RANDAO had not been

used to select validators. Hence, we disregard epochs 𝑒 ∈ [0, 148411].

10

https://beaconcha.in/pools
https://beaconcha.in/
https://beaconscan.com/
https://etherscan.io/

Forking the RANDAO: Manipulating Ethereum’s Distributed Randomness Beacon Preprint, January 2025,

L
id
o

C
o
in
b
a
se

B
in
a
n
ce

K
ra
k
en

B
T
C
S
u
is
se

D
A
R
M
A

O
K
X

1

2

3

4

5

6

7

8

34110

36

15221

65

8092

6

6599

13

3309

2

2320

2

2062

22

9771

24

1661

8

471

1

345

4

65 38 32

2731

14

199 27 23 2 1

737

3

35 2

249

3

2

67

1

1

21

8

N
u
m
b
e
r
o
f
c
o
n
s
e
c
u
t
i
v
e
t
a
i
l
s
l
o
t
s

Figure 9: Selfish mixing manipulation opportunities for ma-
jor staking entities in epochs [148412 − 314998]. The values in
the coloured triangles indicate the number of epochs during
which the staking entity had a certain number of consecu-
tive tail slots, while the white triangles indicate how many
of these epochs included at least one missed tail slot.

that would have yielded strictly more slots in epoch 𝑒 + 2 than the

one realised by choosing not to miss any slots. As illustrated in

Table 3: Selfish mixing strategies when stakers did not miss
any tail slots. Note that entities’ staking power typically
changes over time. Here, 𝛼 denotes the entities’ average stak-
ing power in the samples of selfish mixing candidates.

Entity BEST NEUTRAL WORSE Stake∗ (𝛼)

Lido 14 788 3 244 12 883 28.5

Coinbase 9 224 2 685 4 954 10.96

Binance 5 151 1 616 1 745 5.63

Kraken 4 318 1 319 1 268 5.34

Bitcoin Suisse 2 359 701 290 2.06

Upbit 1 184 253 53 1.05

OKX 1 540 399 120 1.48

Table 3, in several cases, major staking entities might have achieved

better outcomes by withholding the publication of all their tail slots.

For instance, an economically rational Lido operator should have

missed at least one slot 12 883 times when, in fact, they did not

miss.

We examined the distribution of slots for the major staking

entities when their validators proposed all tail slots. Let 𝑁𝑝 be the

number of such epochs and 1 ≤ 𝑘 ≤ 𝑁𝑝 : 𝑒
𝑝

𝑘
be the 𝑘-th such

epoch. If no RANDAO manipulation occurred with the utility of

maximizing the number of proposed blocks, the number of obtained

slots 𝑝(𝑒 + 2, ·,A) in epoch 𝑒 + 2 by an entity would be binomially

distributed see Figure 10

𝐻0 : ∀𝑘 ∈ N(1 ≤ 𝑘 ≤ 𝑁𝑝) : 𝑝(𝑒
𝑝

𝑘
, ·,A) ∼ Binom(32, 𝛼

𝑒
𝑝

𝑘

) . (7)

To statistically test whether ∀𝑘 ∈ [1, 𝑁𝑝] : 𝑝(𝑒
𝑝

𝑘
, ·,A) are from the

established distributions, we take the histogram of the 𝑝(𝑒
𝑝

𝑘
, ·,A)

0 5 10 15 20

0

2,000

4,000

6,000

#
e
p
o
c
h
s

Lido

0 5 10 15

0

1,000

2,000

3,000

Coinbase

0 2 4 6 8 10

0

1,000

2,000

Slots

#
e
p
o
c
h
s

Binance

0 2 4 6 8 10

0

500

1,000

1,500

2,000

Slots

Kraken

Figure 10: Number of slots in epoch 𝑒 + 2 without missed slots
in epoch 𝑒 for Lido, Coinbase, Binance, and Kraken. The blue
bars represent the empirical distribution, while the red line
is the expected theoretical distribution for the number of
obtained slots in epoch 𝑒 + 2.

values between 0 and 32. We define an indicator variable as 𝐼𝑘,𝑖 = 1

if 𝑝(𝑒
𝑝

𝑘
, ·,A) = 𝑖 , and 0 otherwise. Let 𝐻𝑝

be the empirical dis-

tribution of 𝑝(𝑒𝑝 , ·,A), where 𝐻
𝑝

𝑖
=

∑𝑁𝑝

𝑘=1
𝐼𝑘,𝑖 . If 𝐻0 holds, 𝐼𝑘,𝑖 ∼

Bernoulli
((

32

𝑖

)
𝛼𝑖
𝑒
𝑝

𝑘

(1 − 𝛼
𝑒
𝑝

𝑘

)
32−𝑖

)
, thus

ˆ𝐻𝑝
:= E(𝐻

𝑝

𝑖
) =

𝑁𝑝∑︁
𝑘=1

E(𝐼𝑘,𝑖) =

𝑁𝑝∑︁
𝑘=1

(
32

𝑖

)
𝛼𝑖
𝑒
𝑝

𝑘

(1 − 𝛼
𝑒
𝑝

𝑘

)
32−𝑖 . (8)

We can test whether 𝐻𝑝
matches

ˆ𝐻𝑝
with the 𝜒2

test. We grouped

every adjacent bin in the histogram, so for 𝑖 ∈ 0 ≤ 𝑖 ≤ Bins : 𝐻
′
𝑖
≥

5, as the chi-squared test recommends. According to the results,

see Table 4, no 𝑝-value takes a critically low value.

5.1.3 Missing a few tail slots. Selfish mixing entails selectively

missing tail slots, but it can also caused by other reasons, e.g., net-
work outage. Next, we test this hypothesis. The null hypothesis

states that all the times an entity missed at the end of the epoch,

it was due to unrelated reasons to the RANDAO. In other words,

rejecting the null hypothesis indicates that systematic RANDAO

manipulation must have been present. Generally, considering the

epochs in which an entity has missed at least one slot, the number

of slots obtained 𝑝(𝑒, ·,A) should be distributed as the sum of dis-

crete binomial distributions, a Poisson binomial distribution. Let

𝑁 be the number of epochs in which the entity in question missed

at least one tail slot, and for 1 ≤ 𝑘 ≤ 𝑁𝑚 , let 𝑒𝑚
𝑘

represent the

𝑘-th such epoch. Note that 𝛼𝑒 , the staking power of the validator

entity in question, changes over time. Thus, we cannot use standard

distribution statistical tests, e.g., the Z-test. Instead, we test whether
𝑁𝑚∑︁
𝑘=1

𝑝(𝑒𝑚
𝑘
, ·,A) ∼ PoissonBinom(32, (𝛼𝑒𝑚

1

, 𝛼𝑒𝑚
2

. . . , 𝛼𝑒𝑁𝑚
)) . (9)

If 𝑁𝑚 > 50 ∧ ∀𝑘 ∈ [1, 𝑁] : 𝛼𝑒𝑚
𝑘

> 0.05, we can approximate this

distribution with a normal distribution. We perform a right-tailed

normality testing on the value

∑𝑁𝑚

𝑘=1
𝑝(𝑒𝑚

𝑘
, ·,A) ∼ N (𝜇, 𝜎2

). Let 𝜇0 =

32

∑𝑁
𝑖=1

𝛼𝑒𝑖 and 𝜎0 =

√︃
32

∑𝑁
𝑖=1

𝛼𝑒𝑖 (1 − 𝛼𝑒𝑖). The null hypothesis is
𝐻0 : 𝜇 ≤ 𝜇0, while the alternative hypothesis is 𝐻1 : 𝜇 > 𝜇0. We

cannot reject the null hypothesis in all applicable cases due to the

11

Preprint, January 2025, Ábel Nagy, János Tapolcai, István András Seres, and Bence Ladóczki

large 𝑝-values, see Table 5. Thus, missed tail slots are not part of a

systemic RANDAO manipulation by any of the studied entities.

Table 4: 𝜒2 test on the number of slots entities obtained when
proposed all tail slots. 𝑁 denotes the number of examined
epochs and 𝐵𝑖𝑛𝑠 the bins of the histogram.

Validator 𝑁 Bins 𝑝-value

Lido 46 879 19 0.852

Coinbase 16 883 13 0.325

Binance 8 512 8 0.142

Kraken 6, 905 9 0.803

Bitcoin Suisse 3 350 6 0.055
Upbit 1 490 4 0.465

OKX 2 059 5 0.303

Table 5: Z-test results applied to the number of slots obtained
by Lido and Coinbase in epochs where they missed at least a
tail slot. No evidence for systematic RANDAOmanipulations.

Validator 𝑁 𝜇 𝜇0 𝜎0 𝑝-value

Lido 80 746 752.21 23.039 0.606

Coinbase 71 222 228.344 14.304 0.671

5.2 Forking RANDAO manipulations
Next, we search for statistical evidence of systematic RANDAO

manipulations using ex-ante and ex-post forking.

5.2.1 Forking for slot number maximizing utility. With current stak-

ing powers, only a handful of entities can execute an ex-ante reorg.

Possible candidates include Lido, Coinbase, Kraken, etc. The diffi-

culty in reorging is not only the presence of enough staking power

but also the right tail slot configuration, e.g., AHA·. We only found

two instances at epochs 192 420 and 313 291 where Lido ex-ante

reorged Gemini and a solo staker at the 30
th
slot of the epoch, re-

spectively. Lido obtained more slots (8 in both cases) in the next but

one epoch. If Lido had not forked out them and had behaved hon-

estly, then Lido would have obtained only 7 slots in epoch 192 422

and 313 291. We empirically evaluated Lido’s unrealised rewards.

In particular, Lido could have manipulated the RANDAO numer-

ous times, even though it did not engage in these manipulations.

This economically irrational behaviour resulted in 74 782 slots of

unrealised rewards between epochs 190 000 and 314 994.

5.2.2 Forking and MEV. Many works analyze and quantify the

incentives implied by MEV [10, 18, 23, 30]. Next, we study the po-

tential correlation (or lack thereof) between the incentives due

to MEV and RANDAO manipulation. Specifically, we considered

instances of ex-ante reorgs and ex-post reorgs (cf. Section 3.3) that

happened for the strings ending with H·A or HA·. Recall ex-post
reorgs can occur in practice accidentally if H had been published

late into its slot and received an unusually low number of votes. We

observe many reorgs executed by three major staking entities. How-

ever, we see no correlation between RANDAO and MEV incentives,

see Appendix C.2 for our empirical measurements.

6 COUNTERMEASURES
An often-mentioned countermeasure for RANDAO manipulations

in the Ethereum community is social slashing [29]. There are sev-

eral severe challenges to this approach. First, social slashing is hard

to agree on and enforce in a decentralised environment. Second,

social slashing may become an even larger centralizing force than

it attempts to prevent, in this case, the unfair enrichment of already

wealthy validators. Third, algorithmic countermeasures are desired

instead of social deterrents in a trust-minimised, geo-economically

decentralised environment. On the other hand, there seem to be no

simple, immediate algorithmic or cryptographic countermeasures

without fundamentally redesigning the currently used RANDAO

protocol. Alpturer and Weinberg observed that the manipulability

of the RANDAO is attenuated with longer epochs because longer

epochs’ tail slots yield less manipulative power [1]. Additionally,

the protocol could financially penalise not publishing blocks. If the

proposer boost parameter were decreased, ex-ante reorgs would be

harder to accomplish. However, note that none of these counter-

measures eliminates RANDAO manipulability entirely.
We highlight two cryptographic protocols that could offer a vi-

able, unbiasable alternative to the current RANDAO protocol. First,

verifiable delay functions (VDF) eliminate the possibility of bias

by delaying the DRB’s output after all contributions have been

made [4]. If the delay parameter is chosen properly, no bias is pos-

sible in the dishonest majority setting (under cryptographic assump-

tions). VDFs are non-trivial to deploy [3] and have severe hardware

requirements. We also consider weighted threshold VRFs [11] as a

promising cryptographic primitive for instantiating an unbiasable

DRB in the honest majority setting. Unfortunately, the currently

known only BLS-based weighted threshold VRF protocol [11] does

not scale to millions of validators, the scale Ethereum would need.

7 RELATEDWORK
The manipulability of leader selection mechanisms in Byzantine

fault-tolerant PoS blockchains has been analysed in [13, 14] to un-

cover the relationship between the power of the adversary and the

network connectivity parameter. Yaish et al. proceed by defining

multiple variants of a timestamping attack and find that these at-

tacks were performed in the wild [32], making it the first confirmed

case of consensus-level manipulation in a major cryptocurrency.

A great summary of DRBs can be found in [9, 19, 24]. The vul-

nerabilities of the DRB in PoS Ethereum have been discussed by

the community since 2018 [6, 21, 28, 29]. Then, an initial formal

verification analysis of an earlier, two-round version of the RAN-

DAO [33] protocol was presented in [2]. Alpturer and Weinberg [1]

show that the RANDAO manipulation game in Ethereum can be

formulated as an MDP and propose a state-space reduction method

that allows policy iteration to converge quickly on a laptop.

8 CONCLUSION AND FUTURE DIRECTIONS
We presented the currently known most powerful RANDAO ma-

nipulations by considering the selfish mixing strategy and also

12

Forking the RANDAO: Manipulating Ethereum’s Distributed Randomness Beacon Preprint, January 2025,

the ex-ante forking strategy, where the adversary forks out honest

blocks from the canonical chain to increase its manipulative power.

We foresee three main areas for future work. A complete, albeit

technically much more difficult, MDP could model even more strate-

gies for possible RANDAO manipulation. In our current model, we

do not consider slot-varying rewards (i.e., slots’ values are not uni-

form), neither ex-post reorgs nor the manipulation and suppression

of honest attestations in sync committees.

We foresee the emergence of a RANDAO bribery market, where

validators can auction off their RANDAO manipulation rights if

they obtain tail slot(s) in an epoch. A corrupt validator could publish

their own RANDAO contribution before their allotted tail slot(s).

After learning every RANDAO reveal, market participants could

offer bribes to the corrupt validator not to publish their tail slot(s).

Note that such a market could be implemented trustlessly using

smart contracts. The game-theoretic implications of such a complex

market could be studied in future work.

Future work should amend (e.g., longer epochs), fix or even re-

place the current RANDAO protocol with an adequate non-biasable

DRB protocol (e.g., VDFs [4], weighted threshold VRFs [11]), given

the Ethereum consensus protocol’s stringent latency requirements.

ACKNOWLEDGMENT
We are grateful to Joachim Neu for insightful discussions on vari-

ous attacks on Ethereum. We thank Arantxa Zapico and Gottfried

Herold for discussions on RANDAO bribery markets. We are in-

debted to Kaya Ito Alpturer and Matt Weinberg for sharing their

manuscript on optimal RANDAO manipulations with us. Last but

not least, we thank Toni Wahrstätter for inspiration. István András

Seres was supported by the Ministry of Culture and Innovation

and the National Research, Development, and Innovation Office

within the Quantum Information National Laboratory of Hungary

(Grant No. 2022-2.1.1-NL-2022-00004). Bence Ladóczki and János

Tapolcai received financial support from the National Research,

Development, and Innovation Office (NKFIH, Grant No. K-146347).

REFERENCES
[1] Kaya Alpturer and Matthew Weinberg. 2024. Optimal RANDAO Manipulation

in Ethereum. Advances in Financial Technologies (2024).
[2] Musab A Alturki and Grigore Roşu. 2020. Statistical model checking of RAN-

DAO’s resilience to pre-computed reveal strategies. In Formal Methods. FM 2019
International Workshops: Porto, Portugal, October 7–11, 2019, Revised Selected Pa-
pers, Part I 3. Springer, 337–349.

[3] Alex Biryukov, Ben Fisch, Gottfried Herold, Dmitry Khovratovich, Gaëtan

Leurent, María Naya-Plasencia, and Benjamin Wesolowski. 2024. Cryptanal-

ysis of algebraic verifiable delay functions. In Annual International Cryptology
Conference. Springer, 457–490.

[4] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable

delay functions. In Annual international cryptology conference. Springer, 757–788.
[5] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short signatures from the Weil

pairing. In International conference on the theory and application of cryptology
and information security. Springer, 514–532.

[6] Vitalik Buterin. 2018. RANDAO beacon exploitability analysis, round 2. https:

//ethresear.ch/t/randao-beacon-exploitability-analysis-round-2/1980. Accessed:

2024-11-12.

[7] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao,

Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X Zhang. 2020. Combining

GHOST and casper. arXiv preprint arXiv:2003.03052 (2020).
[8] Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind Narayanan.

2016. On the instability of bitcoin without the block reward. In Proceedings of the
2016 ACM SIGSAC conference on computer and communications security. 154–167.

[9] Kevin Choi, Aathira Manoj, and Joseph Bonneau. 2023. SoK: Distributed

Randomness Beacons. Cryptology ePrint Archive, Paper 2023/728. https:

//eprint.iacr.org/2023/728

[10] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Ben-

tov, Lorenz Breidenbach, and Ari Juels. 2019. Flash Boys 2.0: Frontrunning,

Transaction Reordering, and Consensus Instability in Decentralized Exchanges.

arXiv:1904.05234 [cs.CR]

[11] Sourav Das, Benny Pinkas, Alin Tomescu, and Zhuolun Xiang. 2024. Distributed

randomness using weighted vrfs. Cryptology ePrint Archive (2024).
[12] Ittay Eyal and Emin Gün Sirer. 2014. Majority is not enough: Bitcoin mining

is vulnerable. In Int. Conf. on Financial Cryptography and Data Security (FC).
Springer, 436–454.

[13] Matheus VX Ferreira, Ye Lin Sally Hahn, S Matthew Weinberg, and Catherine Yu.

2022. Optimal strategic mining against cryptographic self-selection in proof-of-

stake. In Proceedings of the 23rd ACM Conference on Economics and Computation.
89–114.

[14] Matheus V. X. Ferreira, Aadityan Ganesh, Jack Hourigan, Hannah Huh,

S. Matthew Weinberg, and Catherine Yu. 2024. Computing Optimal Manipula-

tions in Cryptographic Self-Selection Proof-of-Stake Protocols. In The 25th ACM
Conference on Economics and Computation (EC ’24) (New Haven, CT, USA, July 8–

11, 2024). ACM, New York, NY, USA, 43. https://doi.org/10.1145/3670865.3673602

[15] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility

of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374–382.

[16] Ethereum Foundation. 2023. Ethereum Proof-of-stake docu-

mentation. https://github.com/ethereum/consensus-specs/blob/

8696fbf75387fb37a32fc08a6b934653198c6c0c/specs/phase0/validator.md#

attesting. Accessed: 2024-11-12.

[17] Viet Tung Hoang, BenMorris, and Phillip Rogaway. 2012. An enciphering scheme

based on a card shuffle. In Advances in Cryptology–CRYPTO 2012: 32nd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings.
Springer, 1–13.

[18] Aljosha Judmayer, Nicholas Stifter, Philipp Schindler, and Edgar Weippl. 2022.

Estimating (miner) extractable value is hard, let’s go shopping!. In International
Conference on Financial Cryptography and Data Security. Springer, 74–92.

[19] Alireza Kavousi, Zhipeng Wang, and Philipp Jovanovic. 2024. SoK: Public Ran-

domness. In 2024 IEEE 9th European Symposium on Security and Privacy (EuroS&P).
216–234. https://doi.org/10.1109/EuroSP60621.2024.00020

[20] Andrew Lewis-Pye and Tim Roughgarden. 2023. Permissionless Consensus.

arXiv preprint arXiv:2304.14701 (2023).
[21] Paul D. 2018. Limiting last-revealer attacks in beacon chain random-

ness. https://ethresear.ch/t/limiting-last-revealer-attacks-in-beacon-chain-

randomness/3705/1. Accessed: 2024-11-12.

[22] Ulysse Pavloff, Yackolley Amoussou-Guenou, and Sara Tucci-Piergiovanni. 2022.

Ethereum Proof-of-Stake under Scrutiny. arXiv preprint arXiv:2210.16070 (2022).
[23] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying blockchain ex-

tractable value: How dark is the forest?. In 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 198–214.

[24] Mayank Raikwar and Danilo Gligoroski. 2022. Sok: Decentralized randomness

beacon protocols. In Australasian Conference on Information Security and Privacy.
Springer, 420–446.

[25] Stuart J Russell and Peter Norvig. 2016. Artificial intelligence: a modern approach.
Pearson.

[26] Caspar Schwarz-Schilling, Joachim Neu, Barnabé Monnot, Aditya Asgaonkar,

Ertem Nusret Tas, and David Tse. 2022. Three Attacks on Proof-of-Stake

Ethereum. In Financial Cryptography and Data Security, Ittay Eyal and Juan

Garay (Eds.). Springer International Publishing, Cham, 560–576.

[27] Michael Sproul. 2023. Allow honest validators to reorg late blocks. https://github.

com/ethereum/consensus-specs/pull/3034

[28] V. Buterin. 2018. RNG exploitability analysis assuming pure RANDAO-based

main chain. https://ethresear.ch/t/rng-exploitability-analysis-assuming-pure-

randao-based-main-chain/1825 Accessed: 2024-11-12.

[29] Toni Wahrstätter. 2023. Selfish Mixing and RANDAO Manipulation. https:

//ethresear.ch/t/selfish-mixing-and-randao-manipulation/16081. Accessed: 2024-

11-12.

[30] Ben Weintraub, Christof Ferreira Torres, Cristina Nita-Rotaru, and Radu State.

2022. A flash (bot) in the pan: measuring maximal extractable value in private

pools. In Proceedings of the 22nd ACM Internet Measurement Conference. 458–471.
[31] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.
[32] Aviv Yaish, Gilad Stern, and Aviv Zohar. 2022. Uncle Maker: (Time)Stamping

Out The Competition in Ethereum. Cryptology ePrint Archive, Paper 2022/1020.

https://doi.org/10.1145/3576915.3616674

[33] Yaning Zhang and Youcai Qian. 2019. Randao: A DAO working as RNG of

Ethereum. https://github.com/randao/randao/. Accessed: 2024-11-12.

13

https://ethresear.ch/t/randao-beacon-exploitability-analysis-round-2/1980
https://ethresear.ch/t/randao-beacon-exploitability-analysis-round-2/1980
https://eprint.iacr.org/2023/728
https://eprint.iacr.org/2023/728
https://arxiv.org/abs/1904.05234
https://doi.org/10.1145/3670865.3673602
https://github.com/ethereum/consensus-specs/blob/8696fbf75387fb37a32fc08a6b934653198c6c0c/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-specs/blob/8696fbf75387fb37a32fc08a6b934653198c6c0c/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-specs/blob/8696fbf75387fb37a32fc08a6b934653198c6c0c/specs/phase0/validator.md#attesting
https://doi.org/10.1109/EuroSP60621.2024.00020
https://ethresear.ch/t/limiting-last-revealer-attacks-in-beacon-chain-randomness/3705/1
https://ethresear.ch/t/limiting-last-revealer-attacks-in-beacon-chain-randomness/3705/1
https://github.com/ethereum/consensus-specs/pull/3034
https://github.com/ethereum/consensus-specs/pull/3034
https://ethresear.ch/t/rng-exploitability-analysis-assuming-pure-randao-based-main-chain/1825
https://ethresear.ch/t/rng-exploitability-analysis-assuming-pure-randao-based-main-chain/1825
https://ethresear.ch/t/selfish-mixing-and-randao-manipulation/16081
https://ethresear.ch/t/selfish-mixing-and-randao-manipulation/16081
https://doi.org/10.1145/3576915.3616674
https://github.com/randao/randao/

Preprint, January 2025, Ábel Nagy, János Tapolcai, István András Seres, and Bence Ladóczki

A DEFERRED PROOFS
A.1 Proofs for forking attack strings

Theorem (Condition for forking). GivenA𝑎1 slots followed by
HXA, (where X ∈ {A,H}ℎ−1, 𝑎1, ℎ > 0) A can perform an ex-ante
reorg with 0 < 𝛼 < 0.5 stakes forking out HX if

𝑎1 ≥
ℎ(1 − 2𝛼) − pboost

𝛼
. (10)

Proof. When A decides to fork the blockchain, the forking at-

tack is successful if the sum of all the votes (sometimes attestations)

onA’s blockchain fork is larger than the sum of votes on the honest

fork. The adversarial strategy entails the following steps:

(1) A secretly builds the first adversarial slots Y, and a subset

of its remaining 𝑎1 − 1 slots. Additionally, all its validators

vote at each slot on Y.
(2) Since the honest parties do not see the secret block(s) of A,

they build their blocks on top of the parent of block Y and

start a new blockchain fork. Every honest block in HX is

built on this fork, and honest validators vote on them.

(3) A proposes its block A on top of the last hidden block fol-

lowing HX, along with its secret fork and corresponding

votes.

A’s fork has 𝑎1𝛼 + ℎ𝛼 + pboost votes, while the honest parties’

blockchain fork accumulated (1−𝛼)ℎ attestations. Honest validators

will switch to A’s fork if it has more votes, i.e.,

𝑎1𝛼 + ℎ𝛼 + pboost ≥ (1 − 𝛼)ℎ . (11)

By rearranging Equation (11), and applying that 𝑎1 > 0, we

obtain the claimed inequality for 𝑎1. □

As a corollary, we define the following quantity:

Definition 10 (Minimum slots to fork). Let minFork(𝛼,ℎ)

represent the minimum value of 𝑎1 required for successfully ex-ante
reorging ℎ blocks given 𝛼 stake. This function combines Theorem 1
and the condition that 𝑎1 ∈ N+.

minFork(𝛼,ℎ) = max
(⌈
ℎ(1 − 2𝛼) − pboost

𝛼

⌉
, 1

)
. (12)

Next we prove Theorem 2: Given any 𝑆 ∈ AS𝛼 , for a forking

stringA𝑎1HℎA where Equation (4) holds,A𝑎1HℎA𝑆 is also an attack
string.

Proof. Given 𝑆 ∈ AS𝛼 attack string, there is a possible RAN-

DAO value 𝑅𝑒,∗ that can be computed upon reaching the first slot

of 𝑆 . A can first ex ante reorg Hℎ
by privately building A𝑎1

, then

building on top of it in the last block of the forking string. After A
can follow the same actions required to reach 𝑅𝑒,∗ in 𝑆 . □

Theorem. For any forking eas of a state 𝑠 and observations𝑂 ∈ Ω:

𝑈 (𝑠) = max({N𝛼 (𝑠), F𝛼 (𝑠, 𝑎1,𝑂), . . . , F𝛼 (𝑠, 𝑎𝑛,𝑂)}) , (13)

where {𝑎1, . . . , 𝑎𝑛} ⊂ 𝐴(𝑠) are the actions where A starts ex-ante
reorging in a specific way.

Proof. The set of actions 𝐴(𝑠) can be divided into two disjoint

subsets: actions related to honest behaviour and actions related to

ex-ante reorgs. As such,

𝑈 (𝑠) = max
𝑎∈𝐴(𝑠)

∑︁
𝑠′

𝑃 (𝑠′ |𝑠, 𝑎)𝑈 (𝑠′) =

max({N𝛼 (𝑠), F𝛼 (𝑠, 𝑎1,𝑂), . . . , F𝛼 (𝑠, 𝑎𝑛,𝑂)}) . (14)

Note that 𝑅(𝑠) = 0 in these states of the decision tree, as A is

rewarded (and punished for the sacrifice) at the end of epoch 𝑒 . □

A.2 RANDAO manipulations with ex-ante
forking

In this subsection, we define the assumptions under which A op-

erates in our modeling when conducting an ex-ante forking ma-

nipulation. Let the beginning of an attack string as be described
by (a1, h, a2) ∈ N+3

such that it starts with Aa1HhAa2
disregarding

the epoch boundary. Suppose A starts ex-ante reorging by first

privately building a block allocated in Aa1 at slot 𝑠𝑝 . Note that 𝑠𝑝
is not necessarily the first slot of Aa1

. The following simplifying

conditions regarding the A’s behaviour hold in our model:

• At slot 𝑠𝑒 allocated in Aa2
, A will finish ex-ante reorging by

building upon the latest private block.

• During the slots in Aa1
after 𝑠𝑝 , A does not publish any

blocks, it only misses or privately builds blocks on top of the

latest private block.

• In the first slot of Aa2
, 𝑠𝑟 , A might reconsider forking af-

ter the last RANDAO reveal of H : 𝑟𝑠𝑟 −1. In this case, A
regrets forking and abandons its privately built block(s) and

considers H𝑒
𝑠𝑟 −1

as the head of the beacon chain.

• In some extreme cases, A might prolong the forking if 𝑠𝑒 is

not the first slot of Aa2
, in which case all slots before 𝑠𝑒 are

missed. We refer to this phenomenon as additional sacrifice.
• A tries to minimise the number of missed slots during a

regretted ex-ante reorg by building the secret fork as late as

possible.

Algorithm 1 calculates howA can fork out a set of honest blocks

Hℎ
in as. The output is a pairs of natural numbers (𝑖, 𝑏), where

(0 < 𝑏 ≤ a1) denotes that A is able to fork out HℎA𝑖
by privately

building A𝑏
blocks preceeding the honest cluster of blocks Hℎ

.

Greater additional sacrifices (A𝑖
) may require more blocks (𝑏) to

gather enough votes. If 𝑖 = 0, we expect A𝑏H to be in epoch 𝑒 , fur-

thermore if 𝑖 > 0, then A𝑏HℎA𝑖
should be in epoch 𝑒 to manipulate

𝑅𝑒 .

Consider the attack string AHA2·. ThenA with 𝛼 = 0.4 can fork

out H either sacrificing one of its blocks following H or none of

them, i.e., ExAnte(0.4, 1, 1, 2, 28) = {(0, 1), (1, 1)}.
In Algorithm 3, we calculate the necessary actions during Aa1

to perform an ex-ante reorg. The input consists of a so-called

plan ∈ {C,N}a1 , denoting the previsioned statuses of the corre-

sponding Aa1
slots when forking. A will minimise the number of

privately built blocks as they might be potentially sacrificed during

a regretted fork. The minimum number of slots A has to build

privately in Aa1
is denoted by n, which can be calculated in Algo-

rithm 1. Sometimes the plan is unfeasible, e.g., plan = Na1
because

clearly, A is unable to execute an ex-ante reorg without blocks

ending up on the canonical chain. In the above case, ∅ is returned.
Consider the attack string A3HA·. Assume that 𝛼 ≥ 0.2 andA’s

plan := C2N. Then, ForkAction(plan, 3, 1) = Prop·Hide·Miss.
14

Forking the RANDAO: Manipulating Ethereum’s Distributed Randomness Beacon Preprint, January 2025,

Algorithm 1 Ex-ante reorg evaluation for forking stringAa1HhAa2
.

Returns a set of tuples (𝑖, 𝑏) denoting how many blocks A must

build privately (𝑏) to fork out HhA𝑖
blocks. If 𝑖 > 0 A only forks

out HhA𝑖
, if it is still in epoch 𝑒 . Otherwise, we only expect Aa1H

to be in the current epoch.

1: procedure ExAnte(𝛼 : R+, a1 : N, h : N, a2 : N, s : N)→
P(N × N+

)

2: remain := 32 − s ⊲ Remaining slots in this epoch

3: C := {} ⊲ 𝑖 ∈ C ⇒ 𝑖 = 0 ∨ Aa1HhA𝑖
is in epoch 𝑒

4: if a1 < remain then
5: C := {0}; 𝑖 := 1 ⊲ Aa1H1

in epoch 𝑒

6: while a1 + h + 𝑖 ≤ remain ∧ 𝑖 < a2 do
7: C := C ∪ {𝑖}
8: 𝑖 := 𝑖 + 1

9: end while
10: end if
11: ⊲ (𝑖, 𝑏) ∈ C′ : A can fork out HhA𝑖

with A𝑏
slots

12: C′ := {(𝑖,minFork(𝛼, h + 𝑖))| 𝑖 ∈ C}
13: return {(𝑖, 𝑏) | (𝑖, 𝑏) ∈ C′, 𝑏 ≤ a1}
14: end procedure

Algorithm 2 Actions described as procedures. For the sake of

simplicity, we disregard attestations and assume A successfully

ex-ante reorgs whenever action Fork is called. HEAD denotes

the blockchain head considered by the hones validators, while

PRIVHEAD is the latest private block built by A if there is a fork.

The current slot number is 𝑠 . Note, that A always votes for slot

PRIVHEAD.
1: State Variables: HEAD, PRIVHEAD, 𝑠
2: procedure Propose
3: Build block on HEAD and propose it

4: if HEAD = PRIVHEAD then
5: HEAD := PRIVHEAD := 𝑠

6: else
7: HEAD := 𝑠

8: end if
9: end procedure
10: procedureMISS

11: pass
12: end procedure
13: procedure Hide
14: Privately build block on PRIVHEAD
15: PRIVHEAD := s
16: end procedure
17: procedure Fork
18: Build block on PRIVHEAD and propose private blocks

19: HEAD := PRIVHEAD := s
20: end procedure
21: procedure Regret
22: PRIVHEAD := HEAD
23: end procedure

15

Preprint, January 2025, Ábel Nagy, János Tapolcai, István András Seres, and Bence Ladóczki

Algorithm 6 Recursively creating a graph for forking attack

strings. Creating an empty graph and populating it with the help

of BuildGr.

1: procedure ForkNodes(𝛼 : R+, as : AS𝛼 (𝑚,𝑛), Pr : {C,N}∗)
2: 𝑉 := {}; ®𝐸 := {} ⊲ Empty graph

3: as
1

:= tail(as); as
2

:= head(as); as′ := as
1

+ as
2

4: Parse as′ ∈ Aa1HhAa2
(H{A,H}∗ ∪ {𝜖})

5: E := ExAnte(𝛼, a1, h, a2, 32 − |as
1
|)

6: as
𝑟,1

:= as
1
[a1 + h :]

7: as𝑛 := as𝑟 := as
𝑟,1

+ “·” + as
2

⊲ Regret/Not forking

8: R := {} ⊲ Set of known and relevant statuses

9: C := {} ⊲ Set of vertices with actions to connect later

10: for (𝑖, 𝑏) ∈ E do ⊲ 𝑖 sacrifice, 𝑏 blocks to fork

11: as
𝑓

:= as
1
[a1 + h + 𝑖 + 1 :] + “·” + as

2

12: if as
𝑓

[0] = H then
13: continue ⊲ RANDAO of as

𝑓
[0] is unknown

14: end if
15: for plan ∈ {C,N}a1 do
16: act := ForkAction(plan, a1, 𝑏)

17: if act = ∅ then
18: continue ⊲ Not feasible plan

19: end if
20: map := Prop,Hide,Miss → C,N,N
21: 𝑟 := act.replace(map) ⊲ Statuses when regret

22: Pr
𝑓

:= plan + Nh+𝑖
+ C ⊲ Forking

23: Pr𝑟 := 𝑟 + Ca1 ⊲ Regret statuses

24: (𝑣 𝑓 ,𝑉𝑓 , ®𝐸𝑓) := BuildGr(𝛼, as
𝑓
, Pr + Pr

𝑓
)

25: (𝑣𝑟 ,𝑉𝑟 , ®𝐸𝑟) := BuildGr(𝛼, as𝑟 , Pr + Pr𝑟)

26: R := R ∪ K(𝑣 𝑓) ⊲ A knows RANDAO of forking

27: ⊲ Intermediate vertex, where A started forking:

28: 𝑣𝑖 := Vertex(as, 32 − |as
𝑟,1
|,K(𝑣 𝑓) ∪ K(𝑣𝑟))

29: 𝑉 := 𝑉 ∪𝑉𝑓 ∪𝑉𝑟 ∪ {𝑣𝑖 } ⊲ Adding vertices

30: 𝑒𝑓 := (𝑣𝑖 , 𝑣 𝑓); 𝑒𝑟 := (𝑣𝑖 , 𝑣𝑟)

31: Pr(𝑒𝑓) := Pr
𝑓

; act(𝑒𝑓) := Miss𝑖Fork
32: Pr(𝑒𝑟) := Pr𝑟 ; act(𝑒𝑟) := Regret
33: C := C ∪ {(𝑣𝑖 , act)} ⊲ Connectivity infos

34:
®𝐸 := ®𝐸 ∪ ®𝐸𝑓 ∪ ®𝐸𝑟 ∪ {𝑒𝑓 , 𝑒𝑟 }

35: end for
36: end for
37: 𝑣𝑏 := Vertex(as, 32 − |as

1
|,R) ⊲ Starting vertex

38: for (𝑣𝑖 , act) ∈ C do
39: 𝑒 := (𝑣𝑏 , 𝑣𝑖) : Pr(𝑒) = 𝜖 ∧ act(𝑒) = act
40:

®𝐸 := ®𝐸 ∪ {𝑒} ⊲ A starts forking

41: end for
42: (𝑣𝑛,𝑉𝑛, ®𝐸𝑛) := BuildGr(𝛼, as𝑛, Pr + Ca1+h

)

43: 𝑒𝑛 := (𝑣𝑏 , 𝑣𝑛) ⊲ A does not fork

44: Pr(𝑒𝑛) := Ca1+h
; act(𝑒𝑛) := Propa1

45: 𝑉 := 𝑉 ∪𝑉𝑛 ∪ {𝑣𝑏 }; ®𝐸 := ®𝐸 ∪ ®𝐸𝑛 ∪ {𝑒𝑛}
46: return (𝑣𝑏 ,𝑉 , ®𝐸)

47: end procedure

Algorithm 4 Constructing a graph from as attack string,

using the helper functions: Algorithms 5 and 6. Whenever

SelfishMixingNodes returns an empty string, we know that A
might be able to fork, thus we call ForkNodes.

1: procedure BuildGr(𝛼 : R+, as : AS𝛼 (𝑚,𝑛), Pr : {C,N}∗)
2: (𝑣,𝑉 , ®𝐸) := SelfishMixingNodes(𝛼, as, Pr)
3: if 𝑉 = ∅ then
4: (𝑣,𝑉 , ®𝐸) := ForkNodes(𝛼, as, Pr)
5: end if
6: return (𝑣,𝑉 , ®𝐸)

7: end procedure

Algorithm 5 Constructing a graph from as expecting it to be a

simple selfish mixing or “empty” string, where no manipulation is

possible (e.g., as ∈ “ · ” + {A,H}𝑛). Otherwise, an empty graph is

returned.

1: procedure SelfishMixingNodes(𝛼 : R+, as : AS𝛼 (𝑚,𝑛), Pr :

{C,N}∗)
2: 𝑣𝑏 := nil; 𝑉 := {}; ®𝐸 := {}
3: Parse as

1
, as

2
such that as = as

1
+ · + as

2

4: if as
1

= 𝜖 then ⊲ Empty string

5: 𝑣𝑏 := Vertex(as, 32, {Pr})
6: 𝑉 := {𝑣𝑏 } ⊲ Single vertex, A cannot attack

7: else if ∃𝑡 ∈ N+
: as

1
= A𝑡 then ⊲ Selfish mixing

8: (𝑣𝑚,𝑉𝑚, ®𝐸𝑚) := BuildGr(𝛼, as[1 :], Pr + N)

9: (𝑣𝑝 ,𝑉𝑝 , ®𝐸𝑝) := BuildGr(𝛼, as[1 :], Pr + C)

10: 𝑣𝑏 := Vertex(as, 32 − |as
1
|,K(𝑣𝑚) ∪ K(𝑣𝑝))

11: 𝑒𝑚 := (𝑣𝑏 , 𝑣𝑚); 𝑒𝑝 := (𝑣𝑏 , 𝑣𝑝) ⊲ Edges

12: Pr(𝑒𝑚) := N; Pr(𝑒𝑝) := C ⊲ Printer

13: act(𝑒𝑚) := Miss; act(𝑒𝑝) := Prop ⊲ Actions

14: 𝑉 := 𝑉𝑚 ∪𝑉𝑝 ∪ {𝑣𝑏 }; ®𝐸 := ®𝐸𝑚 ∪ ®𝐸𝑝 ∪ {𝑒𝑚, 𝑒𝑝 }
15: end if
16: return (𝑣𝑏 ,𝑉 , ®𝐸)

17: end procedure

A.3 Decision trees
In this subsection, we show how one can construct a decision tree

𝐺 = (𝑉 , ®𝐸) based on an attack string as. A state was previously

described with the help of extended attack strings, but for the sake

constructing decision trees, the postfix of epoch 𝑒 + 1 is irrelevant.

Although Algorithm 4 handles the overall tree construction, the

concrete details of the graph structure are developed within two

helper functions: Algorithms 5 and 6. All 3 of these algorithms

return a graph in the following format: (𝑣,𝑉 , ®𝐸), where 𝑣 ∈ 𝑉 is

the root of the constructed tree (𝑉 , ®𝐸). We define the following

functions on 𝐺 , assigned during the construction of the decision

tree:

• as : 𝑉 → AS𝛼 (𝑚,𝑛),

• K : 𝑉 → P({C,N}𝑚),

• s : 𝑉 → N,
• Pr : ®𝐸 → {C,N}∗,
• act : ®𝐸 → 𝐴.

Each state (𝑣 ∈ 𝑉) is described by an attack string as(𝑣), the

current slot number s(𝑣) and finally the set of realisation strings,

where the corresponding 𝑅𝑒,∗ can be computed.A can then choose

an action act(𝑒) according to the optimal policy cf. Section 4.2.3.

16

Forking the RANDAO: Manipulating Ethereum’s Distributed Randomness Beacon Preprint, January 2025,

Once A executes a Fork or Regret action, the rest of the attack
can be described by the remaining slot statuses of epoch 𝑒 . The

canonical chain is agreed on by H and A and A does not try to

fork out these blocks, rather focusing for the rest of the epoch. We

account for these agreed blocks with the function called printer

(Pr(𝑒)) outputting slot statuses (C/N) corresponding to the initial

characters of as(𝑣). The term printer reflects the irreversible nature

of these outputs, as each status is fixed once produced. For the sake

of concreteness, suppose 𝑣 is the state described by AHA·, after A
started forking, and needs to decide whether to finish forking, or

building on top of H
30
. Let 𝑒 = (𝑣, 𝑣 ′) correspond to the decision of

regretting forking, the above discussed functions are yielding the

following values:

• as(𝑣) = AHA·
• K(𝑣) = {CNC,NCC,NCN}
• s(𝑣) = 31

• Pr(𝑒) = NC
• act(𝑒) = Regret

Algorithm 3 Calculating the actions needed to perform an ex-ante

reorg given a plan : {C,N}a1 , which denotes the desired statuses

of the first A cluster. Additionally, 0 < n ≤ a1 means the number

of necessary slots needed to ex-ante reorg (see Algorithm 1).

1: procedure ForkAction(plan : {C,N}a1 , a1 : N, n : N)→
Ba1 ∪ {∅}

2: C := {𝑖 ∈ N | 𝑖 ≤ a1 − n ∧ plan[𝑖] = C}⊲ Candidate indices
3: if C = ∅ then⊲ 𝑖 ≤ a1 − n : plan[𝑖] = N → no voting here

4: return ∅⊲ Votes in the remaining n − 1 slots ∅ enough
5: end if
6: 𝑙 := max(C) ⊲ A starts forking as late as feasible

7: plan1 := plan[: 𝑙] ⊲ A proposes blocks during the C slots

8: plan2 := plan[𝑙 :] ⊲ A privately builds during the C slots

9: act1 := plan1 .replace(C,N → Prop,Miss)

10: act2 := plan2 .replace(C,N → Hide,Miss)

11: return act1 + act2
12: end procedure

For the sake of simplicity, letVertex(as, 𝑠,R) denote the operation

of creating a vertex with the following attributes: as(𝑣) = as∧ s(𝑣) =

𝑠 ∧ K(𝑣) = R.
Algorithm 5 takes 𝛼 stake, as attack string and the already

printed characters Pr. This function is responsible only for man-

aging simple cases where no manipulation or selfish mixing is

possible.

• Empty string: tail(as) = 𝜖 . A cannot manipulate in either

case due to the absence of A slots in epoch 𝑒 .

• Selfishmixing: 𝑡 ∈ N+
: tail(as) = A𝑡

.A eitherMiss/Prop,
the algorithm recursively calls back to theA𝑡−1

+“·“+head(as)

attack string, which is either selfish mixing or an empty

attack string.

• Other: Empty graph is returned. BuildGr then calls Algo-

rithm 6 as it is a forking string.

In Algorithm 6, we construct forking decision trees by using

recursion. The first step is extracting the values (a1, h, a2) such that

as starts with Aa1HhAa2
. A can either:

• Do not fork: In this scenarioA executes the actions Propa1 .
The attack string as𝑛 describes the remaining slots, thus

BuildGr is called to construct this branch recursively. Char-

acters Ca1+h
are printed. We show that if A starts forking,

there will be at least one N slot in the interval Aa1Hh
, thus

these branches of the tree are independent.

• Starts forking: A evaluates which attacks it can pursue

with Algorithm 1. The algorithm iterates through the possi-

ble values of (plan, 𝑖) ∈ {C,N}a1 ×N, where plan denotes the

intended statuses of Aa1
, while HhA𝑖

the interval which A
plans to fork out. Algorithm 3 yields the action (act) leading
to a state after Hh

(𝑣𝑖), where A has to choose between:

– Finishing the described attack by missing 𝑖 blocks, then

building on top of the latest private block (Miss𝑖Fork).
Because the plan was achieved, the slot statuses plan +

Nℎ+𝑖C are added to the finalised statuses (Pr). The attack
string as

𝑓
describes the state of advancing a1 + h + 𝑖 + 1

slots. The rest of the tree is constructed recursively from

as
𝑓
.

– Regretting the attack by abandoning the privately built

blocks, which results at least one missed slot in Aa1
. Hid-

den and missed blocks contribute to Pr as N, while pro-

posed blocks as C. The attack continues recursively at 𝑣𝑟 ,

described by the attack string as𝑟 , afterCh
is concatenated

at the end of Pr. This branch is independent of the above

branch, as Hh
will be part of the canonical chain here.

B ADDITIONAL OBJECTIVE FUNCTIONS FOR
RANDAO MANIPULATIONS

As we alluded to in Section 2.3, a RANDAO manipulator might be

motivated by other objective functions than just maximizing the

number of obtained slots. In particular, one objective function is

the target slot utility, where the adversary is motivated to propose a

specific slot in the next epoch. More formally, we define the target-

slot reward function Γ
𝑡𝑠𝑙𝑜𝑡
𝜋 for validator 𝑖 and the 𝑗 th slot in epoch

𝑒 + 2 as:

Γ
𝑡𝑠𝑙𝑜𝑡
𝜋 := 𝐼 (v𝑒+2

𝑅 [𝑗] == 𝑖) , (15)

where 𝐼 (·) is an indicator variable.

As an extension, one might also consider a forward-looking

objective where the validator aims only to maximize the number

of blocks obtained in epoch 𝑒 + 2 discounting any losses incurred

by the manipulation strategy in epoch 𝑒 , that is

max

𝑅𝑒
𝑝(𝑒 + 2, 𝑅𝑒 ,A) . (16)

In addition, one might consider various other manipulation objec-

tives. However, this work focuses on the utility functions defined

in Equations (3) and (15), disregarding any other incentives valida-

tors may have.We leave the exploration of different utility functions

to future work.

B.1 Evaluating the target slot utility
We evaluated the manipulative power of an adversary that wishes

to optimize for the target slot utility function, cf. Equation (15). In

particular, we consider a model in which the adversary manipulates

the RANDAO once in epoch 𝑒 to obtain a specific slot, say the

17

Preprint, January 2025, Ábel Nagy, János Tapolcai, István András Seres, and Bence Ladóczki

−2 −1 0 1 2 3

16

18

20

Normalized #slots

M
E
V
(
l
o

g
2
(
w
ei

)
)

Coinbase

Binance

Lido

Figure 13: MEV incentives of three major validators when-
ever they ex-post reorged blocks at the end of an epoch. We
normalised the slots obtained in the next but one epoch by
the entities’ stake and the MEV of the reorging block. We
see no correlation between the MEV content of the reorged
blocks and the normalised RANDAO outcome.

0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

Stakes (𝛼)

P
r
o
b
a
b
i
l
i
t
y
o
f
g
e
t
t
i
n
g
t
h
e
s
l
o
t

Manipulated

Honest

Figure 11: The expected value of obtaining a target slot for
an honest player (blue) and a RANDAOmanipulator using
selfish mixing and forking strategies.

0 0.1 0.2 0.3 0.4 0.5

0.8

0.85

0.9

0.95

1

Stakes (𝛼)

C
h
a
i
n
t
h
r
o
u
g
h
p
u
t

Forked honest blocks

Missed adversarial slots

Figure 12: Blockchain throughput degradation as a function
of the RANDAO manipulator adversary’s staking power 𝛼 .

𝑖th slot in epoch 𝑒 + 2. We evaluate the adversarial probability of

this “one-shot” RANDAO manipulation to obtain the desired slot

in Figure 11.We find that, for instance, for𝛼 = 0.3, the adversary has

a 0.451 probability of obtaining a desired target slot in epoch 𝑒 + 2.

We leave it to future work to study the target slot utility function

in other, perhaps stronger adversarial models. For example, one

could study the target slot utility in an adversarial model in which

A manipulates the RANDAO multiple epochs before the desired

target epoch to enhance its manipulative power and increase its

probability of obtaining the target slot.

C ADDITIONAL EMPIRICAL MEASUREMENTS
In this section, we provide measurements that we could not include

in the main text due to space constraints.

C.1 Measurements about the forking policy
First, we show in Figure 12, how a forking RANDAO manipulator

staking entity decreases the blockchain’s throughput by forking

numerous honest blocks out.

C.2 Forking and MEV: are they related?
We collected ex-ante and ex-post reorgs executed by three major

entities (i.e., Lido, Coinbase, Binance) where they reorged a tail

slot H
30

or H
31
. For each entity and tail slot reorg event HA· or

H·A, we created a pair (𝑝(𝑒 + 2, 𝑅𝑒 ,A), f), where f is the amount

the block builder paid to the validator in the block A. Since it is
hard to assess the MEV content of a block, we use f as a proxy

to approximate the MEV content of a block. We do not observe a

significant correlation between the MEV content of the block A
and the number of slots obtained by the ex-post forking entity in

epoch 𝑒 + 2, see Figure 13. The observed correlation coefficients

are −0.13,−0.02, 0.26 for Lido, Binance, and Coinbase, respectively.

This indicates that, as of the time of writing, ex-post forking deci-

sions show no significant correlation with RANDAO manipulation

considerations.

18

	Abstract
	1 Introduction
	2 Preliminaries and System model
	2.1 Notations
	2.2 Leader selection in Ethereum
	2.3 System model and manipulation objectives

	3 RANDAO manipulation strategies
	3.1 Selfish mixing
	3.2 Ex-ante reorging honest blocks
	3.3 Ex-post reorging honest blocks
	3.4 Detectability of RANDAO manipulations

	4 RANDAO manipulation profitability
	4.1 RANDAO manipulations strategies
	4.2 A generalised MDP model for EAS(2,1)
	4.3 Forking attacks' recursive characterization
	4.4 Results

	5 RANDAO Manipulations in Practice: Empirical Measurements
	5.1 Selfish mixing
	5.2 Forking RANDAO manipulations

	6 Countermeasures
	7 Related work
	8 Conclusion and future directions
	References
	A Deferred proofs
	A.1 Proofs for forking attack strings
	A.2 RANDAO manipulations with ex-ante forking
	A.3 Decision trees

	B Additional objective functions for RANDAO manipulations
	B.1 Evaluating the target slot utility

	C Additional empirical measurements
	C.1 Measurements about the forking policy
	C.2 Forking and MEV: are they related?

