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Abstract

A Survey to Zero-Knowledge Interactive Verifiable Computing: Utilizing Randomness in
Low-Degree Polynomials

By

Jiawei Wang

This survey provides a comprehensive examination of zero-knowledge interactive verifiable computing,
emphasizing the utilization of randomnes in low-degree polynomials. We begin by tracing the evolution
of general-purpose verifiable computing, starting with the foundational concepts of complexity theory
developed in the 1980s, including classes such as P, NP and NP-completeness. Through an exploration
of the Cook-Levin Theorem and the transformation between NP problems like HAMPATH and SAT, we
demonstrate the reducibility of NP problems to a unified framework, laying the groundwork for subse-
quent advancements.

Recognizing the limitations of NP-based proof systems in effectively verifying certain problems, we then
delve into interactive proof systems (IPS) as a probabilistic extension of NP. IPS enhance verification
efficiency by incorporating randomness and interaction, while accepting a small chance of error for that
speed. We address the practical challenges of traditional IPS, where the assumption of a prover with
unlimited computational power is unrealistic, and introduce the concept of secret knowledge. This ap-
proach allows a prover with bounded computational resources to convincingly demonstrate possession
of secret knowledge to the verifier, thereby enabling high-probability verification by the verifier. We
quantify this knowledge by assessing the verifier’s ability to distinguish between a simulator and genuine
prover, referencing seminal works such as Goldwasser et al.’s "The knowledge Complexity of Theorem
Proving Procedures"

The survey further explores essential mathematical theories and cryptographic protocols, including the
Schwartz-Zippel lemma and Reed-Solomon error correction, which underpin the power of low-degree poly-
nomials in error detection and interactive proof systems. We provide a detailed, step-by-step introduction
to tyhe sum-check protocol, proving its soundness and runtime characteristics.

Despite the sum-check protocol’s theoretical applicability to all NP problems via SAT reduction, we
highlight the sum-check protocol’s limitation in requiring superpolynomial time for general-purpose com-
putations of a honest prover. To address these limitations, we introduce the GKR protocol, a sophisticate
general-purpose interactive proof system developed in the 2010s. We demonstrate how the sum-check
protocol integrates into the GKR framework to achieve efficient, sound verification of computations in
polynomial time. This survey not only reviews the historical and theoretical advancement in verifiable
computing in the past 30 years but also offers an accessible introduction for newcomers by providing a
solid foundation to understand the significant advancements in verifiable computing over the past decade,
including developments such as ZK-SNARKs.
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1 Preliminaries: Complexity Theory

1.1 P (Polynomial Time)

Polynomial time decidable languages [11] P is the class of languages that is decidable in polynomial time
on a deterministic single-tape Turing machine. P = UkTime(nk) where k is a constant.

1.2 NP (Nondeterministic Polynomial time)

In P, we can avoid brute-force search in many problems and obtain polynomiaIntroduction to the Theory
of Computationl-time solutions. However, attempts to avoid brute force in certain other problems,
including many interesting and useful ones, haven’t been successful, and polynomial time algorithms that
solve them aren’t known to exist.
Languages View:

P = The class of languages which membership can be decided (solved) quickly. (polynomial time)
NP = The class of languages which membership can be verified quickly. (polynomial time)

TM view:
NP is the set of problems solvable in polynomial time by a non-deterministic Turing machine.
NP is the set of problems verifiable in polynomial time by a deterministic Turing machine.

1.2.1 NTM Decider

A Nondeterministic Turing Machine (NTM) decider is guaranteed to halt on all inputs. [11] An NTM
decider is designed so that every possible computation branch halts, either by accepting or rejecting the
input. This means that for any input the machine is given, it will always come to a conclusion (halt)
within a finite number of steps. There are no branches where the machine runs forever without deciding
the outcome.

1.2.2 Solving NP

The non-deterministic nature of NP gives us an abstraction to imagine a machine (NTM) that could
guess a solution "in parallel" and verify it quickly. If we had such a machine, it would allow us to "solve"
NP problems quickly by magically finding the right solution path. However, for real-world deterministic
machines, we still don’t have efficient algorithms to solve many NP problems.

1.2.3 Example: Hamiltonian Path Problem

If a directed or undirected graph, G, contains a Hamiltonian path, a path that visits every vertex in
the graph exactly once. The HAMPATH problem has a feature called polynomial verifiiability that is
important to understand its complexity. Verifying the existence of a Hamiltonian path may be much
easier than determining its existence.
Theorem: HAMPATH belongs to NP:

On input ⟨G, s, t⟩ (Say G has m nodes): we non-derterministically write a sequence v1, v2, ..., vm of m
nodes, and only accept if: a. v1 = s b. vm = t and c. each (vi, vi+1) is an edge and no vi repeats.
We do not know whether the complement of HAMPATH (Co-HAMPATH) is NP since we
do not know whether or not we can give a short certificate for a graph not have a Hamiltonian path.
If P equaled NP: Then we can test in polynomial time whether a graph has a Hamiltonian path by
directly solving the problem, which yields a short certificate.
If P not equal to NP: then co-HAMPATH is not an NP problem, since it is not easily verified.
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1.3 NP-Completeness

The Relationship between P and NP indicates that whether all problems can be solved in polynomial
time, typically, without searching.

NP-completeness is a cornerstone concept in computational complexity theory, providing a frame-
work for understanding the inherent difficulty of computational problems. Building upon the detailed
exposition presented in Michael Sipser’s Lecture Notes [12], this section delves into the foundational
definitions, key theorems, and proof techniques that characterize NP-complete problems.

1.3.1 P ≡ NP

You can always eliminate searching. If these classes were equal, any polynomially verifiable problem
would be polynomially decidable.

1.3.2 P ̸= NP

There were cases where you need to search. [11] "Most researchers believe that the two classes are
not equal because people have invested enormous effort to find polynomial time algorithms for certain
problems in NP, without success. Researchers also have tried proving that the classes are unequal, but
that would entail showing that no fast algorithm exists to replace brute-force search."
Defn: B is NP-complete if :

1. B is a member of NP
2. For all A in NP, A ≤ p B
Every language in NP has the polynominal time reduced to a complete language of NP, which means

if B is NP-complete and B is in P then P = NP.
One important advance on the P versus NP question came in the early 1970s with the work of Stephen

Cook and Leonid Levin.[2] which shows that SAT is NP-complete.
In general,NP-completeness is a very important complexity property of any question:

1. Showing NP-complete is strong evidence of computational intractability (hard).

2. Gives a good candidate for proving P ̸= NP.

Michael Sipser in 2020: [13] "Back 20 years ago, I was working very hard to show the composites
number problem is not in P. And then, turns out, composites was in P (proved by Agrawal, M., Kayal,
N., & Saxena, [1] 2002). So it was the wrong to pick the composite number problem, but what NP-complete
is guarentees is that: If you work on a problem, which is NP-complete, you can’t pick the wrong problem,
because if any problem is in NP and not in P, an NP-complete problem is going to be an example of that.
Because if the NP-complete problems in P, everything in NP is in P."
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1.4 The 3SAT Problem

1.4.1 Conjunctive Normal Form (CNF)

A boolean formula ϕ is in Conjunctive Normal Form (CNF) if it has the form:

ϕ = (x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬s ∨ z ∨ u) ∧ ... ∧ (¬z ∨ ¬u)

• Literal: a variable ¬x or a negated variable

• Clause: an OR of the literals.

• CNF: an AND of the clauses.

• 3CNF: a CNF with exactly 3 literals in each clause.

1.4.2 SAT

Boolean satisfiability problem (SAT) is the problem of determining if there exists an interpretation
that satisfies a given Boolean formula. In other words, it asks whether the variables of a given Boolean
formula can be consistently replaced by the values (TRUE or FALSE) in such a way that the formula
evaluates to TRUE.

1.4.3 3SAT is the satisfatory problem restrited to 3CNF formulars

3SAT = {ϕ | ϕ is a satisfiable 3CNF formular}

1.4.4 Theorem: 3SAT ≤ p K-CLIQUE

We will show that we can reduce 3SAT to K-CLIQUE in polynominal time by building a model on 3SAT.
And hence to show that K-CLIQUE problem is also NP-complete.
The K-Clique Problem

A k-clique in a graph is a subset of k nodes all directly connected by edges, the input of k-clique
problem is an undirected graph and k. The output is a clique (closed) with k vertices, if one exists.

K-CLIQUE = {⟨G, k⟩ | graph G contains a k-clique}

The K-Clique Problem is in NP
You can easily verify that a graph has a k-clique by exhibiting the clique.
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Proof: 3SAT ≤ p K-CLIQUE[12]
Given polynomial-time reduction f that maps ϕ to ⟨G, k⟩ where ϕ is satisfiable if and only

if G has a k-clique. Given the structure of a CNF, a satisfying assignment to a CNF formula has ≥ 1

true literal in each clause.
We will show that we can reduce 3SAT to K-CLIQUE in polynominal time by constructing a model

based on 3SAT (adding rules).

ϕ = (a ∨ b ∨ ¬c) ∧ (¬a ∨ b ∨ d) ∧ (a ∨ c ∨ ¬e) ∧ ... ∧ (¬x ∨ y ∨ ¬z)

• G: Assume each literal in the formula is a node in G, where:

– The forbidden edges:

1. No edges within a clause.

2. No edges that go between inconsistent labels (a and ¬a )

– G has all non-forbidden edges.

∗ k is the number of clauses

∗ Other than those forbidden edges, all other edges are connected.

Claim: ϕ is satisfiable if and only if (iff) G has k-clique.

• → Proof: If ϕ is satisfiable then G has a k-clique.

– Taking any satisfying assignment to ϕ. Pick 1 true literal in each clause.

Assuming that we can find that satisfying assignemnt (that 3SAT is solvable).

– Then the corresponding nodes in G are a k-clique:

1. No forbidden edges among them
Because based on our rules of the model, those nodes on different clauses have edges
connected.

2. No chosen nodes between inconsistent labels (e.g., a, ¬a )
Because they all came from the same assignment. (a is true then ¬a is false, we cannot
pick them both in different clauses)

• ← Proof: If G has a k-clique then it will make ϕ satisfiable.

– Taking any k-clique in G. It must have 1 node in each clause.

∗ It cannot have 2 nodes or 0 nodes in the same clause.

Because when we construct 3SAT from given G, nodes cannot appear in a clique together,
since there are k clauses, each clause must have exactly one node to form a k-clique graph.

Setting each corresponding literal TRUE gives a satisfying assignment to ϕ.
Since the the reduction f is computable in polynominal time. which suggest that: If k-clique can

be solved in polynominal time, then 3SAT can be solved in polynominal time.
Conversely, a polynomial-time solution to 3SAT implies that all NP problems, including

K-clique, are in P.

8



1.5 The Cook-Levin Theorem

Once we have one NP-complete problem, we may obtain others by polynomial time reduction from it, as
we’ve seen in K-CLIQUE and HAMPATH. However, establishing the first NP-complete problem is more
difficult. Now we do so by proving that SAT is NP-complete. In 1971, Stephen Cook states that the
Boolean satisfiability problem is NP-complete [2]. That means any problem in NP can be reduced
in polynomial time by a deterministic Turing machine to the Boolean satisfiability problem.

1.5.1 SAT is in NP

A nondeterministic polynomial time machine can guess an assignment to a given formula ϕ and accept
if the assignment satisfies ϕ.

1.5.2 For each A in NP, we have A ≤ p SAT:

(Any language in NP is polynomial time reducible to SAT).

1. Proof Idea: [11]

Let N be a nondeterministic Turing machine that decides A in nk time for some constant k. We are
trying to proof that for any w belongs to any NP problems, there is a polynominal time reduction
procedure that can transform that w to ϕ(SAT)

2. Key to the Proof:

For any w belongs to any NP problems, it can be determinned in polynomial time by a nonde-
terministic Turing machine N, say the running time is nk. Then we can construct a Tableau for
N is an nk × nk table whose rows are the configurations of a branch of the computation of N on
input w. Which represents the computation steps/history of that branch of NTM (N). Based on
this Tableau, by carefully define each part of Phi :

ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕaccept

We can show that the construction time is is O(n2k), the size of ϕ is polynomial in n. Therefore
we may easily constract a reduction that produces Phi in polynomial time from the input w of any
NP problem.
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2 Interactive Proof Systems

2.1 The Limitation of NP Proof Systems

Let’s recall Stephen Cook and Leonid Levin’s influential model definition of NP: [2] The NP proof-system
consists of two communicating deterministic Turing machines A and B: respectively, the prover and the
verifier. Where the prover is exponential-time, the verifier is polynomial-time. They read a common
input and interact in a very elementary way. On input a string x belonging to an NP language L, A
computes a string y (whose length is bounded by a polynomial in the length of x ) and writes y on a
special tape that B can read. B then checks that fl(y) = x (where fl is a polynomial-time computable
function) and, if so, it halts and accepts.

2.1.1 fl(y) = x

We can understand fl(y) = x in this way: "The output (certificate) y belongs to the input x, where fl()

is a function that can check that y in poly-time."

2.1.2 Formalization vs. Intuition

Sometimes formalization cannot entirely capture the inituitive notions. In the context of theorem-
proving: NP captures a specific form of proving a theorem, where a proof can be "written down" and
verified without interacting with the prover. The certificates, which is like a formal written proof, and
the verifier just passively checks it. This is like reading a proof in a book. Once you have the book, there
is no back-and-forth to clarify or ask questions about the proof.

2.1.3 Example: Co-HAMPTATH Problem

As we mentioned in the previous section, we do not know whether the complement of HAMPATH (Co-
HAMPATH) is in NP:

• y is easy to be verified: HAMPATH

For the Hamiltonian Path (HAMPATH) problem, given a solution (i.e., a path), it’s easy for a
verifier to check it in polynomial time.

The prover can just present the path (certificates, or y), and the verifier checks whether it’s a valid
Hamiltonian path (i.e., visits each vertex exactly once and satisfies the graph’s edges).

• y is hard to be verified: Co-HAMPATH

The Co-HAMPATH problem asks whether a graph does not have a Hamiltonian path. Here, proving
the non-existence of something becomes far more complex.

If you ask a prover to convince you that no Hamiltonian path exists, the proof isn’t as simple as
just pointing to something (like a path). Instead, you’d need to somehow verify all possible paths
don’t work, which could take exponential time.

2.1.4 Limitation of the NP Proof-System

In the NP model, some problems in NP (like HAMPATH) are easily verifiable, but NP does not capture
the complexity of some other problems (often their complements i.e., Co-NP problems).

That’s why problems like Co-HAMPATH are much harder to verify using the static NP model: In our
example, there isno easy way for a prover to present a simple "proof" that no Hamiltonian
path exists, and for the verifier to check it efficiently.
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2.2 The Interactive Proof Systems

In 1985, Goldwasser et al. [6] introduced an interactive proof-systems to capture a more general way of
communicating a proof.

Much like in computation, BPP [11, Section 10.2.1: The class BPP, pp. 336–339] (Bounded-error
Probabilistic Polynomial time) algorithms provide a probailistic analog to P to enhance efficiency while
accepting a small chance of error for that speed.

In verification, IP (Interactive Proof) systems provide a way to define a probabilistic analog
of the class NP. IP includes problems not known to be in NP, demonstrating greater verification power
due to randomness and interaction.

2.2.1 Interactive Pairs of Turing Machines

• Prover (P)

An entity with unlimited computational power, aiming to convince the verifier the truth of a
statement.

• Verifier (V)

A probabilistic polynomial-time Turing machine (with a random tape) that interacts with the prover
to verify the statement’s validity.

2.2.2 Interactions

The interaction consists of multiple rounds where the prover and verifier exchange messages. The verifier
uses randomness to generate challenges, and the prover responds accordingly. The key properties of such
systems are:

• Completeness

If the statement is true, an honest prover can convince the verifier with high probability.

• Soundness

If the statement is false, no cheating prover can convince the verifier except a small probability.

2.2.3 Example: Quadratic Nonresidue Problem

An integer a is a quadratic residue modulo n if there exists an integer x such that:

x2 ≡ a (mod n)

An integer a is a quadratic nonresidue modulo n if no such integer x exists. Suppose A (Prover) claim
that a is a quadratic nonresidue, and the B (Verifier) wants to check that using an Interactive Proof
System.
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An Interactive Proof System to the QAP can be: The verifier B begins by choosing m random numbers
{r1, r2, ..., rm}. For each i, 1 ≤ i ≤ m, he flips a coin:

• If it comes up heads he forms t = r2i (mod m).

• If it comes up tails he forms t = a× ri2 (mod m).

Then B sends t1, t2, ..., tm to A, the prover, who having unrestricted computing power, finds which of the
ti are quadratic residues, and uses this information this information to tell B the results of his last m
coin tosses. If this information is correct, B accepts.
Why this Will Work?

• If a is really a quadratic nonresidue: According to the property of quadratic nonresidue:

– t = a× r2i (mod m) is a quadratic non-residue.

– t = r2i (mod m) is a quadratic residue.

The prover can distinguish which side of the coin by looking whether t is a quadratic nonresidue or
residue.

• If a is a quadratic residue (Prover is lying): Then both t = a × r2i (mod m) and x = r2i (mod m)

are quadratic residues.

Which means the ti are just random quadratic residues, all the ti looks the "same" for the prover
to guess the coin side, the prover will respond correctly in the last part of the computation with
probability 1/2m.

12



3 Knowledge Complexity

By assuming the prover has unlimited computing power, The theoritical model introduced in Interactive
Proof Systems can describe many languages that cannot be captured using NP model. But back to
practice, seems that this model will only work in theory until those kinds of unlimited computing machine
comes in real life. (Can determine NP problems in Polynominal Time). (i.e., Can quickly determine NP
problems like whether t is a quadratic nonresidue or residue) Is that true?

3.1 Secret Knowledge

It is true that having unlimited computing machine is infeasible in current practice. However, by assuming
the prover runs in polynomial time with some "secret knowledge" that can help it communicating with
verifier efficiently. It can convince the verifier that the prover has that "secret knowledge" without
revealing it.

3.1.1 Eyewitness & Police Officer

Let us try to illustrate the above ideas using an informal example: Assume that a crime x has happened,
B is a police officer and A is the only eyewitness. A is greedy that he tells B that in order for him to tell
about what happened in x, $100,000 must be transferred to his bank account first. For B, it is important
to verify whether A has that "secret knowledge" – details of crime x before making transfer. And for
obvious reasons, A cannot just prove that he has that "secret knowledge" by telling it directly to the
police officer B. By using an interactive proof systems, A can convince B he has that "secret knowledge"
x without revealing it.

3.1.2 Quadratic Nonresidue Problem

In the interactive proof system describe in Quadratic Nonresidue Problem, the key challenge for the
Prover (A) is to determine whether each number ti sent by the verifier (B) is a quadratic residue or
a quadratic nonresidue modulo m. This determination is crucial because it allows the Prover to infer
the results of B’s coin tosses and respond correctly. In this case, the "secret knowledge" for efficient
computation on A is the prime factorization of the modulus m1. If the prover knows the prime
factors of m, they can efficiently compute the Legendre2 or Jacobi3 symbols to determine quadratic
residuosity. This "secret knowledge" enables polynomial prover (A) to interact with B that are otherwise
computationally infeasible.

("secret knowledge" + poly-time machine ≡ unlimited computing power)

1Note: In practice, the modulus m is often chosen such that its factorization is hard to obtain (e.g., a product of two
large primes), ensuring that without the secret knowledge, determining quadratic residuosity remains difficult.

2Legendre, A. M. (1798). Essai sur la théorie des nombres. Paris. p. 186.
3Jacobi, C. G. J. (1837). "Über die Kreisteilung und ihre Anwendung auf die Zahlentheorie". Bericht Ak. Wiss: 127–136.
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3.2 The Knowledge Complexity

3.2.1 The Knowledge Computable from a Communication

Which communications (interactions) convey knowledge? Informally, those that transmit the output of
an unfeasible computation (we cannot perform ourselves).

3.2.2 Knowledge Complexity

How to proof & ensure that the verifier gains no additional (secret) knowledge beyond the validity of the
statement being proven?
Simulator

To formalize this, Goldwasser et al.[6] introduced the idea of a simulator: – An algorithm that can
generate transcripts of the interaction without access to the prover’s secret information. The key is that
the verifier cannot distinguish between transcripts generated by interacting with the actual prover and
those produced by the simulator.
Quantifying Knowledge

By linking the chance that the verifier able to distinguish the simulator, we quantify the knowledge
complexity of proofs.
→ If the simulator can effectively replicate the interaction, making it indistinguishable to the verifier,

the knowledge complexity is considered zero.
This formalization allows us to assess and prove the zero-knowledge property of certain interactive

proofs. → Show that sometimes the verifier cannot gain knowledge because whatever it sees could be
simulated without the prover’s help.

The Simulator acts as an algorithm that can generate transcripts of the interaction between the prover
(A) and verifier (B) without knowing the prover’s secret knowledge. By producing transcripts that
are indistinguishable from those of a real interaction, the simulator demonstrates that the verifier gains
no additional knowledge from the interaction. Therefore, if such a simulator exists, we say that the proof
is zero-knowldge because any information the verifier receives could have been simulated without the
prover’s secret.

3.2.3 Zero Knowledge Interactive Proof System for the Quadratic Residuosity Problem

[6, Section 4.2] introduces a zero knowledge IP system by carefully designing the protocol and demostrat-
ing the existence of a poly-time simulator.

The difficulties of the proof is that M must compute the coin tosses correctly as a real prover (A)
with secrect knowledge does.

Since the simulator M simulates both sides of the interaction, it both can know/control the randomness
of the coin.
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4 The Power of Low-Degree Polynomials

This section of the survey builds upon the concepts presented by Justin Thaler [15] during the Proofs,
Consensus, and Decentralizing Society Boot Camp in 2019. Thaler’s insightful discussion on the power
of low-degree polynomials in verifiable computing serves as the backbone for the detailed explanations
and proofs provided herein.

4.1 Example: Equality Testing

Two parties (i.e., Alice and Bob) each have an equal-length binary string:

a = (a1, a2, ..., an) ∈ {0, 1}n | b = (b1, b2, ..., bn) ∈ {0, 1}n.

They want to collaborate with each other (No malicious user) to determine whether a ≡ b, while ex-
changing as few bits as possible.

4.1.1 A trivial solution

Alice sends a to Bob, who checks whether a ≡ b. The communication cost is n, which is optimal amongst
deterministic protocols.

4.1.2 A logarithmic cost randomized solution

According to [14, Section 2.3], let F be any finite field with |F | ≥ n2, then we interpret each ai, bi as
elements of F : Let p(x) =

∑n
i=1 ai × ai and q(x) =

∑n
i=1 bi × bi

1. Alice picks a random r in F and sends (r, p(r)) to Bob.

2. Bob calculates q(r) and outputs EQUAL iff p(r) ≡ q(r), otherwise he outputs NOT-EQUAL.

• Total Communication Cost: O(log n) bits

Since there are at least total n2 elements in F , to represent any of each elements, we need
log(|F |) = log(n2) = 2 log(n) = O(log n) bits.

3. If a ≡ b: Then Bob outputs EQUAL with probability 1

4. If a ̸= b: Then Bob outputs NOT-EQUAL with probability at least (1− 1/n) over the choice of r
in F .

A detailed proof of this statement will be given in the next subsection: Low-degree Polynomials.
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4.2 Low-degree Polynomials

4.2.1 Field

Field [3] arises from the need for a structured and versatile system in mathematics and science to perform
algebraic operations in a consistent and predictable way.

A field is a set equipped with two operations, addition and multiplication, along with their respecitive
inverses, subtraction and division (except division by zero). Operations in a field follow specific rules,
such as commutativity, associativity, and distributivity, ensuring that the result of any operation between
elements of the field remains within the field itself (closure). Here are some mon-field examples:

• The set of 2x3 matrix cannot perform multiplication.

• The set of 2x2 matrix, the multiplication between any two elements is not commutative.

• Some of the elements in the set of Z/6Z (integers modulo 6) do not have multiplicative inverses.

A number a in Z/6Z has a multiplicative inverse if there exists a number b in Z/6Z such that
a× b ≡ 1 (mod 6). For example, 2, 3, 4 do not have a multiplicative inverse, in fact, integers mod
p (Z/pZ) is a field when p is a prime number.

4.2.2 Reed-Solomon Error Correction

Since there are total n bits of a and b, the lowest-degree polynomials that for us can ensure the uniqueness
of representation of each ai and bi is n. Which means each bit ai (and correspondingly bi) is uniquely
represented as the coefficient of a distinct term in the polynomial and affects the polynomial differently.
And that is why we need to define p(x) and q(x) in the following way for error detection in equality
testing:

p(x) =

n∑
i=1

ai × ai

q(x) =

n∑
i=1

bi × bi

4.2.3 Proof: Any non-zero polynomials d(x) of degree n has at most n roots

Assume the polynomials has more than n roots. Let r1, r2, ..., rn+1 be distinct elements of the field F ,
such that d(ri) = 0 for each i = 1, 2, ..., n+ 1. Then the polynomail d(x) can be written as:

d(x) = (x− r1)(x− r2)...(x− rn+1)q(x)

where q(x) is some polynomial of degree m ≥ 0 and (x− ri) are factors corresponding to the roots.
Then the product of (x − r1)(x − r2)...(x − rn+1) is a polynomial of degree n + 1. This assumption

leads to a contradiction. Hence the polynomial d(x) can have at most n distinct roots.

4.2.4 Proof: In Equality Testing, if a ̸= b, then the probability of Bob is wrong is 1/n

In equality testing, if p(x) ̸= q(x), then the chance that Alice picks a random r in F such that d(r) =

p(r)− q(r) ≡ 0 is at most (n/|F | ≤ n/n2 ≤ 1/n).
The reason is that a n-degree polynomial d(r) = p(r)− q(r) has at most n roots, a randomly picked

value r in F of size n2 will only let d(r) equal to zero with a probability (n/n2 = 1/n).
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4.2.5 Polynomials are Constrained by Their Degree

As we can see that, A polynomial d(x) of degree n over a large field F is uniquely determined by its
values on n+ 1 distinct points. (one extra constant coefficient with no variable)

If p(x) is not equal to q(x), then they can only agree on at most n points (d(x) = p(x) − q(x) = 0),
meaning they differ at most everywhere on the field. This strong divergence is very useful and
powerful for error detection.

The Power of Low-degree In practice, we aim to keep the degree of a polynomial as low as possible
while ensuring that each term uniquely affects the polynomial.

A polynomial of degree n has n + 1 terms, each with a distinct power of x and a unique coefficient,
which ensures that every term influences the polynomial differently.

Low-degree polynomials are powerful because if two polynomials differ, they will diverge over many
points when evaluated multiple times with efficient evaluation. This makes discrepancies clear across a
larger number of evaluations.

In cryptography, this property allows for efficient detection of errors or differences, especially when
random evaluation are used.

• Introducing randomness amplifies this power by preventing predictable evaluations, making it
harder to cheat or hide discrepancies.

• Random evaluations allow us to verify claims efficiently and securely, ensuring robustness.

By using nondeterministic inputs in low-degree polynomials, we combine the precision of low-
degree polynomials with the unpredictability of randomness.

4.3 Example: Freivalds’s algorithm for Verifying Matrix Products

Input are two (n× n) matrices A, B. The goal is to verify the correctness of A ·B. The time complexity
of matrix multiplication is O(n3), this is because each element in the resulting matrix A ·B is computed
by taking the dot product of a row of A and a column of B. For each of the n2 elements in the resulting
matrix, you perform n multiplications and additions, leading to a total of O(n3) operations. The best
bound of matrix multiplication algorithm for now is O(n2.371552) [16].

If a prover P claims the answer of A ·B is a matrix C? Can V verify it in O(n2) time?
The O(n2) Protocol:[4]

1. V picks a random r in F and lets x = (r, r2, ..., rn).

2. V computes C · x and A · (B · x), accepting if and only if they are equal.

Runtime Analysis:
V’s runtime dominated by computing 3 matrix-vector products, each of which takes O(n2) time.

• C · x is one matrix (n× n) times a vector (n× 1), the time complexity is O(n2).

Because each row of B is multiplied by the vector x, requiring n multiplications and n additions
per row, and there are n rows.

• (A ·B) · x = A · (B · x) takes two matrix-vector multiplications.

Matrix multiplication is associative, B ·x takes O(n2) first, and produces a (n× 1) matrix M , then
A ·M will also take O(n2).
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Correctness Analysis:

• If C ≡ A ·B:

Then V accepts with probability 1

• If C ̸= A ·B:

The V rejects with high probability at least (1− 1/n).

Simplified Proof : Recall that x = (r, r2, ..., rn). So each matrix-vector multiplication is indeed
the polynomials we’ve seen in Reed-Solomon Error Corretion at r of the i-th row of C.

So if one row of C does not equal the corresponding row of A ·B, the fingerprints for that row will
differ with probability at least (1− 1/n), causing V to reject w.h.p.

4.4 Function Extensions

4.4.1 Schwarts-Zippel Lemma

The Schwarts-Zippel Lemma[9] is an extension of univariate error-detection to multivariate polynomials.
If p and q are distinct l-variate polynomials of total degree at most d. Then the same kind of statement
holds. If we evaluate them at random-chosen inputs, they agree at the probability at most d/|F |.

• Total Degree:

The total degree of a polynomial is the maximal of the sums of all the powers of the variables in
one single monomial.

For example: deg(x2yz4 − 3y + 4xe5 − xy3z2) = 7 (first monomial).

4.4.2 Extensions

An extension polynomial bridges the gap between a function defined on a discrete set of points and a
function defined over a continuous (or larger discrete) domain.

A l-variate polynomial g over F is said to extend f if and only if g agrees at all of the input where
f is defined. For example: We are given a function f that maps l-bits binary strings to a field F . This
means f is defined on all possible combinations of l bits ({0, 1}l). But it is only defined on a finite set of
points (the binary strings), which usually cannot form a field, where we can leveraging algegratic
tools of polynomials.
A function g is said to extend f if:

• For all x in {0, 1}l, f(x) ≡ g(x).

g agrees with f on all inputs where f is initially defined.

• g is defined in a larger field.

Let’s say l = 1, then f is defined on input set 0, 1. Where f(0) = 2, f(1) = 3.

If we want to extend f to field R (real numbers), then our objective is to find a polynomial g(x) in
R such that g(0) = 2, and g(1) = 3.

We can find g(x) = x+ 2 defined for all x in R, not just 0, 1.

By representing f as a polynomial g, we can apply the rich toolbox of algebraic methods
& theorems avaliable for polynomials. For example, Schwarts-Zippel Lemma is more poweful
when there is a low-degree extension represents that function.
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4.4.3 Constructing Low-Degree Extensions

In this section, we present a general way to construct low-degree polynomials.
There is a vector w = (w0, w1, ..., wk−1) in F k. W : Hm → F : We define a function W : Hm → F

such that W (z) = wa(z) if a(z) ≤ k−1, and W (z) = 0 otherwise. W acts as a way to represent the vector
w as a function over Hm that for indices corresponding to elements of w, W (z) returns the corresponding
wi, otherwise 0.

The a(z) : Hm → F is the lexicographic order of z, which means transforming a m-element
vector to an index in the original w.
Low-Degree Extension W̃ : Fm → F :

W̃ is an extension of W input from Hm to Fm, such that W̃ is a polynomial of degree at most
|H| − 1 in each variable, which enables efficient computation and has nice algebratic properties. The
degree of W is at most |H|-1 can be understand in the following cases:

• Univariate Case: W (x) : H → F

– We have n = |H| distinct points in the subset H.

– For each h ∈ |H|, we want W̃ (x) : F → F ) to satisfy W̃ (h) ≡ W (h). A univariate
polynomial of degree at most (|H| − 1) can be uniquely determined by its values
on those n points.

• Multivariate Case: W (x) : Hm → Fm

– Similarly, we have an m-dimensional grid Hm, where H ⊆ F and |H| = n.

– A polynomial W̃ (x1, x2, ..., xm) (in m variables) that:

1. Agrees with W on every poit in Hm (i.e., W̃ (h) = W (h) for all h ∈ Hm.

2. Has degree at most |H|−1 in each variable. (i.e., for each variable xi, the highest exponent
of xi in W̃ is ≤ |H| − 1. In other words, just like in the univariate case (where we need
deg(W̃ ) ≤ |H| − 1 to interpolate |H| points), here each variables is similarly bounded by
|H| − 1. This ensures W̃ can uniquely "pass through" all the points specified by W on
Hm.

The low-degree extension is the simplest polynomial that fits all the given points in Hm, The
size of H determines how "complex" the polynomial needs to be (i.e., degree) in order to pass
through all those points without ambiguity.

Here is the full definition of W̃ : Fm → F :

W̃ (t1, ..., tm) =

k−1∑
i=0

B̃i(t1, ..., tm) · wi.

Where:
B̃i : F

m → F Indicator Functions:
The polynomials B̃i act as an indicator functions on Hm, on that field, B̃i(z) = 1 if and only if

i ≡ a(z) = a(t1, ..., tm). Otherwise B̃i(z) = 0.
Outside Hm (in Fm/Hm), B̃i takes on values determined by its polynomial extension, which means

when input is outside Hm, W̃ can have sum of multiple terms.
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W̃ : Fm → F Sum Selection:
W̃ is a low-degree polynomial, summing all possible k indexes i from 0 to k − 1, in the field of Hm.

According to the definition of B̃i there will be only one "selected" corresponding w(wi) which is equal to
W̃ .
B̃(z, p) : Fm → F Lagrange Basis Polynomial:

Also, we can express W̃ (t1, ..., tm) as:

W̃ (z) =
∑

p∈Hm

B̃(z, p) ·W (p)

Which constructs the polynomial W̃ by summing the contributions from all basis polynomials B̃(z, p),
each weighted by W (p).

• B̃(p, p) = 1

• B̃(z, p) = 0 for all z ∈ Hm where z ̸= p

• When z outside Hm, B̃(z, p) can be other values

This means, when z is in Fm/Hm, each B̃(z, p) is a polynomial in z and can be evaluated at any z in
Fm. And To compute W̃ (z) at that time, which means by summing over all W (p) ∈ Hm that has valid
B̃(z, p).

Since W is only defined in the field Hm. And the low-degree polynomial property still holds.
By enlarging the input field (Fm) while keeping the degree of W̃ low, this way of constructing LDE

W̃ helps us effectively using the power of randomless to detect the potencial error.

4.4.4 Multilinear Extensions

A multilinear extension of a function f : {0, 1}n → F (where F is a finite field) is a polynomial f̄ : Fn− >

F that agrees with f on {0, 1}n and is multilinear.
Multilinear means each variable xi in f̄ has a degree at most 1, which make them highly effectie to

evaluate. (a univariate f by make other variates constants will becomes a linear function). And since
multilinear polynomials have minimal degree, the error detection probability is maximized for a given
field size.

5 The Sum-Check Protocol

Suppose given a l-variate polynomial g defined over a finite field F . The purpose of the sum-check
protocol [8] is to compute the sum:

H :=
∑

b1∈{0,1}

∑
b2∈{0,1}

...
∑

bl∈{0,1}

g(b1, b2, ..., bl)

In applications, this sum will often be over a large number of terms, so the verifier (V) may not have
the resources to compute the sum without help. Instead, she uses the sum-check protocol to force the
prover (P) to compute the sum for her.

The verifier(V) wants to verify that the sum is correctly computed by the prover(P),
where g is a known multivariate polynomial over a finite field F.

20



5.1 Initialization

P claims that the total sum equals a specific value H0.

5.2 First Round

1. P sends a univariate polynomial s1(x1) to V, which is claimed to equal:

s1(x1) :=
∑

b2∈{0,1}

∑
b3∈{0,1}

...
∑

bl∈{0,1}

g(x1, b2, ..., bl)

2. V calculates s1(0) + s1(1) and checks whether that value is equal to H0.

Since s1 is a univariate polynomial, V can compute s1(0) + s1(1) directly (not using structure of
H0) in relatively short amount of time.

3. V picks a random element r1 from F and sends it to P.

4. V sets H1 := s1(r1) for use in the next iteration.

H1 = s1(r1) :=
∑

b2∈{0,1}

∑
b3∈{0,1}

...
∑

bl∈{0,1}

g(r1, b2, ..., bl)

5.3 Interative Rounds (i = 2 to l)

For each round i:

1. P sends a univariate polynomial si(xi) to V, claimed to equal:

si(xi) :=
∑

bi+1∈{0,1}

...
∑

bl∈{0,1}

g(r1, ..., ri−1, xi, bi+1, ..., bl)

Which representing the partial sum over variables bi+1 to bl, with b1 to bi−1 fixed to random values
chosen by the verifier in previous rounds.

2. V calculates si(0) + si(1) and checks whether that value is equal to Hi−1. Hi−1 is the sum in the
previous iteration: si−1(ri−1):

Hi−1 := si−1(ri−1) :=
∑

bi∈{0,1}

...
∑

bl∈{0,1}

g(r1, ..., ri−1, bi, ..., bl)

3. V picks a random element ri from F and sends it to P.

4. V sets Hi = si(ri) for use in the next iteration.

Hi = si(ri) :=
∑

bi+1∈{0,1}

...
∑

bl∈{0,1}

g(r1, ..., ri, bi+1, ..., bl)
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5.4 Final Check

In the final iteration:
Hl = sl(rl) := g(r1, r2, ..., rl)

All the bi in the original equation of g(b1, ..., bl) has being fixed to the random number ri chosen by V in
previous l rounds.

V then check whether sl(rl) is equal to g(r1, r2, ..., rl) by calculating it herself. If sl(rl) is equal
to g(r1, ..., rl), V accepts.

5.5 Soundness of the Sum-Check Protocol

Completeness holds by design: If P sends the prescribed messages, then all of V’s check will pass. Let’s
analysis the soundness of the protocol:

5.5.1 Base Case: Final Check

The Final Check (*key) is the most crucial part, and plays a key role in understanding this protocol.
In the last step, V directly computes g(r1, r2, ..., rl) and sl(rl) to check whether they are equal, note

that this is the only time for V to actually compute l-variate polynomial g by herself.
This direct comparison is critical because it anchors the entire verification process to the actual

function g. According to Schwarts-Zippel Lemma, in the final check, if sl ̸= g, then the probability
g(r1, ..., rl) equal to sl(rl) is less than d/|F |. (d is the Total Degree of polynomial g and sl).

5.5.2 Backward Reasoning

By working backwards from the last iteration, We can understand the correctness of each step based on
the validity of the final check:

In the last step, if the equality of g(r1, ..., rl) and sl(rl) holds, with high probability, sl(xl) must
be the correct polynomial of g(r1, ..., xl), because a dishonest prover would need to guess rl to fake
sl(xl) in order to pass the test, and the chance to success is less than d/|F |, where d is the totdal degree
of polynomial g over field F ..
So if V can confirm:

sl(xl) := g(r1, ..., rl−1, xl)

is correct formed w.h.p in Final Check, then in iteration (l − 1), sl−1(rl−1) can be written as:

sl−1(rl−1) =
∑

bl∈{0,1}

g(r1, ..., rl−2, rl−1, bl)

= g(r1, ..., rl−1, 0) + g(r1, ..., rl−1, 1)

= sl(1) + sl(2)

So sl−1(xl−1) must be correctly formed w.h.p based on correct sl(xl).
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5.5.3 Inductive Case:

If si(xi) is correctly formed in round i For any round i, if we can make sure si(xi) is correctly formed
w.h.p that:

si(xi) =
∑

bi+1∈0,1

...
∑

bl∈0,1

g(r1, ..., ri−1, xi, bi+1, ..., bl)

Backwards to its previous round:

si−1(ri−1) =
∑

bi∈0,1

...
∑

bl∈0,1

g(r1, ..., ri−1, bi, ..., bl)

=
∑

bi+1∈0,1

...
∑

bl∈0,1

g(r1, ..., ri−1, 0, bi+1, ..., bl)

+
∑

bi+1∈0,1

...
∑

bl∈0,1

g(r1, ..., ri−1, 1, bi+1, ..., bl)

= si(1) + si(2)

Then, with high probability, si−1(ri−1) should be correct, which indicate si−1(xi−1) should also be
correctly formed.

By induction, in the first round, since s2(x2) is correctly formed, then w.h.p s1(x1) =

s2(0) + s2(1) should be formed correctly. And thus w.h.p, H0 = s1(0) + s1(1) should be the
correct answer. So far, we’ve proved the soundness of the protocol.
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5.6 Analyzing the Sum-Check Protocol

We’ve proved the soundness of the sum-check protocol in the previous subsection by showing that:
According to Schwarts-Zippel Lemma, with high probability a dishonest P cannot initially
fake a incorrect H0 that won’t break the consistent in every round of the protocol and
causes a correct sl(rl) equals to g(r1, ..., rl) in the final round.

5.6.1 A Scenario where V cannot Compute g(r1, ..., rl)

The soundness is relying on the final check, by validating the final step, V effectively validates all prior
steps due to their interdependence in the chain of validations. For example, here we show a specific
cheating strategy when V cannot compute g(r1, ..., rl) by herself:

Imagine a dishonest P consistently uses different function j(x) instead of the correct function g(x)

throughout the protocol. In this scenario, P computes all the partial sums and polynomials correctly
with respect to j(x), ensuring consistency at each step, P only deviates from the correct computation at
the final check when V computes g(r1, ..., rl).

During the protocol, V only computes g(x) in the final check, the only point of detection is the final
check, and the probability of detection is d/|F |. But if there is no final check, which means the protocol
ends at round l, V cannot have any guess of what function P used to compute H0.

5.6.2 Probability of Successful Cheating by P in Sum-check Protocol

In this part, we are going to quantify the probability for a dishonest P can succesfully convince V for the
wrong computation H0.
Deviation at Round i:
For any round i, let’s assume what a dishonest P sends to V (si(xi)) is formed incorrectly (i.e., si(0) +
si(1) ̸= si−1(ri−1) ):

• The probability V does not detect the deviations is d/|F |:

Since in round i, the si(ri) is set to Hi by V (in round l, Hi becomes to g(r1, ..., rl)). The probability
for P to provide si to satisfy polynomial Hi − si(ri) = 0 with randomly selected ri by V from field
F is d/|F |, where d is the total degree of polynomial g and s, according to Schwarts-Zippel Lemma.

• The probability of V does not detect the deviations in future iterations is (l − i)d/|F |:

If si(ri) ̸= Hi, P is left to prove a false claim in the recursive call:

The prover must construct si+1(xi+1) such that si+1(0) + si+1(1) = si(ri). This means si+1(ri+1)

must deviate from true Hi+1, leading to a new error polynomial in subsequent rounds.

Thus, we can get the the cumulative probability of acceptance when prover deviates at round i and
the verifier does not detect in rounds i+ 1 to l and end up accecpting: (l − i)d/|F |.

The reason we sum the probabilities is due to the events of failing to detect the P in each round
are over V’s independent random choices ri. And a cheating P can adapt their messages based on
the V’s previous random choices and messages exchanged so far. That means P’s actions can be
dependent on prior interactions.
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• The possibility of acceptance when prover deviates at round i is (l − i+ 1)d/|F |:

We have:

P [V accepts] ≤ P [V not detect at i] + P [V not detect in i+1, l]

≤ d/|F |+ (l − i)d/|F |

= (l − i+ 1)d/|F |

• Upper Bound: ld/|F |

The worse-case scenario is that if P deviates in the first iteration (i = 1), the total probability of
acceptance is:

d/|F |+ (l − 1)d/|F | = ld/|F |

5.6.3 Example: l = 2

Let’s consider a minimum sum-check protocol with l = 2 by working backward from the last iteration to
understand the soundness:

1. Final Check:

(a) V computes g(r1, r2)

(b) Comparison with P’s s2(r2)

If the equality holds, with high probability, s2(x2) must be correct polynomial g(r1, x2), be-
cause a dishonest prover would need to guess r2 to fake s2(x2).

2. Round 2: Since s2(x2) that P sends to V is confirmed to be correct, the sum: s2(0) + s2(1) =

g(r1, 0) + g(r1, 1) = H1 must be satisfied. This confirms that H1 is correctly computed based on
s2(x2).

3. Round 1: At the end of this round, P sets H1 = s1(r1). Since H1 is now confirmed to be g(r1, 0) +

g(r1, 1), it implies s1(r1) = g(r1, 0) + g(r1, 1), thus s1(x1) is correct polynomial
∑

b2∈0,1 g(x1, b2)

w.h.p, any deviation would be detected with high probability due to the random r1.

4. Initialization: V check s1(0)+s1(1) = H0 Since s1(x1) is correct w.h.p, then H0 should be correctly
formed based on s1(x1).

The verifier only needs to perform a few evaluations of univariate-polynomials and
checks (except the final check g), making the protocol practical even for large compu-
tations.
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6 General Purpose Interactive Proof Protocol

6.1 Example of the Limitations of Sum-Check Protocol: Sharp-SAT

The Sharp Satisfiability Problem (#-SAT) [10], is the problem of counting the number of interpretations
that satisfy a given Boolean formula. Let ϕ be a Boolean formula of size S over n variables, (i.e.,
{0, 1}n → {0, 1}) the #-SAT ask us to count the number of satisfying assignments of ϕ.

6.1.1 Arithmetization

An intuitive way to solve the #-SAT problem is by using The Sum-Check Protocol, which means compute:∑
x∈0,1n

ϕ(x)

The final answer of all possible evaluation of ϕ is the answer we want, but as we all know that, the
sum-check protocol requires the the function (g) to be polynomial, and to control communication and P
and V’s runtime, we need g to be "low-degree". By using Arithmetization, we can construct the extention
polynomial g of the Boolean formula ϕ, which means replace ϕ with an arithmetic circuit:

By going gate-by-gate through ϕ, we can replace each gate with the gate’s multilinear extension:

NOT (x)→ 1− x

AND(x, y)→ x× y

OR(x, y)→ x+ y − x× y

6.1.2 Costs of Sharp-SAT Using Sum-Check Protocol

The degree of g is less or equal to S (The size of ϕ), and the runtime of g is of O(S), let’s analyzing the
costs when applying sum-check protocol to this problem in total n rounds:

Communication Cost: P sends a polynomial of degree at most S in each round, V sends one field
element r in each round. The total communication cost is O(S × n).

• Why degree d of s(x) is at most S?

The degree of s(x) that P sents to V in each round should be equal to g, which is the arithmetic
version of circuit ϕ.

Each polynomial g can be prepresented by its coefficients, requiring O(S) field elements, where S

represents the size of ϕ. In Arithmetization when composing gates in ϕ, each gates can affect the
overall degree at most 2 (AND gate x× y is in degree 2).

In the worst-case scenario (where the gates are composed in a way that maximizes degree growth 2),
the degree of the polynomial representing ϕ can be up to 2D, where D is the depth of the formula.
For a balanced formula, the depth D is O(logS), therefore, the degree of g in each variable is at
most:

2O(logS) = O(S)
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V Time Complexity: O(S) time to process each of the n messages of P, and O(S) time to evaluate
g(r). The total cost is O(S × n)

P Time Complexity: P needs to compute the univariate polynomial gi by summing over all possible
assignments of the remaining n − i variables, which involves 2n−i evaluations of g per round. And P’s
total time is dominated by the need to consider all 2n possible assignments to the variables, leading to
O(S × n× 2n).

6.1.3 Limitations

According to [15], Sharp-SAT is a Sharp-P-complete problem, hence, the protocol we just saw implies
every problem in Sharp-P has an interactive proof protocol with a polynomial time verifier.

Since in #-SAT, the time complexity of P is O(S × n × 2n), which means even to very simple
problems, the honest prover would require superpolynomial time by using sum-check protocol. And this
seems unavoidable for Sharp-SAT[14, Section 4.2], since we don’t know how to even solve the problem
in less than 2n time. We can hope to solve/prove easier problems without turing those problems into
#-SAT instances since it is not practical.

6.2 Introduction to the GKR Protocol

6.2.1 Recall: The Notion of Interactive Proofs in 1980s

Recall Interactive Proof Systems in 80s[6], when the IP model first came out, it was only a theoretical
model, which means no one cares about the runtime of the all powerful P. At that time, the idea[7] was
people want to see how expressive, which computation can P prove to a polynomial time verifier by using
interactive proofs.

6.2.2 Delegating Computation: Interactive Proofs for Muggles

In the paper "Delegating Computation: Interactive Proofs for Muggles" [5]. The author introduced a
protocol that can be used to effectively for both P and V to prove/verify the correctness of general
purpose computation.

More formally: For any question/language computable by a log-space uniform boolean circuit with
depth d and input length n, the protocol can ensure:

• The costs to V grow linearly with the depth d and input size n of the circuit, and only
logarithmically with size S of the circuit.

V runs in time (n + d) × polylog(S), where polylog(S) means a polynomial function of logS (e.g.,
(logS)k).

The space complexity of V is O(logS).

• P’s running time is polynomial to the input size n.

P’s runtime is not much more than perform the computation, which is in time poly(n). Meaning it
is efficient for practical purpose.

27



6.2.3 Blueprint of the Protocol

1. Layered Circuit

The protocol divide circuit C into D phases, since for each phase/layer i, if its gates value is wrong,
then some gates’ value in phase/layer (i + 1) must be wrong. More specifically, some gates that
connected to the error gates in layer i+ 1 must be incorrect.

2. Local Correctness

With this in mind, we run a local sum-check protocol at each phases/layers to ensure local
correctness.

That is, we define a function Vi : F
si → F (where si is logSi, means the bits of # gates in layer

d) And for any gate gi in that layer i, running Vi(gi) will give us the corresponding gate value of
gi. By running d-subprotocols of each layers, where each protocol show connections between layer
i and its layer before (i+1). (More specifically, if Vi is not correct, then w.h.p Vi+1 is not correct).
Eventually, it will be reduced to a claim about the input values (layer d), which are
known to the verifier.

6.3 Detailed Descriptions of the Protocol

Fix boolean circuit C: {0, 1}n− > {0, 1} of size (number of gates) S and depth d. The GKR protocol is
an interactive proof protocol to prove that C(x) = 1.

Assume without loss of generality that C is layered, which means that each gate belongs to a layer,
and each gate in layer i is connected by neighbors (determined) only in layer i+1. In a nutshell, the goal
is to reduce V’s runtime to be proportional to the depth d of the circuit C being computed, rather than
its size, without increasing P’s runtime by too much.

6.3.1 Arithmetize C

Convert C to a layered arithmetic circuit with fan-in 2 with layer d, and only consists of gate of the form
ADD and MULT. fan-in 2 means each gates in the i-th layer takes inputs from two gates in the (i+1)-th
layer. layer 0 denotes the output layer and d denotes the input layer.

We denote the number of gates in layer i as Si, and let si to be the number of input elements of the
final layer d. (F si) As we mentioned in the blueprint. We define function Vi(z) at each layer i to return
the value of that gate with index z.

Vi : H
s
i → F

V0 corresponds to the output of the circuit, and Vd corresponds to the input layer. Here is a detailed
Definition of Vi: To define Vi, let’s recall the function W in Connstructing LDE: Imagine layer i of the
circuit C to be a vector of Si gates: g = (g1, g2, ..., gSi

) where each gj refers to the value of that gate.
Then a function Vi : H

m → F can be defined such that Vi(z) = ga(z) if a(z) is a valid gate in the vector
g and Vi(z) = 0 otherwise.
Note that for every p ∈ Hsi :

Vi(p) =
∑

w1,w2∈Hsi

ãddi(p, w1, w2)× (Ṽi+1(w1) + Ṽi+1(w2)) + m̃ultii(p, w1, w2)Ṽi+1(w1)× Ṽi+1(w2))
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Where ãddi, m̃ultii refer to the low-degree extensions of wiring predicates addi and multi of layer i:
addi(multi) takes one gate label p ∈ Hsi of layer i and two gate labels w1, w2 ∈ Hsi in layer i+1, and
outputs 1 if and only if gate p is an addition (multiplication) gate that takes the output of gate w1, w2

as input.

6.3.2 Low Degree Extension of Vi at Layer i

In the i-th phase (1 ≤ i ≤ d): P runs a local protocol with V to argue the correctness of Vi. To do this,
a sum-check protocol of layer i will be applied to let P reduce the task of proving:

Ṽi(zi) = ri

to the task of proving:
Ṽi+1(zi+1) = ri+1

where zi ∈ F si is a random value determined by the verifier.
As we discussed in previous sections, Ṽi(z) can be expressed as:

Ṽi(z) =
∑

p∈Hsi

B̃(z, p)× Vi(p)

By replacing Ṽi(p) of that formula, we can get for every z in F si :

Ṽi(z) =
∑

p,w1,w2∈Hsi

B̃(z, p)×((ãddi(p, w1, w2)×(Ṽi+1(w1)+Ṽi+1(w2)))+(m̃ulti(p, w1, w2)×Ṽi+1(w1)×Ṽi+1(w2)))

For every zi in F si , let fi,zi : F
3si → F to be the function defined by:

fi,zi(p, w1, w2) = B̃(zi, p)×((ãddi(p, w1, w2)∗(Ṽi+1(w1)+Ṽi+1(w2)))+(m̃ulti(p, w1, w2)×Ṽi+1(w1)×Ṽi+1(w2)))

Then Ṽi(zi) can be expressed as:

Ṽi(zi) =
∑

p,w1,w2∈Hsi

fi,zi(p, w1, w2)

6.3.3 Sum-Check Protocol at Layer 0

At each layer i, P wants to convince V that Vi(z) ≡ ri (At the output layer 0: V0(z) = r0, and r0 is the
output value of the entire circuit C).

First P will give the claim of the SUM over the gate in layer 0: Ṽ0(z) = r0 (F 3si → F ), which should
be the final result of the entire circuit:

r0 = Ṽ0(z) =
∑

p,w1,w2∈Hsi

f0(p, w1, w2)

To verify this, P running an interactive Sum-check protocol with V on the output layer:

r0 = Ṽ0(z) =
∑

p,w1,w2∈Hsi

B̃(z, p)×((ãdd0(p, w1, w2)×(Ṽ1(w1)+Ṽ1(w2)))+(m̃ult0(p, w1, w2)×Ṽ1(w1)×Ṽ1(w2)))

As we described in 4. Final Check (*key), in the final step of the sum-check protocol, V needs to
compute on her own to evaluate function f0(p, w1, w2) at random inputs p, w1, w2 chosen by herself.
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Which means V needs to compute:

((ãdd0(p, w1, w2)× (Ṽ1(w1) + Ṽ1(w2))) + (m̃ult0(p, w1, w2)× Ṽ1(w1)× Ṽ1(w2)))

and compare with s0(p, g) that P sends to her to check the correctness of the function s0().
Plus, since P now give the s0(), V can now evaluate ãdd0, m̃ult0 on her own, using the structure of

the circuit.
But things are getting different here, while some part of the f0(p, w1, w2) can be evaluated by V since

she has the knowledge of the circuit. (ãdd0, m̃ult0). The main computational burden in this verificational
task is computing Ṽ1(w1) and Ṽ1(w2), which requires time poly(S) since it is related to the value of gates
in layer 2, 3, ...d.

So instead, in this protocol, P sends both these values r1,1 = Ṽ1(w1) and r1,2 = Ṽ1(w2) to V, and
claim they are true. And then using the following interactive reduction protocol to "reduce" to a
single claim used in the next layer:

So far, we reduced the task of proving that Ṽ0(z) = r0 to the task of proving both Ṽ1(w1) = r1,1 and
Ṽ1(w2) = r1,2.

However, recall our goal was to reduce the task of proving V0(z0) = r0 to the task of proving a
single equality of the form V1(z1) = r1. What remains is to reduce the task of proving two equalities of
the form Ṽ1(w1) = r1,1 and Ṽ1(w2) = r1,2 to the task of proving a single equality of the form Ṽ1(z1) = r1.
This is done via the following (standard) process: [17]

1. V constructs line γ : F → F si with two values w1 and w2, such that γ(0) = w1 and γ(1) = w2.
And then sends γ to P.

2. P encodes the composition of Ṽ1 and γ to a univariate polynomial f : F → F such that (f(x) =
Ṽ1(γ(x))), and then sends to V.

3. V checks that f(0) == Ṽ1(w1) = r1,1 and f(1) == Ṽ2(w2) = r1,2. If check pass, V chooses a
random element r from F and computes f(r) produce a new claim that: f(r) ≡ Ṽ1(γ(r))

4. V then define l := γ(r) ∈ FS0 and sends (l, r) to P. Thus, in the next round of the sum-check
protocol, P is left to prove a single claim:

Ṽ1(l) = f(r)

6.3.4 Sum-check Protocol at Layer d and the Final Check

In the iteration d, which is very similar to previous phases. P wants to convince V that rd = Ṽd(z), and
at the end of the protocol in this layer, P will sent sd(z) which refer to the low-degree polynomial
of the input. Since this layer is the input layer, V can verify on her own. This amounts to computing
a single point in the low-degree extension of the input x.

If all the input matches, this means function sdis correctly formed, thus Ṽd is also correctly formed,
and in the previous layer, Ṽd−1 is also valid, all w.h.p etc.

Thus according to the Soundness of the Sum-Check Protocol, especially Backward Reasoning, we can
get w.h.p that V0 is correctly formed which implies r0 which is C(x) should should be correct w.h.p.
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