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Abstract—Emerging cryptographic systems such as Fully Ho-
momorphic Encryption (FHE) and Zero-Knowledge Proofs (ZKP)
are computation- and data-intensive. FHE and ZKP imple-
mentations in software and hardware largely rely on the von
Neumann architecture, where a significant amount of energy
is lost on data movements. A promising computing paradigm
is computing in memory (CIM) which enables computations to
occur directly within memory thereby reducing data movements
and energy consumption. However, efficiently performing large
integer multiplications – critical in FHE and ZKP – is an
open question, as existing CIM methods are limited to small
operand sizes. In this work, we address this question by exploring
advanced algorithmic approaches for large integer multiplication,
identifying the Karatsuba algorithm as the most effective for
CIM applications. Thereafter, we design the first Karatsuba
multiplier for resistive CIM crossbars. Our multiplier uses a three-
stage pipeline to enhance throughput and, additionally, balances
memory endurance with efficient array sizes. Compared to existing
CIM multiplication methods, when scaled up to the bit widths
required in ZKP and FHE, our design achieves up to 916x in
throughput and 281x in area-time product improvements.

Index Terms—Computing In Memory, Large Integer Multipli-
cation, Karatuba Multiplication

I. INTRODUCTION

Zero-knowledge Proofs (ZKP) and Fully Homomorphic En-
cryption (FHE) offer privacy-preserving properties that are
highly relevant for modern applications. Nonetheless, they
introduce magnitudes of computational overhead and com-
monly involve several Gigabytes of data [1], [2]. For example,
ZKP proofs with a circuit size of 226, 256-bit polynomial
coefficients, and 384-bit elliptic curve points, require 8.8GB
of memory [3]. Recent research focuses on accelerating these
data-intensive schemes using von Neumann-based architectures
including CPU [4], FPGA [3], and ASIC [2] platforms. While
these approaches enhance arithmetic operations, the large data
transfers between the processor and memory result in signifi-
cant energy and latency overheads.

A promising alternative to address the memory bottleneck is
computing in memory (CIM). The CIM paradigm avoids expen-
sive data movements and performs computations directly in the
memory array [5]. This resolves the limitations of classical von
Neumann architectures and offers novel opportunities for data-
intensive cryptographic schemes. However, performing large
integer multiplication – a crucial operation of ZKP and FHE
with hundreds of bits wide operands – efficiently in CIM is still
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Fig. 1. 3×3 ReRAM array (a) and MAGIC NOR operation (b).

an unsolved challenge. Existing in-memory multipliers [6]–[9]
do not consider cryptographic demands and, hence, only sup-
port small operand sizes. In addition, existing CIM multipliers
show a drastic increase in area or latency when scaled up to
cryptographically relevant operand sizes. This stems from the
commonly used schoolbook multiplication method. Although
the schoolbook method is simple to implement, it prevents an
efficient in-memory integration of large integer multiplication.

This paper addresses this limitation and explores more effi-
cient large integer multiplication methods for CIM. Our contri-
butions are fourfold and can be summarized as follows: (1) We
investigate the Toom-Cook and Karatsuba methods and discuss
their suitability for an efficient CIM deployment. This reveals
the Karatsuba method as best suited. (2) We hence design
the first Karatsuba-based CIM multiplier for ZKP and FHE-
relevant large operand sizes. Our multiplier design benefits from
algorithmic and architecture design optimizations. (3) On the
algorithmic level, we unroll the Karatsuba tree to enhance the
uniformity of operations, which is crucial for efficient CIM
implementations. (4) On the implementation level, we present
an optimized Kogge-Stone adder for the needed additions in
Karatsuba. Moreover, we pipeline our Karatsuba multiplier to
enhance the throughput of our design.

Compared to existing CIM multipliers, our Karatsuba ap-
proach scales better to cryptographically relevant operand sizes.
We thus achieve a significant improvement of up to 916× in
performance and 281× in area-time product with respect to the
state of the art. In addition, we relax memory array constraints
and consider the endurance limitations of memory cells.

II. BACKGROUND

A. Memristive Crossbars

Resistive random access memory (ReRAM) is an emerging
non-volatile memory technology using voltage-controlled resis-
tors to store data. Each resistor (also called memristor) stores



one bit of information in its resistance: High resistance encodes
logic zero and low resistance encodes logic one [5]. Memristors
are arranged in a memory grid. Fig. 1a shows a 3×3 grid with
horizontal word lines (WL) and vertical bit lines (BL).

For storing one word of information to a certain word in
the memory, the word line driver in Fig. 1a selects the target
WL and keeps the other WLs idle. Simultaneously, the write
circuit applies VSet (or VReset) to the BL to write logic one (or
logic zero) [10]. To read one word from memory, the word
line driver applies a small voltage VRead to the target WL.
This voltage is below the memristor threshold, ensuring the
memristors preserve their initial resistance levels. The resulting
current through each bit line, determined by the memristor’s
resistance, is measured by a sense amplifier.
Endurance: An important aspect of ReRAM design is the
limited endurance of the memristors. Memristors face wear and
tear effects during writing which limits the lifetime of ReRAM
cells between 1010 and 1011 write cycles per cell [10]–[12].
Hence, a ReRAM-based CIM design must reduce the number
of write operations to prolong the cell lifetime. Furthermore,
write operations should be equally distributed over the whole
array to balance wear and tear across all cells.

B. Memristor-Aided Logic (MAGIC)

Recent works proposed different methods to compute directly
in ReRAM memory. Thereby, only simple boolean functions
are supported such as MAJORITY [13] or IMPLY [14] due to
the constrained memory environment. One of these works is
Memristor-Aided Logic (MAGIC) [15], which provides NOR
operations across memory rows. The benefit of MAGIC is
twofold. First, NOR is a functionally complete gate. This means
that any boolean function can be implemented using NOR.
Second, MAGIC NOR is computed entirely in the memory
array without moving data to the periphery. In addition, MAGIC
operations preserve the state of the input memristors, which is
not the case in IMPLY [14]. Hence, in MAGIC, multiple sequen-
tial operations are possible with the same input memristor.

Fig. 1b shows an example of the MAGIC NOR operation
within resistive memory [9]. The two input values to the NOR
gate (denoted as ai and bi, i ∈ {0, 1, 2}) are stored in two sep-
arate memory rows but within the same bit line, and the output
memristor ci is initialized to logic one (low resistance). Then,
the word line driver applies V0 to the WLs of the input rows
and ground potential to the row of the output memristor (blue in
Fig. 1b). This causes a current flow (red in Fig. 1b) through the
input memristors and the output memristor. Suppose at least one
input memristor has low resistance (logic one). In that case, the
current through the output memristor is large enough to force
the output memristor into the high resistance state (logic zero).
In contrast, if both input memristors show high resistance (logic
zero), the current through the output memristor is insufficient
to change the memristor state, and it retains logic one. Thus,
we obtain a two-input NOR gate.

This NOR operation does not only apply to a single bit line
but to all bit lines in parallel, as shown in Fig. 1b. All three
ci = NOR(ai, bi) are evaluated simultaneously corresponding
to a single-instruction-multiple-data (SIMD) computation. In

addition to NOR, the MAGIC technique also allows performing
NOT operations [15]. Thereby, the NOT operation is a special
case of NOR with just one input operand.

C. Related works for CIM integer multiplication

Several works propose integer multiplications for in-memory
computing [6]–[9], [16], [17]. They mostly focus on integer
multiplication with small (8-bit) to medium-sized (up to 64-
bit) operands and utilize the simple schoolbook multiplica-
tion method. Small integer sizes are well chosen as they fit
common machine word sizes in microcontrollers and CPUs.
However, many cryptographic applications require significantly
larger multiplications reaching up to 384 bits for pairing-based
ZKP [2], [18]. Straightforwardly scaling existing in-memory
multipliers to such large operand sizes is inefficient.

The schoolbook multiplication has O(n2) complexity for n-
bit multiplication. Therefore, most of the existing works have
either quadratic time complexity [7], [16], [17] or quadratic area
complexity [6], [8]. One work with quadratic area complexity
is [8], where increased area is traded for low runtime, making it
one of the fastest CIM multipliers. The authors use MAJORITY
logic to build a Wallace-tree-based multiplier [19], enabling
high parallelism at the cost of quadratic area consumption.

The work [9] is exceptional as it has O(n log(n)) runtime
and O(n) area. This efficiency is achieved by dividing the
memory array into independent partitions, where the partitions
compute in parallel to boost performance. However, this ap-
proach performs the whole multiplication in just a single bit
line, leading to a very long bit line, especially in large integer
scenarios. For example, a n = 384-bit multiplication requires a
bit line with 5,369 memristors, which limits the practicability
due to increasing parasitic resistances in bit lines [7], [20].

III. ALGORITHM EXPLORATION FOR CIM-BASED LARGE
INTEGER MULTIPLICATIONS

Selecting the multiplication algorithm for large integer mul-
tiplication is a crucial aspect of CIM designs. Most importantly,
the algorithm must scale well for large operands while allowing
a simple control flow with in-memory-friendly operations. The
operations should be easily decomposable into NOR gates and
allow a high level of parallelism to profit from CIM designs.

This section presents the different multiplication methods
such as schoolbook [21], Toom-Cook [22], and Karatsuba [23]
algorithms. Furthermore, we discuss the suitability of these
algorithms for efficient in-memory implementation.

A. CIM Efficiency Exploration of Schoolbook Multiplication

The schoolbook method [21] is the simplest approach for
integer multiplication. It multiplies each bit of one operand
with all bits of the other operand. These multiplications at bit-
level correspond to bit-wise AND operations. The results of the
partial multiplications are added to yield the final result.
Suitability for CIM: The schoolbook method contains just
AND operations and additions of partial results. Both operations
are CIM-friendly due to a regular data flow. Further, the addi-
tions can be parallelized by, for example, applying a Wallace
tree structure [8]. However, the schoolbook method does not



scale well for large operands due to the quadratic growth
of AND operations with the bit-size of operands. Hence, the
schoolbook method is not ideal for large integer multiplication.

B. CIM Efficiency Exploration of Toom-Cook Multiplication
The Toom-Cook method [22], [24] has O(nc) complexity,

with 1<c<2. It splits each operand into k smaller chunks,
treating these chunks as the coefficients of polynomials. These
polynomials are then evaluated at a set of strategically impor-
tant points, and after that, the evaluations are point-wise mul-
tiplied. An interpolation step is used to reconstruct the product
polynomial. Finally, the product polynomial’s coefficients are
joined to obtain the integer multiplication result.
Suitability for CIM: Selecting a larger parameter k is advanta-
geous in the point-wise product computation since the operands
involved are smaller. However, a large k is a significant
drawback in the interpolation due to the quadratic growth of the
Vandermonde matrix [25]. This quickly leads to a high num-
ber of constant multiplications for interpolation. For example,
interpolation requires 25, 49, and 81 multiplications for k = 3,
4, and 5, respectively. Although these multiplications can be
parallelized in the CIM paradigm, they cause a significantly
increased area consumption.

In addition to that, selecting 2k − 1 evaluation points sup-
porting both, efficient evaluation and efficient interpolation, is
challenging. For example, choosing evaluation points as powers
of two allows evaluation to just use additions of shifted coef-
ficients. Yet, in this case, interpolation needs multiplications
with non-powers-of-two and potentially fractional values. Sup-
porting these multiplications with sufficient precision in CIM is
highly inefficient. Therefore, generic Toom-Cook with large k
is not an ideal choice for CIM multiplication. Yet, we select a
special case of Toom-Cook, namely the Karatsuba method [23],
for our implementation. Karatsuba resolves several issues in the
generic Toom-Cook, as discussed in the next subsection.

C. CIM Efficiency Exploration of Karatsuba Multiplication
The Karatsuba multiplication method [23] is a special case of

Toom-Cook multiplications with k = 2. This simplifies Toom-
Cook and leads to an algorithmic complexity of O(n1.58...)
[23], which is lower than schoolbook multiplication.

The Karatsuba method computes c = a · b with n-bit wide
operands by splitting each operand into two n

2 -bit wide chunks
ah, al and bh, bl, respectively, as in (1). Based on these chunks,
three multiplications are performed in (2) to compute partial
results ch, cl, and cm. Therein, the suffixes stand for high, low,
and mid, respectively. Finally, the partial multiplication results
ch, cl, and cm are combined according to (3) to yield the overall
result (·||· denotes bit-wise appending). For the remainder of
this paper, we refer to the (ah + al) and (bh + bl) additions in
(2) as precomputation and to (3) as postcomputation.

a · b = (ah||al) · (bh||bl) = (2
n
2 ah + al) · (2

n
2 bh + bl) (1)

ch = ah · bh, cl = al · bl, cm = (ah + al) · (bh + bl) (2)

a · b = c = (ch||cl) + (cm − ch − cl) · 2
n
2 (3)

Suitability for CIM: One level of Karatsuba decomposition re-
quires two n

2 -bit additions (2), two n
2 -bit multiplications (for ch
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Fig. 2. Two-level recursive Karatsuba tree. Bit sizes refer to input operands.

and cl in (2)), one n
2+1-bit multiplication (for cm in (2)), two

n + 2-bit subtractions (3) and one 2n-bit addition (3). Hence,
the Karatsuba multiplication is more straightforward than the
Toom-Cook approach described in Sec. III-B. We therefore
choose Karatsuba multiplication for our CIM multiplier and
explain the design aspects for CIM in detail.

1) Recursive Karatsuba: The Karatsuba decomposition re-
quires three partial multiplications at each level shown in (2).
The cost of these multiplications can further be reduced by
recursively applying Karatsuba decomposition again. A two-
level recursive Karatsuba decomposition is shown in Fig. 2.
The red operations show the first Karatsuba level, whereas
the three partial multiplications are computed by another layer
of Karatsuba (yellow). The second layer of Karatsuba again
contains precomputation steps and nine actual multiplications.

Fig. 2 also highlights a data dependency (red arrow) across
the recursion: The precomputation of am and bm in the first
level must be performed before handing the results over to
the second Karatsuba level for multiplication. This means that
two n

2 -bit additions are required in precomputation of the first
level. In level 2, the n

2+1-bit wide results am, bm are again
split and fed to n

4+1-bit additions. These additions compute
amm, bmm as shown in Fig. 2. Hence, in recursive Karatsuba,
each level requires additions with different operand sizes during
the precomputation step.

These varying addition sizes are easily implementable in
software on von Neumann systems. In contrast, in CIM ar-
chitectures, each addition size requires a dedicated array di-
mension, leading to two potential design approaches: (i) either
instantiate multiple addition arrays of different sizes, which
results in a high area overhead; or (ii) reuse a single addition
array of the largest dimension for all additions, which causes
underutilization of the array and limits efficiency. Consequently,
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the non-uniformity of precomputation presents challenges for
the CIM implementation of the recursive Karatsuba method.

2) Unrolled Karatsuba: For our implementation, we im-
prove uniformity by unrolling the recursive Karatsuba multipli-
cation. For a Karatsuba depth of L, we directly decompose a, b
into 2L chunks each. We then merge the precomputation stages
of all levels into a single precomputation stage, as shown in
Fig. 3. Thereby, the precomputation stage only requires between
n
2L

-bit and n
2L

+L−1-bit additions for a Karatsuba depth of L.
This increased uniformity in the addition operation allows a
more efficient CIM design. Furthermore, the bit size of the
addition operands is smaller compared to recursive Karatsuba,
which makes unrolled Karatsuba better suited for our design.

The Karatsuba depth L is a central parameter in our design.
Increasing the value of L reduces the bit sizes of precompu-
tation and multiplication operands, as discussed above. This
has a positive effect on the area and latency of the individual
suboperations. However, the overall number of additions and
multiplications to be performed significantly increases with
larger L. For example, we need 9, 27, and 81 multiplications
and 10, 38, and 140 additions in precomputation for L = 2,
3, and 4, respectively. This increase counteracts the benefit
of smaller suboperations. To find the optimal depth L, we
computed the area-time product (ATP) for different depths.
The obtained results are presented in Fig. 4 and show that
L = 2 leads to the lowest ATP across cryptographically relevant
multiplication sizes n. Therefore, we choose L = 2 depth for
our unrolled Karatsuba CIM multiplier design.

IV. OUR KARATSUBA MULTIPLIER DESIGN FOR CIM

Our CIM Karatsuba design focuses on efficient large integer
multiplication for data-intensive cryptographic schemes, e.g.,
64-bit integers for FHE [4] and up to 384-bit for pairing-based
ZKP [2], [18]. Achieving a balance between throughput and
area consumption remains essential in our investigation.

A. High-Level Design

The unrolled Karatsuba multiplication method, as discussed
in Sec. III-C, can be split into three main steps. The first
step is the precomputation step, which consists of additions.
The second step performs the partial multiplications. Finally,
the third step is the postcomputation, which again consists of
additions. We realize this three-step process as a three-stage
pipelined design for CIM, which is shown in Fig. 5. Each
stage of the pipeline uses a dedicated memory subarray. Similar
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Fig. 5. Our pipelined Karatsuba multiplier.

heterogeneous approaches have been proposed for AI applica-
tions [26] but are unexplored for large integer multiplication.

Our CIM Karatsuba multiplier is controlled by the Karatsuba
Multiplication Controller shown in the center of Fig. 5. The
controller is responsible for providing the input operands a
and b to the precomputation subarray. After precomputation is
completed, the intermediate results are passed on to the multi-
plication subarray. Finally, the partial products are aggregated
in the postcomputation stage yielding the multiplication result
c, which is stored back to the desired main memory location.

The latency of one such multiplication is the sum of the
stage latencies. Yet, the proposed pipelining allows increased
throughput of our design by simultaneously operating on three
multiplications. The throughput is given by the maximum
latency across the three stages. Therefore, balancing the stage’s
latency is beneficial: Area can be saved in stages with low
computational effort, whereas stages with high computational
effort should consume more area to reduce their latency. In our
pipelined design, the precomputation stage shows the lowest
computational effort which allows us to save area resources
in the precomputation array. In contrast, the multiplication and
postprocessing stages consume more area to lower their latency.

B. Our Kogge-Stone Adder Implementation

The Karatsuba pre- and postcomputation heavily rely on
addition operations. To efficiently perform these additions in
memory, we implement a Kogge-Stone adder. The Kogge-Stone
method [27] is a type of carry lookahead adder, which allows
O(log(n)) latency for n-bit additions. This low latency is
achieved through bit-level parallelism which perfectly suits the
SIMD paradigm of CIM. In addition, the Kogge-Stone adder
has a regular data flow making it an attractive choice for CIM.

An example of a 4-bit Kogge-Stone adder is shown in Fig. 6
to explain our adder design. The 4-bit addends x and y are
stored in one memory row each. Then, the so-called propagate
bits pi and generate-bits gi are computed via several MAGIC
NOR and NOT operations emulating the XOR and AND gates
(blue region in Fig. 6). This computation requires 8 clock cycles
(cc), independent of the bit width of operands as all bits are
processed simultaneously.

The resulting pi and gi serve as input to the Kogge-Stone
prefix graph, as shown in red in Fig. 6. The prefix graph
computes the carry bits gouti in ⌈log2(n)⌉ levels. In our n = 4
example, two levels are needed, whereby each node performs
computations according to Fig. 6 right. These computations
are again implemented using multiple NOR and NOT gates. In
addition, data needs to be shifted across columns (indicated
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by angled edges), which is not supported within the MAGIC
array structure [15]. Therefore, we read the values to be shifted
from memory, perform the cheap shift operation in a dedicated
periphery circuit, and store the shifted value back to memory.
Each level of the Kogge-Stone adder has a latency of 11cc
(2×2cc for shifting and 7cc for NOR/NOT).

The result of the Kogge-Stone prefix graph g
(out)
i is finally

used to compute the sum s = x + y (yellow in Fig. 6). This
again incorporates a 1-bit shift followed by 5 NOR/NOT to
emulate the XOR operation. After that operation, the memory
grid is reset to be ready for further computations. The sum
computation and resetting takes 9cc. Hence, our n-bit Kogge-
Stone adder has an overall latency of 8 + 11⌈log2(n)⌉+ 9cc.

Our Kogge-Stone design for n-bit addition requires a mem-
ory grid with n+1 columns. The number of rows is independent
of n and amounts to 12 rows for storing intermediate results
(scratch region). We achieve the constant number of rows by
re-using the same rows for all Kogge-Stone levels. This leads
to a total of 2⌈log2(n)⌉ write operations to each cell during one
addition. These repeated writes slightly degrade the endurance
of cells (see Sec. II-A). We address this concern by using wear-
leveling [7]. In wear-leveling, the scratch region and the region
for input operands and results are constantly exchanged. This
balances the write occurrences across the memory array and
approximately halves the wear effects. Wear leveling does not
lower performance and only has a small control logic overhead.
Thus, we achieve a compact and enduring design.

C. Precomputation Stage

The first stage of our n-bit Karatsuba multiplier is the pre-
computation stage. This stage performs the additions of chunks
ai and bi as shown in Fig. 3. Since we unroll the Karatsuba
tree for L = 2 times, a total of 10 additions must be performed
during precomputation. Thereby, the additions for a3210 and
b3210 in Fig. 3 operate on n

4 + 1 bit-wide input operands. Yet,
the remaining additions have n

4 -bit input operands. Thus, we
instantiate our Kogge-Stone adder for n

4 + 1-bit addition to
utilize the same array for all additions in precomputation stage.

Within the precomputation array, we store the eight input
chunks ai and bi, i ∈ {0, 1, 2, 3} in Fig. 3 to the addresses 0 to
7. Furthermore, we reserve addresses 8 to 17 for the 10 addition
results. Finally, from address 18 on, the 12-row deep scratch
region for our Kogge-Stone adder is placed. This leads to a
precomputation array dimension of (8+10+12)×(n4 +2) for n
bit multiplication. For example, in n = 256-bit multiplication,
the precomputation array consumes 1, 980 memristors.

The latency of the precomputation stage for a n-bit Karat-
suba multiplication consists of three main parts. These parts
are: (i) writing the 8 inputs into the memory array taking
8cc, (ii) performing 10 Kogge-Stone additions each taking
17 + 11⌈log2(n4 + 1)⌉cc, and (iii) resetting the memory array
to the initial state in 1cc. Therefore, the preprocessing stage
has a total latency of 8 + 10(17 + 11⌈log2(n4 + 1)⌉) + 1cc.

D. Multiplication Stage

The multiplication stage takes 18 input operands and per-
forms 9 small multiplications, as shown in Fig. 3. To perform
these small multiplications, we adopt the method from [9]
which also targets the MAGIC technology. In addition, the work
[9] shows a proper area-time tradeoff through its O(n) area
and O(n log(n)) time complexity (see Sec. II-C). We further
optimize the multiplier from [9] to lower the area consumption
by sharing the memory between input and output operands.

In [9], each small multiplication is performed in a single
memory row. This allows to parallelize multiplications by
instantiating multiple rows in the memory grid. We use this fact
and parallelize the 9 required small multiplications. Thereby,
the largest multiplication in our n-bit Karatsuba multiplier com-
putes cmm and has n

4 +2 bit wide operands. Based on that, the
area consumption of the multiplication stage, which performs
9 parallel multiplications, is 9× 12(n4 +2). The latency of the
whole multiplication stage is (n4+2)·(⌈log2(n4+2)⌉+14)+3cc.

E. Postcomputation Stage

After the multiplication stage, the postcomputation stage is
performed. The postcomputation takes the 9 partial multiplica-
tion results which are between n

2 and n
2 + 4 bits wide. Based

on these results, the computation of the 2n bit-wide overall
multiplication result is done following (3).

The postcomputation consists of additions and subtractions
which allows us to use another 1.5n bit-wide instance of our
Kogge-Stone adder. Similar as described in Sec. IV-C, we store
the 9 inputs to the postprocessing in memory rows 0 to 5, as
shown in Fig. 7a. Therein, the naming of partial multiplication
results complies with Fig. 3. Using this memory layout, we
perform the required additions and subtractions using the adder
scratch area (grey in Fig. 7). We start with computing c̃lm =
clm−(cll+clh). Simultaneously, we compute c̃hm via a batched
computation approach. After that, we compute c̃mm.

In the next step, the data in the memory is reordered via read
and write operations. This yields the memory layout as shown
in Fig. 7b. There, ch and cl are computed using one addition
each. Unlike in ch and cl, computing cm requires two additions.
This is caused by the n

2 +2-bit wide cml value. The two extra
bits in cml prevent a simple appending during computing cm.
Hence, another addition is required.

The computation of ch, cl, and cm is interleaved with reset
and reorder operations to fit into the 8 available memory rows.
These operations yield the memory content as in Fig. 7c. Next,
parts of the array are reset, and c̃m is computed. Finally, the
overall result c = a·b is computed in Fig. 7d. There, we propose
another optimization. According to (3), the n

2 least significant
bits of cl are directly the LSBs of the overall result c. Hence,
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we only perform the addition on the most significant 1.5n bits,
as shown in Fig. 7d. This reduction of addition size saves 25%
of the postprocessing stage area. Therefore, our postprocessing
stage has an area consumption of (8+12)×1.5n memory cells.

The latency of one postcomputation stage includes the delay
for the additions/subtractions, the delay for reset cycles, and
the reordering of the operands. The delay for the 11 addi-
tions/subtractions is 11 · (11⌈log2(1.5n)⌉+ 17)cc whereas the
delay for reordering/resetting is 18cc. This totals an overall
latency of 121⌈log2(1.5n)⌉+187+ 18cc for postcomputation.

F. Application of our CIM Multiplier in Cryptography

Many cryptographic schemes operate over finite rings or
fields, needing a modular reduction after integer multiplication.
Modular reduction algorithms such as Montgomery [29] and
Barrett [30] internally use multiplications readily supported
by our multiplier design. Moreover, reduction by a sparse
modulus [31] requires additions supported by our Kogge-Stone
adder. Thus, our design covers the main building blocks for
modular multiplications in cryptography.

V. IMPLEMENTATION RESULTS

Our paper introduces the first large integer multiplier for
CIM platforms. We evaluated its performance and verified its
correctness using a cycle-accurate simulator. Tab. I presents
key metrics such as throughput, area consumption, area-time
product (ATP = cells/throughput), and the number of memory
cell writes for large bit sizes relevant to data-intensive FHE
and ZKP applications. Additionally, we compare our results
with scaled-up CIM integer multipliers in the literature. The
scaling is necessary as existing CIM designs are limited to
short integers only.

The work [6] uses a IMPLY-based adder to implement an
integer multiplier based on the schoolbook approach. Com-
pared to [6], our Karatsuba approach increases the throughput
between 3.8× and 17× while lowering the area consumption
by up to 11.8×. The ATP improves by a factor of 7× to 204×
as the integer size n increases. The authors of [7] use MAGIC
NOR gates and present results for a schoolbook multiplier used
in image processing. Compared to [7], we achieve between
49× and 916× higher throughput at the cost of 3.5× more
area; hence our design yields a 14× to 281× better ATP.
In addition, the maximum write operations to one cell are
1.6× to 5.2× less in our Karatsuba design than in [7]. The
work presented in [8] uses MAJORITY gates to implement a
Wallace-Tree-based multiplier. The work trades low latency
for large area consumption thus requiring up to 1.2 million
memory cells for multiplication, which is 47× larger than

TABLE I
COMPARISON OF AREA AND THROUGHPUT TO RELATED WORKS.

Work n
Throughput Area ATP Max.

Multipl./Mcc† Cells Cells/Throughp. Writes

[6]

64∗ 243 (3.8×) 8,258 34 (7×) n.r.
128∗ 105 (7.9×) 32,898 312 (30×) n.r.
256∗ 46 (15×) 131,330 2.8k (119×) n.r.
384∗ 28 (17×) 295,298 10.7k (204×) n.r.

[7]

64 19 (49×) 1,275 67 (14×) 128
128∗ 5 (176×) 2,555 540 (53×) 256
256∗ 1.2 (599×) 5,115 4.3k (183×) 512
384∗ 0.5 (916×) 7,675 14.7k (281×) 1,024

[8]

64 2,475 (0.37×) 32,960 13 (3×) 2
128∗ 1,155 (0.72×) 131,312 114 (11×) 2
256∗ 525 (1.3×) 524,576 999 (42×) 2
384∗ 313 (1.5×) 1,18M 3.8k (72×) 2

[9]

64∗ 779 (1.2×) 889 1.1 (0.2×) 256
128∗ 372 (2.2×) 1,785 4.8 (0.5×) 512
256∗ 177 (4.0×) 3,577 20 (0.8×) 1,024
384∗ 115 (4.2×) 5,369 47 (0.9×) 1,536

Our

64 927 (1×) 4,404 4.8 (1×) 81
128 833 (1×) 8,532 10 (1×) 92
256 706 (1×) 16,788 24 (1×) 134
384 479 (1×) 25,044 52 (1×) 198

∗scaled-up results; †Multiplications in 106 clock cycles; n.r.: not reported

our design for n = 384. This high area consumption allows
[8] to distribute write occurrences over more memory cells
leading to higher endurance. However, our design has a smaller
crossbar dimension and improves the ATP between 3× and
72×, compared to [8]. Finally, we compare with [9] which
performs integer multiplication in a single row. For n = 384-bit
multiplication, [9] needs 5, 369 memristors in one memory row.
Such wide rows are less practical due to increasing parasitic
effects as reported in [7], [20]. Moreover, [9] performs between
256 and 1, 536 write operations to the same memory cells for
n = 64 to 384. In comparison, our design reduces the memory
row length by 4× and decreases write operations by up to 7.8×.

VI. CONCLUSION

This paper addressed the challenge of large integer mul-
tiplications in CIM which are the fundamental operations
in data-intensive ZKP and FHE schemes. We presented a
comprehensive algorithm exploration covering Toom-Cook and
Karatsuba multiplication and found Karatsuba as most effective
for CIM designs. Thus, we designed the first Karatsuba large
integer multiplier for CIM which incorporates our Kogge-Stone
adder and a three-stage pipeline to enhance throughput. In
addition, our design was optimized to reduce crossbar sizes
while increasing memory endurance. Compared to prior work,
the proposed design shows up to 916× and 281× improvement
in throughput and ATP, thereby contributing to the efficient and
scalable CIM support of data-centric ZKP and FHE schemes.
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