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ABSTRACT
This paper introduces new protocols for secure multiparty
computation (MPC) leveraging Discrete Wavelet Transforms
(DWTs) for computing nonlinear functions over large domains.
By employing DWTs, the protocols significantly reduce the
overhead typically associated with Lookup Table-style (LUT)
evaluations in MPC. We state and prove foundational results
for DWT-compressed LUTs in MPC, present protocols for 9 of
the most common activation functions used in ML, and experi-
mentally evaluate the performance of our protocols for large do-
main sizes in the LAN and WAN settings. Our protocols are ex-
tremely fast – for instance, when considering 64-bit inputs, com-
puting 1000 parallel instances of the sigmoid function, with an
error less than 2−24 takes only a few hundred milliseconds incurs
just 29 KiB of online communication (40 bytes per evaluation).

KEYWORDS
Privacy-enhancing technologies, secure multiparty computa-
tion, lookup tables, discrete wavelet transforms

1 INTRODUCTION
Multiparty computation (MPC) enables multiple parties to
jointly compute a function over their private inputs with-
out revealing those inputs to each other. In theory, one can
obliviously evaluate any computable function in this way; in
practice, however, many functions of interest are prohibitively
expensive to evaluate exactly in a secure MPC protocol. In
the ubiquitous case of secure MPC based on additive secret-
sharing, a common workaround is to transform secret function
inputs into secret-shared standard basis vectors—essentially
multi-server PIR queries—and then have the computation
parties compute the inner products of those queries with a
precomputed look-up table (LUT), obliviously “fetching” the
desired function outputs from the LUT. This approach works
well for evaluations over very small domains [30] or functions
that admit exact piecewise-polynomial representations [25].
However, in general, LUT sizes quickly grow untenable with
increasing domain sizes and accuracy requirements.

This paper explores the use of discrete wavelet transforms
(DWTs) to produce compact LUTs that accurately approxi-
mate nonlinear functions over large domains. It proves foun-
dational results about querying DWT-compressed LUTs effi-
ciently in an MPC setting and presents four concrete protocols

based on these results (the four protocols arise from combi-
nations among two DWTs and two methods for preparing
query vectors.) The new protocols are fast, have low round
complexity, and give highly accurate function computations.

While our new methods are highly general, we focus our
experimental evaluation on a specific use case: nonlinear ac-
tivation functions in deep neural networks. Prior work [11, 34]
underscores the need for fast, high-precision evaluation in this
context, and our methods are well-suited to meet this need. We
conduct a series of experiments to empirically measure the per-
formance of our protocols in bothLANandWANenvironments.
Another set of experiments explores the compression-versus-
accuracy curves for the most common activation functions in
the neural network literature. Our findings open up a rich body
of questions and potential future research directions where our
techniques could be further explored and applied.

Roadmap
The rest of the paper is structured as follows: Section 2 covers
essential preliminaries, including notation and fundamental
concepts of DWTs and their application in secure MPC. In
Section 3, we provide a detailed explanation of the theory of
DWTs, focusing on their computational efficiency and utility
in compressing LUTs for function evaluation in MPC protocols.
Section 4 presents our first core technical contribution, funda-
mental results for key MPC structures under the Haar and Bior
transformations. We also present a technical overview of the
methodology for leveraging DWT compression in LUT-based
function evaluation within an MPC framework. In Section 5
and Section 6 we present the full protocols for Haar and Bior
DWT respectively. Section 7, presents a comprehensive evalu-
ation of our protocols, highlighting the performance improve-
ments achieved through our approach, across various network
settings. We discuss related work in Section 8. Open questions
and future directions are in Section 9, with conclusions in
Section 10.

2 BACKGROUND
We begin by introducing the notation used throughout the
work, followed by some key building blocks from literature,
and state our threat model towards the end.

1



2.1 Notation
If 𝑎∈Z2𝓁, then 𝑒𝑎 ∶= [ 0⋯ 0 1 0⋯ 0 ] is the standard basis vector
of length 2𝓁 with a 1 in its 𝑎th position (and 0s elsewhere).
Notice that we can always unambiguously deduce the length
of 𝑒𝑎 if we know the domain of 𝑎. For indexing into vectors,
we use an array-like notation such as 𝑒𝑎[𝑖] for the 𝑖th compo-
nent of 𝑒𝑎. We write ⟨𝑢,𝜈⟩ for the inner product of two vectors
and diag(𝐴,𝐵,𝐶,…) for a block diagonal matrix whose blocks
may have varying (albeit square) dimensions. 𝐼𝑁 ∈R𝑁×𝑁 is the
𝑁 ×𝑁 identity matrix. For an integer 𝑎∈Z2𝓁, we write lsb𝑘(𝑎)
and msb𝑘(𝑎) respectively for the 𝑘-bit integers obtained by
taking the 𝑘-least-significant and 𝑘-most-significant bits of
𝑎; that is, if 𝑎 = (𝑎𝓁−1𝑎𝓁−2⋯𝑎0)2, then lsb𝑘(𝑎) ∶=∑𝑘−1

𝑖=0 2𝑖 ⋅𝑎𝑖 and
msb𝑘(𝑎) ∶=∑𝑘−1

𝑖=0 2𝑖 ⋅𝑎𝓁−𝑘+𝑖. We write 𝑥 ∈R 𝑋 to denote that 𝑥 is
sampled uniformly at random from the finite set 𝑋 .

2.1.1 Secret sharing. Throughout, we write [𝑎] for a (2,2)-
additive sharing, whether of a scalar 𝑎∈Z2𝓁 or a vector 𝑎∈(Z2𝓁)𝑁 .
We frequently deal with sharings of standard basis vectors,
writing L𝑒𝑎M for a (2,2)-distributed point function (DPF) shar-
ing of 𝑒𝑎 (with 1-bit outputs) and J𝑒𝑎K for a (2,2)-Boolean (XOR)
sharing of 𝑒𝑎.

Finally, we employ (2,2)-distributed comparison function
(DCF) sharings, writing ⦃(𝑥>𝑟) ? 𝑌0 :𝑌1⦄ to denote the DCF-
shared step function

𝛿>𝑟,𝑌0 ,𝑌1 (𝑥)∶=
{
𝑌0 if 𝑥 >𝑟, and
𝑌1 otherwise.

2.1.2 Fixed-point numbers. We use fixed-point numbers pa-
rameterized by a bitlength 𝓁∈N and fractional precision 𝑓 ∈N
with 0≤ 𝑓 ≤𝓁. Reasonable values for these parameters might
be, say, 𝓁= 64 and 𝑓 = 24, with which we could approximate
any real 𝑥 ∈ [−239,239) with absolute error less than 2−24. In
particular, we encode a real number 𝑥 ∈ [−2𝓁−𝑓−1,2𝓁−𝑓−1) using
the integer 𝑟= ⌊2𝑓 ⋅𝑥⌋∈Z2𝓁. The reverse transformation decodes
to a real number �̃� = 𝑟 ⋅2−𝑓 that approximates 𝑥 in the sense
that |𝑥−�̃� |<2−𝑓 . We write

R𝓁,𝑓 ∶={𝑥 ∈R ||𝑥 ⋅2
𝑓 ∈Z∩[−2𝓁−1,2𝓁−1)}

for the set of reals with exact representations, and

Z𝓁,𝑓 ∶={⌊2𝑓 ⋅𝑥⌋𝓁 ∈Z2𝓁
||𝑥 ∈R𝓁,𝑓 } (1)

for the corresponding set of fixed-point integer representations.
In Equation (1), the subscript in the notation ⌊2𝑓 ⋅𝑥⌋𝓁 indicates
that we represent ⌊2𝑓 ⋅𝑥⌋ using exactly 𝓁 bits as an element of
Z2𝓁. We refer to Z𝓁,𝑓 as the set of (𝓁,𝑓 )-bit integers.

2.1.3 LUTs. Suppose we are given a function 𝐹 ∶ R→R that
we wish to approximate on an interval [𝐴,𝐵) either using real
values or (𝓁,𝑓 )-bit integers. For ease of exposition, we assume
that 𝐴,𝐵∈R𝓁,𝑓 and that 2𝑛 ∣ (𝐵−𝐴) for some chosen 𝑛∈N.

We define the real signal lookup table (real signal LUT ) as

LR,𝑛,𝐴,𝐵(𝐹)∶= [𝑦𝐴,𝑦𝐴+𝛿 ,𝑦𝐴+2𝛿 ,…,𝑦𝐴+(2𝑛−1)𝛿]∈R2𝑛, (2)

where 𝛿=2−𝑛 ⋅(𝐵−𝐴) and where each 𝑦𝑥 ∶=𝐹(𝑥). Note that the
parameter 𝑛 determines the precision (and size) of the LUT: a
higher 𝑛 produces more samples of the function values and thus
higher fidelity function evaluation. We call 𝑛 the quantization

parameter of the LUT. In cases where 𝑛 = lg(𝐵−𝐴) so that
𝛿=1, the resulting real signal LUT enables perfect evaluation
of 𝐹(𝑥) at any 𝑎=𝐴+𝑖∈R with 𝑖∈{0,1,…,2𝑛−1} either via simple
(scaled) array indexing or, equivalently, via a (scaled) inner
product with 𝑒𝑎

𝐹(𝑎)=LR,𝑛,𝐴,𝐵(𝐹)⟯[𝑎]= ⟨𝑒𝑎,LR,𝑛,𝐴,𝐵(𝐹)⟩.

Similarly, using fixed-point numbers, we define the signal
lookup table (signal LUT ) as

L𝓁,𝑓,𝑛𝐴,𝐵(𝐹)∶= [�̃�𝐴, �̃�𝐴+𝛿 , �̃�𝐴+2𝛿 ,…, �̃�𝐴+(2𝑛−1)𝛿]∈(Z𝓁,𝑓 )2
𝑛
,

where 𝛿=2−𝑛 ⋅(𝐵−𝐴) and �̃�𝑥 ∶= ⌊2𝑓 ⋅𝐹(𝑥)⌋𝓁 is the (𝓁,𝑓 )-bit approx-
imation to 𝐹(𝑥). In cases where 𝑛=lg(𝐵−𝐴)+𝑓 so that 𝛿=2−𝑓 ,
the resulting signal LUT enables “perfect” fixed-point evalua-
tion of 𝐹(𝑥) at any 𝑎∈[𝐴,𝐵]∩R𝓁,𝑓 either via simple (scaled) array
indexing or, equivalently, via a (scaled) inner product with 𝑒�̄�:

𝐹(𝑎)≈2−𝑓 ⋅⟮L𝓁,𝑓,𝑛𝐴,𝐵(𝐹)⟯[�̄�]=2−𝑓 ⋅⟨𝑒�̄�,L𝓁,𝑓,𝑛𝐴,𝐵(𝐹)⟩. (3)

where �̄�∶= ⌊2𝑓 ⋅𝑎⌋𝓁 is the (𝓁,𝑓 )-bit representation of 𝑎. We write
𝐹L𝓁,𝑓,𝑛 (𝑎) for such an “evaluation” of L𝓁,𝑓,𝑛𝐴,𝐵(𝐹) at 𝑎 ∈ [−2𝓁−1,2𝓁−1)
using Equation (3). In the common special case where |𝐴| =
|𝐵|=2𝓁−𝑓−1 so that [𝐴,𝐵)∩R𝓁,𝑓 =R𝓁,𝑓 , we drop the subscripts and
write L𝓁,𝑓,𝑛(𝐹).

2.1.4 Circular rotation. A basic operation we use repeatedly
is that of circularly rotating vectors by some distance 𝑥 ∈N;
that is, applying a cyclic permutation to a length-𝑁 vector 𝜈
that sends each component 𝜈[𝑖] to 𝜈[(𝑖−𝑥) mod 𝑁 ]. We write
𝜈≪𝑥 as a shorthand for this mapping. We also use the inverse
mapping 𝜈≫𝑥 which sends 𝜈[𝑖] to 𝜈[(𝑖+𝑥) mod 𝑁 ].

Notice that the cyclic rotations 𝑒𝑟 ≪𝑥 of a standard basis
vector are also standard basis vectors, namely 𝑒𝑎=𝑒𝑟 ≪𝑥 for
𝑎∶=𝑟−𝑥 mod 𝑁 .

2.2 Model and security assumptions
Our protocols operate in the semi-honest (2+1)-party model,
wherein a trusted dealer prepares data-independent, correlated
randomness in an offline phase for the players to consume in
an otherwise semi-honest secure 2-party computation. Such
(2 + 1)-party protocols are amenable to conversion to pure
2-party protocols with a fast online phase and (perhaps) full
malicious security; however, both 2-party and malicious secure
variants of our techniques are beyond the scope of this paper
and left to future work.

For DPF sharings, we assume a specific construction of
Boyle, Gilboa, and Ishai [3] whose security requires the exis-
tence of PRGs (and for DCF sharings from [2]); concretely, our
implementation is secure provided fixed-key AES is hard to dis-
tinguish from a random permutation. With this sole exception,
all cryptographic primitives we consider are unconditionally
secure under a non-collusion assumption.

3 DISCRETE WAVELET TRANSFORMS
Discrete wavelet transforms (DWTs) are powerful tools for
analyzing signals across different resolutions or scales, similar
to discrete Fourier transforms (DFTs) but utilizing wavelets—
small, localized waves—instead of indefinite sinusoidal waves.
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Figure 1: In multi-resolution analysis (MRA), the signal is projected onto a sequence of nested approximation subspaces
𝑛,1,… ,𝐽 of decreasing resolution. The information lost in each successive projection is captured in an orthogonal
sequence of detail subspaces 𝑛−1,𝑛−2,…,𝐽+1. The process does not lose any information and can stop at any level 0<𝐽 ≤𝑛.

This localization in both time and frequency makes DWTs
particularly effective for signals where properties change over
time. DWTs facilitate multi-resolution analysis (MRA) by
decomposing signals into increasingly finer “approximation”
and “detail” coefficients. This hierarchical decomposition al-
lows for efficient data compression and reconstruction, making
DWTs ideal for constructing compact LUTs for high-fidelity
univariate function approximations, balancing precision with
computational efficiency—properties that can enable interest-
ing computational tradeoffs in secure MPC.

3.1 DWT Basics
Consider a real-valued signal vector 𝜈 ∈R𝑁 of length 𝑁 = 2𝑛.
Then a DWT of 𝜈 is given by the matrix-vector product
𝑊𝑁 ⋅𝜈 T, where 𝑊𝑁 ∈R𝑁×𝑁 is a real-valued 𝑁 -by-𝑁 matrix called
a wavelet matrix1 and 𝜈 T is the column-vector obtained by
transposing 𝜈. For reasons that will be clear later, we set
𝑊𝑁,1 ∶=𝑊𝑁 . The upper and lower halves of 𝑊𝑁,1 respectively
comprise series of low- and high-pass filters; thus, we write

⎡
⎢
⎢
⎣

𝑎 (𝜈)
𝑛−1

𝑑 (𝜈)
𝑛−1

⎤
⎥
⎥
⎦
∶=𝑊𝑁,1 ⋅𝜈 T,

where 𝑎 (𝜈)
𝑛−1,𝑑

(𝜈)
𝑛−1 ∈R𝑁/2 are called the approximation (or scaling)

coefficients and detail (or wavelet) coefficients respectively
arising from the low- and high-pass portions of 𝑊𝑁,1.

Heuristically, we expect that the approximation coefficients
𝑎 (𝜈)
𝑛−1 contain near-complete information about 𝜈 , in which case

we can safely discard the detail coefficients 𝑑 (𝜈)
𝑛−1 to obtain a

twofold reduction in the length of our approximation relative
to 𝜈. We then recurse on 𝑎 (𝜈)

𝑛−1 by computing

⎡
⎢
⎢
⎣

𝑎 (𝜈)
𝑛−2

𝑑 (𝜈)
𝑛−2

⎤
⎥
⎥
⎦
∶=𝑊𝑁/2 ⋅𝑎 (𝜈)

𝑛−1,

1More precisely, 𝑊𝑁 is a decomposition wavelet matrix in contrast with
a reconstruction wavelet matrix ; see Appendix A for details on filters
and on the construction these matrices.

effecting another twofold reduction in length of 𝑎 (𝜈)
𝑛−2 relative

to 𝑎 (𝜈)
𝑛−1, while capturing in 𝑑 (𝜈)

𝑛−2 the information lost in the
projection. Here 𝑊𝑁/2 ∈R𝑁/2×𝑁/2 is the decomposition wavelet
matrix whose dimensions are halved relative to 𝑊𝑁 . Thus,
setting 𝑦1 ∶=𝑊𝑁,1 ⋅𝜈 T and

𝑊𝑁,2 ∶=diag(𝑊𝑁/2,𝐼𝑁/2) = [

𝑊𝑁/2 𝟎

𝟎 𝐼𝑁/2 ]
,

we can write the depth-2 DWT as

𝑦2 ∶=𝑊𝑁,2 ⋅𝑦1 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑎 (𝜈)
𝑛−2

𝑑 (𝜈)
𝑛−2

𝑑 (𝜈)
𝑛−1

⎤
⎥
⎥
⎥
⎥
⎦

where 𝑦2 ∈R𝑁 , 𝑑 (𝜈)
𝑛−1 ∈R𝑁/2, and 𝑎 (𝜈)

𝑛−2,𝑑
(𝜈)
𝑛−2 ∈R𝑁/4. Generalizing this

notion, let us denote by 𝑦𝑗 the result after a 𝑗-fold application
of the DWT to a vector 𝜈 of length 𝑁 = 2𝑛. For instance, as
seen above, we have that

𝑦2 ∶=𝑊𝑁,2 ⋅𝑊𝑁,1 ⋅𝜈 T.

We say that 𝑦𝑗 is the DWT with depth 𝑗 or at level 𝐽 ∶=𝑛−𝑗.
This process can be iterated to compute the DWT at any
depth: Setting 𝑦0=𝜈 T, we have, for all 0<𝑗 ≤𝑛, that

𝑦𝑗 ∶=𝑊𝑁,𝑗 ⋅𝑦𝑗−1.

3.1.1 Formal definition. The above constructions can be for-
malized to provide a definition of a DWT of a vector 𝜈 ∈R𝑁

at depth 𝑗 .

Definition 1 (Discrete Wavelet Transform [27]). Let 𝑗 ,𝑛∈N
with 0<𝑗 ≤𝑛 and set 𝑁 ∶=2𝑛. If 𝜈 ∈R𝑁 is a real-valued vector
of length 𝑁 and 𝑊𝑁 a decomposition wavelet matrix, then the
discrete wavelet transform (DWT) of 𝜈 at depth 𝑗 is

𝑦𝑗 ∶=𝑊𝑁,𝑗 ⋅𝑊𝑁,𝑗−1⋯𝑊𝑁,1 ⋅𝜈, (4)

such that 𝑊𝑁,1 ∶=𝑊𝑁 and, for each 𝑘=2,…,𝑗 ,

𝑊𝑁,𝑘 ∶=diag(𝑊𝑁/2𝑘−1,𝐼𝑁/2𝑘−1,𝐼𝑁/2𝑘−2,…,𝐼𝑁/2).
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𝜈 = [ 0 0 0 0 3 3 3 3 ]

𝑦 (𝜈)
2 = [ 0 6 0 0 0 0 0 0 ]

𝑢= [ 0 0 0 0 1 0 0 0 ]

𝑦 (𝑢)
2 = [ 0 0.5 0 0.5 0 0 0.7 0 ]

𝑑 (𝑢)
1𝑑 (𝑢)

2𝑎 (𝑢)
2

detailapprox

𝑑 (𝜈)
1𝑑 (𝜈)

2𝑎 (𝜈)
2

approx detail

Figure 2: A slow- and fast-varying signal 𝜈 and 𝑢 and their DWT representations at level 𝐽 =2 under the Haar transform. From
Parseval’s Theorem, we know that ⟨𝑢,𝜈⟩= ⟨𝑦 (𝑢)

2 ,𝑦 (𝜈)
2 ⟩. Because 𝜈 is slow varying, its detail coefficients are trivial and we can ignore

those terms and the inner product simplifies to ⟨𝑎 (𝑢)
2 ,𝑎 (𝜈)

2 ⟩. We show the full workings of this simple example in Appendix A.3.

Definition 2. (Approximate & Detail Coefficients [27])
Let 𝑗 ,𝑛 ∈N with 0< 𝑗 ≤ 𝑛, and then set 𝑁 ∶= 2𝑛 and 𝐽 ∶= 𝑛− 𝑗.
Let 𝑦𝑗 be the DWT of a vector 𝜈 ∈R𝑁 at depth 𝑗, as given by
Equation (4), and write it as

𝑦𝑗 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎 (𝜈)
𝐽

𝑑 (𝜈)
𝐽

𝑑 (𝜈)
𝐽+1

⋮

𝑑 (𝜈)
𝑛−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈R𝑁 ,

where 𝑎 (𝜈)
𝐽 ,𝑑 (𝜈)

𝐽 ∈R2 𝐽

and 𝑑 (𝜈)
𝑖 ∈R2𝑖 for each 𝑖∈{𝐽+1,…,𝑛−1}. Then

𝑎 (𝜈)
𝐽 is the approximation coefficients at level 𝐽 and the 𝑑 (𝜈)

𝑖 are
the detail coefficients at levels 𝐽 ,…,𝑛−1.

Figure 2 illustrates the Haar DWT applied to a short vector
𝜈 (with 𝑛 = 3 and 𝑗 = 2, so that 𝑁 = 8 and 𝐽 = 1). We obtain
an exact reconstruction of 𝜈 from 𝑦𝑗 using the inverses of the
decomposition wavelet matrices

𝜈 =𝑊 −1
𝑁,1 ⋅𝑊

−1
𝑁,2⋯𝑊 −1

𝑁,𝑗 ⋅𝑦𝑗

For the Haar transform, the decomposition wavelet matrices
are orthogonal so that 𝑊 −1

𝑁,𝑖 = 𝑊 T
𝑁,𝑖, where 𝑊 T

𝑁,𝑖 denotes the
matrix transpose of 𝑊𝑁,𝑖.

3.2 Haar DWT
The Haar transform is the simplest example of a DWT and
while Haar DWTs’ compression is poor relative to other wavelet
families, it’s simplicity makes it easier to analyze, and thus we
use that as our starting point for exploring the use of DWTs in
secure MPC. In Appendix A.1 we present a formal description
of the Haar DWT as well as an explicit example of a Haar DWT
matrix. In addition, in Appendix A.3 we provide a comprehen-
sive example of the Haar DWT application and its MRA. The
final result of that example is presented in Figure 2.

Parseval’s Theorem for orthogonal transforms: We now state
Parseval’s Theorem for orthogonal DWTs: a fundamental re-
sult that establishes that orthogonal DWTs like the Haar
transform preserve inner products, providing an approach to
efficiently approximate inner products ⟨𝑒𝑎,𝜈⟩ when the vectors
𝑒𝑎 and 𝜈 are prohibitively large by first transforming them
into the wavelet domain. Specifically, if the detail coefficients
of 𝑦 (𝜈)

𝑗 are all sufficiently small, a good approximation of the
inner product can be achieved using only the vector of approx-
imation coefficients 𝑎 (𝜈)

𝐽 , which is a factor 2𝑗 shorter than 𝜈.
We defer the proof of Theorem 1 to Appendix F.

Theorem 1 (Parseval’s Theorem [19] for orthogonal DWTs).
Let 𝑗 ,𝑛∈N with 0<𝑗 ≤𝑛 and set 𝑁 ∶=2𝑛 and 𝐽 ∶=𝑛−𝑗. If 𝑢,𝜈 ∈R𝑁

and 𝑊 ∶=𝑊𝑁,𝑗 ⋅𝑊𝑁,𝑗−1⋯𝑊𝑁,1 ∈R𝑁×𝑁 is an orthogonal decompo-
sition wavelet matrix with 𝑦 (𝑢)

𝑗 =𝑊 ⋅𝑢T and 𝑦 (𝜈)
𝑗 =𝑊 ⋅𝜈 T, then,

in the notation of Definition 2, we have

⟨𝑢,𝜈⟩= ⟨𝑎 (𝑢)
𝐽 ,𝑎 (𝜈)

𝐽 ⟩+
𝑛−1
∑
𝑖=𝐽
⟨𝑑 (𝑢)

𝑖 ,𝑑 (𝜈)
𝑖 ⟩.

3.3 Biorthogonal DWT
The biorthogonal family bior(𝑝,𝑞) of DWTs achieves superior
compression relative to orthogonal wavelets like Haar. Rela-
tive to Haar DWTs, the bior(𝑝,𝑞) family exhibits the following
crucial differences:

(1) its decomposition wavelet matrices 𝑊𝑁 are invertible
but not orthogonal;

(2) they comprise low- and high-pass symmetric filters that
are chosen to maximize vanishing moments for better
compression. For details on symmetric filters as well as
vanishing moments consult Appendices A.1 and A.2;

(3) the decomposition wavelet matrices 𝑊𝑁 use different
filters than the reconstruction wavelet matrices �̃�𝑁 and
they fulfill the biorthogonal property �̃� T

𝑁 ∶=𝑊 −1
𝑁 .

The parameters 𝑝 and 𝑞 determine the lengths of the low-
pass decomposition and reconstruction filters, respectively. For
this initial foray into applications of DWTs to MPC, we focus
on biorthogonal DWT bior(5,3). This particular choice allows
an easy characterization of the DWT of a standard basis vector
(see Lemma 6 in Section 4.3). Interested readers can consult
Van Fleet [27, §9] for details about choosing an appropriate
𝑝 and 𝑞 in more general contexts. Just as we did for the Haar
DWT, in Appendix A.1 we present a formal description of the
biorthogonal DWT bior(5,3) as well as an explicit example of
its decomposition and reconstruction matrices for 𝑁 =8.

Parseval’s Theorem for biorthogonal transforms: We now state
Parseval’s Theorem for biorthogonal DWTs. Analogous to the
case of orthogonal DWTs, this theorem provides a strategy
for efficiently approximating inner products ⟨𝑒𝑎,𝜈⟩ when the
vectors 𝑒𝑎 and 𝜈 are large. We defer the proof of Theorem 2
below to Appendix F.

Theorem 2 (Parseval’s Theorem [19] for biorthogonal DWTs).
Let 𝑗 ,𝑛∈N with 0<𝑗 ≤𝑛 and set 𝑁 ∶=2𝑛 and 𝐽 ∶=𝑛−𝑗. If 𝑢,𝜈 ∈R𝑁

and 𝑊 ∶=𝑊𝑁,𝑗 ⋅𝑊𝑁,𝑗−1⋯𝑊𝑁,1 ∈ R𝑁×𝑁 is a biorthogonal decom-
position wavelet matrix with 𝑦 (𝑢)

1 =𝑊 ⋅𝑢T and 𝑦 (𝜈)
1 =�̃� ⋅𝜈 T for

the reconstruction wavelet matrix �̃� T
𝑁 ∶= 𝑊 −1

𝑁 , then, in the
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notation of Definition 2, we have

⟨𝑢,𝜈⟩= ⟨𝑎 (𝑢)
𝐽 ,𝑎 (𝜈)

𝐽 ⟩+
𝑛−1
∑
𝑖=𝐽
⟨𝑑 (𝑢)

𝑖 ,𝑑 (𝜈)
𝑖 ⟩.

3.4 Effectiveness of DWTs at Compression
In general, the ability of a DWT to approximate a function,
and hence to compress a LUT representing that function, de-
pends on the number of vanishing moments (of the high-pass
filter) of the DWT under consideration and the smoothness
of the function where the DWT is applied. To have a more
complete grasp of these relation we refer to [7, §7.4 & §8.2], [14,
§10.5], and [33, §9.1 & §10.7]. Below we provide an intuition
on the compressibility of polynomial functions which provide
good approximations to smooth functions.

If a DWT has a high-pass filter with 𝑀 vanishing moments
then it will achieve “high” compression for polynomials of de-
gree at most 𝑀−1. While this is not completely rigorous (in
this comments we are not considering the boundary effects of
using finite signals), the approximation coefficients will be a
sampling of a polynomial of degree 𝑀−1 while the detail co-
efficients will be zero. Consequently, in the second application
of this DWT we are applying it to a sample of a polynomial of
degree𝑀−1 and the properties we just mentioned are still valid.
Therefore, if a DWT has 𝑀 vanishing moments then it achieves
“high” compression for functions that are well approximated
by polynomials of degree at most 𝑀−1.

The DWTs we consider—Haar and bior(5,3)—have 1 and 2
vanishing moments, respectively. Applying DWTs to standard
basis vectors is crucial for the MPC protocols, as the approxi-
mation coefficients play a key role. For Haar and bior(5,3), these
coefficients have simple expressions that enable efficient MPC
protocols (see Lemmas 3 and 6). The tradeoff between their
vanishing moments manifests in two ways: (i) bior(5,3) offers
better compression than Haar (cf. Table 1 and Figure 7), but
(ii) it requires a more complex protocol, as shown in Figure 6,
with an additional DCF and more intricate LUT evaluation
compared to Haar (Figure 5). We elaborate further on this in
Appendix A.2 but emphasize that many challenges remain,
such as developing simpler heuristics to identify effective DWT-
function pairs and discovering new DWTs that balance simple
descriptions of standard basis vectors’ approximation coeffi-
cients with strong compression properties.

4 NON-LINEAR FUNCTIONS IN MPC
Our protocols have 4 parameters: 𝓁 the bit-size used to encode
MPC values, 𝑓 the fixed-point precision, 𝑛 a parameter that
controls the precision of the original LUT and thus the fidelity
of function computation2, and 𝐽 (level of the DWT) which is a
dependent parameter that will control the compression offered
by the DWTs. Another dependent parameter is 𝑗 (depth of
the DWT) is equal to 𝑛−𝐽.

2 The reader will notice that the parameter 𝑛 is present in a subtle man-
ner in Haar protocols – only appearing in the one-time pre-processing
phase for the Haar protocol (in the Bior protocol, it is used in both the
one-time pre-processing as well as the online phase).

Let �̄�∈R and let 𝑎= ⌊2𝑓 ⋅�̄�⌋∈Z𝓁,𝑓 be the (𝓁,𝑓 )-bit approxima-
tion to �̄�. Suppose two parties hold an additive sharing [𝑎]
and wish to compute [𝑦] where 2−𝑓 ⋅𝑦≈𝐹(�̄�) for some function
𝐹 ∶ R→R. A common, function-agnostic way to do this uses
LUTs; that is, we compute the signal LUT 𝜈 ∶=L𝓁,𝑓,𝑛(𝐹) and
then obliviously fetch an entry from it using [𝑒msb𝑛(𝑎)], which
the parties compute using [𝑒𝑟 ], [𝑟], and [𝑎]. The parties rely on
correlated randomness from the dealer to facilitate all of this.

We use the basic, semi-honest variant of Pika [30] as our pro-
totypical example of such a protocol. Figure 3 sketches the steps
Pika clients use to perform the desired function evaluation.
The protocol is parametrized by the function 𝐹 to approximate,
fixed-point parameters 𝓁,𝑓 for inputs and outputs, and a quan-
tization granularity 𝑛 for the LUT. The bottleneck operation
in Pika is evaluating the inner product ⟨[±𝑒msb𝑛(𝑎)],𝜈⟩, which
involves vectors whose lengths are exponential in the quanti-
zation parameter 𝑛. Since the computation is proportional to
the size of the LUT, it is imperative to truncate the additive
shares [𝑎] ∈ Z2𝓁 into [msb𝑛(𝑎)] ∈ Z2𝑛. Thus, the parameter 𝑛
controls the precision of the LUT evaluation and introduces a
trade-off: larger values of 𝑛 produce approximations that are
more precise, but at the cost of rapidly increasing computation
cost. Wagh notes [30] that beyond 𝑛=24, the overhead due to
this inner product quickly becomes prohibitive for an online
computation.

4.1 Technical Overview
DWT compression is a powerful tool for realizing efficient
LUT-based function evaluation in MPC based on linear secret
sharing. Suppose that 𝐹 ∶ R→R is a (non-linear) univariate
function, and consider the signal LUT L𝓁,𝑓 (𝐹) for an (𝓁,𝑓 )-bit
approximation to 𝐹 . Intuitively, the idea is to run a Pika-like
LUT evaluation protocol, but in the image of the DWT homo-
morphism, as enabled by Parseval’s Theorem. Firstly, we use
the real signal 𝜈 ∶= LR,𝑛,𝐴,𝐵(𝐹) as defined in Equation (2). Note
that for ease of exposition, we assume that 𝐴,𝐵∈R𝓁,𝑓 and that
2𝑛 ∣ (𝐵−𝐴) for some chosen 𝑛∈N. Secondly, we apply a DWT
and re-write the expression as a linear combination of inner
products where one of the vectors is a standard basis vector.
At last, we convert the values to (𝓁,𝑓 )-bit approximations. By
following this order we improve the precision of the approxima-
tions and avoid costly implementations of fixed-point precision
reductions. That is, when the detail coefficients of 𝑦𝑗 =𝑊 ⋅𝜈 T

are sufficiently small, we have

𝐹(𝑎)≈ ⟨𝑒�̃�,𝜈⟩ (real signal LUT)

≈ ⟨𝑎 (𝑒�̃� )
𝐽 ,𝑎 (𝜈)

𝐽 ⟩ (Parseval’s Theorem)

=
2𝐽−1

∑
𝑖=0

𝑐𝑖⟨𝑒𝑖,𝜈𝑖⟩ (re-writing)

≈2−𝑓 ⋅∑
2𝐽−1

𝑖=0
𝑐𝑖⟨𝑒𝑖,𝐀𝐹 ,𝑖⟩ ((𝓁,𝑓 )-bit representation) (5)

where �̄�∶= ⌊2𝑓 ⋅𝑎⌋𝓁 and 𝐀𝐹 ,𝑖 are, respectively, the (𝓁,𝑓 )-bit repre-
sentation of 𝑎 and 𝜈𝑖, and �̃�∶=msb𝑛(�̄�). In practice, for the Haar
and the bior(5,3) transformations we just compute, respectively,
one and two inner products.

5



Pika LUT protocol ΠLUT-Pika
𝑛,𝓁

One-time pre-processing: Input is a function 𝐹 , fixed-point
parameters 𝓁,𝑓 ∈N, and LUT quantization parameter 𝑛∈{1,2,…,𝓁}
- Compute the signal look-up table 𝜈 ∶=L𝓁,𝑓,𝑛(𝐹)

Per-run pre-processing:
- Dealer distributes sharings [𝑟] and J𝑒𝑟K for 𝑟 ∈R Z2𝑛, plus a

Beaver triple for multiplying two secret scalars in Z2𝓁

Online phase: Input is [𝑎], 𝑎 ∈ Z𝓁,𝑓 , plus all pre-processing
values
(1) Non-interactively compute [�̃�]=msb𝑛([𝑎])†

(2) Interactively reconstruct 𝑥𝑛 ∶=𝑟−�̃� mod 2𝑛 from [𝑟] and [�̃�]
(3) Non-interactively compute J𝑒�̃�K=J𝑒𝑟K≪𝑥𝑛, perform signed

extension to convert this into [±𝑒�̃�], use component-wise
summation to compute [±1] from [±𝑒�̃�], and evaluate
[±𝐹L𝓁,𝑓,𝑛 (�̃�)]= ⟨[±𝑒�̃�],𝜈⟩

(4) Interactively compute the product of [±𝐹L𝓁,𝑓,𝑛 (�̃�)] and [±1]
using the Beaver triple to obtain [𝐹L𝓁,𝑓,𝑛 (�̃�)]

(5) Return [𝐹L𝓁,𝑓,𝑛 (�̃�)]

†Specifically, �̃� = msb𝑛(𝑎) − 𝛿 for 𝛿 ∈ {0,1}. We have 𝛿 = 1 when the
discarded low 𝓁−𝑛 bits induce a carry-out during share reconstruction
(which happens with probability 0.5), and 𝛿=0 otherwise.

Figure 3: LUT-based function evaluation protocol from
Pika [30]. The protocol uses two rounds of communication
(Steps 2 and 4).

This is notable because 𝑎 (𝑒𝑎 )
𝐽 and 𝑎 (𝜈)

𝐽 are a factor 2𝑗 shorter
than 𝑒𝑎 and 𝜈 (recall that 𝐽 ∶=𝑛−𝑗 so that 𝑗 =𝑛−𝐽), providing
a substantial reduction in the cost of evaluating the inner
product in the bottom. We write 𝐹H𝓁,𝑓,𝑛,𝐽 and 𝐹B𝓁,𝑓,𝑛,𝐽 for the
approximation functions that arise by respectively applying
the Haar and bior(5,3) transforms at level 𝐽 in this manner; see
Equation (7) and Equation (8).

Thus, our primary insight is that using DWTs to compress
LUTs may provide significant computational advantages with
only a comparatively modest impact on approximation accu-
racy. The exact computational savings, of course, hinge on
how one arrives at 𝑎 (𝑒�̃� )

𝐽 (note that 𝑎 (𝜈)
𝐽 will be pre-computed

once and for all). The naïve method (given by Equation (4))
requires constructing secret-shared basis vectors of length
2𝑛, and then using massive vector-matrix products to “lower”
those vectors into length-2𝐽 approximation coefficients. In the
sequel, we present encouraging results for the Haar transform
(Subsection 4.2) and the bior(5,3) transform (Subsection 4.3);
specifically, we give exact (and efficient) expressions for 𝑎 (𝑒𝑟 )

𝐽

in terms of 𝑟 and for 𝑎 (𝑒�̃� )
𝐽 in terms of 𝑎 (𝑒𝑟 )

𝐽 , 𝑟, and 𝑎.

4.1.1 A note on computing 𝑎 (𝑒�̃� )
𝐽 . As with Pika, we consider a

setting where inputs are additively shared (𝓁,𝑓 )-bit integers,
but where the signal LUT uses an 𝑛-bit quantization of 𝐹 .
DWT compression then compresses the real signal LUT from
2𝑛 down to just 2𝐽 entries. Consequently, computing a sharing
J𝑒msb𝐽 (𝑎)K of 𝑒msb𝐽 (𝑎) from an additive sharing [𝑎] of 𝑎∈Z𝓁,𝑓 is nec-
essary.3 As illustrated in Figure 3, Pika employs a probabilistic

3Jumping ahead, the protocol for bior(5,3) additionally requires us to
compute [lsb𝑗 (msb𝑛(𝑎))] from [𝑎]; for this, we always use a DCF-based
approach.

truncation approach for this step that we want to avoid; i.e.,
the value �̃� in Pika is not necessarily equal to msb𝑛(𝑎), resulting
in an off-by-one error with probability 0.5.

To avoid “stacking” the approximation errors from proba-
bilistic truncation and DWT compression, we replace Pika’s
probabilistic approach to computing J𝑒msb𝑛(𝑎)K with a determin-
istic one. This way, our protocols are guaranteed to give the
exact approximation obtained via plaintext evaluation with
the same DWT-compressed LUT. We showcase two distinct
approaches to deterministically producing J𝑒msb𝑛(𝑎)K, one using
DCFs to perform deterministic truncation in a Pika-like proto-
col, and the other entirely side-stepping the need for truncation
by using Grotto’s segment-parity approach [25, Theorem 1].
Both methods give J𝑒msb𝑛(𝑎)K exactly, but they differ in their per-
formance profiles. We can employ either method in conjunction
with eitherDWT, yielding four potential pairings: “Haar+Pika”,
“Haar+Grotto”, “bior(5,3)+Pika”, and “bior(5,3)+Grotto”.)

In the sequel, we make the editorial decision to present
our Haar-based protocol with the DCF-based computation
(“Haar+Pika”) and our bior(5,3)-based protocol with the Grotto-
based computation (“bior(5,3)+Grotto”). This choice of pair-
ings is arbitrary and intended only to ensure that both methods
feature in the main body; for completeness, we present the
other two pairings in Appendices H and I.

4.2 Haar-transformed basis vectors
The Haar transform’s simplicity yields an expression for ap-
proximation coefficients of 𝑒𝑎 that is incredibly easy to evaluate.
Note that all results in this section hold whenever 2𝑗 ∣𝑁 , but
we only consider the case of 𝑁 =2𝑛. Our first lemma states that
the Haar approximation coefficients of a standard basis vector
at depth 𝑗 are just a (much) shorter standard basis vector,
only scaled by 2−𝑗/2.

Lemma 3 (Haar transform for basis vectors). Let 𝑗 ,𝑛,𝓁 ∈N
with 0< 𝑗 ≤𝑛≤𝓁, let 𝑎∈Z2𝓁, and set 𝐽 ∶=𝑛−𝑗 and �̄�∶=msb𝑛(𝑎).
The approximation coefficients 𝑎 (𝑒�̄� )

𝐽 of 𝑒�̄� at level 𝐽 under the
Haar transform are given by

𝑎 (𝑒�̄� )
𝐽 =2−𝑗/2 ⋅𝑒msb𝐽 (𝑎) ∈R2 𝐽

.

The next lemma characterizes the impact of applying a
circular rotation (see Step 2 of Figure 3) to a standard basis
vector under the Haar transform.

Lemma4 (Haar transform for shifted basis vectors). Let 𝑗 ,𝑛,𝓁∈
Nwith 0<𝑗 ≤𝑛≤𝓁, let 𝑟,𝑎∈Z2𝓁, and set 𝐽 ∶=𝑛−𝑗, 𝑥 ∶=𝑟−𝑎 mod 2𝓁,
�̄�∶=msb𝑛(𝑎) and 𝑟 ∶=msb𝑛(𝑟). The approximation coefficients
𝑎 (𝑒�̄� )
𝐽 of 𝑒�̄� at level 𝐽 under the Haar transform are given by

𝑎 (𝑒�̄� )
𝐽 =2−𝑗/2 ⋅(𝑒msb𝐽 (𝑟)≪𝑥𝐽 ),

where 𝑥𝐽 ∶=msb𝐽 (𝑥)+(lsb𝓁−𝐽 (𝑟)< lsb𝓁−𝐽 (𝑥)) mod 2𝐽 .

We defer the proofs of Lemmas 3 and 4 to Appendix B.
Figure 4 illustrates the implications of Lemma 3 and Lemma 4
as they relate to leveraging Theorem 1 to evaluate approx-
imate inner products in a Pika-like protocol (bullets 1 and
2) or Grotto-like protocol (bullet 3). The final result of this
section rephrases the first two results from a computational
perspective and introduces a third (trivial) observation.
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Compressing
(Lemma 3)

Standard basis vector
L
ev

el
𝑛

L
ev

el
𝐽

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

msb𝑛(𝑟) 𝑥𝑛=msb𝑛(𝑟)−msb𝑛(𝑎) mod 2𝑛
Left Circular Shift

0 0 0 0 0 1
2𝑗/2

msb𝐽 (𝑟)

0 0

Computation
of size-2𝑛

Parseval’s Theorem
(Theorem 1)

Rotated basis vector

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

msb𝑛(𝑎)

𝑥𝐽 =msb𝐽 (𝑥)+(lsb𝓁−𝐽 (𝑟)< lsb𝓁−𝐽 (𝑥)) mod 2𝐽

Left Circular Shift

Lemma 4

𝜈[0] 𝜈[1] 𝜈[2] 𝜈[3] 𝜈[4] 𝜈[5] 𝜈[6] 𝜈[7] 𝜈[8] 𝜈[9] 𝜈[10]𝜈[11]𝜈[12]𝜈[13]𝜈[14]𝜈[15]

0 0 1
2𝑗/2

msb𝐽 (𝑎)

0 0 0 0 0

𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] 𝑎1[4] 𝑎1[5] 𝑎1[6] 𝑎1[7]

Computation
of size-2𝐽

Figure 4: Implications of Lemmas 3 and 4 as they relate to leveraging Theorem 1 for approximate inner-product evaluations.
One option is to apply Lemma 3 to compress 𝑒msb𝑛(𝑟) into 2−𝑗/2 ⋅𝑒msb𝐽 (𝑟), and then to apply Lemma 4 to cyclically rotate
2−𝑗/2 ⋅𝑒msb𝐽 (𝑟) into 2−𝑗/2 ⋅𝑒msb𝐽 (𝑎); the other option is to apply a cyclic rotation to obtain 𝑒msb𝑛(𝑎) from 𝑒msb𝑛(𝑟), and then to apply
Lemma 3 to compress 𝑒msb𝑛(𝑎) into 2−𝑗/2 ⋅𝑒msb𝐽 (𝑎).

Corollary 5. Let 𝑗 ,𝑛,𝓁∈N with 0<𝑗 ≤𝑛≤𝓁 and 𝑎,𝑟 ∈Z2𝓁, and
set 𝐽 ∶=𝑛−𝑗, 𝑥 ∶=𝑟−𝑎, �̄�∶=msb𝑛(𝑎), and 𝑟 ∶=msb𝑛(𝑟). Then the
following expressions compute the approximation coefficients
𝑎 (𝑒�̄� )
𝐽 of 𝑒�̄� at level 𝐽 under the Haar transform:
(1) 𝑎 (𝑒�̄� )

𝐽 =2−𝑗/2 ⋅𝑒msb𝐽 (𝑎);
(2) 𝑎 (𝑒�̄� )

𝐽 =2−𝑗/2 ⋅(𝑒msb𝐽 (𝑟)≪𝑥𝐽 ); and
(3) 𝑎 (𝑒�̄� )

𝐽 =2−𝑗/2 ⋅[⨁(𝑘+1) ⋅2𝑗−1
𝑖=𝑘 ⋅2𝑗 𝑒𝑎[𝑖]|𝑘=0,…,2𝐽−1 ],

where 𝑥𝐽 ∶=msb𝐽 (𝑥)+(lsb𝓁−𝐽 (𝑟)< lsb𝓁−𝐽 (𝑥)) mod 2𝐽 .

4.3 Bior-transformed basis vectors
As explained in Subsection 3.3, the bior(𝑝,𝑞) family of trans-
forms use different sets of low- and high-pass filters for de-
composition and reconstruction. This is in contrast to the
orthogonal wavelets of the Haar transform, where the filters
used for decomposition and reconstruction are identical. The
upshot of this relaxation is that it enables the use of symmetric
filters of length larger than 2, yielding superior compression.

The following lemma and corollary for the bior(5,3) trans-
form are analogous to the preceding results for the Haar trans-
form. We defer their proofs to Appendix C.

Lemma 6 (bior(5,3) transform for basis vectors). Let 𝑗 ,𝑛,𝓁∈N
with 0< 𝑗 ≤𝑛≤𝓁, let 𝑎∈Z2𝓁, and set 𝐽 ∶=𝑛−𝑗 and �̄�∶=msb𝑛(𝑎).
The approximation coefficients 𝑎 (𝑒�̄� )

𝐽 of 𝑒�̄� at level 𝐽 under the
bior(5,3) transform are given by

𝑎 (𝑒�̄� )
𝐽 =𝑐𝐽 ,0 ⋅𝑒msb𝐽 (𝑎)+𝑐𝐽 ,1 ⋅(𝑒msb𝐽 (𝑎)≫1)∈R2 𝐽

,

where 𝑐𝐽 ,0 ∶=(2𝑗−lsb𝑗 (�̄�)) ⋅2−3𝑗/2 and 𝑐𝐽 ,1 ∶=lsb𝑗 (�̄�) ⋅2−3𝑗/2.

The next lemma characterizes the impact of applying a
circular rotation to a standard basis vector under the bior(5,3)
transform.

Lemma 7 (bior(5,3) transform for shifted basis vectors). Let
𝑗 ,𝑛,𝓁 ∈N with 0< 𝑗 ≤ 𝑛≤ 𝓁, let 𝑟,𝑎 ∈Z2𝓁, and set 𝐽 ∶= 𝑛− 𝑗, 𝑥 ∶=

𝑟−𝑎 mod 2𝓁 and �̄�∶=msb𝑛(𝑎). The approximation coefficients
𝑎 (𝑒�̄� )
𝐽 of 𝑒�̄� at level 𝐽 under the bior(5,3) transform are given by

𝑎 (𝑒�̄� )
𝐽 =𝑐𝐽 ,0 ⋅(𝑒msb𝐽 (𝑟)≪𝑥𝐽 )+𝑐𝐽 ,1 ⋅(𝑒msb𝐽 (𝑟)≪𝑥𝐽−1)∈R2 𝐽

, (6)

where 𝑐𝐽 ,0, 𝑐𝐽 ,1 ∈ R2 𝐽

are as defined in Lemma 6 and where
𝑥𝐽 ∶=msb𝐽 (𝑥)+(lsb𝓁−𝐽 (𝑟)< lsb𝓁−𝐽 (𝑥)) mod 2𝐽 .

The final result of this section rephrases the first two re-
sults from a computational perspective and introduces a third
(trivial) observation.

Corollary 8. Let 𝑗 ,𝑛 ∈N with 0< 𝑗 ≤ 𝑛, let 𝑎,𝑟 ∈Z2𝑛, and set
𝐽 ∶=𝑛−𝑗, 𝑥 ∶=𝑟−𝑎 mod 2𝓁 and �̄�∶=msb𝑛(𝑎). Then the following
expressions compute the approximation coefficients 𝑎 (𝑒�̄� )

𝐽 of 𝑒�̄�
at level 𝐽 under the Haar transform:

(1) 𝑎 (𝑒�̄� )
𝐽 =𝑐𝐽 ,0 ⋅𝑒msb𝐽 (𝑎)+𝑐𝐽 ,1 ⋅(𝑒msb𝐽 (𝑎)≫1);

(2) 𝑎 (𝑒�̄� )
𝐽 =𝑐𝐽 ,0 ⋅(𝑒msb𝐽 (𝑟)≪𝑥𝐽 )+𝑐𝐽 ,1 ⋅(𝑒msb𝐽 (𝑟)≪𝑥𝐽−1); and

(3) 𝑎 (𝑒�̄� )
𝐽 =𝑐𝐽 ,0 ⋅𝑒+𝑐𝐽 ,1 ⋅(𝑒≫1),

where 𝑥𝐽 ∶=msb𝐽 (𝑥)+(lsb𝑗 (𝑟)< lsb𝑗 (𝑥)) mod 2𝐽 , 𝑐𝐽 ,0,𝑐𝐽 ,1 ∈R2 𝐽

are
as defined in Lemma 6 and

𝑒∶= [⨁(𝑘+1) ⋅2𝑗−1
𝑖=𝑘 ⋅2𝑗 𝑒𝑎[𝑖]|𝑘=0,…,2𝐽−1 ].

5 LUT USING HAAR DWT
We now shift our focus to this work’s main contribution:
fast and efficient secure (2+1)-party evaluation of non-linear
functions using DWT-based LUTs. In this section, we de-
scribe our protocols for the Haar transform before tackling the
more complicated—yet, in many cases, concretely superior—
protocols for the bior(5,3) transform in the next section.

Recall that given a function 𝐹 ∶ R→R we wish to approx-
imate it on an interval [𝐴,𝐵) using (𝓁,𝑓 )-bit integers. Thanks
to Equation (5), Theorem 1 and Lemma 3 we have

𝐹(𝑎)≈ ⟨𝑒�̃�,𝜈⟩≈ ⟨𝑎 (𝑒�̃� )
𝐽 ,𝑎 (𝜈)

𝐽 ⟩= ⟨2−𝑗/2 ⋅𝑒msb𝐽 (�̄�),𝑎 (𝜈)
𝐽 ⟩

= ⟨𝑒msb𝐽 (�̄�),2−𝑗/2 ⋅𝑎 (𝜈)
𝐽 ⟩≈2−𝑓 ⋅⟨𝑒msb𝐽 (�̄�),𝐀𝐹 ⟩
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Haar+Pika LUT protocol ΠLUT-Haar-Pika
𝑛,𝓁,𝐽 ,𝜈

One-time pre-processing: Input is a function 𝐹 , fixed-point
parameters 𝓁,𝑓 ∈N, LUT quantization parameter 𝑛∈ [1..𝓁), and
DWT depth 𝑗 (so that 𝐽 ∶=𝑛−𝑗)
- Compute the real-valued compressed LUT 𝑎𝐽 ∈ R2𝐽 as

the DWT of 𝜈 ∶= LR,𝑛(𝐹) at level 𝐽 under the Haar trans-
form, and then from it compute the fixed-point LUT
𝐀𝐹 ∶= ⌊2𝑓−𝑗/2 ⋅𝑎 (𝜈)

𝐽 ⌋𝓁 ∈(Z𝓁,𝑓)2
𝐽

Per-run pre-processing pre-Haar-Pika
𝑛,𝓁,𝐽 ,𝜈 :

- Dealer distributes sharings [𝑟] and L𝑒msb𝐽 (𝑟)M for 𝑟 ∈R Z2𝓁, a
DCF ⦃(𝑥>lsb𝓁−𝐽 (𝑟)) ? 1:0⦄, plus a Beaver triple for multiplying
two secret scalars in Z2𝓁

Online phase: Input is [𝑎], 𝑎 ∈ Z𝓁,𝑓 , plus all pre-processing
values
(1) Interactively reconstruct 𝑥¬𝐽 ∶= lsb𝓁−𝐽 (𝑟 − 𝑎) and the

carry-out bit 𝑐𝑎𝑟𝑟𝑦 that arises in the reconstruction
(2) Non-interactively compute [𝑏𝑜𝑟𝑟𝑜𝑤] =

𝐷𝐶𝐹𝐸𝑣𝑎𝑙(⦃(𝑥>lsb𝓁−𝐽 (𝑟)) ? 1:0⦄,𝑥¬𝐽 )
(3) Interactively reconstruct 𝑥𝐽 ∈ Z2𝐽 from 𝑐𝑎𝑟𝑟𝑦, [𝑟], and [𝑎]

using msb𝐽 ([𝑟]−[𝑎])+𝑐𝑎𝑟𝑟𝑦+[𝑏𝑜𝑟𝑟𝑜𝑤]
(4) Non-interactively compute J𝑒msb𝐽 (𝑟)K via full-domain

evaluation of L𝑒msb𝐽 (𝑟)M and J𝑒msb𝐽 (𝑎)K=J𝑒msb𝐽 (𝑟)K≪𝑥𝐽 .
(5) Non-interactively perform signed extension to convert

this into [±𝑒msb𝐽 (𝑎)], use component-wise summation
to compute [±1] from [±𝑒msb𝐽 (𝑎)], and then evaluate
[±𝐀𝐹 [msb𝐽 (𝑎)]]= ⟨[±𝑒msb𝐽 (𝑎)],𝐀𝐹 ⟩

(6) Interactively compute the product of [±𝐀𝐹 [msb𝐽 (𝑎)]] and
[±1] using the Beaver triple to obtain [𝐹H𝓁,𝑓,𝑛,𝐽 (𝑎)]

(7) Return [𝐹H𝓁,𝑓,𝑛,𝐽 (𝑎)]

Figure 5: LUT-based function evaluation using the Haar
DWT. The protocol uses three rounds of communication
(Steps 1, 3 and 6)

where �̄� ∶= ⌊2𝑓 ⋅𝑎⌋𝓁 ∈ Z𝓁,𝑓 , 𝐀𝐹 ∶= ⌊2𝑓 ⋅2−𝑗/2 ⋅𝑎 (𝜈)
𝐽 )⌋𝓁 ∈ (Z𝓁,𝑓 )2

𝐽
and

�̃� ∶= msb𝑛(�̄�). We write 𝐹H𝓁,𝑓,𝑛,𝐽 (𝑎) for such approximation of
𝐹(𝑎) at 𝑎∈[−2𝓁−1,2𝓁−1):

𝐹H𝓁,𝑓,𝑛,𝐽 (𝑎)∶= ⟨𝑒msb𝐽 (�̄�),𝐀𝐹 ⟩. (7)

Corollary 5 suggests three potential strategies to compute
this inner product. Our first protocol uses Bullet 2 from the
result, namely

𝑎 (𝑒𝑎 )
𝐽 =2−𝑗/2 ⋅(𝑒msb𝐽 (𝑟)≪𝑥𝐽 ),

to construct a direct analog of Pika with deterministic (error-
less) truncation. Figure 5 describes all of the protocol steps;
we elaborate on and justify non-obvious aspects below.

One-time pre-processing phase: In the one-time pre-processing
phase, some quasi-trusted entity produces the fixed-point rep-
resentation of a DWT-compressed (and scaled) LUT to be
used in the online phase. This phase only needs to be com-
pleted once and for all for any given function 𝐹 and set of
parameters 𝑗 ,𝓁,𝑓 ,𝑛; however, we stress that, since the entire
process is imminently feasible, deterministic, and based on
public values, it can be easily reproduced by anyone at any
time and, consequently, does not require a trusted initializer.

Since our goal is to evaluate 𝐹H𝓁,𝑓,𝑛,𝐽 (𝑎) using Equation (7);
we precompute and publish the LUT

𝐀𝐹 ∶= ⌊2𝑓 ⋅2−𝑗/2 ⋅𝑎 (𝜈)
𝐽 )⌋𝓁 ∈(Z𝓁,𝑓 )2

𝐽

.

Online evaluation phase: The online phase is where the actual
computation takes place, using the pre-processed data and the
shared inputs to securely evaluate the function 𝐹H𝓁,𝑓,𝑛,𝐽 (𝑎) on the
input shares. This phase is designed to have low communica-
tion cost and round complexity, leveraging the pre-computed
values to complete the function evaluation with just 2𝓁+𝐽 bits
sent by each party across three communication rounds.

In the protocol, Steps 1-3 compute the rotation distance
𝑥𝐽 at level 𝐽 using a two-round protocol; the remaining steps
complete the calculation exactly as in Pika, using the above-
computed LUT. The computation of 𝑥𝐽 proceeds in two steps
because the parties must reconstruct lsb𝓁−𝐽 (𝑥) before they can
compute and reconstruct 𝑥𝐽 =msb𝐽 (𝑥)+(lsb𝓁−𝐽 (𝑥)< lsb𝓁−𝐽 (𝑟)).

Cost analysis: The per-run preprocessing values have size
about 𝜆 ⋅(𝐽−lg𝜆) bits for the DPF and 2(𝓁−𝐽) ⋅(𝜆+𝓁−𝐽) bits for
the DCF, plus 4𝓁 values for the additive sharing and Beaver
triple, where 𝜆∈N is the seed length of the PRG. This gives a
total precomputation size in 𝑂(𝓁⋅(𝜆+𝓁)). Computation cost for
the dealer is a modest Θ(𝓁−lg𝜆) PRG invocations and XORs.

As for the online phase, the parties exchange one 𝓁-bit value
across Steps 1 and 3, and two 𝓁-bit values in Step 6, for a
total online communication of just 3𝓁 bits in either direction.
The DCF evaluation in Step 2 requires Θ(𝓁) work and the full-
domain evaluation in Step 4 requiresΘ(2𝐽−lg𝜆)work. Essentially
all of the remaining computation cost come from the inner
product in Step 5, which uses at most 2𝐽 many 𝓁-bit additions.

Theorem 9. Protocol ΠLUT-Haar
𝑛,𝓁,𝐽 ,𝜈 securely evaluates 𝐹H𝓁,𝑓,𝑛,𝐽 (𝑎)

in the presence of semi-honest non-colluding parties in the
pre-Haar-Pika
𝑛,𝓁,𝐽 ,𝜈 -hybrid model.

We defer proof of Theorem 9 to Appendix D. We highlight
that all the approximation of the DWTs happen outside the
secure computation protocol (refer to the ideal functionality
in Figure 8). The approximation can be independently studied
with the error being a tunable parameter as a function of 𝐽 ,𝑛.
Section 7.1 contains the experimental numbers for specific
parameter choices.

6 LUTS USING bior(5,3) DWT
Similar to Section 5, we approximate a function 𝐹 ∶ R→R on
an interval [𝐴,𝐵) by using (𝓁,𝑓 )-bit integers and making use of
the bior(5,3) transformation. Indeed, following Equation (5),
Theorem 2 and Lemma 6 we have

𝐹(𝑎)≈ ⟨𝑒�̃�,𝜈⟩≈ ⟨𝑎 (𝑒�̃� )
𝐽 ,𝑎 (𝜈)

𝐽 ⟩= ⟨𝑐𝐽 ,0 ⋅𝑒msb𝐽 (�̄�)+𝑐𝐽 ,1 ⋅(𝑒msb𝐽 (�̄�)≫1),𝑎 (𝜈)
𝐽 ⟩

= ⟨(2𝑗−lsb𝑗 (�̃�)) ⋅2−3𝑗/2 ⋅𝑒msb𝐽 (�̄�)+lsb𝑗 (�̃�) ⋅2−3𝑗/2 ⋅(𝑒msb𝐽 (�̄�)≫1),𝑎 (𝜈)
𝐽 ⟩

= ⟨𝑒msb𝐽 (�̄�),2−𝑗/2 ⋅𝑎 (𝜈)
𝐽 ⟩+lsb𝑗 (�̃�) ⋅⟨𝑒msb𝐽 (�̄�),2−3𝑗/2 ⋅((𝑎 (𝜈)

𝐽 ≪1)−𝑎 (𝜈)
𝐽 )⟩

≈2−𝑓 ⋅(⟨𝑒msb𝐽 (�̄�),𝐀𝐹 ,𝑐0 ⟩+lsb𝑗 (�̃�) ⋅⟨𝑒msb𝐽 (�̄�),𝐀𝐹 ,𝑐1 ⟩).

where �̄� ∶= ⌊2𝑓 ⋅𝑎⌋𝓁 ∈ Z𝓁,𝑓 , 𝐀𝐹 ,𝑐0 ∶= ⌊2𝑓 ⋅2−𝑗/2 ⋅𝑎 (𝜈)
𝐽 ⌋𝓁, and 𝐀𝐹 ,𝑐1 ∶=

⌊2𝑓 ⋅2−3𝑗/2 ⋅((𝑎 (𝜈)
𝐽 ≪ 1) − 𝑎 (𝜈)

𝐽 )⌋𝓁 ∈ (Z𝓁,𝑓 )2
𝐽
and �̃� ∶= msb𝑛(�̄�). We

8



bior(5,3)+Grotto LUT protocol ΠLUT-bior(5,3)-Grotto
𝑛,𝓁,𝐽 ,𝜈

One-time pre-processing: Input is a function 𝐹 , fixed-point
parameters 𝓁,𝑓 ∈ N, LUT quantization parameter 𝑛 ∈ [1..𝓁), and
DWT depth 𝑗 (so that 𝐽 ∶=𝑛−𝑗)
- Compute the real-valued compressed LUT 𝑎𝐽 ∈R2𝐽 as the DWT

of 𝜈 ∶=LR,𝑛(𝐹) at level 𝐽 under the bior(5,3) transform, and then
from it compute the fixed-point LUTs
- 𝐀𝐹,𝑐0 ∶= ⌊2𝑓−𝑗/2 ⋅𝑎 (𝜈)

𝐽 ⌋𝓁 ∈(Z𝓁,𝑓)2
𝐽

- 𝐀𝐹,𝑐1 ∶= ⌊2𝑓−3𝑗/2 ⋅((𝑎 (𝜈)
𝐽 ≪1)−𝑎 (𝜈)

𝐽 )⌋𝓁 ∈(Z𝓁,𝑓)2
𝐽

Per-run pre-processing pre-bior(5,3)-Grotto
𝑛,𝓁,𝐽 ,𝜈 :

- Dealer distributes sharings [𝑟], [lsb𝑗 (msb𝑛(𝑟))] and L𝑒𝑟 M for
𝑟 ∈RZ2𝓁, two DCFs ⦃(𝑥>lsb𝓁−𝑛(𝑟)) ? 1:0⦄ and ⦃(𝑥>lsb𝓁−𝐽 (𝑟)) ? 2𝑗 :0⦄,
plus a generalized Beaver tuple for equations of the form
[𝑢] ⋅([𝑐1] ⋅[𝑥]+[𝑐0]) with arithmetic in Z2𝓁.

Online phase: Input is [𝑎], 𝑎∈Z𝓁,𝑓 , plus all pre-processing values
(1) Interactively reconstruct 𝑥 ∶=𝑟−𝑎 from [𝑟] and [𝑎], and then

non-interactively compute 𝑥¬𝐽 ∶=lsb𝓁−𝐽 (𝑥) and 𝑥¬𝑛 ∶=lsb𝓁−𝑛(𝑥)
from 𝑥

(2) Non-interactively compute
- [𝑏𝑜𝑟𝑟𝑜𝑤𝑛]=𝐷𝐶𝐹𝐸𝑣𝑎𝑙(⦃(𝑥>lsb𝓁−𝑛(𝑟)) ? 1:0⦄,𝑥¬𝑛) and
- [𝑏𝑜𝑟𝑟𝑜𝑤𝐽 ]=𝐷𝐶𝐹𝐸𝑣𝑎𝑙(⦃(𝑥>lsb𝓁−𝐽 (𝑟)) ? 2𝑗 :0⦄,𝑥¬𝐽 ) and
- [lsb𝑗 (msb𝑛(𝑎))] ∶= [lsb𝑗 (msb𝑛(𝑟))] − (lsb𝑗 (msb𝑛(𝑥)) +
[𝑏𝑜𝑟𝑟𝑜𝑤𝑛]−[𝑏𝑜𝑟𝑟𝑜𝑤𝐽 ])∈Z2𝓁,

and then compute
- J𝑒msb𝐽 (𝑎)K using Grotto’s segment-parity algorithm on input

L𝑒𝑟 M, (𝑃𝑖 ∶= 𝑖 ⋅2𝑗 ∣ 𝑖,…,2𝐽−1), and 𝑥,
- perform signed extension to convert this into [±𝑒msb𝐽 (𝑎)],
- use component-wise summation to compute [±1] from
[±𝑒msb𝐽 (𝑎)], and then

- evaluate [±𝐀𝐹,𝑐0 [ msb𝐽 (𝑎)]] = ⟨[±𝑒msb𝐽 (𝑎)], 𝐀𝐹,𝑐0 ⟩ and
[±𝐀𝐹,𝑐1 [msb𝐽 (𝑎)]]= ⟨[±𝑒msb𝐽 (𝑎)],𝐀𝐹,𝑐1 ⟩

(3) Interactively compute the sign-corrected linear evaluation
[±1]⋅([±𝐀𝐹,𝑐1 [msb𝐽 (𝑎)]]⋅[lsb𝑗 (msb𝑛(𝑎))]+[±𝐀𝐹,𝑐0 [msb𝐽 (𝑎)]]) using
the generalized Beaver triple to obtain [𝐹B𝓁,𝑓,𝑛,𝐽 (𝑎)]

(4) Return [𝐹B𝓁,𝑓,𝑛,𝐽 (𝑎)]

Figure 6: LUT-based function evaluation using the bior(5,3)
DWT. The protocol uses two rounds of communication
(Steps 1 and 3)

write 𝐹B𝓁,𝑓,𝑛,𝐽 (𝑎) for such approximation of 𝐹(𝑎) at 𝑎∈[−2𝓁−1,2𝓁−1).
That is,

𝐹B𝓁,𝑓,𝑛,𝐽 (𝑎)∶= ⟨𝑒msb𝐽 (�̄�),𝐀𝐹 ,𝑐0 ⟩+lsb𝑗 (�̃�) ⋅⟨𝑒msb𝐽 (�̄�),𝐀𝐹 ,𝑐1 ⟩. (8)

Corollary 8 suggests three potential strategies compute
Equation (8). The protocol we present here uses Bullet 3 from
the result, namely

𝑎 (𝑒�̄� )
𝐽 =𝑐𝐽 ,0 ⋅𝑒𝐽+𝑐𝐽 ,1 ⋅(𝑒𝐽 ≫1), (9)

where 𝑐𝐽 ,0,𝑐𝐽 ,1 ∈R2 𝐽

are as defined in Lemma 6, and where

𝑒𝐽 ∶= [⨁(𝑘+1) ⋅2𝑗−1
𝑖=𝑘 ⋅2𝑗 𝑒𝑎[𝑖]|𝑘=0,…,2𝐽−1 ],

with Grotto’s parity-segment algorithm to construct a proto-
col that avoids the need for truncation altogether. Figure 6
describes all of the protocol steps; we elaborate on and justify
non-obvious aspects of these steps below.

One-time pre-processing phase: As with the Haar transform,
the pre-processing phase of out bior(5,3) protocol consists of
a quasi-trusted entity producing fixed-point representations
of DWT-compressed LUTs to be used in the online phase. Re-
call that our goal is to evaluate 𝐹B𝓁,𝑓,𝑛,𝐽 (𝑎) (Equation (8)) using
Equation (9).

Online evaluation phase: The online phase diverges from the
Haar protocol in two main ways. The first significant difference
is that it uses Grotto’s segment-parity algorithm to arrive at
J𝑒msb𝐽 (𝑎)K. The segment-parity algorithm takes as inputs a DPF
key dpf, a monotone increasing sequence 𝑆 of segment endpoints
in the domain of dpf, and a cyclic rotation distance 𝑥. It simu-
lates the effect of invoking full-domain evaluation to obtain J𝑒𝑟K,
applying the rotation J𝑒𝑎K=J𝑒𝑟K≪𝑥, and then computing the
parity of every segment defined by consecutive endpoints in 𝑆
in the resulting vector. However, it computes this using 𝑜(𝓁⋅2𝐽 )
PRG evaluations and bitwise operations [25, Theorem 4.1].4

Cost analysis: The per-run preprocessing values have size
about 𝜆 ⋅(𝓁 − lg𝜆) bits for the DPF, 2 ⋅(𝓁 − 𝑛) ⋅(𝜆 + 𝓁 − 𝑛) and
2 ⋅(𝓁−𝐽) ⋅(𝜆+𝓁−𝐽) for the two DCFs, and 10𝓁 bits additive shares
and generalized Beaver tuple, where 𝜆∈N is the seed length of
the PRG. This gives a total precomputation size in 𝑂(𝓁⋅(𝜆+𝓁)).
Computation cost for the dealer is a modest Θ(𝓁−lg𝜆) PRG
invocations and XORs.

As for the online phase, the parties exchange one 𝓁-bit value
in Step 1 and an additional four 𝓁-bit values in Step 3, for a
total online communication of just 5𝓁 bits in either direction. In
Step 2, the DCF evaluations require Θ(𝓁−𝐽) and Θ(𝓁−𝑛) work,
respectively, while the segment-parity computation requires
Θ(𝑗 ⋅2𝐽−lg𝜆) work. Essentially all of the remaining computation
cost comes from the inner products in Step 5, which is Θ(2𝐽 )
work. Below we state our main theorem and defer the proof
to Appendix E.

Theorem10. ProtocolΠLUT-bior(5,3)
𝑛,𝓁,𝐽 ,𝜈 securely evaluates 𝐹B𝓁,𝑓,𝑛,𝐽 (𝑎)

in the presence of semi-honest non-colluding parties in the
pre-bior(5,3)-Grotto
𝑛,𝓁,𝐽 ,𝜈 -hybrid model.

6.1 Methods for computing J𝑒msb𝐽 (𝑎)K
The Haar protocol in Figure 5 uses an errorless variant of Pika’s
approach to computing J𝑒msb𝐽 (𝑎)K, whereas the bior(5,3) protocol
in Figure 6 opts for the parity-segment approach from Grotto.
Here, we briefly explain how the two methods work and differ.

For the errorless Pika-like variant, we employ the formula
for 𝑥𝐽 as given in Lemmas 4 and 7, using a dealer-provided
DCF to evaluate the required integer comparison. The benefit
of this approach is that it uses small DPFs with computation
costs that are concretely lower than the Grotto approach. The
drawback is that the comparison must occur before the re-
construction of msb𝐽 (𝑥), necessitating a dedicated round of
interaction. The resulting protocol uses three rounds in total.

For the Grotto-like variant, we instead employ the segment-
parity algorithm to compute J𝑒msb𝐽 (𝑎)K directly from L𝑒𝑟M and
𝑥. The benefit of this approach is that it avoids the need for
4In our case, the cost works out to Θ(𝑗 ⋅2𝐽 ) PRG evaluations and bitwise
operations.
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an additional round of interaction, which is significant in high-
latency WAN scenarios. The result is a protocol with just two
rounds of interaction. The drawback is that while asymptoti-
cally similar, the parity-segment approach is concretely slower,
and this increased computation cost must be weighed against
the lower round complexity.

6.2 Large Domain Sizes
The Grotto-based variants of both protocols naturally extend
to efficient evaluation over massive domains, at least for cer-
tain functions of interest, notably including most non-linear
activation functions like the ones we consider in our experi-
mental evaluation. In particular, given a function 𝑓 ∶ R→R
that admits a piecewise approximation in which most “pieces”
are well-approximated by low-degree polynomials, we can
adapt the segment-parity computation by inputting an aug-
mented list of segment endpoints. This list consolidates each
polynomial-approximatable piece into a single segment while
dividing the non-polynomial segment(s) into equidistant points
(cf. Corollary 5, Bullet 3 and Corollary 8, Bullet 3). By doing
so, we extend Grotto’s approach, which works well for polyno-
mial segments, and complement it with our DWT approach to
accurately model any highly non-linear portions beyond the
reach of low-degree polynomial approximations. In particular,
for a DWT at level 𝐽 the augmented segment-parity compu-
tation grows from 2𝐽 segments to 2𝐽 +2 segments, a nominal
overhead of a factor 1+2−𝐽 . When the tails are constant (as in
sigmoid), there is essentially no additional overhead; for func-
tions that converge to 𝑓 (𝑥)=𝑥, the LUT returns coefficients of
a linear polynomial, and there is slight additional communica-
tion overhead to obliviously evaluate that polynomial. In our
experiments, the cost difference between evaluating on the full,
64-bit domain versus over a small domain centered at the origin
were consistently dwarfed by the variance in running times.

7 EVALUATION
Werunour experiments on a server equippedwith an Intel® Coretm

i9-13900KS processor and 128 GiB of RAM, running Ubuntu
23.04 (lunar) in headless mode. We run the dealer and each
online party in its own Docker container and control simulated
network parameters between them using traffic control (tc).
The source code to reproduce the experiments is open sourced
at https://github.com/NillionNetwork/WaveHelloToPrivacy.
All numbers are generated after averaging for a 100 trials.
All LAN experiments are run with 5000 Mbit bandwith and
0.2 ms latency, whereas WAN experiments are run with 300
Mbit bandwith and 70 ms latency. A brief overview of our
experimental evaluation is given below:
(1) We analyze the performance of Haar and Biorthogonal

(bior(5,3)) DWTs compared to traditional quantization
techniques – Section 7.1 and Table 1

(2) The trade-off between compression and error by studying
a range of compression levels (𝐽) – Section 7.2 and Figure 7

(3) Computation run-time for varying compression levels (𝐽)
and fixed input bit-widths (𝑛) (in both LAN and WAN)
– Section 7.3, Figure 7, and Appendix J

(4) Comparison against existing methods such as Curl, Pika,
and Ripple – Appendix K

A note on DWT implementation: To implement DWTs we
used the PyWavelets package [16] for Python. In this package
the Haar DWT is referred to as “haar” while the bior(5,3) DWT
corresponds to “bior2.2”. The difference in the notation occurs
because we consider the lengths of the low and high-pass filters
(5 and 3) while in the PyWavelets package they consider the
number of vanishing moments of those filters (2 and 2).

7.1 Activation Functions
In Table 1, we compare Haar and bior(5,3) DWT with quantiza-
tion, i.e., truncating trailing bits of the number and evaluating
the function at the remaining value. The precision is 𝑓 = 24,
and all LUT outputs have 𝑙=64 bits. The input bit width 𝑛
depends on the function’s domain. For a real-valued univari-
ate function 𝑔(𝑥) over domain [𝑎,𝑏], we sample 2𝑛 equidistant
values to construct quantized, Haar, and Biorthogonal LUTs.
We report the Mean and Max Absolute Errors attained us-
ing these compression techniques, focusing on ML activation
functions (https://paperswithcode.com/methods/category/
activation-functions) that are not piece-wise linear. We exclude
ReLU and similar activations as they can be calculated accu-
rately via splines, focusing on more complex non-linearities.
To set lookup table domains and sizes, we use a threshold
𝑇 =2−18≈3.81×10−6, choosing domains as powers of 2 so errors
outside fall under this threshold.

For 𝑗-bit compression in quantization, the quantized LUT is
built by evaluating the function at values after truncating the
𝑗 trailing bits of the input. That is, we evaluate the function at
2𝐽 equidistant points, where 𝐽 =𝑛−𝑗 , each point with 𝑗 trailing
bits equal to 0. On the other hand, for 𝑗-bit compression in
DWT, we apply the DWT transform 𝑗 times. We end up with
2𝐽 approximation coefficients, which becomes our LUT. We
then normalize the LUT. In Haar, this normalization consists
of multiplication with 2−𝑗/2. This value comes from normalizing
to 1 the approximation coefficients of the one-hot vector after
Haar DWT is applied 𝑗 times.

For GeLU and tanh, we focus on the domain [−8,8]. The max-
imum absolute error we get outside of this domain for these
functions are 5.33×10−15 and 2.25×10−7 respectively. For sigmoid,
SiLU, softplus and Mish we use the domain [−16,16] resulting in
errors of 1.13×10−7, 1.80×10−6, 1.13×10−7, and 1.80×10−6 respec-
tively. In the case of SELU, we limit our attention to [−16,0] as
it is linear for positive numbers, getting an error of 1.98×10−7
for values less than −16. For exponential, it is also enough to
consider [−16,0] as 𝑒−16 ≈ 1.13 × 10−7, which is the maximum
absolute error incurred. For reciprocal, we only consider the
domain [1,64] because this resembles the range of input that
it’s going to take in a softmax function of up to 64 values.

We observe that Haar DWT is able to compress a single
extra bit more than quantization with about the same error,
while Biorthogonal DWT approximately halves the bit size
of the LUT for less error. This reduction in LUT size leads to
considerable speedup of the lookup table evaluation and the
key-size required.
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Function Method Bitlength Absolute Error

original LUT mean max

Q 23 5.12×10−7 2.14×10−6
GeLU H 28 22 5.11×10−7 2.18×10−6

B 12 9.36×10−8 1.02×10−6

Q 22 1.48×10−7 1.95×10−6
sigmoid H 29 21 1.39×10−7 1.96×10−6

B 11 1.41×10−7 2.00×10−6

Q 22 2.64×10−7 3.81×10−6
tanh H 28 22 1.39×10−7 1.94×10−6

B 12 8.17×10−8 1.06×10−6

Q 24 5.01×10−7 2.09×10−6
SiLU/Swish H 29 23 5.04×10−7 2.12×10−6

B 12 1.30×10−7 2.54×10−6

Q 23 9.69×10−7 3.81×10−6
softplus H 29 23 4.88×10−7 1.94×10−6

B 12 1.06×10−7 1.27×10−6

Q 23 1.31×10−7 3.31×10−6
SELU H 28 22 1.26×10−7 3.36×10−6

B 12 7.71×10−8 2.11×10−6

Q 24 5.07×10−7 2.07×10−6
Mish H 29 23 5.05×10−7 2.10×10−6

B 12 1.28×10−7 3.27×10−6

Q 22 1.47×10−7 3.81×10−6
exponential H 28 22 8.19×10−8 1.94×10−6

B 12 5.39×10−8 1.21×10−6

Q 23 4.74×10−8 3.76×10−6
reciprocal H 29 22 4.05×10−8 1.94×10−6

B 13 3.64×10−8 2.72×10−6

Legend: Q: Quantization; H: Haar; B: bior(5,3)

Table 1: Accuracy by function and approx method for
select LUT sizes.

7.2 Compression Error
In Figure 7, we plot the mean absolute error vs. compression
level for the selected functions for quantization, Haar DWT,
and Biorthogonal DWT. This data is plot on the primary axis
(left hand y-axis). We observe that Haar DWT is usually bet-
ter than quantization by a constant factor, but Biorthogonal
DWT is asymptotically better. Using Biorthogonal DWT, the
lookup table can be shrunk to around half the bit-width with
error in the order of the precision (2−24≈10−7). For small depths
(large lookup table sizes – 𝐽 close to 𝑛), Biorthogonal DWT
experiences boundary effects which explains the increased
error. We see similar patterns for all the functions plotted,
however, there are minute differences like reciprocal function
experiences higher border effects for small compression depth.

7.3 Runtime Experiments
In Table 1, we empirically report the compression for a given
threshold of acceptable error. In practice however, the error
threshold depends on the application and thus in Figure 7 we

use a dual axis to present the trade-off in our system. Using
a smaller value of 𝐽 (thus the LUT table is compressed a lot)
results in really efficient protocols (right-hand y-axis) but at
the cost of increased absolute error (left-hand y-axis). On the
other extreme, using large values of 𝐽 (closer to 𝑛) result in a
very accurate function evaluation (close to 8 decimal digits
precision) at the cost of a higher runtime. Our implementation
processes messages in a streaming fashion to effectively hide
latency; this is evident in the plots, where the WAN running
times initially are dominated by communication latency, while
the clear exponential trend in the computation cost eventually
dominates in both the LAN and WAN settings.

We restrict the value of 𝐽 between 10 and 24 (as representa-
tive compression levels from Table 1). However, we present the
full data by varying 𝑛 between 28 and 32, for 𝓁=64 and the same
range for 𝐽 in Appendix I. For the experiment, we first create
pre-processing material and measure the total time for 1000
function evaluations (average time for 100 runs is reported)
for each 𝑛 and 𝐽 . We report the total time of the runs. Note
that while the runtime changes, the online communication is
always the same. For Haar, it is 24 bytes per evaluation and
for bior(5,3) it is 40 bytes for all 𝑛 and 𝐽 .

In Appendix K, we compare our approach relative to prior
works such as Curl [24], Pika [30], and Ripple [10].

8 RELATED WORK
This work builds upon two closely related systems, Pika [30]
and Grotto [25], both of which have contributed to the advance-
ment of secure multi-party computation (MPC) using function
secret sharing (FSS). Pika leverages FSS to evaluate a lookup
table (LUT) within a (2+1) party setup and extends this semi-
honest protocol to achieve malicious security by stating and
proving a generalization of the Schwartz-Zippel Lemma. De-
spite its innovative approach, Pika faces scalability challenges
due to the computational overhead associated with the naïve
FSS EvalAll method, which incurs an 𝑂(𝑁 ) complexity where
𝑁 is the size of the LUT. Addressing this limitation, Grotto
introduces the parity-segment tree, a novel data structure op-
timized for efficiently answering parity queries over substrings
of a binary string. This structure reduces the computational
cost for certain operations, enabling efficient computation at
the cost of a single distributed point function (DPF) rather
than multiple distributed correlated functions (DCF).

There has been a plethora of work in the (2+1) party and 3-
party settings focusing on non-linear functions [4, 21, 28, 29, 31,
32]. Particularly, there has been significant progress in improv-
ing the cost of FSS-based protocols – notable examples include
SIRNN [23], LLAMA [12] and [2]. SIRNN, in particular, em-
ploys LUTs differently than this work. It uses LUTs to achieve
an initial approximation of mathematical functions, which is
then refined using iterative algorithms such as Goldschmidt’s
iterations. While larger LUTs yield more precise results, the
communication overhead in secure protocols increases linearly
with the LUT size. Furthermore, the rise of large language
models (LLMs) and the transformer architecture has spurred
interest in the secure evaluation of these models, with works
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Figure 7: This figure shows the inherent accuracy-performance trade-off in this work. The x-axis is the DWT level 𝐽 (from
10 to 𝑛−1) with each subplot for a single function. On the primary axis, we have the mean absolute error (line plots) and
on the secondary axis (area charts) we have the total time required for 1000 function evaluations using the Haar DWT
(averaged over 100 trials). The dark shaded band indicates one standard deviation above and below the average. We
use Table 1 as the guide for the choice of 𝑛 values for functions as well as the range of 𝐽 values considered. As the primary
and secondary axis are independent there is no meaning to the intersection of line-plots with the area charts.

such as SIGMA [11], MPCFormer [17], Puma [8], and Bolt [18]
focusing on this area. These efforts aim to adapt and opti-
mize secure computation techniques to efficiently handle the
complexities and non-linearities of transformers.

An orthogonal yet related line of research explores the use of
GPUs to accelerate secure computation. Systems such asCrypt-
GPU [26], Piranha [34], and Orca [13] have investigated this
approach, with Orca specifically focusing on enhancing FSS-
based 2PC protocols using GPUs. This exploration highlights
the potential for leveraging parallel processing capabilities to
improve the performance of secure computation.

Furthermore, two concurrentworks,Ripple [10] andCurl [24],
have explored the use of discrete wavelet transforms (DWTs)
in secure computation. Ripple applies similar techniques within
the context of homomorphic encryption, utilizing programmable
bootstrapping, while Curl builds upon Crypten to implement
more efficient LUTs using DWTs. Curl demonstrates the ef-
fectiveness of this approach by achieving secure inference on a
range of LLMs but lacks the use of DPFs, DCFs, and the parity
segmentation that is critical in extending these techniques to
large domain use-cases.
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9 FUTURE DIRECTIONS
In this study, we concentrate on the fundamentals of DWT
within the context of LSSS based secure computation. How-
ever, this research raises several open questions and suggests
multiple avenues for future investigation. We outline these
briefly here, with the hope that subsequent studies will pro-
vide precise constructions, conduct empirical evaluations, and
develop into substantial, concrete bodies of work.
Improved Adversarial Models. Extending DWT-based
protocols to withstand malicious adversarial models is cru-
cial for ensuring the robustness and security of cryptographic
systems. Investigating methodologies akin to Pika [30] for en-
hancing protocol security under malicious adversaries or MPC
with a friend adversarial models [15] could contribute to the
development of more resilient and trustworthy secure com-
putation frameworks. Future research directions may include
concrete protocol constructions, other Rings and Fields.

Families of Wavelet Transforms. Apart from the Haar and
bior(5,3) wavelets considered in this work, other wavelet fam-
ilies may offer interesting possibilities for improving efficiency
or addressing specific application requirements. Exploring al-
ternative families, such as Daubechies or Symlet wavelets, in
terms of their computational properties and suitability for
secure computation tasks could provide valuable insights into
their potential advantages and limitations.

Function Evaluations over Non-linearly Spaced In-
tervals. While our study focuses on discrete, equally spaced
evaluation of functions, exploring techniques for more adaptive
sampling based on the characteristics of non-linear functions
could significantly enhance computation efficiency. Investigat-
ing the integration of packet DWT techniques [22] to achieve
this is a promising avenue for future research, potentially involv-
ing the development of algorithms or heuristics to dynamically
adjust sampling intervals based on local function behavior.

PIR Protocols using N-D Wavelet Theory. Adapting N-
Dimensional wavelet theory to Private Information Retrieval
(PIR) protocols presents a direction for enhancing privacy-
preserving data retrieval mechanisms. Chor’s protocol [6], with
2𝑘 servers can benefit from a DWT based look-up where a stan-
dard basis vector is secret shared across each of the 𝑘 dimen-
sions to select a single entry in the 𝑘-dimension hypercube. In
other words, leveraging DWT-based lookup tables within PIR
frameworks could lead to more efficient and secure solutions
for accessing distributed data while preserving user privacy.

Integration with Chinese Remainder Theorem (CRT).
Combining DWT techniques with the CRT may enable possibil-
ities for efficient computation over large domains represented
by composite moduli. Partitioning large domain computations
into smaller DWT LUTs of arithmetic functions could offer
significant efficiency and scalability gains for CRT-based cryp-
tographic protocols. Future research could focus on specific
algorithms or protocols to combine DWT with the CRT and the
experimental validation of their performance in cryptographic
applications.

Applications to FHE/TFHE. Exploring the integration of
DWT techniques with Fully Homomorphic Encryption (FHE)
or TFHE schemes offers avenues for enhancing the efficiency
and scalability of secure computation protocols. Investigating
how DWT-based approaches can complement or improve ex-
isting encryption techniques could lead to advancements in
privacy-preserving computation across various domains. Key
directions include designing DWT-enhanced FHE or TFHE
protocols and evaluating their real-world performance.

Applications to Secure Matrix Multiplications. Extend-
ing the application of DWT-based techniques to secure matrix
multiplications could yield efficient solutions for cryptographic
protocols relying on such operations [5, 35]. Leveraging DWT
for sampling across various dimensions within matrix opera-
tions holds potential for optimizing computations, particularly
in scenarios involving high-dimensional data processing.

Extensions to Large Domains. While our method is well
suited for piecewise linear functions, the technique applies
generally. The Segment-parity algorithm works for arbitrary
splitting of functions and thus generalizes well. However, the
lower the degree of the polynomial which is used to approx-
imate a piece, the smaller is the relative contribution to the
overall run-time. Future research directions may focus on
these types of non-linear functions and study this problem of
evaluation over large domains more generally.

10 CONCLUSION
In conclusion, this work explores the novel approach to se-
cure multiparty computation by leveraging discrete wavelet
transforms (DWTs) to create compact and high-fidelity look-
up tables (LUTs) for approximating nonlinear functions over
large domains. The proposed protocols demonstrate significant
improvements in run-time and accuracy, particularly in the
context of evaluating nonlinear activation functions popular
in deep neural networks. The experimental results confirm the
practical benefits of these methods, showing multiple order
of magnitude run-time improvements for similar LUT sizes.
This work not only enhances the feasibility of secure MPC
for complex functions but also opens new avenues for further
research and application of DWTs in secure computation.
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A CONSTRUCTING
WAVELET MATRICES

A.1 Filters and Wavelet Matrix
For the construction of the Wavelet Matrices we follow the
approach given in [27]. The main idea is to define low- and
high-pass filters and then construct a matrix by considering
those filters. To show which filters determine a wavelet matrix
is beyond the scope of this appendix.

Definition 3. A bi-infinite sequence 𝑏 is a sequence on the
integers that we shall write as 𝑏=(…,𝑏 [−1],𝑏 [0],𝑏 [1],…).

Definition 4. Let ℎ and 𝑥 be two bi-infinite sequences and
assume that for all 𝑛∈Z the sum ∑∞

𝑘=−∞ℎ[𝑘]𝑥[𝑛−𝑘] converges.5

Then, the convolution product ℎ∗𝑥 is the bi-infinite sequence
𝑦 such that 𝑦[𝑛]=∑∞

𝑘=−∞ℎ[𝑘]𝑥[𝑛−𝑘].

Definition 5. A bi-infinite sequence ℎ is called a finite im-
pulse response (FIR) filter if there exist 𝑙, 𝐿 ∈ N such that
for 𝑘 < −𝑙 and 𝑘 > 𝐿, ℎ[𝑘] = 0 and ℎ[− 𝑙], ℎ[𝐿] ≠ 0. We write
ℎ=(ℎ[−𝑙],ℎ[−𝑙+1],…,ℎ[𝐿]).

Moreover, a FIR filter ℎ of length 𝑁 =𝐿+𝑙+1 is symmetric if

∙ ℎ[𝑘]=ℎ[−𝑘] for all 𝑘∈Z, when 𝑁 is odd,
∙ ℎ[𝑘]=ℎ[1−𝑘] for all 𝑘∈Z, when 𝑁 is even.

5In this paper we assume that ℎ always has a finite number of nonzero
terms. This ensures the convergence of the sum.
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Definition 6. Let ℎ=(ℎ[𝑙],…,ℎ[𝐿]) be a FIR filter, 𝑢 and 𝑣 be
bi-infinite sequences such that 𝑢[𝑘]=1 and 𝑣[𝑘]=(−1)𝑘. We say
that ℎ is a

∙ low-pass filter if ℎ∗𝑢≠0 and ℎ∗𝑣=0,
∙ high-pass filter if ℎ∗𝑢=0 and ℎ∗𝑣≠0.6

As mentioned before, a DWT matrix is built by considering
low- and high-pass filters. For the construction of filters that
determine a DWT matrix we refer the reader to [27, §9]. As for
vectors, for indexing into matrices we use an array-like notation
such as 𝑀[𝑖,𝑗] for the entry in row 𝑖 column 𝑗 of a matrix 𝑀.

Definition 7. Let ℎ = (ℎ[ − 𝑙1],… , ℎ[0],… , ℎ[𝐿1]) and 𝑔 =
(𝑔 [− 𝑙2],… ,𝑔 [0],… ,𝑔 [𝐿2]) be, respectively, low- and high-pass
filters that determine a DWT. For an even number 𝑁 let

𝑊𝑁 [𝑖,𝑗 ]∶=
⎧⎪⎪
⎨⎪⎪⎩

ℎ𝑗−2𝑖 if 0≤ 𝑖<𝑁/2, 𝑗 ∈{−𝑙1+2𝑖,…,𝐿1+2𝑖}
𝑔𝑗−2𝑖 if 𝑁/2≤ 𝑖<𝑁 , 𝑗 ∈{−𝑙1+2𝑖,…,𝐿2+2𝑖}
0 otherwise

.

The matrix 𝑊𝑁 is called the DWT matrix associated to the
filter (ℎ,𝑔).

Note that by applying a DWT to a real-valued signal vector
𝜈 ∈R𝑁 , with 𝑁 =2𝑛, one decomposes this vector into approx-
imation 𝑎 (𝜈)

𝑛−1 ∈R𝑁/2 and details 𝑑 (𝜈)
𝑛−1 ∈R𝑁/2 coefficients as shown

in Subsection 3.1:

⎡
⎢
⎢
⎣

𝑎 (𝜈)
𝑛−1

𝑑 (𝜈)
𝑛−1

⎤
⎥
⎥
⎦
∶=𝑊𝑁 ⋅𝜈 T.

Hence, we refer to 𝑊𝑁 as the decomposition matrix of a DWT.
One recovers 𝜈 from the approximation and detail coefficients
by doing the following computation:

𝑊 −1
𝑁 ⋅

⎡
⎢
⎢
⎣

𝑎 (𝜈)
𝑛−1

𝑑 (𝜈)
𝑛−1

⎤
⎥
⎥
⎦
=𝜈 T.

Recall that 𝑊𝑁 is determined by a pair of low and high-pass
filters (ℎ,𝑔). Assume that 𝑊 −1

𝑁 =𝑊 T
𝑁 , i.e. the DWT matrix is

orthogonal. In this case we say that 𝑊𝑁 is (also) the reconstruc-
tion matrix for the same DWT. Moreover, a DWT satisfying
this condition is said to be orthogonal.

Now, assume that 𝑊 −1
𝑁 =�̃� T

𝑁 where �̃�𝑁 is the DWT matrix
defined by a pair of low- and high-pass filters (ℎ̃,�̃�). In this
case, we say that �̃�𝑁 is the reconstruction matrix for the same
DWT. Moreover, a DWT satisfying this condition is said to be
biorthogonal. Note that both matrices 𝑊𝑁 and �̃�𝑁 are DWT
matrices. Note that orthogonal DWTs are a particular case of
biorthogonal DWTs, just consider the case where (ℎ̃,�̃�)=(ℎ,𝑔).

We can now define the Haar and Biorthogonal DWT.

A.1.1 Explicit Matrix Constructions. Next we look at the ex-
plicit matrix constructions for 𝑁 =8=23 for Haar and Biorthog-
onal transforms.

Haar transform. We present the formal definition followed
by the explicit matrix construction.

6We usually use the letter ℎ to denote a low-pass filter and letter 𝑔 to
denote a high-pass filter.

Definition 8. Consider the pair of filters (ℎ, 𝑔) with ℎ =

(ℎ[0],ℎ[1]) =(

√
2

2
,
−
√
2

2 ) and ℎ = (𝑔 [0],𝑔 [1]) =(

√
2

2
,−

√
2

2 ).

The DWT defined by the DWT matrix associated to the filters
(ℎ,𝑔) is called the Haar DWT.

Explicitly, for 𝑁 = 8 = 23 we have that the Haar wavelet
matrix is as follows:

𝑊8=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
2
2

√
2
2 0 0 0 0 0 0

0 0
√
2
2

√
2
2 0 0 0 0

0 0 0 0
√
2
2

√
2
2 0 0

0 0 0 0 0 0
√
2
2

√
2
2√

2
2

−
√
2

2 0 0 0 0 0 0
0 0

√
2
2

−
√
2

2 0 0 0 0
0 0 0 0

√
2
2

−
√
2

2 0 0
0 0 0 0 0 0

√
2
2

−
√
2

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is clear that the Haar wavelet matrix is orthogonal, i.e.,
𝑊 −1

8 =𝑊 T
8 . For an example of application of the Haar DWT

we refer to Appendix A.3.

Definition 9. Consider the following filters:

ℎ=(ℎ[−2],ℎ[−1],ℎ[0],ℎ[1],ℎ[2])=(−
√
2
8
,
√
2
4
,
3
√
2

4
,
√
2
4
,−

√
2
8 ),

ℎ̃=(ℎ̃[−1],ℎ̃[0],ℎ̃[1])=(

√
2
4
,
√
2
2
,
√
2
4 ),

𝑔=(𝑔 [0],𝑔 [1],𝑔 [2])=(

√
2
4
,−

√
2
2
,
√
2
4
,),

�̃�=(�̃� [−1],�̃� [0],�̃� [1],�̃� [2],�̃� [3])=(

√
2
8
,
√
2
4
,−

3
√
2

4
,
√
2
4
,
√
2
8 ).

Let 𝑊𝑁 and �̃�𝑁 be, respectively, the DWT matrix associated
to the pair of filters (ℎ,𝑔) and (ℎ̃,�̃�). The DWT whose decom-
position matrix is 𝑊𝑁 and the reconstruction matrix is �̃�𝑁 is
called the biorthogonal bior(5,3) DWT.

Explicitly, for 𝑁 = 8= 23, we have that the decomposition
matrix 𝑊8 is

𝑊8=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3
√
2

4

√
2
4

−
√
2

8 0 0 0 −
√
2

8

√
2
4

−
√
2

8

√
2
4

3
√
2

4

√
2
4

−
√
2

8 0 0 0

0 0 −
√
2

8

√
2
4

3
√
2

4

√
2
4

−
√
2

8 0
−
√
2

8 0 0 0 −
√
2

8

√
2
4

3
√
2

4

√
2
4

√
2
4

−
√
2

2

√
2
4 0 0 0 0 0

0 0
√
2
4

−
√
2

2

√
2
4 0 0 0

0 0 0 0
√
2
4

−
√
2

2

√
2
4 0

√
2
4 0 0 0 0 0

√
2
4

−
√
2

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and the reconstruction matrix �̃�8 of the bior(5,3) transform is
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�̃�8=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
2
2

√
2
4 0 0 0 0 0

√
2
4

0
√
2
4

√
2
2

√
2
4 0 0 0 0

0 0 0
√
2
4

√
2
2

√
2
4 0 0

0 0 0 0 0
√
2
4

√
2
2

√
2
4

√
2
4

−3
√
2

4

√
2
4

√
2
8 0 0 0

√
2
8

0
√
2
8

√
2
4

−3
√
2

4

√
2
4

√
2
8 0 0

0 0 0
√
2
8

√
2
4

−3
√
2

4

√
2
4

√
2
8

√
2
4

√
2
8 0 0 0

√
2
8

√
2
4

−3
√
2

4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

One can easily verify that �̃� T
8 =𝑊 −1

8 .

A.2 Theory of Vanishing Moments
In this subsection, we mainly follow [14, §10.5] and [7, §7.4].

Definition 10. Let 𝑔 be an high-pass filter. Then, 𝑔 has
𝑀-vanishing moments if ∑𝑛∈Z𝑛𝑘𝑔[𝑛]=0, for all 𝑘=0,…,𝑀−1.

An important consequence is that the convolution of an high-
pass filter 𝑔 having 𝑀 vanishing moments with a infinite length
signal obtained from sampling (choosing equidistant points)
a polynomial of degree at most 𝑀−1 is zero. That is, applying
a DWT whose corresponding high-pass filter has 𝑀 vanishing
moments to a signal in the above conditions produces detail co-
efficients equal to zero. Moreover, it is also shown that the con-
volution of any filter ℎ of finite length takes a sampled polyno-
mial of degree at most𝑀−1 into another sampled polynomial of
degree at most 𝑀−1, consult [14, §10.5.2]. Again, this assumes
that the signal obtained by sampling a polynomial is infinite.

As a consequence, DWT matrices defined by considering
high-pass filters with a high number of vanishing moments lead
to high compressibility of polynomials. As an example, take a
signal sampling a polynomial of degree at most 𝑀−1 and con-
sider a DWT whose high-pass filter has 𝑀 vanishing moments.
In the first application of the DWT to the original signal the ap-
proximation coefficients will still be a sampling of a polynomial
of degree at most 𝑀−1 and the detail coefficients will be zero,
since the high-pass filter has 𝑀 vanishing moments. So, we are
in the same conditions as in the beginning and we can apply the
DWTagain. Hence, if we take a signal that is well approximated
by a polynomial of degree 𝑀−1, in the first application of the
DWT we will obtain approximation coefficients that are well
approximated by another polynomial of degree 𝑀−1 and the
detail coefficient will be close to zero. Intuitively speaking this
occurs because we are approximating something that is close to
a polynomial of degree 𝑀−1 and hence it has a somewhat simi-
lar behavior. We can repeat the application of the DWT in this
manner to get high compression. Note that this cannot go on
indefinitely because the “gap” between the polynomial approx-
imation and the signal (or approximate coefficients) gets pro-
gressively worse with each application of the DWT. For further
details on this, we refer the reader to [7, §7.4 & §8.2] and [33, §9].

When one considers finite signals, as we do in this paper,
boundary problems arise. Indeed, this can be seen from the

construction of the matrix wavelet. If the filters are long enough
the top and bottom samples of a signal will be combined to
obtain the top (as well as the bottom) samples of the approx-
imation (and detail) coefficients. There are some options to
deal with this problem. In this work we choose to consider
symmetric filters, see [27, 7.3] and [33, §10.7.3]. Other methods
can be seen in [14, §10].

A.3 Full Example using the Haar DWT
We now show all the computations that lead to the example in
Figure 2 where we present the application of the Haar DWT
to two different vectors. Consider Haar DWT matrix 𝑊8

𝑊8=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
2
2

√
2
2 0 0 0 0 0 0

0 0
√
2
2

√
2
2 0 0 0 0

0 0 0 0
√
2
2

√
2
2 0 0

0 0 0 0 0 0
√
2
2

√
2
2√

2
2

−
√
2

2 0 0 0 0 0 0
0 0

√
2
2

−
√
2

2 0 0 0 0
0 0 0 0

√
2
2

−
√
2

2 0 0
0 0 0 0 0 0

√
2
2

−
√
2

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and vectors 𝜈, 𝑢∈R8:

𝜈 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
3
3
3
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and 𝑢=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
1
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈R8.

We start by determining the approximation and detail co-
efficients of both 𝜈 and 𝑢 at level 𝐽 = 2 (or depth 𝑗 = 1, since
𝑁 =8=23):

𝑊8 ⋅𝜈 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0

3
√
2

3
√
2

0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑎 (𝜈)
2

𝑑 (𝜈)
2

⎤
⎥
⎥
⎦
, and 𝑊8 ⋅𝑢=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
√
2
2

0

0
0
√
2
2

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑎 (𝑢)
2

𝑑 (𝑢)
2

⎤
⎥
⎥
⎦
.

To determine the approximation and detail coefficients of
both 𝜈 and 𝑢 at level 𝐽 =1 (or depth 𝑗 =2) we need to consider
the Haar DWT matrix

𝑊4=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

√
2
2

√
2
2 0 0

0 0
√
2
2

√
2
2√

2
2

−
√
2

2 0 0
0 0

√
2
2

−
√
2

2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,
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and apply it to 𝑎 (𝜈)
2 and 𝑎 (𝑢)

2 . That is:

𝑊4 ⋅𝑎 (𝜈)
2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
6

0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑎 (𝜈)
1

𝑑 (𝜈)
1

⎤
⎥
⎥
⎦
, and 𝑊4 ⋅𝑎 (𝑢)

2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.5
0

0.5
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑎 (𝑢)
1

𝑑 (𝑢)
1

⎤
⎥
⎥
⎦
.

We now write the DWT vector of both 𝜈 and 𝑢 at depth 𝑗 =2,
cfr. Definition 2.

𝑦(𝜈)
2 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑎 (𝜈)
1

𝑑 (𝜈)
1

𝑑 (𝜈)
2

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
6

0
0
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and 𝑦(𝑢)
2 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑎 (𝑢)
1

𝑑 (𝑢)
1

𝑑 (𝑢)
2

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0.5

0
0.5
0
0
√
2
2

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let us now focus on 𝑢. We point out that these computa-
tion also portrait what happens in Lemma 3. For instance,
for 𝑢 = 𝑒4 ∈ R8 one has 𝑎 (𝑢)

2 = 2−1/2𝑒msb2(4) = 2−1/2𝑒2 ∈ R4 and
𝑎 (𝑢)
1 =2−2/2𝑒msb1(4)=0.5𝑒1 ∈R2 as predicted by Lemma 3. To exem-

plify Lemma 4 one would have to consider another standard
bases and do some simple subtractions.

A.4 Can DFTs be used instead of DWTs?
In this paper we decided to use DWTs instead of the more
standard Discrete Fourier Transformation (DFT). In this small
section we elaborate on the reasons for this decision.

We start by noting that a DFT is defined as a linear combi-
nation of sine and cosine functions which have values ranging
from −1 to 1 in the entire domain of the function. Consequently,
applying a DFT to a signal spreads the information relatively
evenly to the next approximation. This adds two different
challenges for its application in this context.

One challenge is the encoding of the vector obtained by
applying the DFT to a standard basis vector. In the case of
the (Haar and Bior) DWT we have that the approximation
coefficients are encoded in a straightforward manner: it is
at most the linear combination of two standard basis vector
(cfr. Lemma 3 and Lemma 6). If we were to apply a DFT
to a standard basis vector, then we would obtain a vector
that has many non-zero entries. As a result, this would affect
efficiency, since increases the difficulty to encode the approx-
imation coefficients using compact FSS primitives like DPFs
or DCFs. What happens to the standard basis vector is crucial
because are those results that allow an efficient evaluation of
the compressed LUT. Note that here we could reach a more
extreme situation than the one we already point out when
one considers DWTs with more vanishing moments. Thus,
if we were to find a solution to this difficulty, then we could
think about using the DFTs in a similar fashion to the way we
used DWTs. However, even assuming that the encoding of the
approximation coefficients of a standard bases vector under

the application of DFTs was simple and efficiency, there would
still exist some challenges regarding the approximation.

The second related challenge is that since the application
of a DFT spreads the information relatively evenly to the next
approximation, the effect of assuming some values to be zero
may affect more the approximations. An extra aspect to have in
mind is that the application of DFTs produces complex values
and we are working with real values. One idea is to make use
of real DFTs but it comes with it’s set of challenges. To convey
these challenges, we reproduce part of the example in Fig-
ure 2 but instead of using DWT, we use a real DFT once. After
applying the DFT to vectors 𝜈 and 𝑢 of Figure 2, zeroing values
and applying the inverse of theDFTweobtain vectors: 𝜈 ′ and𝑢′

𝜈 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.750
−0.311
−0.311
0.750
2.250
3.310
3.310
2.250

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and 𝑢=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.125
−0.052
0.125
0.302
0.375
0.302
0.125
−0.052

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈R8,

whose inner product is approximately 2.25, and not 3. Thus,
the equivalent of a single MRA level in the DFT case leads to
an error of 25%. While these arguments just give a glimpse of
the complexity, there is no conclusive answer to this. After all,
both DWTs and DFTs share some important properties (such
as Parseval’s theorem) and thus it remains to be seen if there
is a analogous uses of DFTs in the context of MPC.

B LEMMA 3 AND LEMMA 4 PROOFS
In this appendix we prove Lemma 3 and Lemma 4.

Proof of Lemma 3. The proof is by induction on 𝑗 .

Base case (𝑗 =1 and 𝐽 =𝑛−1): Let 𝑊𝑁,1 be the decomposition
Haar matrix with 𝑁 =2𝑛. By construction (see Appendix A),
we have for 𝑖∈[0..𝑁/2−1] and 𝑘∈[0..𝑁−1] that

𝑊𝑁,1[𝑖,𝑘]=
{
2−1/2 if 𝑖= ⌊𝑘/2⌋, and
0 otherwise;

consequently, 𝑎 (𝑒�̄� )
𝐽 =2−1/2 ⋅𝑒⌊�̄�/2⌋=2−1/2 ⋅𝑒msb𝑛−1(�̄�)=2−1/2 ⋅𝑒msb𝑛−1(𝑎).

This proves the base case.
Inductive step: Suppose that 𝑎 (𝑒�̄� )

𝐽 = 2−𝑗/2 ⋅𝑒msb𝐽 (𝑎) and con-
sider the product of 𝑦𝑗+1 =𝑊𝑁,𝑗+1 ⋅𝑦𝑗 . By construction, the
first 2𝐽−1 rows of 𝑊𝑁,𝑗+1 satisfy 𝑊𝑁,𝑗+1[𝑖,𝑘]= 2−1/2 if 𝑖= ⌊𝑘/2⌋
and 0 otherwise. Consequently, 𝑎 (𝑒�̄� )

𝐽−1 =2−𝑗/2 ⋅2−1/2 ⋅𝑒⌊msb𝐽 (𝑎)/2⌋=
2−(𝑗+1)/2 ⋅𝑒msb𝐽−1(𝑎).

□

Proof of Lemma 4. From Lemma 3, we know that 𝑎 (𝑒�̄� )
𝐽 =

2−𝑗/2 ⋅𝑒msb𝐽 (𝑎) and 𝑎 (𝑒𝑟 )
𝐽 =2−𝑗/2 ⋅𝑒msb𝐽 (𝑟) both hold; moreover, we have

that

𝑒msb𝐽 (𝑎)=𝑒msb𝐽 (𝑟)≪ (msb𝐽 (𝑟)−msb𝐽 (𝑎) mod 2𝐽 ).
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Suppose 𝑟≥𝑥 and recall that 𝑎≡𝑟−𝑥 mod 2𝓁. In this case,

𝑥𝐽 =msb𝐽 (𝑟)−msb𝐽 (𝑎) mod 2𝐽

=msb𝐽 (𝑟)−(msb𝐽 (𝑟)−msb𝐽 (𝑥)

−(lsb𝓁−𝐽 (𝑟)< lsb𝓁−𝐽 (𝑥))) mod 2𝐽

=msb𝐽 (𝑥)+(lsb𝓁−𝐽 (𝑟)< lsb𝓁−𝐽 (𝑥)) mod 2𝐽 .

In case 𝑟 < 𝑥, we write 𝑎 ≡ 𝑟 − 𝑥 ≡ 2𝓁 + 𝑟 − 𝑥 mod 2𝓁 and the
reasoning is the same:

𝑥𝐽 =msb𝐽 (𝑟)−msb𝐽 (𝑎) mod 2𝐽

=msb𝐽 (𝑟)−(2
𝐽+msb𝐽 (𝑟)−msb𝐽 (𝑥)

−(lsb𝓁−𝐽 (𝑟)< lsb𝓁−𝐽 (𝑥))) mod 2𝐽

=msb𝐽 (𝑥)+(lsb𝓁−𝐽 (𝑟)< lsb𝓁−𝐽 (𝑥)) mod 2𝐽 .

This completes the proof. □

C LEMMA 6 AND LEMMA 7 PROOFS
In this appendix we prove Lemma 6 and Lemma 7 that are
related to the application of the bior(5,3) to a standard basis
vector.

Proof of Lemma 6. Let �̃�𝑁 be the reconstruction bior(5,3)
matrix with 𝑁 =2𝑛. The proof is by induction on 𝑗 .

Base case (𝑗 =1 and 𝐽 =𝑛−1): By construction (see Defini-
tion 9), we have for 𝑖∈[0..𝑁/2−1] and 𝑘∈[0..𝑁−1] that

�̃�𝑁 [𝑖,𝑘]=
⎧⎪⎪
⎨⎪⎪⎩

2−1/2 if 𝑘=2𝑖, and
2−3/2 if 𝑘=2𝑖±1 mod 𝑁 , and
0 otherwise.

If �̄� is even, then �̄�=2msb𝑛−1(�̄�), lsb1(�̄�)=0, and

�̃�𝑁 ⋅𝑒�̄� T=2−1/2𝑒�̄�/2=(2−0)2−3/2 ⋅𝑒msb𝑛−1(�̄�)

=(2−lsb1(�̄�)) ⋅2−3/2 ⋅𝑒msb𝑛−1(�̄�)

+lsb1(�̄�) ⋅2−3/2 ⋅𝑒msb𝑛−1(�̄�)+1

=(2−lsb1(�̄�)) ⋅2−3/2 ⋅𝑒msb𝑛−1(𝑎)

+lsb1(�̄�) ⋅2−3/2 ⋅𝑒msb𝑛−1(𝑎)+1.

If �̄� is odd, then �̄�=2 ⋅msb𝑛−1(�̄�)+1, and

�̃�𝑁 ⋅𝑒�̄� T=2−3/2𝑒msb𝑛−1(�̄�)+2
−3/2𝑒msb𝑛−1(�̄�)+1

=(2−lsb1(�̄�)) ⋅2−3/2 ⋅𝑒msb𝑛−1(�̄�)

+lsb1(�̄�) ⋅2−3/2 ⋅𝑒msb𝑛−1(�̄�)+1

=(2−lsb1(�̄�)) ⋅2−3/2 ⋅𝑒msb𝑛−1(𝑎)

+lsb1(�̄�) ⋅2−3/2 ⋅𝑒msb𝑛−1(𝑎)+1.

This proves the base case.
Inductive step: Suppose that

𝑎 (𝑒�̄� )
𝐽 =𝑐𝐽 ,0 ⋅𝑒msb𝐽 (𝑎)+𝑐𝐽 ,1 ⋅(𝑒msb𝐽 (𝑎)≫1)∈R2 𝐽

and consider the product �̃�2𝐽 with 𝑒msb𝐽 (𝑎) and with 𝑒msb𝐽 (𝑎)≫
1=𝑒msb𝐽 (𝑎)+1. Let 𝑎′=msb𝐽 (𝑎) and apply the base case. Then

�̃�2𝐽 ⋅𝑒𝑎′ =(2−lsb1(𝑎′)) ⋅2−3/2 ⋅𝑒msb𝐽−1(𝑎′)

+lsb1(𝑎′) ⋅2−3/2 ⋅𝑒msb𝐽−1(𝑎′)+1

=(2−lsb1(msb𝐽 (𝑎))) ⋅2−3/2 ⋅𝑒msb𝐽−1(msb𝐽 (𝑎))

+lsb1(msb𝐽 (𝑎)) ⋅2−3/2 ⋅𝑒msb𝐽−1(msb𝐽 (𝑎))+1

=(2−lsb1(msb𝐽 (𝑎))) ⋅2−3/2 ⋅𝑒msb𝐽−1(𝑎)

+lsb1(msb𝐽 (𝑎)) ⋅2−3/2 ⋅𝑒msb𝐽−1(𝑎)+1

and

�̃�2𝐽 ⋅𝑒𝑎′+1=(2−lsb1(𝑎′+1)) ⋅2−3/2 ⋅𝑒msb𝐽−1(𝑎′+1)

+lsb1(𝑎′+1)⋅2−3/2 ⋅𝑒msb𝐽−1(𝑎′+1)+1

=(2−lsb1(msb𝐽 (𝑎)+1)) ⋅2−3/2 ⋅𝑒msb𝐽−1(msb𝐽 (𝑎)+1)

+lsb1(msb𝐽 (𝑎)+1) ⋅2−3/2 ⋅𝑒msb𝐽−1(msb𝐽 (𝑎)+1)+1.

Now, assume that 𝑎′ = msb𝐽 (𝑎) is even, that is lsb1(𝑎′) =
lsb1(msb𝐽 (𝑎))=0. Hence,

�̃�2𝐽 ⋅𝑒msb𝐽 (𝑎)+1=2−3/2 ⋅𝑒𝑚𝑠𝑏𝐽−1(𝑎)+2
−3/2 ⋅𝑒msb𝐽−1(𝑎)+1.

Thus, under the assumption that 𝑎′ is even, we have:

𝑎 (𝑒�̄� )
𝐽−1 =(2𝑗−lsb𝑗 (�̄�)) ⋅2−3𝑗/2 ⋅2−3/2 ⋅2 ⋅𝑒msb𝐽−1(𝑎)

+lsb𝑗 (�̄�) ⋅2−3𝑗/2 ⋅2−3/2 ⋅(𝑒𝑚𝑠𝑏𝐽−1(𝑎)+𝑒msb𝐽−1(𝑎)+1)
=(2𝑗+1−lsb𝑗 (�̄�)) ⋅2−3(𝑗+1)/2 ⋅𝑒msb𝐽−1(𝑎)

+lsb𝑗 (�̄�) ⋅2−3(𝑗+1)/2 ⋅𝑒msb𝐽−1(𝑎)+1

=(2𝑗+1−lsb𝑗+1(�̄�)) ⋅2−3(𝑗+1)/2 ⋅𝑒msb𝐽−1(𝑎)

+lsb𝑗+1(�̄�) ⋅2−3(𝑗+1)/2 ⋅𝑒msb𝐽−1(𝑎)+1.

This finishes the proof when 𝑎′ is even.
Assume that 𝑎′ is odd, that is lsb1(𝑎′) = lsb1(msb𝐽 (𝑎)) = 1.
Then,

�̃�2𝐽 ⋅𝑒𝑎′+1=2 ⋅2−3/2 ⋅𝑒msb𝐽−1(𝑎)+1.

and we obtain

𝑎 (𝑒�̄� )
𝐽−1 =(2𝑗−lsb𝑗 (�̄�)) ⋅2−3𝑗/2 ⋅2−3/2 ⋅(𝑒msb𝐽−1(𝑎)+𝑒msb𝐽−1(𝑎)+1)

+lsb𝑗 (�̄�) ⋅2−3𝑗/2 ⋅2 ⋅2−3/2 ⋅𝑒msb𝐽−1(𝑎)+1

=(2𝑗−lsb𝑗 (�̄�)) ⋅2−3(𝑗+1)/2 ⋅𝑒msb𝐽−1(𝑎)

+(2𝑗+lsb𝑗 (�̄�)) ⋅2−3(𝑗+1)/2 ⋅𝑒msb𝐽−1(𝑎)+1

=(2𝑗−lsb𝑗+1(�̄�)+2𝑗) ⋅2−3(𝑗+1)/2 ⋅𝑒msb𝐽−1(𝑎)

+(2𝑗+lsb𝑗+1(�̄�)−2𝑗) ⋅2−3(𝑗+1)/2 ⋅𝑒msb𝐽−1(𝑎)+1

=(2𝑗+1−lsb𝑗+1(�̄�)) ⋅2−3(𝑗+1)/2 ⋅𝑒msb𝐽−1(𝑎)

+lsb𝑗+1(�̄�) ⋅2−3(𝑗+1)/2 ⋅𝑒msb𝐽−1(𝑎)+1.

This finishes the proof.

□
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Ideal Functionality for approximation 𝐹X𝓁,𝑓,𝑛,𝐽 (⋅)
Public parameters:

∙ Real-valued univariate function 𝐹 ∶ R→R
∙ Transform X∈{H,B} (i.e., Haar or Biorthogonal)
∙ Fixed-point parameters (𝓁,𝑓 )∈N×N with 0≤𝑓 ≤𝓁 and 0< 𝓁
∙ Quantization parameter 𝑛∈N and DWT compression level
𝐽 ∈N with 0<𝐽 <𝑛≤𝓁

Input:
∙ [𝑎]=([𝑎]0,[𝑎]1), where [𝑎]0 and [𝑎]1 are the input shares from

the two parties
Output:
∙ [𝑦]=([𝑦]0,[𝑦]1) for 𝑦 ∶=𝐹X𝓁,𝑓,𝑛,𝐽 ([𝑎]0+[𝑎]1) using Equation (7)

if X=H or (8) if X=B

Figure 8: Ideal functionality for all 4 variants of our
protocol – Figure 5, Figure 6, Figure 10, and Figure 11.

Proof of Lemma 7. Let 𝑟 ∶=msb𝑛(𝑟). From Lemma 6, we
know that

𝑎 (𝑒�̄� )
𝐽 =𝑐�̄�𝐽 ,0 ⋅𝑒msb𝐽 (𝑎)+𝑐�̄�𝐽 ,1 ⋅(𝑒msb𝐽 (𝑎)≫1),

𝑎 (𝑒𝑟 )
𝐽 =𝑐𝑟𝐽 ,0 ⋅𝑒msb𝐽 (𝑟)+𝑐𝑟𝐽 ,1 ⋅(𝑒msb𝐽 (𝑟)≫1)∈R2 𝐽

,

where

𝑐�̄�𝐽 ,0 ∶=(2𝑗−lsb𝑗 (�̄�)) ⋅2−3𝑗/2,

𝑐�̄�𝐽 ,1 ∶=lsb𝑗 (�̄�) ⋅2−3𝑗/2,

𝑐𝑟𝐽 ,0 ∶=(2𝑗−lsb𝑗 (𝑟)) ⋅2−3𝑗/2, and

𝑐𝑟𝐽 ,1 ∶=lsb𝑗 (𝑟) ⋅2−𝑗/2.

hold. Moreover, we have that

𝑒msb𝐽 (𝑎)=𝑒msb𝐽 (𝑟)≪ (msb𝐽 (𝑟)−msb𝐽 (𝑎) mod 2𝐽 ).

From the proof of Lemma 4 we have

𝑥𝐽 =msb𝐽 (𝑟)−msb𝐽 (𝑎) mod 2𝐽

=msb𝐽 (𝑥)+(lsb𝓁−𝐽 (𝑟)< lsb𝓁−𝐽 (𝑥)) mod 2𝐽 .

□

Note that in the above conditions,

lsb𝑗 (msb𝑛(𝑎))=lsb𝑗 (msb𝑛(𝑟))−(lsb𝑗 (msb𝑛(𝑥))
+(lsb𝓁−𝑛(𝑟)< lsb𝓁−𝑛(𝑥))

−2𝑗 ⋅(lsb𝓁−𝐽 (𝑟)< lsb𝓁−𝐽 (𝑥))) mod 2𝑗 .

D SECURITY PROOF
Note that the ideal functionality for the 4 protocol variants are
very similar and Figure 8 describes them agnostic to the Haar
or Bior transform. While the protocols however differ slightly
in their constructions, their security proofs are very similar
and below is the proof for the Pika+Haar variant (Theorem 9).
Note that the ideal functionality is an exact computation and
thus all the approximations lie “outside” the MPC protocol
which makes the simulation straightforward.

Proof of Theorem 9. To prove correctness, note that
thanks to Bullets 1 and 2 of Corollary 5, we have that in

Simulator  for Pika+Haar LUT-Haar-Pika
𝑛,𝓁,𝐽 ,𝜈

Inputs:

∙ Haar-compressed LUT, 𝐀𝐹
∙ Additive shares, [𝑟]𝑏 and [𝑎]𝑏 ;
∙ DPF share, L𝑒msb𝐽 (𝑟)M𝑏 ;
∙ DCF share, ⦃(𝑥>𝑟) ? 0:1⦄; and
∙ Beaver triple shares, ([𝑋]𝑏 , [𝑌 ]𝑏 , [𝑍]𝑏 ) for
𝑍= [𝑋]0 ⋅[𝑌 ]1+[𝑋]1 ⋅[𝑌 ]0.

Simulation steps:
(1) Compute shares of the full-length rotation distance

(difference of 𝑎 and 𝑟): [𝑥]𝑏 = [𝑟]𝑏−[𝑎]𝑏
- Write lsb𝓁−𝐽 ([𝑥]𝑏 ) to the transcript to simulate “sending”

it to the other party
- Sample lsb𝓁−𝐽 ([𝑥]1−𝑏 ) ∈R {0,1}𝓁−

𝐽 , and then write it to the
transcript to simulate “receiving” it from the other party

(2) Compute �̃� = lsb𝓁−𝐽 [𝑥]0 + lsb𝓁−𝐽 [𝑥]1 over Z; parse it as
(𝑐𝑎𝑟𝑟𝑦,𝑥¬𝐽 ) ∈Z2 ×Z2𝓁−𝐽 where 𝑐𝑎𝑟𝑟𝑦 is the carry-out ((𝓁−𝐽 +
1)th bit) of the summation over Z. Likewise, compute the
borrow share [𝑏𝑜𝑟𝑟𝑜𝑤]𝑏 =𝐷𝐶𝐹𝐸𝑣𝑎𝑙(⦃(𝑥>lsb𝓁−𝐽 (𝑟)) ? 1:0⦄,𝑥¬𝐽 ).
Also compute [𝑥𝐽 ]𝑏 =msb𝐽 ([𝑥]𝑏 )+𝑏 ⋅𝑐𝑎𝑟𝑟𝑦+[𝑏𝑜𝑟𝑟𝑜𝑤]𝑏 .
- Write [𝑥𝐽 ]𝑏 to the transcript to simulate “sending” it to

the other party.
- Sample [𝑥𝐽 ]1−𝑏 ∈R {0,1}

𝐽 , and then write it to the transcript
to simulate “receiving” it from the other party.

(3) Compute 𝑥𝐽 = [𝑥𝐽 ]𝑏+[𝑥𝐽 ]1−𝑏 , J𝑒msb𝐽 (𝑟)K𝑏 =𝐸𝑣𝑎𝑙𝐹𝑢𝑙𝑙(L𝑒msb𝐽 (𝑟)M𝑏 ),
and J𝑒msb𝐽 (𝑎)K𝑏 = J𝑒msb𝐽 (𝑟)K𝑏 ≪ 𝑥𝐽 , and then sign-extend
this into [±𝑒msb𝐽 (𝑎)]𝑏 and use component-wise summation
to compute [±1]𝑏 from [±𝑒msb𝐽 (𝑎)]𝑏 , and then evalu-
ate [±𝐀𝐹 [ msb𝐽 (𝑎)]]𝑏 = ⟨[±𝑒msb𝐽 (𝑎)]𝑏 , 𝐀𝐹 ⟩. Also compute
[±1]𝑏+[𝑋]𝑏 and [±𝑒msb𝐽 (𝑎)]𝑏+[𝑌 ]𝑏 .
- Write [±1]𝑏+[𝑋]𝑏 and [±𝑒msb𝐽 (𝑎)]𝑏+[𝑌 ]𝑏 to the transcript

to simulate “sending” them to the other party
- Sample [±1]1−𝑏 + [𝑋]1−𝑏 ∈R {0, 1}𝓁 and [±𝑒msb𝐽 (𝑎)]1−𝑏 +
[𝑌 ]1−𝑏 ∈R {0,1}𝓁, and then write them to the transcript to
simulate “receiving” them from the other party

(4) Finally, compute [𝐹X𝓁,𝑓,𝑛,𝐽 ([𝑎]0+[𝑎]1)]𝑏 = [±1]𝑏 ⋅([±𝑒msb𝐽 (𝑎)]𝑏+
([±𝑒msb𝐽 (𝑎)]1−𝑏+[𝑌 ]1−𝑏 )−[𝑌 ]𝑏 ⋅([±1]1−𝑏+[𝑋]1−𝑏 ))+[𝑍]𝑏 .

Figure 9: Simulator for Pika+Haar variant (Figure 5)

the Step 4 of the Online Phase of Figure 5 each party actu-
ally obtains shares J𝑒msb𝐽 (𝑎)K and lifts it into [±𝑒msb𝐽 (𝑎)]. So, we
get [⟨±𝑒msb𝐽 (𝑎),𝐀𝐹 ⟩] = [±𝐀𝐹 [msb𝐽 (𝑎)]]. Then, the Beaver triple
multiplication corrects the sign. This proves the correctness.

Figure 9 describes the simulator to simulate the protocol
transcript from the adversarial view. The three rounds of inter-
action can be simulated as described in Steps(1), (2), and (3).
Noting that all outgoing messages written to the transcript
are deterministically computed exactly as specified in the real
protocol; incoming messages are all sampled uniformly from
their domains, ensuring their distributions match those in
the real protocol (which are all blinded via uniform random
shares). □
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E CORRECTNESS OF THEOREM 10
Security argument for Theorem 10 follows along similar lines
as that of Theorem 9 described in Appendix D. In order to
prove correctness, note that Step 3 precisely computes the
r.h.s of the expression from Equation (8) (following Bullet 1 of
Corollary 8) and thus computes additive shares of the required
LUT value 𝐹B𝓁,𝑓,𝑛,𝐽 (𝑎). Furthermore, the correctness of J𝑒msb𝐽 (𝑎)K
follows from the correctness of Grotto’s segment-parity algo-
rithm and thus the correctness of “bior(5,3)+Grotto” protocol
hinges on the correctness of the computation of lsb𝑗(msb𝑛(𝑎)).
Let us define 𝑏𝑘 for 𝑘∈{𝐽 ,𝑛}

𝑏𝑘=

{
1 if lsb𝓁−𝑘(𝑥)> lsb𝓁−𝑘(𝑟)
0 otherwise.

(10)

Note that 𝑏𝑜𝑟𝑟𝑜𝑤𝑛=𝑏𝑛 and 𝑏𝑜𝑟𝑟𝑜𝑤𝐽 =2𝑗 ⋅𝑏𝐽 as defined in Step 2
of the online phase of Figure 6. Recall that 𝑎≡ 𝑟−𝑥 (mod 2𝓁)
and thus, for 𝑘∈{𝐽 ,𝑛} we have:

lsb𝓁−𝑘(𝑎)=lsb𝓁−𝑘(𝑟)−lsb𝓁−𝑘(𝑥)+𝑏𝑘 ⋅2𝓁−𝑘 (11)

Subtracting Equation (11) for 𝑘=𝑛 from 𝑘=𝐽 and rearranging
terms, we get that

(lsb𝓁−𝐽 (𝑎)−lsb𝓁−𝑛(𝑎))=(lsb𝓁−𝐽 (𝑟)−lsb𝓁−𝑛(𝑟))
+(lsb𝓁−𝐽 (𝑥)−lsb𝓁−𝑛(𝑥))
+𝑏𝐽 ⋅2𝓁−𝐽−𝑏𝑛 ⋅2𝓁−𝑛

(12)

Now note that for any value 𝑦 ∈{𝑟,𝑎,𝑥}, we have that lsb𝓁−𝐽 (𝑦)−
lsb𝓁−𝑛(𝑦) = lsb𝑗 (msb𝑛(𝑦)) ⋅ 2𝓁−𝑛. Substituting this into the last
equation and dividing by 2𝓁−𝑛, we have that:

lsb𝑗 (msb𝑛(𝑎))=lsb𝑗 (msb𝑛(𝑟))−lsb𝑗 (msb𝑛(𝑥))
−𝑏𝐽 ⋅2𝑛−𝐽+𝑏𝑛

=lsb𝑗 (msb𝑛(𝑟))−lsb𝑗 (msb𝑛(𝑥))
−𝑏𝑜𝑟𝑟𝑜𝑤𝑛+𝑏𝑜𝑟𝑟𝑜𝑤𝐽

(13)

This completes the proof. □

F THEOREM 1, 2 PROOFS
Theorem 1 Proof. For orthogonal DWTs, we have that

⟨𝑢,𝜈⟩=𝑢T ⋅𝜈
=𝑢T ⋅(𝑊 −1 ⋅𝑊 ) ⋅𝜈
=𝑢T ⋅((𝑊 −1

𝑁,1⋯𝑊 −1
𝑁,𝐽 ) ⋅𝑊 ) ⋅𝜈

=𝑢T ⋅((𝑊 T
𝑁,1⋯𝑊 T

𝑁,𝐽 ) ⋅𝑊 ) ⋅𝜈 (orthogonality)

=𝑢T ⋅((𝑊𝑁,𝐽⋯𝑊𝑁,1)T ⋅𝑊 ) ⋅𝜈 (transpose)

=𝑢T ⋅(𝑊 T ⋅𝑊 ) ⋅𝜈

= [ 𝑎 (𝑢)
𝐽 𝑑 (𝑢)

𝐽 𝑑 (𝑢)
𝐽+1 ⋯ 𝑑 (𝑢)

𝑛−1 ] ⋅[ 𝑎 (𝜈)
𝐽 𝑑 (𝜈)

𝐽 𝑑 (𝜈)
𝐽+1 ⋯ 𝑑 (𝜈)

𝑛−1 ]T

= ⟨𝑎 (𝑢)
𝐽 ,𝑎 (𝜈)

𝐽 ⟩+∑𝑛−1
𝑖=𝐽 ⟨𝑑

(𝑢)
𝑖 ,𝑑 (𝜈)

𝑖 ⟩.
□

Theorem 2 Proof. For biorthogonal DWTs, we have that

⟨𝑢,𝜈⟩=𝑢T ⋅𝜈
=𝑢T ⋅(𝑊 −1 ⋅𝑊 ) ⋅𝜈
=𝑢T ⋅((𝑊 −1

𝑁,1⋯𝑊 −1
𝑁,𝐽 ) ⋅𝑊 ) ⋅𝜈

=𝑢T ⋅((�̃� T
𝑁,1⋯�̃� T

𝑁,𝐽 ) ⋅𝑊 ) ⋅𝜈 (biorthogonality)

=𝑢T ⋅((�̃�𝑁,𝐽⋯�̃�𝑁,1)T ⋅𝑊 ) ⋅𝜈 (transpose)

=𝑢T ⋅(�̃� T ⋅𝑊 ) ⋅𝜈

= [ 𝑎 (𝑢)
𝐽 𝑑 (𝑢)

𝐽 𝑑 (𝑢)
𝐽+1 ⋯ 𝑑 (𝑢)

𝑛−1 ] ⋅[ 𝑎 (𝜈)
𝐽 𝑑 (𝜈)

𝐽 𝑑 (𝜈)
𝐽+1 ⋯ 𝑑 (𝜈)

𝑛−1 ]T

= ⟨𝑎 (𝑢)
𝐽 ,𝑎 (𝜈)

𝐽 ⟩+∑𝑛−1
𝑖=𝐽 ⟨𝑑

(𝑢)
𝑖 ,𝑑 (𝜈)

𝑖 ⟩.
□

G (GENERALIZED)
BEAVER MULTIPLICATION

Beaver multiplication triples [1] enable the efficient multiplica-
tion of additively shared secrets. Each Beaver comprises three
additive sharings ([𝑋],[𝑌 ],[𝑍]), where 𝑋,𝑌 ∈RZ2𝓁 and

𝑍 ∶= [𝑋]0 ⋅ [𝑌 ]1+[𝑋]1 ⋅ [𝑌 ]0.

In a (2+1)-party protocol, triples can be provided to the
shareholders for “free” by the dealer [9]. This is possible be-
cause triples consist of nothing more than data-independent
correlated randomness.

Given a pair of shared values [𝑥] and [𝑦] and a Beaver triple
([𝑋],[𝑌 ],[𝑍]), each party 𝑏 sends

([𝑥]𝑏+[𝑋]𝑏 ,[𝑦]𝑏+[𝑌 ]𝑏)

to its peer, and then it outputs

[𝑧]𝑏 = [𝑥]𝑏 ⋅([𝑦]𝑏+([𝑦]1−𝑏+[𝑌 ]1−𝑏 ))
−[𝑌 ]𝑏 ⋅([𝑥]1−𝑏+[𝑋]1−𝑏 )+[𝑍]𝑏 .

A mechanical derivation establishes that [𝑧]0+[𝑧]1=𝑥 ⋅𝑦.
Beaver triples are ephemeral, each enabling just a single mul-

tiplication. The multiplication itself is agnostic as to whether
𝑥 and 𝑦 represent “actual” integers or fixed-point numbers.
They naturally generalize to scalar-vector products and to
vector-vector inner products.

Moreover, Patra, Schneider, Suresh, and Yalame [20] de-
scribe a generalization for single-round 𝑛-way products; we
employ Patra et al.’s approach with the sign-corrected lin-
ear function evaluation formula derived by Storrier, Lyons,
Vadapalli, and Henry [25] to evaluate expressions of the form
[𝑦] = [𝑢] ⋅([𝑐1] ⋅[𝑥]+ [𝑐0]) with 𝑢 = ±1. To facilitate this evalu-
ation, the dealer provides an 8-tuple of correlated random
shares to the peers; specifically, the tuple consists of shares
([𝑈 ],[𝐶1],[𝑋],[𝐶0];[𝑈 ⋅𝐶1],[𝑈 ⋅𝑋],[𝐶1 ⋅𝑋−𝐶0],[𝑈 ⋅(𝐶1 ⋅𝑋−𝐶0)]). The
first four values are blinding factors used respectively to mask
𝑢, 𝑐1, 𝑥, and 𝑐0; the other four values are correction values used
for cancellations in the secret reconstruction.

The protocol proceeds in a single round wherein the peers
reconstruct blinded copies of each secret, namely �̄� = 𝑢+𝑈 ,
�̄�1 = 𝑐1+𝐶1, �̄� = 𝑥+𝑋 , and �̄�0 = 𝑐0+𝐶0. Finally, for 𝑏 =0,1, peer
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Haar+Grotto LUT protocol ΠLUT-Haar-Grotto
𝑛,𝓁,𝐽 ,𝜈

One-time pre-processing: Input is a function 𝐹 , fixed-point
parameters 𝓁,𝑓 ∈ N, LUT quantization parameter 𝑛 ∈ [1..𝓁), and
DWT depth 𝑗 (so that 𝐽 ∶=𝑛−𝑗)
- Compute the real-valued compressed LUT 𝑎 (𝜈)

𝐽 ∈R2𝐽 as the DWT
of 𝜈 ∶= LR,𝑛(𝐹) at level 𝐽 under the Haar transform, and then
from it compute the fixed-point LUT 𝐀𝐹 ∶= ⌊2𝑓−𝑗/2 ⋅𝑎 (𝜈)

𝐽 ⌋𝓁 ∈(Z𝓁,𝑓)2
𝐽

Per-run pre-processing pre-Haar-Grotto
𝑛,𝓁,𝐽 ,𝜈 :

- Dealer distributes sharings [𝑟] and L𝑒𝑟 M for 𝑟 ∈R Z2𝓁, plus a
Beaver triple for multiplying two secret scalars in Z2𝓁

Online phase: Input is [𝑎], 𝑎∈Z𝓁,𝑓 , plus all pre-processing values
(1) Interactively reconstruct 𝑥 ∶=𝑟−𝑎 from [𝑟] and [𝑎]
(2) Non-interactively compute

- J𝑒msb𝐽 (𝑎)K from L𝑒𝑟 M using Grotto’s parity-segmentation on
partition [ 𝑃𝑖 ∶= 𝑖 ⋅2𝑗 |𝑖,…,2𝐽−1 ]≫𝑥

- perform signed extension to convert this into [±𝑒msb𝐽 (𝑎)]
- use component-wise summation to compute [±1] from
[±𝑒msb𝐽 (𝑎)]

- and then evaluate [±𝐀𝐹 [msb𝐽 (𝑎)]]= ⟨[±𝑒msb𝐽 (𝑎)],𝐀𝐹 ⟩
(3) Interactively compute the product of [±𝐀𝐹 [msb𝐽 (𝑎)]] and [±1]

using the Beaver triple to obtain [𝐹H𝓁,𝑓,𝑛,𝐽 (𝑎)]

(4) Return [𝐹H𝓁,𝑓,𝑛,𝐽 (𝑎)]

Figure 10: Secure LUT-based function evaluation using
the Haar DWT in conjunction with Grotto for vector
preparation (“Haar+Grotto” variant).

𝑏 outputs

[𝑦]𝑏∶= �̄� ⋅(𝑏 ⋅(�̄�1 ⋅�̄�+�̄�0)−�̄�1 ⋅[𝑋]𝑏−�̄� ⋅[𝐶1]𝑏+[𝐶1 ⋅𝑋−𝐶0]𝑏)
−(�̄�1 ⋅�̄�+�̄�0) ⋅[𝑈 ]𝑏+�̄�1 ⋅[𝑈 ⋅𝑋]𝑏+�̄� ⋅[𝑈 ⋅𝐶1]𝑏−[𝑈 ⋅(𝐶1 ⋅𝑋−𝐶0)]𝑏 .

H GROTTO-HAAR
Figure 10 contains our Haar+Grotto pairing.

I PIKA-BIOR
Figure 11 contains our bior(5,3)+Pika pairing.

J FUNCTION EVALUATIONS
We set bit-width to 64 and vary 𝑛 between 28 and 32, while
𝐽 between 10 and 24. For the experiment, we first create pre-
processing material and then run the online phase 1000 times
for each 𝑛 and 𝐽 . We report the total time of the runs. Note
that while the runtime changes, the online communication is
always the same. For Haar, it is 24 bytes per evaluation and
for bior(5,3) it is 40 bytes for all 𝑛 and 𝐽 .

We run experiments both in the LAN and WAN settings.
Tables 2 and 3 have the results for the LAN setting while
Tables 4 and 5 show the results for the WAN setting. The
WAN runtimes are dominated by communication time hence
the numbers do not vary as much as in the LAN setting, where
an exponential trend in the runtime is observed.

K COMPARISON WITH PRIOR WORKS
We present our comparison with related work in Table 6. We
run comparison experiments with Pika and Curl by fixing 𝑛 and

bior(5,3)+Pika LUT protocol ΠLUT-bior(5,3)-Grotto
𝑛,𝓁,𝐽 ,𝜈

One-time pre-processing: Input is a function 𝐹 , fixed-point
parameters 𝓁,𝑓 ∈N, LUT quantization parameter 𝑛∈ [1..𝓁), and
DWT depth 𝑗 (so that 𝐽 ∶=𝑛−𝑗)
- Compute the real-valued compressed LUT 𝑎 (𝜈)

𝐽 ∈R2𝐽 as the
DWT of 𝜈LR,𝑛(𝐹) at level 𝐽 under the bior(5,3) transform, and
then from it compute the fixed-point LUTs
- 𝐀𝐹,𝑐0 ∶= ⌊2𝑓−𝑗/2 ⋅𝑎 (𝜈)

𝐽 ⌋𝓁 ∈(Z𝓁,𝑓)2
𝐽

- 𝐀𝐹,𝑐1 ∶= ⌊2𝑓−3𝑗/2 ⋅((𝑎 (𝜈)
𝐽 ≪1)−𝑎 (𝜈)

𝐽 )⌋𝓁 ∈(Z𝓁,𝑓)2
𝐽

Per-run pre-processing pre-bior(5,3)-Pika
𝑛,𝓁,𝐽 ,𝜈 :

- Dealer distributes sharings [𝑟], [lsb𝑗 (msb𝑛(𝑟))] and
L𝑒msb𝐽 (𝑟)M for 𝑟 ∈R Z2𝓁, two DCFs ⦃(𝑥> lsb𝓁−𝑛(𝑟)) ? 1 : 0⦄
and ⦃(𝑥>lsb𝓁−𝐽 (𝑟)) ? 2𝑗 :0⦄, plus a generalized Beaver tuple for
equations of the form [𝑢] ⋅([𝑐1] ⋅[𝑥]+[𝑐0]) with arithmetic in Z2𝓁

Online phase: Input is [𝑎], 𝑎 ∈ Z𝓁,𝑓 , plus all pre-processing
values
(1) Interactively reconstruct 𝑥¬𝐽 ∶= lsb𝓁−𝐽 (𝑟 − 𝑎) and the

carry-out bit 𝑐𝑎𝑟𝑟𝑦 that arises in the reconstruction as well
as 𝑥¬𝑛 ∶=lsb𝓁−𝑛(𝑟−𝑎) from lsb𝓁−𝐽 ([𝑟]) and lsb𝓁−𝐽 ([𝑎])

(2) Non-interactively compute [𝑏𝑜𝑟𝑟𝑜𝑤𝑛] =
𝐷𝐶𝐹𝐸𝑣𝑎𝑙(⦃(𝑥> lsb𝓁−𝑛(𝑟)) ? 1 : 0⦄, 𝑥¬𝑛) and [𝑏𝑜𝑟𝑟𝑜𝑤𝐽 ] =
𝐷𝐶𝐹𝐸𝑣𝑎𝑙(⦃(𝑥>lsb𝓁−𝐽 (𝑟)) ? 2𝑗 :0⦄,𝑥¬𝐽 )

(3) Interactively reconstruct 𝑥𝐽 =msb𝐽 (𝑟−𝑎) ∈Z2𝐽 from [𝑟] and
[𝑎] using msb𝐽 ([𝑟]−[𝑎])+𝑐𝑎𝑟𝑟𝑦

(4) Non-interactively compute [lsb𝑗 (msb𝑛(𝑎))] ∶=
[lsb𝑗 (msb𝑛(𝑟))]−(lsb𝑗 (msb𝑛(𝑥))+[𝑏𝑜𝑟𝑟𝑜𝑤𝑛]−[𝑏𝑜𝑟𝑟𝑜𝑤𝐽 ])∈Z2𝓁,
compute J𝑒msb𝐽 (𝑟)K via full-domain evaluation of L𝑒msb𝐽 (𝑟)M
and J𝑒msb𝐽 (𝑎)K = J𝑒msb𝐽 (𝑟)K ≪ 𝑥𝐽 , perform signed extension
to convert this into [±𝑒msb𝐽 (𝑎)], use component-wise
summation to compute [±1] from [±𝑒msb𝐽 (𝑎)], and
then evaluate [±𝐀𝐹,𝑐1 [ msb𝐽 (𝑎)]] = ⟨[±𝑒msb𝐽 (𝑎)], 𝐀𝐹,𝑐1 ⟩ and
[±𝐀𝐹,𝑐0 [msb𝐽 (𝑎)]]= ⟨[±𝑒msb𝐽 (𝑎)],𝐀𝐹,𝑐0 ⟩

(5) Interactively compute the sign-corrected linear evaluation
[±1] ⋅ ([±𝐀𝐹,𝑐1 [msb𝐽 (𝑎)]] ⋅ [lsb𝑗 (msb𝑛(𝑎))] + [±𝐀𝐹,𝑐0 [msb𝐽 (𝑎)]])
using the generalized Beaver triple to obtain [𝐹B𝓁,𝑓,𝑛,𝐽 (𝑎)]

(6) Return [𝐹B𝓁,𝑓,𝑛,𝐽 (𝑎)]

Figure 11: Secure LUT-based function evaluation using
the bior(5, 3) DWT in conjunction with our DCF-based
vector preparation (“bior(5,3)+Pika” variant).

picking a 𝐽 value that gives a DWT compression error less than
0.001 and run experiments in both LAN and WAN network
settings. It can be seen that for 𝑛 past 20, Curl and Wave both
outperform Pika with the gains exponentially increasing with 𝑛.
This is to be expected as Pika is meant for running exact table
lookups and does not provide any approximations other than
the conversion to fixed point arithmetic. This becomes very
costly as 𝑛 increases and as acknowledged in the paper, fails to
outperform state of the art work past 𝑛≥24 since the dominant
cost is the full-sized table lookup has to be evaluated.

Our work (and Curl) provide a way to do an approximate
lookup through DWTs, therefore eliminating this problem of
explosion in the size of the lookup table. This leads to a much
improved lookup time as 𝑛 increases. Curl, on the other hand,
uses arithmetic shares which results in large communication
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𝟏𝟎 𝟏𝟏 𝟏𝟐 𝟏𝟑 𝟏𝟒 𝟏𝟓 𝟏𝟔 𝟏𝟕 𝟏𝟖 𝟏𝟗 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒
𝑛

𝐽

32 10 9 10 9 10 15 36 60 103 218 384 762 1580 3189 5709
31 9 11 9 9 11 14 34 57 101 200 369 745 1588 3188 5739
30 9 9 9 9 10 18 28 56 111 208 375 744 1592 3187 5685
29 9 9 9 9 9 17 27 61 109 196 379 741 1588 3197 5714
28 9 9 9 9 10 16 27 55 104 198 361 794 1934 2651 5715

Table 2: Wall-clock running time (in ms) for 1000
Haar-compressed LUT evaluations on a LAN. The online
communication is a mere 24 bytes per evaluation.

𝟏𝟎 𝟏𝟏 𝟏𝟐 𝟏𝟑 𝟏𝟒 𝟏𝟓 𝟏𝟔 𝟏𝟕 𝟏𝟖 𝟏𝟗 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒
𝑛

𝐽

32 17 18 19 17 17 19 34 52 106 232 446 884 1472 2859 7162
31 17 17 17 17 18 20 27 52 105 242 374 737 1529 2925 7130
30 17 17 16 17 19 19 32 47 97 233 460 732 1522 2940 7138
29 20 20 19 19 18 20 32 54 108 261 466 940 1484 2906 7028
28 20 19 20 19 20 22 32 62 118 264 408 812 1585 2936 7249

Table 3: Wall-clock running time (in ms) for 1000
bior(5,3)-compressed LUT evaluations on a LAN. The online
communication is a mere 40 bytes per evaluation.

𝟏𝟎 𝟏𝟏 𝟏𝟐 𝟏𝟑 𝟏𝟒 𝟏𝟓 𝟏𝟔 𝟏𝟕 𝟏𝟖 𝟏𝟗 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒
𝑛

𝐽

32 180 205 243 225 244 244 218 230 246 325 492 849 1680 3312 5869
31 208 209 213 244 221 244 224 224 245 332 473 887 1708 3318 5839
30 208 197 243 212 213 222 222 237 244 332 497 900 1695 3367 5917
29 211 208 217 224 213 244 226 238 258 342 494 895 1686 3334 5907
28 200 208 232 216 243 244 232 226 241 333 482 867 1708 3313 5872

Table 4: Wall-clock running time (in ms) for 1000
Haar-compressed LUT evaluations on a WAN. The online
communication is a mere 24 bytes per evaluation.

𝟏𝟎 𝟏𝟏 𝟏𝟐 𝟏𝟑 𝟏𝟒 𝟏𝟓 𝟏𝟔 𝟏𝟕 𝟏𝟖 𝟏𝟗 𝟐𝟎 𝟐𝟏 𝟐𝟐 𝟐𝟑 𝟐𝟒
𝑛

𝐽

32 199 205 221 226 221 243 226 246 239 341 578 999 1628 3002 5531
31 189 213 217 224 243 244 222 227 238 355 489 873 1612 3017 7159
30 212 210 220 244 224 233 226 236 238 361 608 887 1639 3014 7248
29 197 212 232 244 225 244 222 230 238 359 602 1027 1637 2974 7203
28 192 209 238 244 221 218 244 245 242 367 506 882 1671 3036 7197

Table 5: Wall-clock running time (in ms) for 1000
bior(5, 3)-compressed LUT evaluations on a WAN. The
online communication is a mere 40 bytes per evaluation.

overheads and high computation times. Our work overcomes
this by using function secret sharing leading to significantly
reduced run times and better scalability. Our work also uses
exact truncation instead of Curl’s probabilistic truncation
leading to better accuracy. In order to showcase a more apples-
to-apples comparison, we separately run Curl for varying 𝐽
values (for a fixed value of 𝑛 = 32) with the same LAN and
WAN settings and report the running time in Table 7 and in
Table 8, we showcase the factor improvement of our work over
Curl. As can be seen, Wave outperforms Curl by as little as 8×
to about 3 orders of magnitude for 𝐽 =22 in the WAN setting.

Regarding Ripple [10], due to significant differences between
FHE versus MPC, we believe that an apples-to-apples com-
parison is not possible. We note, however, that for the setting
𝑛=32 and 𝐽 =20 Ripple computation takes 3.2s for Haar and
4.2s for biorthogonal whereas our protocol on the WAN setting
runs in 0.49s and 0.58s respectively.

LAN WAN
n J Pika Curl Wave Pika Curl Wave
16 13 26 320 9 237 3688 216
17 13 66 320 9 280 3688 216
18 13 139 320 9 332 3688 216
19 13 210 320 9 539 3688 216
20 13 426 320 9 1085 3688 216
21 12 938 179 9 1806 2799 232
22 12 1702 179 9 3805 2799 232
23 12 3707 179 9 5927 2799 232
24 12 5930 179 9 12061 2799 232
25 12 11955 179 9 22984 2799 232
26 12 22802 179 9 48215 2799 232
27 12 48485 179 9 48215 2799 232
28 12 109671 179 9 110598 2799 232
29 12 209578 179 9 210178 2799 217
30 12 402452 179 9 399949 2799 243
31 12 967698 179 9 2799 213
32 12 1895571 179 10 2799 243

Table 6: Pika LUT running time (in ms) vs. Haar-
compressed LUT of Curl and this paper with DWT
compression error less than 0.001 for sigmoid on a LAN
and a WAN.

𝟏𝟎 𝟏𝟏 𝟏𝟐 𝟏𝟑 𝟏𝟒 𝟏𝟓 𝟏𝟔 𝟏𝟕 𝟏𝟖 𝟏𝟗 𝟐𝟎 𝟐𝟏 𝟐𝟐𝐽

LAN 80 107 179 320 559 1039 2081 3867 7369 16k 33k 137k 619k
WAN 2056 2203 2799 3688 5298 8842 16k 29k 57k 111k 223k 515k 1423k

Table 7: Curl wall-clock running time (in ms) for 1000
Haar-compressed LUT evaluations on a LAN and a WAN.

𝟏𝟎 𝟏𝟏 𝟏𝟐 𝟏𝟑 𝟏𝟒 𝟏𝟓 𝟏𝟔 𝟏𝟕 𝟏𝟖 𝟏𝟗 𝟐𝟎 𝟐𝟏 𝟐𝟐𝐽

LAN 8 12 18 36 56 69 58 64 72 72 87 180 392
WAN 11 11 12 16 22 36 73 128 230 341 453 607 847

Table 8: Run-time improvement over Curl (Curl takes ×
times longer) compared to this work. Ratio is computed
for 1000 Haar-compressed LUT evaluations.
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