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Abstract—In this paper, we introduce an oracle version of
the Restricted Syndrome Decoding Problem (RSDP) and
propose novel authentication protocols based on the hardness
of this problem. They follow the basic structure of the HB-
family of authentication protocols and later improvements
but demonstrate several advantages.

An appropriate choice of multiplicative subgroup and
ring structure gives rise to a very efficient hardware im-
plementation compared to other Learning Parity with Noise
based approaches. In addition, the new protocols also have
lower key size, lower communication costs, and potentially
better completeness/soundness compared to learning-based
alternatives. This is appealing in the context of low-cost,
low-powered authenticating devices such as radio frequency
identification (RFID) systems. Lastly, we show that with
additional assumptions, RSDP can be used to instantiate a
Man-in-the-Middle secured authentication protocol.

1. Introduction

Authentication serves as one of the foundational pillars
of cryptography, playing a crucial role in securing commu-
nication and data integrity. As technology advances, par-
ticularly with the widespread adoption of low-cost RFID
tags, the demand for lightweight yet robust authentication
protocols has intensified. Due to the efficient nature of
using only simple operations, Learning parity with Noise
(LPN) emerged as a prime candidate for constructing
lightweight identification protocol. The LPN problem does
not only stand out under the “practical” but also from
the theoretical viewpoint. It is closely related to the well-
studied decoding a random linear code problem or the
equivalent syndrome decoding problem, and they are both
strongly believed to resist known quantum attacks.

However, traditional approaches often struggled to
balance efficiency and security, prompting an ongoing
search for solutions catering to resource-constrained en-
vironments without compromising security. For example,
early attempts at employing LPN, e.g., [1], [2], [3], [4],
[5], [6], were met with security issues when examined
under the scopes of different, more advanced adversarial
models, such as in [7], [8], [9]. Numerous attempts to
improve and explore other (yet still related to the LPN-
based) directions have been proposed in recent years [10],
[11], [12]. They appear to have achieved some level of
security while still promising efficiency.

Hopper and Blum [1] laid the foundation for LPN-
based authentication with their strikingly simple 2-round
design, called HB. It provides provable security under
passive attack, in which an adversary can only eavesdrop

on the communications. It was noted by Juels and Weis [2]
that an active attacker (i.e., with query power) could
easily break HB, and they proposed an augmented 3-round
version called HB+. HB+ was shown to be susceptible
to attacks in the Man-in-the-Middle attack model (MitM)
[7]. Gilbert et al. [6] proposed HB# to resist the attack
from [7]. To make the proposal suitable for low-cost
hardware, the authors also proposed using X as a Toepliz
matrix, which implies a slightly different LPN hardness
assumption. Unfortunately, in a more general model of
MitM adversary, HB# was shown to be not sufficient [9].

LPN-based MitM-secured authentication was finally
achieved with a series of breakthrough works: Kiltz et al.
[11] proposed a variant of LPN called Subset-LPN and
built efficient MACs based on this problem. Notably, they
also achieve ϵ security (compared to

√
ϵ for other LPN-

based protocols, excluding HB) by avoiding rewinding in
their security proof. One of the drawbacks is a large key
size that can be prohibitive in some cases. While HB# can
circumvent this problem by using “structural” LPN (e.g.,
employing a Toepliz matrix) [6], it is unfortunately not the
case for [11]. Li et al. in [10] showed an interesting design
called LCMQ without constructing MACs by applying a
chosen ciphertext secure encryption on top of the LPN
samples. To reduce communication and the computation
burden on the low-cost tag, the encryption scheme uses
the so-called P2-circulant matrix. By masking the LPN
samples, they proposed aggressive parameters for their
claim security, thus demonstrating the efficiency of the
design. However, Nguyen et al. [13] have recently devised
a key-recovery attack on LCMQ, which could significantly
compromise the performance by forcing bigger key sizes.

Further advancement came when Lyubashevsky and
Masny showed how to generically build a MitM-secured
authentication from any (randomized) weak pseudo-
random functions (wPRFs), which only has to fulfill a
few (reasonable) properties [12]. Therefore, LPN can be
seen as an instantiation of this design. Other well-studied
LPN-type assumptions were employed to achieve man-
ageable key sizes and efficiency required for low-cost
environments, such as Ring-LPN [14] and Toepliz-LPN
[15]. Despite the tightness of the security proof being
“only”

√
ϵ, their proposal remains impressive as it is more

efficient than MACs construction like [11]. Moreover, it is
unclear how the gap in the security proof affects instances
for practical uses.

Contributions. Similarly to LPN, the Restricted Syn-
drome Decoding Problem (RSDP) is another NP-hard
variant of SDP. It was first proposed by Baldi et al.
in [16] as a new research direction toward efficient code-



based zero-knowledge identification. It has recently been
featured in one of the post-quantum signature candidates,
CROSS [17], in the ongoing NIST additional call for
signatures.

In this work, we introduce an Oracle version of the
RSDP and propose novel authentication protocols based
on the hardness of this problem. We first explore the idea
of building a highly efficient RSDP-based authentication
protocol that is secure in the active attack model. By
selecting the secret keys from a suitable restricted set,
multiplication in the finite field can be as simple as a
cyclic shift, which can be performed very efficiently even
with low-cost RFID tags. Our designs also have lower key
size, lower communication costs, and potentially better
completeness/soundness compared to HB-like protocols
based on LPN or similar problems. On the theoretical
side, restricting the secret keys in such a fashion does
not compromise the hardness of RSDP. Moreover, relying
on the best cryptanalytic tools for RSDP [17], we show,
for example, that the key size for 128-bit security can
be as low as 396-bit compared to 768 for LPN-based
constructions. We further propose another stronger design
that is proven to be secure in the MitM model. The cost is
larger keys and more costly implementation, but still, the
design compares favorably with other protocols secure in
the MitM model.

Organization. In Section 2, we give the basics on au-
thentication protocols, coding theory, LPN, and RSDP.
We introduce some new definitions in relation to RSDP.
In Section 3, we give the basic RSDP authentication
protocol with security against active attacks. The proof
of security is given in the same section. Section 4 is
devoted to parameter instantiation and performance eval-
uation, including some comparisons based on FPGA and
ASIC implementations. Section 5 then gives an extended
protocol that is secure in the MitM and includes proof of
this fact.

2. Preliminaries

Throughout the paper, we use the notation

• a,a,A for single elements, vectors, and matrices,
respectively.

• ⟨·, ·⟩ the inner products of two vectors.
• In the identity matrix of size n× n.
• Fp the finite field of order p, where p is a prime

and Fn
p is the corresponding vector space of di-

mension n.
• a

$←− A an element drawn uniformly at random
from some set A.

2.1. Authentication Protocol

We are interested in an interactive authentication pro-
tocol where we define two entities: a Tag (a.k.a Prover,
denoted by T ) and a Reader (a.k.a Verifier, denoted by
R). Together, they share secret keys, which have been
communicated via a secure channel before the authenti-
cation begins. Moreover, they are also parameterized by
other (public) values, such as the length of the secret

key, the domain, and so on. They interact on an insecure
communication channel.

After the interaction,R either outputs accept or reject.
An authentication protocol is said to have a completeness
error Pc if R rejects a legitimate T with probability
at most Pc. Conversely, the protocol is said to have a
soundness error Ps if R accepts a random response from
T with probability at most Ps.

The security of an authentication protocol depends on
the adversarial power. We consider the most common ad-
versary models: passive attack, active attack, and Man-in-
the-middle attack. For all adversarial models, an attacker
A operates in two phases described in the following.

Passive attack. A passive attacker A does not have query
power: it can only observe interactions between T and
R for a (polynomial) number of times in Phase 1. Then
A tries to impersonate the T in Phase 2. In particular,
in this phase, A only has one chance to convince R. An
authentication protocol is secure against such an attack if
R outputs accept to such A with negligible probability.

Active attack. This attack mode is often called the
detection-based (DET) model in previous literature. Here,
A is given more power in Phase 1: A is allowed to
interact with an honest T (e.g., sending “challenges” of its
choosing) and observe the responses and learn about the
authentication output. Similarly, in Phase 2, A interacts
with R, attempting to pass as an honest T .

Man-in-the-Middle attack. In this scenario, A is given
the power to manipulate communication between hon-
est T and R in Phase 1. For example, it can modify
messages in both directions and specifically observe the
authentication output, i.e., whether R accepts or rejects
a given transcript. The behavior of A in Phase 2 and
the security of an authentication protocol in this model
is defined similarly as in the active model.

An authentication protocol is said to be (t, Q, ϵ)-secure
in the X-model (X is either passive, active, or MitM) if for
all X-adversaries A, running in time t, making Q queries
with T , the probability of R outputs accept in Phase 2 is
at most ϵ.

2.2. Coding theory

Let p be a prime number and Fp be a finite field. A
[n, k]-linear code C over Fp (k ≤ n) is a vector subspace
of dimension k in Fn

p . A full-rank matrix G ∈ Fk×n
p is

said to be the generator of C if C = {uG : u ∈ Fk
p}, i.e.,

G is a basis of C. Let H ∈ F(n−k)×n
p be a matrix such

that GH⊺ = 0. Then H is called the parity-check matrix
of C and for y ∈ Fn

p , s = yH⊺ is called its syndrome
(w.r.t H). As G is full-rank, it is sometimes convenient
to assume G to be in its systematic form, that is G =(
Ik A

)
for some A ∈ Fk×(n−k)

p . We can then readily
compute the parity-check matrix, also in systematic form,
as H =

(
−A⊺ In−k

)
. The Hamming weight of a vector

x ∈ Fn
p , denoted by ωH(x), is defined as the number of

its non-zero coordinates.
Problem 1 (Syndrome Decoding Problem (SDP)). Given

H ∈ F(n−k)×n
p , a syndrome s ∈ Fn−k

p , and a positive



integer t ≤ n. Find e (if any) where ωH(e) ≤ t such
that eH⊺ = s.

It is a well-studied NP-complete [18], highlighted by
the fact that it has been a crucial building block in
many cryptosystems, such as zero-knowledge proof [19],
[20], signatures [21], hash functions [22], [23], stream ci-
phers [24], and so on. In particular, for post-quantum cryp-
tography, it has been popular and appeared in many public
key cryptosystems (such as McEliece [25], BIKE [26],
HQC [27]), as well as the recent NIST call for signatures
(CROSS [17], SDitH [28], Wave [29], and so on).

One also finds many variants of SDP, such as the
Restricted Decoding Problem, Regular Decoding Prob-
lem, Permuted Kernel Problem, . . . , or the SDP defined
with different metrics (e.g., rank metric, Lee metric), that
all prove useful in constructing cryptographic primitives.
This work involves employing the Restricted Decoding
Problem (RSDP) in lightweight authentication protocols.

Let Fp be a finite field where p is a prime, and let
E = {gi, i = 0, . . . , z} be a multiplicative subgroup of
order z, generated by some element g ∈ Fp.
Problem 2 (Restricted Syndrome Decoding Problem).

Given H ∈ F(n−k)×n
p , s ∈ Fn−k

p . Find e ∈ En such
that eH⊺ = s.

The RSDP was first introduced in [16] for z = 2. More-
over, the original RSDP asks for non-full weight e, that
is, entries of e are sampled from E0 := E ∪ {0} and
ωH(e) ≤ t for some t ∈ N. Notably, via a reduction
to the classical SDP, they showed that this new problem
is also NP-complete. As an application, the authors pro-
posed a zero-knowledge identification scheme (adaptation
by replacing SDP with RSDP), which is promising in
terms of reduced public key size and communication cost.
Recently, the versatility of RSDP has been extended by
Baldi et al. [17], where the order z is no longer restricted
to z = 2. In addition, CROSS - a digital signature
scheme based on maximum-weight RSDP (as defined in
Problem 2) was proposed.1 Such a modification does not
compromise the problem hardness [30], and contrarily to
Hamming-weight RSDP, the uniqueness of the solution is
still guaranteed.

For our application (in later sections), we rely on the
security of RSDP in the “oracle form”. We thus define the
so-called RSDP Oracle, which will later be used in our
construction.
Definition 1 (RSDP-Oracle). Let p be a prime number and

E = {gi, i = 1, . . . , z} be a multiplicative subgroup of
order z in Fp. Fix a secret s ∈ Fk

p . The RSDP Oracle,
denoted by ORSDP

s , gives pairs of samples

{a ∈ Fk
p, b = ⟨a, s⟩+ e mod p}

where a
$←− Fk

p and e
$←− E.

We write Λk(s) for the distribution over Fk
p × Fp,

where the samples are obtained by querying ORSDP
s . The

decisional RSDP, written as ORSDPk, is to distinguish the
Λk(s) samples from the uniform distribution Uk+1. On the
other hand, the search version asks for the recovery of the
secret s.

1. A specialized version of RSDP, called RSDP(G) was also investi-
gated in the same work.

Definition 2. The ORSDPk is said to be (t, Q, ϵ)-hard if
for every algorithm D running in time t, making Q
oracle queries∣∣∣Pr[s $←− Fk

p : DΛk(s) = 1]− Pr[DUk+1 = 1]
∣∣∣ ≤ ϵ,

where we denote DX by the algorithm D taking oracle
input from a distribution X .

Next, we informally argue that the decisional RSDP
problem is as hard as the search version via simple re-
duction. Indeed, suppose there exists some distinguisher
D that can solve ORSDPk with non-negligible probability
ϵ. It can then be used to recover s. Let {a, b} be a ORSDP

s

sample. The distinguisher D then picks s̄1 ∈ Fp as its
guess for the first value of s, and computes

{a′ = (a2, a3, . . . , ak), b
′ = b− a1s̄1}.

If the guess s̄1 is correct, then {a′, b′} is precisely a
sample from Λk−1(s). By definition, D can successfully
distinguish such samples after Q queries with probability
at least ϵ. On the other hand, if the guess is incorrect, b′
will be independent of a′ (since a1 is chosen uniformly
at random). In such a case, D enjoys no advantage.
Repeating the same procedure in the order of 1/ϵ times,
D eventually recovers s.

One can see that trying to recover the secret s after
some n queries amounts to finding a noisy codeword b
in the code C generated by ai, i = 1, . . . n, where the
noise consists of elements in E. Equivalently, it suffices
to find e ∈ En such that eH⊺ = bH⊺ = s. In conclusion,
the hardness of RSDP implies the hardness of ORSDPk,
which again implies the “pseudo-randomness” of Λk(s).
In the next section, we show that it also extends to the
case where the secret is not drawn uniformly at random.

When the number of oracle calls is unlimited and the
field size in the problem is fixed, then the RSDP problem
from Definition 1 can be solved in polynomial time. This
follows from algebraic attacks in the style of Aurora-Ge
[31] and can be launched whenever there are many values
for the noise with probability 0. To this end, we introduce
a slightly modified version of the RSDP-Oracle, called the
δ-RSDP-Oracle.
Definition 3 (δ-RSDP-Oracle). Fix 0 < δ < 1. The δ-

RSDP-Oracle, denoted by Oδ−RSDP
s , responds as an

RSDP-Oracle with probability 1−δ and with a random
pair of samples {a ∈ Fk

p, b ∈ Fp} with probability δ.

To sum up, we consider two presumably difficult prob-
lems, the first one is the problem of distinguishing the
RSDP-Oracle from random assuming a limited fixed num-
ber Q of queries, which corresponds to the RSDP prob-
lem. The second one is the same for the δ-RSDP-Oracle
without limit on queries. In the sequel, we use the RSDP-
Oracle, but the modifications needed to fit the use of δ-
RSDP-Oracle are rather straightforward.

RSDP with a non-uniformly random secret. We briefly
also discuss the hardness of RSDP when the secret s
is not chosen randomly. In particular, the entries of the
secret itself s can be drawn from the same distribution as
the error, i.e., randomly from E. The reason for wanting
this specific choice is that it lowers the secret key size
and can give rise to very efficient implementations. For



instance, with a proper choice of p and E, e.g., p = 127
and E = {2i, i = 0, . . . , 6}, multiplication of α ∈ Fp

with elements in E amounts to performing cyclic shifting
on (the binary representation) of α, which can be imple-
mented very efficiently on hardware as well as in software.
This is crucial to our goal of constructing a lightweight
cryptosystem. In our proposed constructions, we will how-
ever use p = 127 and E = {(−2)i, i = 0, . . . , 13}, which
share the same nice implementation properties.

However, one needs to be careful whether such a
particular form of the secret key compromises the se-
curity of RSDP. Our case resembles the situation in the
very well-studied learning problem Learning with Errors
(LWE) [32]. In their seminal work, Applebaum et al. [33]
shed light on a crucial observation: for an arbitrary noise
distribution, the Learning with Error problem, where the
secret’s values are sampled from the same distribution
as the noise, is as hard as the case where the secret is
taken uniformly at random. Let us denote ORSDP∗

k by the
problem of distinguishing the samples of a ORSDP

s where
values of s are drawn according to the noise distribution.
By applying the same standard reduction as in [33], we
directly achieve that ORSDP∗

k is as hard as ORSDPk.

2.3. RSDP-solving Algorithms

With the introduction of RSDP, adaptations of SDP-
solving algorithms have been proposed [16], [17], [34],
[35] in the new setting. In particular, we briefly investi-
gate the Stern/Dumer variant, the BJMM variant, and the
algebraic approach, which we will use to derive security
parameters for our construction.

Stern/Dumer algorithm. The following is a straight-
forward adaptation of the Stern/Dumer algorithm [36],
originally proposed for the classical SDP. We recall the
SDP instance given by (H, s,E), where H ∈ F(n−k)×n

p

and E is a multiplicative subgroup of order z in Fp. Our
task is to find eH⊺ = s, where e ∈ En. To ease the
notation, we omit the transposition notation from now
on. First, one applies to the parity-check matrix a partial
Gaussian Elimination H ← UHP, with an invertible
matrix U and some permutation P, resulting in

(e1, e2)

(
In−k−ℓ H1

0 H2

)
= (s1, s2),

where eP−1 = (e1, e2) ∈ Fk+ℓ
p ×Fk+ℓ

p (with an additional
later-to-be-optimized parameter ℓ). The equation gives rise
to the identities

e1 + e2H1 = s1 (1)

e2H2 = s2 (2)

The next step of the Stern/Dumer approach is to enumerate
e2 ∈ Ek+ℓ to have candidates for (2). Equation (1) is then
used to check if the candidates are the solution(s), that is,
s1−eH1 is also a Ek+ℓ vector. The enumeration step can
be done via a Meet-in-the-Middle approach. In particular,
we further parse e2 = (x1,x2) where xi ∈ E(k+ℓ)/2 and

H2 =

(
H21

H22

)
. We then construct two lists

L1 = {(x1,x1H21),x1 ∈ E(k+ℓ)/2},

L2 = {(x2, s2 − x2H22),x2 ∈ E(k+ℓ)/2},

and find collisions between them. For simplicity, we can
assume |L1| = |L2| = z(k+ℓ)/2, and on average, there
are |L1|2 · p−ℓ collisions between them. The complexity
of this step consists of building the lists and checking for
solutions. In particular,

CStern/Dumer =
C1 + C2 + Ccoll

(number.of.solutions)
× (3)

(memory.access.cost),

where

C1 = C2 = |L1| ·
(
k + ℓ

2
· log(z) + ℓ · log(p)

)
,

Ccoll = |L1|2 · p−ℓ · (k + ℓ) · log(p).

The number of solutions is given by

1 + |{e ∈ En : eH = s}| = 1 + znpk−n.

BJMM algorithm. Similar to the BJMM algorithm [37]
in classical SDP, we can also adapt the representation
technique in the enumeration step. This has been inves-
tigated in [34] and [17]. Interestingly, the performance
of such adaptations depends on the additive structure of
the restricted set E. We will briefly explain the idea and
skip the details of the approach. For a more thorough
understanding, we refer the readers to [17].

Simplistically speaking, the representation technique
aims to construct e2 = e

(1)
1 +e

(1)
2 that solves equation (2).

Since E is only a multiplicative subgroup, it is usually not
closed under addition. Therefore, we have to sample e

(1)
i

from some larger search domain defined as E ∪ D ∪ {0}
for some carefully chosen D. The cost of this approach
depends on the so-called “linearity” of E and D. In
particular, for a random element a ∈ E, we define the
two quantities

ℓE(a) = |[b ∈ E : ∃c ∈ E, b+ c = a]| ,

ℓD(a) = |[b ∈ E : ∃c ∈ D, b+ c = a]| .

These values will determine how many representations r
for an element during the enumerating process; hence, it
implies how much we can save (by only enumerating a
1/r-fraction). For the choice of p and E in CROSS, the
above quantities are independent of a. Similar to the SDP
case, one can repeat this step for e(1) = e

(2)
1 +e

(2)
2 and so

on, increasing the depth of the tree. However, for a fixed
code rate of k/n and in the full-weight RSDP setting (as
in CROSS parameters [17]), this approach does not seem
to yield improvements over the Stern/Dumer algorithm.

A clever alternative was proposed by the same au-
thors: one can solve for a shifted instance of RSDP as
(e + x)H = s + sx, where sx is the syndrome of a
well-chosen x (e.g., x ∈ En). Such a transformation
introduces 0 to the shifted error, from which BJMM might
benefit. In particular, it was found that for the CROSS
parameter, shifted-BJMM yields smaller spaces shifted Ex

and Dx (while having the same linearity), which slightly
outperforms Stern/Dumer.

However, as we will see in our setting and parameters
selection, applying shifted-BJMM is very tricky. For ex-



ample, if E := {±2i}, then the linearity of shifted E and
D are not constant. Nevertheless, we can conservatively
lower bound the cost of shifted-BJMM by testing with
different possible ℓE and ℓD.

Both Stern/Dumer and BJMM enumerating approach
requires very high memory usage (e.g., 2141 and 2116,
respectively, for NIST Category 1 parameters [17]). There-
fore, it is reasonable to take into account certain memory
cost models. Similar to the CROSS authors, we use log
model to estimate the cost of memory access. For exam-
ple, in Equation (3), the complexity is multiplied with
log(max(|L1|, |L2|)).

Algebraic approach. The basic Aurora-Ge approach [31]
involves forming nonlinear equations for each sample of
the form ∏

e∈E
(⟨a, s⟩+ e− b) = 0,

which will be of degree z. Then, the system of equations
is transformed into a linear one with around

∑z
i=1

(
k
i

)
unknowns (each is a monomial up to degree z of variables
si in s). Assuming in the order of

(
k
z

)
oracle calls and z <

k/2, one can then solve for the unknowns by Gaussian
elimination in time around

(
k
z

)3
. Better algorithms can

lower the exponent.
More advanced algebraic attacks have been recently

studied as an alternative to the traditional ISD algorithms,
particularly for specific variants of SDP such as the Regu-
lar SDP [38]. In [35], the authors investigated the prospect
of applying algebraic attacks to various other variants, one
of which is RSDP. Within this framework, SDP is modeled
as solving a polynomial system. A general approach is to
compute the Gröbner basis for the system, whose com-
plexity depends on estimating the degree of regularity of
said system. Algebraic approaches based on Gröbner basis
techniques improve performance, but the improvement is
often difficult to estimate.

2.4. The HB-family of authentication protocols

The HB-family authentication protocols were pio-
neered by Hopper and Blum [1] to achieve a simple yet
secure protocol based on the hardness of the learning prob-
lem. Since our design takes inspiration from HB-family
protocols, especially the HB and the HB+ protocols, we
briefly revisit the LPN problem, which gives rise to the
aforementioned constructions.
Problem 3 (Learning Parity with Noise (LPN) Problem).

Let Berτ be the Bernoulli distribution over Z2 with
bias τ ∈

(
0, 1

2

)
. That is, a random variable x← Berτ

if Pr[x = 1] = τ . Given a secret s ∈ Zk
2 , the LPN

Oracle OLPN
s,τ returns pairs in Zk

2 × Z2 of the form

{a $←− Zk
2 , z = ⟨a, s⟩ ⊕ e},

where e← Berτ . The (decisional) LPNτ,k problem is
defined as distinguishing the samples obtained from
the above OLPN

s,τ from the uniform distribution.

The HB protocol. We recall the HB protocol proposed
by Hopper and Blum [1]. The Tag and the Reader share
a binary length-k secret s. One round of the protocol is

illustrated in Figure 1. It is an simple 2-round interaction
between T and R. First, a “challenge” a is send by R and
T responds with z = ⟨a, s⟩ ⊕ e where e← Berτ . Finally,
R verifies where z = ⟨a, s⟩. On average, the check passes
with probability (1− τ), and a random response from an
illegitimate tag is accepted with probability 1

2 . Therefore,
to raise the confidence that T has the secret key, one
repeats this protocol for n times. Therefore, R outputs
accept if there are at most τ · n failed checks2.

The HB+ protocol. It was later shown by Juels and
Weis [2] that HB is only secure against a passive attacker.
However, against a (more realistic) active adversary, the
protocol is easily compromised. In particular, such an
attacker A in Phase 1 can repeatedly challenge Ts with
the same a. Since e is sampled according to Berτ , A
can perform majority voting (after enough queries) to
reveal the noise-free value ⟨a, s⟩. Repeating this process
with linearly independent challenges ai, A can recover s
by Gaussian Elimination. Hence, HB+ was proposed by
Juels and Weis as an augmented version of HB. They
turned HB into a 3-round interaction by requiring T to
sends a “blinding” factor b

$←− Zk
2 before R’s challenge.

Moreover, there are now two secret keys x,y ∈ Zk
2 . One

round of the HB+ protocol is shown in Figure 2. Similarly,
R outputs accept after n rounds if the number of failed
checks is, at most, up to a certain threshold.

3. An authentication protocol based on RSDP

In this section, we propose a simple novel authentica-
tion protocol that is secure in the active model. In essence,
it is the HB+ protocol, but the LPN problem has been
replaced by the RSDP problem. In particular, we deploy
the full-weight version of RSDP that has also been used
recently in CROSS [17].

Public parameters. The following are public parameters
where n, k, p and z depends on the security parameter λ.

• Fp: integers modulo prime p.
• E = {gi, i = 0, . . . , z − 1}: the multiplicative

subgroup of order z in Zp.
• k ∈ N: length of the secret keys.
• n ∈ N: number of rounds in the authentication

protocol.

Secret keys. The Tag and the Reader share two secret
keys x,y ∈ Ek. Figure 3 describes one round in the
authentication protocol with Tx,y and Rx,y. Similar to the
HB+ protocol, it consists of three interactions between
the Tag and the Reader. First, Tx,y sends a “blinding”
factor b and Rx,y responds with a challenge a. Then,
Tx,y samples an element e ∈ E at uniform random
and compute u = ⟨a,x⟩ + ⟨b,y⟩ + e mod p, which is
then relayed to Rx,y. The Reader performs a check if
u − (⟨a,x⟩ + ⟨b,y⟩) ∈ E. The round is then repeated
n times to raise the confidence in the Tag. The Reader
accepts if and only if all n checks were fulfilled.
Remark 1. An active Adversary can repeatedly query with

a challenge a, e.g., a = 0, trying to solve recover y as

2. In [2], a higher threshold τ ′ can be chosen to minimize the number
of rounds needed to obtain Pc ≤ 2−40 and Ps ≤ 2−80.
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Figure 1: One round of the HB authentication protocol.
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z = (⟨a,x⟩ ⊕ ⟨b,y⟩)

Figure 2: The HB+ authentication protocol.

Tx,y Rx,y

b−−−−−−−→b
$←− Fk

p

a
$←− Fk

p
a←−−−−−−−

e
$←− E

u = ⟨a,x⟩+ ⟨b,y⟩+ e mod p u−−−−−−−→ Check if

u− (⟨a,x⟩+ ⟨b,y⟩) mod p ∈ E

Figure 3: One round of the RSDP-based HB+ authentication protocol. For simplicity, we let kx = ky = k.

the other key x no longer contributes to the response z.
Therefore, the protocol security relies on the length of
y, and we only need to set the length of x so that
guessing is infeasible. For example, 80-bit security
requires the length of x to be at least 22 as z22 ≈ 283.
The protocol can be instantiated with different key
lengths, denoted by kx, ky. For simplicity, in Figure 3
and the proof, we use the same key length.

Completeness of the authentication protocol. Contrary
to HB-family authentication protocol, a legitimate tag in
our proposal will produce u that passes the check of Rx,y

with probability 1.

Soundness of the authentication protocol. Let ui be
a random response in round i. To be authenticated, all
ui, i = 1, . . . , n need to pass the Reader’s checks. Without
knowing the secret, such a single event happens with a
probability

Ps = (Pr[ui − (⟨a,x⟩+ ⟨b,y⟩) mod p ∈ E])n =

(
z

p

)n

.

3.1. Security against an active adversary

In this section, we show a reduction of the RSDP
problem to the authentication protocol in the active model.

To formalize an active attacker, we introduce the following
notation. Let A = (A1,A2) be the active adversary in
Phase 1 (querying the tag) and Phase 2 (authenticate to
the reader), respectively. In phase 1, A has access to T in
at most Q authenticating executions, and the adversary’s
actions are characterized by the program A1. During each
execution, it receives bi, i = 1, . . . , n from T , and sends
back ai, for i = 1, . . . , n respectively, as challenges. Then,
T computes some zi for i = 1, . . . , n as responses. In the
end, A1 outputs some state σ that contains all information
used for the next phase.

In the second phase, the attacking adversary imper-
sonates the tag T . Its complete action is described by the
program A2, which takes the state σ as input. A2 sends
some b̂i (which is derived from σ), R then challenges
with âi and A2 provides the final ẑi, attempting to pass
the authentication protocol. After n rounds, i = 1, . . . , n,
the reader decides to accept or reject. The running time
of A, denoted by t, is determined by the maximum run
time between A1 and A2.

We need to introduce further notation related to the
error set E. Let D denote the set

D := {e− e′|e, e′ ∈ E}.

Furthermore, let αE := |D|
p .

Theorem 1. Assume that the RSDP-based HB+ protocol
in Figure 3(with parameters p, k, n, and E = {gi, i =



0, . . . , z−1}) is not (t, Q, ϵ)-secure, that is, there exists
an active adversary A, running in time t, interacting
with the tag in at most Q executions, and achieving
success probability at least ϵ in Phase 2. Then there
exists a distinguisher D running in time O(t/ϵ), mak-
ing Q ·n queries to an RSDP oracle ORSDP

s , for which∣∣∣Pr
[
s← Ek : DΛk(s) = 1

]
− Pr

[
DUk+1 = 1

]∣∣∣ ≥ 1−ϵ′,

with

ϵ′ ≈ αn
E · c2/ϵ2 + (c+ 1) · exp(−c),

for some small constant c.

Proof: Let (bi, u
′
i) ∈ Zk

p × Zp be ordered pairs
that are from an unknown distribution, which is either
Λk(s) or Uk+1. Assume that D has access to the program
description A = (A1,A2) of an adversary A that can
successfully attack the protocol described in Figure 3, in
time t and after Q queries, with advantage ϵ. We now
show that D can use A to distinguish whether its samples
are from an RSDP oracle or drawn uniformly at random.

The following steps take inspiration from the reduction
for the HB+ protocol in [39]. The algorithm D first picks a
random y

$←− Ek. The idea is that D simulates a transcript
as if, in the query phase, A is interacting with an honest
tag Ty,s.

Phase 1. D runs A1. Recall that, in this phase A1 chal-
lenges the Tag with ai after receiving some bi. First, D
relays bi to A1 as the blinding factor. For every challenge
ai made by A1, D computes and responds with

ui = u′
i + ⟨ai,y⟩ mod p,

for i = 1, . . . , n. After Q such executions, A1 outputs the
state σ.

Phase 2. Next, D will use the A2 program. A2(σ) starts
by sending b̂i to D, who then responds with â1i , i =
1, . . . , n. Then, A2(σ) computes some responses u1

i for
i = 1, . . . , n. The distinguisher D rewinds A2(σ) but this
time inputs a different â2i and observes the responses u2

i
for i = 1, . . . , n.

The distinguisher D proceeds to rewind and run A2

for M times and inputs different random âji , i = 1, . . . , n,
and j = 1, . . . ,M and obtains uj

i for i = 1, . . . , n and
j = 1, . . . ,M .

Finally, D runs through all 1 ≤ j1 < j2 ≤ M and
computes ûi = uj1

i − uj2
i mod p for i = 1, . . . , n and

û′
i = ⟨(â

j1
i − âj2i ),y⟩ for i = 1, . . . , n. D checks if there

exist two different such j values, j1, j2 for which we have
that for all i = 1, . . . n, ∃ei, e′i ∈ E such that ei − e′i =
ûi− û′

i. If this is the case, D outputs 1 (Λk(s)), otherwise
0 (Uk+1).

• Case 1: Assume D gets samples from Uk+1 in
Phase 1. Then, the values ûi−û′

i are uniformly and
independently distributed. That is, D will make an
error and output 1 iff Ûi = ûi−û′

i can be written as
the subtraction of two elements in E. This happens
iff Ûi is in the set D. A pair of j1, j2 then gives
all n responses from a legit tag with probability
αn
E :=

(
|D|
p

)n

. In other words, running through

all pairs gives an error probability of D as most
as αE ·

(
M
2

)
. In other word,

Pr
[
DUk+1 = 1

]
= αn

E ·
(
M

2

)
.

• Case 2: Assume D gets samples from Λk(s).
Then, in Phase 1, we simulated the transcript as if
A interacted with Ty,s. Indeed,

ui = u′
i + ⟨ai,y⟩ mod p = ⟨bi, s⟩+ ⟨ai,y⟩+ ei.

By definition, A2 produces a correct response with
probability at least ϵ. We now show that for a
well-chosen M , at least a pair of correct responses
exists with high probability. A fails to produce any
correct pair of responses with probability

M · ϵ · (1− ϵ)M−1 + (1− ϵ)M ≈
M · ϵ · exp(−ϵ · (M − 1)) + exp(−ϵ ·M).

That is,

Pr
[
s← Ek : DΛk(s) = 1

]
=

1−M · ϵ · exp(−ϵ · (M − 1)) + exp(−ϵ ·M).

We want the probability of D being successful to
be close to 1; hence, one chooses M = c · 1ϵ , for
some constant c > 1. This proves the theorem.
Hence, if c is big enough, D can tell if the samples
are from Λk(s) with probability very close to 1.
Example 1. Let ϵ = 2−20, we only need M = 5

ϵ to
have probability 0.96 to have at least one correct
pair.

3.2. A MitM Attack Strategy

Here, we point out that the proposed protocol from
Figure 3 is not secure against a MitM attacker. The attack
depends on the additive structure of the restricted set E.
Consider an adversary that observes one sample in the
first round of the protocol as before:

u = ⟨a,x⟩+ ⟨b,y⟩+ e mod p

and tries to guess e ∈ E. The adversary A first picks
an element e′ ∈ E and assumes that e = e′. Then pick
another element e′′ ̸= e′, such that e′′ ∈ E. Then substitute
u with u′, which is calculated as

u′ = ⟨a,x⟩+ ⟨b,y⟩+ e− e′ + e′′ mod p

in this first round. In all other rounds i = 2, . . . , n, the
adversary forwards the responses u without modifications.

Assume u′ passes the verification check, which can
only occur when e − e′ + e′′ ∈ E, and depending on the
choice of E, A can obtain some information regarding e
or even correctly guess e.
Example 2. Let p = 127 and E = {1, 2, 4, 8, 16, 32, 64}.

It is then easily checked that if e′ ̸= e′′ ∈ E and
e − e′ + e′′ ∈ E then e = e′. Equivalently, when u′

passes the check, A correctly guess e = e′. Knowing
e, the adversary can compute u− e and conclude that

u− e = ⟨a,x⟩+ ⟨b,y⟩ mod p.



This gives a linear equation in the unknown key vari-
ables x,y. The Reader accepts the corrupted response
with probability 1/|E| (for each authentication). Thus,
it takes the attacker on average |E| attempts to reveal a
noise-free value ⟨a,x⟩+ ⟨b,y⟩, or at most (n+ k)|E|
attempts to reveal the entire secret key by solving a
system of linear equations through Gaussian elimina-
tion.

Example 3. For our later choice of E, p = 127 and
E = {(−2)i, i = 0, . . . , 13}. Guessing e is more
challenging as there are many e′ and e′′ that yield a
seemingly valid u′. However, by definition, the design
is not MitM-secure as it means that A can forge a
response u′ ̸= u (with non-negligible probability) that
will be authenticated by R.
Going further, A can also perform a key recovery
attack. In contrast to Example 2, for fixed e′ and e′′,
there are more than one possible values for e (that
makes u′ pass). As an example, (e′, e′′) = (1, 8) yields
e = 1 or e = 19, which allows A to form a quadratic
equation as (e − 1)(e − 8) = 0 mod p. By changing
different (e′, e′′) and going through n responses com-
ing from the Tag, A obtains more information (and
equations) about each error position, which could be
used to speed up combinatoric solvers (or algebraic).

4. Parameters for the proposed protocol

W propose parameters for 3 security levels, namely
80, 112, and 128 bits. The parameters are selected based
on the performance of the various RSDP-solving algo-
rithms.

As in Remark 1, an active attacker using RSDP solvers
to recover the secret key(s) amounts to solving an RSDP
instance with parameter n and secret length ky. When
n < ky, there are exponentially many solutions. However,
one has to find the exact e1, . . . , en produced by T to
recover x. The attacker can indeed observe many authen-
tications to get more than n samples to guarantee that
the solution from the solver is indeed correct. However,
once the average number of solutions is 1, Stern/Dumer
and BJMM do not seem to take advantage of the extra
samples.

We stress that the performance of Stern/Dumer or
BJMM takes into account the cost of accessing huge mem-
ory under the log model. Indeed, such algorithms require
such high memory usage that can not be disregarded. For
example, Shifted-BJMM needs 270 bits of memory 80-bit
security parameter.

All proposed instances use p = 127 and E =
{(−2)i, i = 0, . . . 13} as the multiplicative subgroup in
Fp, so z = 14.

We present the cryptanalysis on the 80-bit security pa-
rameters with E = {±1,±2, . . . ,±64} Interestingly, the
biggest threat to this parameter set is the algebraic attack.
Since the algebraic approach cost can be lower-bounded
by roughly

(
k
z

)3
, it prevents ky from being too small.

Since there are better methods compared to Gaussian
elimination that can lower the exponent, we conservatively
choose ky = 34 as

(
34
14

)3 ≈ 291. For a d-bit security
level, we require the soundness error

(
14
127

)n ≤ 2−d. For
example, n = 26 for 80-bit security level.

TABLE 1: Parameters recommendation for the RSDP
HB+ protocol with n as the number of authentication
steps, kx, ky as the length of two secret keys, and p as the
field size. The restricted set is set to be E := {(−2)i, i =
0, . . . z − 1}.

Security Level 80 112 128
(p, z) (127,14) (127,14) (127,14)
(kx, ky) (22,34) (30,54) (34,70)
n 26 36 41

Now we consider the combinatorial approach, such
as Stern and BJMM, assuming an adversary using such
solvers is allowed multiple interactions (to guarantee the
correctness of the found solution). In that case, it does
not seem to yield improvements as the size of E is
quite big, thus significantly increasing enumerating efforts.
For example, the Stern(BJMM) in Section 2.3 requires
2105 (2110, resp.) operations and 294 (298, resp.) bits in
memory. In contrast to the CROSS parameter, shifted-
BJMM does not improve over Stern for our choice of
E. In addition, for higher security-level parameters, the
gap between algebraic and combinatorial solvers gets
significantly wider.

4.1. Performance

In this section, we discuss the proposed protocol with
different benchmarks such as computation, communica-
tion, and key size(s).

Key size. The protocol employs two keys of lengths kx, ky
each, of which entries are drawn from the restricted set
E; therefore, we need roughly (kx + ky) · log(z) bits to
store the keys.

Communication. One authentication consists of n 3-
round authenticating step. In each step, the Tag and the
Reader exchange (a,b, u) ∈ Fk

p × Fk
p × Fp, which incurs

n× (2k + 1)× log(p) bits in communication.
Example 4. 80-bit security parameters of LPN-based HB+

are roughly (512, 1/8) where 512 is the length of the
key and 1/8 is the noise rate. To achieve good com-
pleteness and soundness probability (2−40 and 2−80,
respectively), one needs to repeat an authentication
step by roughly n = 441 times.

TABLE 2: Key size of (in bits) different protocols.

Security Level 80 112 128
RSA 1024 2048 3072
DSA 1024 2048 3072
LPN-based 512 768 768
RSDP HB+ 217 320 396

Table 2 shows the key sizes of our protocol in com-
parison with some traditional cryptographic primitives and
LPN-based protocols. Note that there are several options
for LPN-based protocols to achieve one security level.
For instance, one can select (k = 512, τ = 0.49) for
112-bit security. However, such a high noise level will be
detrimental to both the completeness and soundness of the



scheme, thus implying a very high number of authentica-
tion steps, i.e., high communication cost. Therefore, for
LPN-based protocols, we pick values of k that correspond
to “reasonable” noise rates (typically ≤ 0.3).3

4.2. Hardware Implementation

The most critical task that affects performance in
Figure 3 is computing

u = ⟨a,x⟩+ ⟨b,y⟩+ e mod p

This operation is implemented using hardware in the tag
and needs to be as lightweight as possible. Our choice
of the error set E, and the choice of p ensures that the
operation remains cheap. We implemented two strategies
for both protocols based on RSDP and LPN, with pa-
rameters targeting 80-bit security. The implementations
focus on the inner product operation, which is the most
costly operation implemented on the tag hardware. In both
strategies, the cost is dominated by the circuits needed to
store the key and the challenge. In the case of LPN, both
variables consist of 512 bits, while in the case of RSDP,
the key consists of 136 bits, while the challenge consists
of 238 bits. In the case of LPN, one vector coordinate
consists of 1 bit, while in the case of RSDP, one challenge
vector coordinate consists of 7 bits, and 1 key vector
coordinate consists of 4 bits in a signed integer format.
Each multiplication, in the case of RSDP, consists of two
steps:

1) Multiplication of the challenge coordinate by the
unsigned value of the key coordinate mod 127,
which boils down to a rotation based on the key
values.

2) Multiplication by either 1 or −1 mod 127,
which boils down to a conditional bitwise nega-
tion.

In strategy A, we implement the operation serially,
as depicted in Figure 4. Every clock cycle, we perform
one multiplication operation followed by an accumulation.
The inner product operation takes several clock cycles.
In strategy B, we implement the inner product operation
in one clock cycle, and add all the products using an
addition tree. Strategy A targets the minimum possible
area (storage with a minimal combinational circuit), while
strategy B targets the highest possible speed (1 clock
cycle per inner product). We synthesized the circuits for
both the Artix 7 FPGA using Xilinx Vivado and FDSOI
28nm using Synopsys Design Compiler, and the results are
provided in Tables 3 and 4, respectively. We observe that
on FPGA, strategy B works better for LPN than strategy
A, but the RSDP-based protocol is smaller and faster for
both strategies. Similar trends emerge in ASIC implemen-
tations, the RSDP circuit being 60% and 30% smaller for
strategies A and B, respectively. We note that LPN favors
strategy B over strategy A due to its very lightweight
combinational logic compared to the storage cost, while
RDSP offers a somewhat linear trade-off due to its more
involved combinational/arithmetic logic. However, it still
experiences a significant gain in all cases.

3. Table in Section 5.2 in [40] can serve as a rough guideline for LPN
parameters.

Secret

. . .

Challenge

. . .

split

rotate

accumulator

e

Figure 4: Serialized implementation of the inner product
operation (strategy A).

TABLE 3: FPGA Resource Utilization for 80-bit security
using Xilinx Artix 7 and Xilinx Vivado.

Design LUTs FFs Cycles

LPN-based
1028 1025 512
1032 1025 64
780 1025 1

RSDP-based
399 381 34
421 381 18
678 266 1

TABLE 4: ASIC area for 80-bit security using FDSOI
28nm.

Design GEs Cycles

LPN-based
12243.75 512
12262.5 64

12985 1

RSDP-based
4678 34

4797.18 18
8614.69 1

5. A MitM-secured proposal based on RSDP

In this section, we present an extended protocol that
provides security also in the MitM model. We adopt the
approach of Lyubashevsky et al. [12] to achieve this, with
the addition of a few additional assumptions.

Definition 4. A family function F : D → F is said to
be a weak pseudorandom functions (wPRFs) if for
f

$←− F , it is computationally infeasible to distinguish
input-output pairs (xi, f(xi)), where xi are chosen



uniformly at random from D, from random pairs
(xi, yi) ∈ (D,F).

The condition of wPRFs can be further relaxed by a
family of functions Fχ, provided the output of f ∈ F is
indistinguishable after perturbation of noise characterized
by a distribution χ. Such a family is called randomized
wPRFs.
Definition 5. H : D → F is a pairwise independent

function family if

Pr
h

$←−H
[h(x1) = y1 ∧ h(x2) = y2] = 1/|F|2,

for all x1 ̸= x2, y1 ̸= y2.

In brevity, the design in [12] relies on a (randomized)
wPRFs Fχ : D → F, a pairwise independent function
family H : D→ F, where F is a finite field. Importantly,
a weight function |·| (defined on F), the field F, and χ
have to satisfy certain (reasonable) properties. In essence,
together, they have to provide good completeness (close
to 1) and soundness probability. A natural instantiation for
LPN is F = Z2[x]/⟨g(x)⟩, for some irreducible polyno-
mial g(x), and χ as the Bernoulli distribution Bernη , and
the Hamming weight function. Despite such requirements
not applying to our situation, we have seen in Section
3 that RSDP naturally yields good completeness and
soundness probability. Hence, we propose a protocol that
achieves MitM security in Figure 5.

The following instantiation of the protocol in Figure
5 can be seen as an RSDP version of the protocol in [12].
Note that the protocol now runs only a single round as the
final response u from the Tag is a vector (or, equivalently,
an element in a finite field).

Public parameters. The following are public parameters
where k, n, p and z depends on the security parameter λ.

• Zp: integers modulo p.
• E: a multiplicative subgroup of order z in Zp.
• F = Zp[x]/⟨g(x)⟩ for some irreducible polyno-

mial g(x) over Zp of degree n. Multiplications,
denoted by · in F, are seen as polynomial mul-
tiplications. Operations between a vector and an
element in F are assumed to be done after con-
verting the vector to a corresponding element. For
instance, a vector can be seen as coefficients of a
polynomial in F, and vice versa.

Secret keys. The Tag and the Reader both share secret
keys X ∈ En×k, h ∈ H, and s ∈ F. The function h is
defined as h(x) = h1 · x + h2, for hi ∈ F and x is the
corresponding polynomial to vector x in F.

Hardness assumptions. Having X as a secret matrix
is equivalent to having many RSDP instances with dif-
ferent secrets xi (columns of X). However, as we have
discussed, RSDP is not hard when an adversary A has
access to an unlimited number of queries. Therefore, for
the reduction proof of this design, we have to assume that
A is allowed up to Q interactions with the Tag, where Q
is a fixed value. Storing a matrix X ∈ Ek×n could pose
a practical challenge for a low-cost RFID Tag. Therefore,
similar to previous work, one can consider a version where
X is a Toeplitz matrix.

5.1. Security reduction of the MitM proposal

We now want to prove security for the protocol in
Figure 5. We are inspired by the methodology from [12].
Their work considers a slightly different MitM adversary
where it does not operate in two phases. Instead, a MitM
attacker interacts with T and R for Q times and modifies
the communications (b, a, u)→ (b+ b′, a+ a′, u+ u′).
The attacker wins the game if one out of Q interaction, a
non-trivial change in the communication, i.e., (b′, a′, u′)
are not simultaneously 0, yields an accept from R. How-
ever, if the attacker wins in this scenario, it also wins in
the 2-stage model.

In this reduction, we assume the existence of an
adversary A that breaks the design after Q authentica-
tion queries with probability ϵ. It means that we assume
that A makes Q − 1 unsuccessful attempts followed
by a Q-th query, where the Reader output accept for
(b′

i, a
′
i, u

′
i) ̸= (0, 0, 0) with probability ϵ. Obviously, this

implies that an adversary A that is allowed to win in any
query has success probability at most ϵQ.
Theorem 2. Assume that the protocol in Figure 5 is

not (t, Q, ϵ)-secured, that is, there exists an active
adversary A, running in time t, interacting with the
Tag and Reader in at most Q executions, and can pro-
duce (b′, a′, u′) ̸= (0, 0, 0) that is authenticated with
probability at least ϵ. Then there exists an algorithm
D running in time O(t), making Q · n queries to an
RSDP oracle (with secret as a matrix), and∣∣Pr

[
X← Ek×n : DΛk(X) = 1

]
− Pr

[
DUk+1 = 1

]∣∣ ≥ (
ϵ− 1/pk

)2 − αn
E.

Proof: Let A be a MitM attacker as described
above. In each authentication query, A changes b →
b+ b′, a→ a+ a′, u→ u+ u′.

We now describe a distinguisher for the (vectorized)
RSDP oracle using A as a part. The Challenger sends
to the distinguisher pairs (bi,yi) where bi are uni-
formly random and yi are either uniformly random or
yi = Xbi + ei, for some random matrix X. Now, the
distinguisher simulates the Tag and the Reader for all
queries. First, random values of the secrets h, s are chosen.
For execution i, D receives (bi,yi) from the challenger
and chooses a random ai. Then (bi, ai) is input to A who
responds with (b′

i, a
′
i). D computes ui from its known

values as

ui = yi · s+ h(bi) · (ai + a′i),

and gives to A, who responds with u′
i. Finally, we sim-

ulate the response from the reader by simply rejecting if
(b′

i, a
′
i, u

′
i) ̸= (0, 0, 0). This is the simulation before the

winning query, and it is depicted in Figure 6.
We argue that this is a correct simulation of the

protocol up to Q − 1 queries. If yi = Xbi + ei, then T
and R behaves as if they have secrets X, s and h. Then,
for (b′

i, a
′
i, u

′
i) = (0, 0, 0), R outputs accept correctly. If

(b′
i, a

′
i, u

′
i) ̸= (0, 0, 0), R outputs reject correctly since

the winning query has not been reached.
Next, we will show how to use the Q-th winning

query to output the answer to the Challenger correctly.
The distinguished acts differently in the two cases: b′ = 0
and b′ ̸= 0. From now on, we denote the winning query
by (b′, a′, u′) ̸= (0, 0, 0).



TX,h,s RX,h,s

b−−−−−−−→b
$←− Zk

p

a
$←− F

a←−−−−−−−

e
$←− En

u = (Xb+ e) · s+ h(b) · a u−−−−−−−→ Check if

(u− h(b) · a) · s−1 −Xb ∈ En

Figure 5: An RSDP adaptation to Lyubashevski et al. for MitM security. Here, we use the vector form of (u−h(b)·a)·s−1

in the check.

T (sim.) A R (sim.)

bi+b′
i−−−−−−−−−−→

choose some random s, h
(bi,yi)→

ai
$←− Fai+a′

i←−−−−−−−−−−

ui = yi · s+ h(bi) · (ai + a′i)
ui+u′

i−−−−−−−−−−→ Check if

(b′
i, a

′
i, u

′
i) ̸= (0, 0, 0), reject

else, accept

Figure 6: Simulating T and R before the winning query.

T (sim.) A R (sim.)

b−−−−−−−→(b,y)→

a
$←− Fa+a′

←−−−−−−−−−

u = y · s+ h(b) · (a+ a′) u+u′

−−−−−−−−−−→ Check if

(u′ + h(b) · a′) · s−1 ∈ Dn, not random

else, random

Figure 7: Response with the winning query when b′ = 0.

The case b′ = 0. The response to the challenger is as
given in Figure 7.

• Case 1: Assume that the challenger sends RSDP
pairs. Then, since (a′, u′) is the winning response,
the following must be accepted by the Reader.

(u+ u′ − h(b) · a) · s−1 −Xb ∈ En.

On the other hand, since the pairs (b,y) from the
Challenger is an “RSDP” pair, we also have

(u− h(b) · (a+ a′)) · s−1 −Xb ∈ En.

Subtracting the two equations, one obtains

(u′ + h(b) · a′) · s−1 ∈ Dn,

i.e., in this case, the response is always
not random.

• Case 2: Assume that the challenger sends
a random pair. Then, the simulator responds
not random if and only if

(u′ + h(b) · a′) · s−1 ∈ Dn

with randomly chosen h and s. Moreover, previous
unsuccessful queries do not leak information about
these secrets, So A behaves as if u′, a′ are chosen
before h and s. As b′ = 0, we have that u′, a′

cannot both be zero. This leads to

Pr[(u′ + h(b) · a′) · s−1 ∈ Dn] = αn
E,

for any choice of u′, a′.
In summary, if b′ = 0, then one has∣∣Pr

[
X← Ek×n : DΛk(X) = 1

]
− Pr

[
DUk+1 = 1

]∣∣ = ϵ− αn
E.



The case b′ ̸= 0. The response to the challenger in this
case is as given in Figure 8. Here we first run A in the
winning query with random input a0, then we rewind A
and run it again with another random input a1.

• Case 1: Assume that the challenger sends an RSDP
pair. To detect if A responds correctly without
knowing the secret X, one needs to get rid of
X(b+b′). Therefore, we have to rewind A to pro-
duce X(b+b′) twice with different challenges a0
and a1 (which happens with probability 1−1/pk).
In particular, the simulated Reader sends a0 and
the Tag computes u0 as in Figure 8. Then we
rewind A back to the point it sends b+ b′. This
time, a different challenge a1 is sent, and similarly,
a new u1 is computed.
The distinguisher now has two responses u0 + u′

0

and u1 + u′
1. Both of them are simultaneously

correct with different challenges with probability(
ϵ− 1/pk

)2
,

and it follows that

[(u1 + u′
1)− (u0 + u′

0)− h(b+ b′) · (a1 − a0)] · s−1 ∈ Dn,

meaning that in this case the distinguisher always
gives the correct response not random.

• Case 2: Assume that the challenger sends random
pairs. We now investigate

Pr
[
[(u1 + u′

1)− (u0 + u′
0)− h(b+ b′) · (a1 − a0)] · s−1 ∈ Dn

]
.

(4)
Let ã = a1 − a0 (and correspondingly for ã′, ũ′),
we can rewrite Equation 4 as

Pr
[
[ũ′ + h(b) · (ã+ ã′)− h(b+ b′) · ã] · s−1 ∈ Dn

]
.

As previous unsuccessful queries do not leak information
about h and s, A can be considered choosing ũ′, ã′ before
h and s. For all t ∈ Dn,

Pr[h(b+ b′) = h(b) · (ã+ ã′) + ũ′ − t · s)] = 1
pn ,

by definition of pairwise independent function. Therefore,

Pr
[
[ũ′ + h(b) · (ã+ ã′)− h(b+ b′) · ã] · s−1 ∈ Dn

]
= αn

E.

In summary, in this case, one has∣∣∣Pr
[
X← Ek×n : DΛk(X) = 1

]
− Pr

[
DUk+1 = 1

]∣∣∣ =(
ϵ− 1/pk

)2 − αn
E.

One can extend the proof to use multiple rewinding
as in Theorem 1 to achieve tighter reduction.

6. Parameters for the MitM design
In contrast to the active-secured design, the RSDP

sample is now masked with a secret polynomial s, which
makes it challenging to apply any RSDP solvers to retrieve
the secret X (even in the case that X is a Topeliz matrix).
It is reasonable to assume that an Adversary will face a
harder problem than just RSDP. Therefore, one can use
the same parameters proposed in Table 5 for this design
if the cost factor is paramount.

To be more conservative, one can select parameters
based on the security reduction. Theorem 2 has tightness

TABLE 5: Agressive parameters for the MitM-secured
RSDP authentication protocol with p as the field size, and
the restricted set is set to be E := {(−2)i, i = 0, . . . z−1}.

Security Level 80 112 128
(p, z) (127,14) (127,14) (127,14)
k 34 54 70
n 26 36 41

√
ϵ. In other words, the protocol is only half as secure as

the RSDP problem and n has to be big enough so that αn
E

can be deemed negligible. In particular, for d-bit security
level, we ask for αn

E ≤ 2−d.

TABLE 6: Conservative parameters recommendation for
the MitM-secured authentication protocol with p as the
field size, and the restricted set is set to be E :=
{(−2)i, i = 0, . . . z − 1}.

Security Level 80 112 128
(p, z) (127,14) (127,14) (127,14)
k 55 79 91
n 96 134 153

There are several ideas when it comes to reducing
the cost even more. For instance, selecting the coefficient
of s, or secret polynomial h1, and h2, to be also in
the restricted set. However, more careful work has to be
done to understand the security implications of such risky
options.
Example 5. Let us look at some efficiency comparisons

between LPN and RSDP instantiation for 80-bit secu-
rity. Since it is unclear how the steepness of reduc-
tion translates to security in practice, one can choose
the parameters that yield 80-bit security for both the
RSDP and LPN problem as in Section 4. In particular,
(roughly) (n, k, ϵ) = (441, 512, 1/8) for LPN and
(n, k, p, z) = (26, 34, 127, 14) for RSDP.

• In terms of key storage, assuming we use Toepliz
matrices for both cases, LPN uses k+4n = 2276
bits, while RSDP uses (k + n) · log(z) + 3n ·
log(p) = 770 bits.

• LPN instantiation uses 3n = 1323 and RSDP uses
3n · log(p) = 545 bits in communication.

Therefore, we can see that RSDP offers significant advan-
tages over traditional LPN-based protocols in terms of
both key storage and communication costs.

7. Conclusion

In this paper, we have presented novel authentica-
tion protocols based on the Restricted Syndrome Decod-
ing Problem. We show a natural adaptation of the new
problem in two constructing directions: HB-family and
wPRFs-based authentication protocols. From a theoretical
viewpoint, security reductions from the previous works
translate to RSDP (with a few additional assumptions,
in the case of wPRFs-based). For practical interests, we
show that with a well-chosen restricted set E, the proposed
protocol yields impressive performance well suited to low-
cost cryptographic primitives. More importantly, such a
choice of E does not compromise the security regarding
available RSDP solvers.



T (sim.) A R (sim.)

b+b′

−−−−−−−−−−→(b,y)→

a0
$←− Fa0+a′

0←−−−−−−−−−−

u0 = y · s+ h(b) · (a0 + a′0) u0+u′
0−−−−−−−−−−→

a1
$←− Fa1+a′

1←−−−−−−−−−−

u1 = y · s+ h(b) · (a1 + a′1) u1+u′
1−−−−−−−−−−→

Check if

[(u1 + u′
1)− (u0 + u′

0)−
h(b+ b′) · (a1 − a0)] · s−1 ∈ Dn, not random

else, random

Figure 8: Response with the winning query when b′ ̸= 0.
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