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Abstract. It is imperative to modernize traditional core cryptographic primitives, such as Oblivious
Transfer (OT), to address the demands of the new digital era, where privacy-preserving computations
are executed on low-power devices. This modernization is not merely an enhancement but a necessity
to ensure security, efficiency, and continued relevance in an ever-evolving technological landscape.

This work introduces two scalable OT schemes: (1) Helix OT, a 1-out-of-n OT, and (2) Priority OT,
a t-out-of-n OT. Both schemes provide unconditional security, ensuring resilience against quantum
adversaries. Helix OT achieves a receiver-side download complexity of O(1). In big data scenarios,
where certain data may be more urgent or valuable, we propose Priority OT. With a receiver-side
download complexity of O(t), this scheme allows data to be received based on specified priorities.
By prioritizing data transmission, Priority OT ensures that the most important data is received first,
optimizing bandwidth, storage, and processing resources. Performance evaluations indicate that Helix
OT completes the transfer of 1 out of n = 16,777,216 messages in 9 seconds, and Priority OT handles
t = 1,048,576 out of n selections in 30 seconds. Both outperform existing t-out-of-n OTs (when t ≥ 1),
underscoring their suitability for large-scale applications. To the best of our knowledge, Helix OT and
Priority OT introduce unique advancements that distinguish them from previous schemes.

1 Introduction

In the contemporary digital era, resource-constrained devices, including mobile phones, Internet of Things
(IoT) sensors, autonomous vehicles, and edge computing nodes, are integral to modern computing and
communication systems. Legal frameworks like the General Data Protection Regulation (GDPR) impose
strict limitations on direct data sharing and extraction from these devices, especially when comprehensive
data analysis is required. To address these constraints, privacy-preserving techniques such as Secure Multi-
Party Computation (MPC) and Federated Learning (FL) have been suggested to be used. These techniques
fundamentally rely on cryptographic primitives like Oblivious Transfer (OT) conceptualized decades ago,
before the widespread adoption of low-power devices. Hence, adapting these core subroutines to align with
the current technological landscape is vital, ensuring support for low-power devices. As the cryptographic
field braces for new challenges—in particular, the anticipated security threats posed by emerging quantum
computing technologies [54,71,18]—it is also critical to prioritize the development of foundational security
primitives like OT with unconditional security. Such steps will help ensure that tomorrow’s systems remain
resilient against contemporary adversaries and the powerful quantum-based attacks on the horizon.

Oblivious Transfer (OT) [67,32,76] is a vital cryptographic primitive that enables a receiver to choose
and learn t of n messages held by a sender (where t ≥ 1 and n > t). In this scenario, the sender must not be
able to learn which specific messages were chosen and the receiver must not gain any information about the
remaining n − t messages. OT has applications in various domains, such as generic MPC [81,5,40], Private
Set Intersection [29], Federated Learning [80,68,78], and Zero-Knowledge proof systems [38].
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1.1 Our Contributions

In this paper, we introduce two scalable variants of OT: (1) Helix3 OT, a 1-out-of-n OT, and (2) Priority OT,
a t-out-of-n OT. Both schemes provide unconditional security, making them post-quantum secure. They do
not depend on unconventional assumptions, such as noisy channels, trusted initialization, or the receiver’s
ability to store the sender’s entire encrypted database. These two protocols are easy to understand and
implement. Their implementations require a single library (GMP [35]) for big integer arithmetic.

Devices with limited storage capacity or even service providers, such as Netflix [60], often restrict large
downloads to prevent exhausting available space. Our protocols are well-suited for such environments, as
they impose minimal download and storage demands on the receiver. The receiver’s download communication
complexity in Helix OT is O(1) while in Priority OT it is O(t). In Priority OT, the receiver can sequentially
obtain t out of n messages based on an initial preference, while maintaining the privacy of the chosen
preferences. As we will discuss in Section 7.4, existing OT schemes do not efficiently support ordering
without imposing a download cost of at least O(n) on the receiver.

We have formally defined the security and system requirements of the schemes and proved their security
using the simulation-based model. Helix OT uses XOR-based secret sharing, one-time pads, a third party
(such as an SGX enclave within the sender’s machine) that may be corrupted by a semi-honest adversary,
and a novel tool called a tree-based controlled swap, which could be of independent interest. Priority OT
mainly utilizes random permutation, one-time pads, the third party, and a tool called a permutation map.

We have implemented Helix OT and Priority OT, evaluated their performance, and compared them
against state-of-the-art OTs. Our analysis shows that both Helix OT and Priority OT are highly scalable.
For example, when n = 16,777,216 and t = 1, Helix OT completes in about 9 seconds (see Table 1).
In comparison, for the same value of n but with t = 1,048,576, Priority OT takes around 31 seconds to
complete (see Table 3). We also studied these two schemes’ runtime when they are invoked up to 100,000,000
times, in the 1-out-of-2 setting. In this scenario, Helix OT and Priority OT complete in about 4.7 and 7
minutes respectively (see Table 2). They can be at least 411 times faster than existing efficient base OTs
in the 1-out-of-2 setting (see Table 4), and 10 times faster than existing efficient t-out-of-n OTs, in the
12-out-of-16 setting (see Table 7). To the best of our knowledge, this is the first time the performance of
OTs has been studied for large values of n and t.

Fortunately, the need for MPCs suitable for low-power users [6,56,21] or large-scale deployment [34,9,20]
has been recognized. Our schemes could complement these MPCs by providing a scalable, efficient, and
unconditionally secure building block to further enhance their efficiency and security. Furthermore, generic
OTs have been directly used in schemes involving resource-constrained receivers [51,52,72,79]. Our solutions
can replace these OTs in the real-world deployment of such schemes.

1.2 Structure of the Paper

The paper is structured as follows. Section 2 outlines key preliminaries, including notations and crypto-
graphic foundations such as secret sharing and trusted execution environments. Section 3 reviews existing
OT schemes, emphasizing scalable, post-quantum, and t-out-of-n protocols. Section 4 defines the proposed
OT functionality and security models, introducing novel concepts such as download efficiency and order-
respecting OT. Section 5 details the Tree-Based Controlled Swap, the design of Helix OT, and its security
proof. Section 6 introduces Priority OT along with its security proof. Section 7 presents a performance
evaluation of the proposed schemes, comparing them with state-of-the-art OT protocols. Finally, Section 8
concludes by summarizing key contributions and suggesting directions for future work.

3 The protocol is named “Helix” as its structure mirrors the layered complexity of a helix (shape), utilizing a binary
tree where permutations may be applied to each level.
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2 Preliminaries

2.1 Notations and Assumptions

We denote an empty string with ε, a sender by S, a receiver by R, and a third party by H. We consider the
setting where semi-honest (passive) adversaries corrupt these parties. We assume parties interact with each
other through a secure channel. U denotes a universe of messages m0, . . . ,ml. We define σ as the maximum
bit size of messages in U , i.e., σ = Max(|m1|, . . . , |ml|). We define an algorithm Find(~v, j)→ y that takes as
input a vector ~v and a value j. If j is in ~v, it returns the index y of j in ~v; otherwise, it returns ε. By X ≡ Y
we mean X and Y are unconditionally indistinguishable.

We define Decompose(e1, e2) → b ∈ {0, 1}e2 as a mapping that takes integers e1 and e2 and decomposes
e1 into its e2-bit binary representation. For a bit string b, by b[i] we mean the i-th binary value of b, where
i ≥ 0. In this work, we require R to delineate its priorities using a vector called “priority” vector ~p. A priority
vector is defined below.

Definition 1 (Priority vector). Let ~m be a vector of n messages and ~p be a vector of t indices, where
t ≤ n. Vector ~p is called priority vector if the elements of ~p are arranged such that ~p[0] corresponds to the
index of a message in ~m deemed most critical, ~p[1] refers to the index of a message in ~m with the next highest
level of importance, and this pattern continues in descending order of priority.

2.2 Random Permutation

A random permutation [46], π : A → A, is a bijective function chosen uniformly at random from the set of
all possible permutations of the set A. This means that each permutation of the elements of A is equally
likely. In practice, the Fisher-Yates shuffle algorithm [47] can permute a set of m elements in time O(m).

2.3 Controlled Swap

A controlled swap [33] can be defined as function CS(s, pair)→ pair′ which takes two inputs: a binary value
s and a pair pair := (c0, c1). When s = 0, it returns the input pair pair′ := (c0, c1), i.e., it does not swap
the elements. When s = 1, it returns pair′ := (c1, c0), i.e., it swaps the elements. If s is uniformly chosen
randomly, then CS represents a random permutation; therefore, the probability of swapping or not swapping
is 1

2 in this case.

2.4 Binary Tree

A binary tree is a data structure in which each node has at most two children, referred to as the left child
and the right child [48]. The topmost node in the tree is called the root. It is the starting point for traversing
the tree. Nodes that are at the lowest level of the tree and do not have any children are called leaf nodes or
leaves. The height of a binary tree is the length of the longest path from the root to a leaf.

In this paper, we consider a perfect binary tree, all internal nodes have two children and all leaves are at
the same level. For a binary tree with n leaf nodes, the height of a binary tree is e = log2(n). Let pairf,h be
f -th pair at h-th level. Each pair pairf,h contains two nodes pairf,h := (node2f,h, node2f+1,h), where 1 ≤ h ≤ e
and 0 ≤ f ≤ 2h

2 − 1. For the sake of simplicity, we assume n is a power of 2 and construct a binary tree on
top of a set of messages m0, . . . ,mn−1. At the lowest level of the tree, each pair pairf,e contains two nodes
pairf,h := (node2f,h, node2f+1,h), such that node2f,e = m2f and node2f+1,e = m2f+1.

2.5 Secret Sharing

A (threshold) secret sharing SS(t,n) scheme is a cryptographic protocol that enables a dealer to distribute a
string s, known as the secret, among n parties in a way that the secret s can be recovered when at least
a predefined number of shares, say t, are combined [36]. If the number of shares is less than t, the secret
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remains unrecoverable, and the shares divulge no information about s. This type of scheme is referred to as
(n, t)-secret sharing or SS(t,n) for brevity.

In the case where t = n, there exists a highly efficient XOR-based secret sharing [11]. In this case, to
share the secret s, the dealer first picks n − 1 random bit strings r1, . . . , rn−1 of the same length as the
secret. Then, it computes rn = r1 ⊕ . . .⊕ rn ⊕ s. It considers each ri ∈ {r1, . . . , rn} as a share of the secret.
To reconstruct the secret, one can easily compute r1 ⊕ . . . ⊕ rn. Any subset of less than n shares reveals
no information about the secret. We will use this scheme in this paper. A secret sharing scheme involves
two main algorithms; namely, SS(1λ, s, n, t) → (r1, . . . , rn): to share a secret and RE(r1, . . . , rt, n, t) → s to
reconstruct the secret.

2.6 Trusted Execution Environments

A trusted execution environment (T ) is a secure processing environment that includes dedicated processing,
memory, and storage hardware units [63,83]. Within this environment, code and data remain isolated from
other layers of the software stack. An ideal T ensures the integrity and confidentiality of data. Assuming
the physical CPU is not compromised, T is protected from attackers with physical access to the machine.
However, side-channel attacks targeting various T ’s implementations have been documented in the literature
[73], posing a risk of secret extraction from T .

In Sections 5 and 6, we utilize T to construct efficient post-quantum OTs under conservative security,
trust, and system assumptions. Our solutions ensure that plaintext messages and private keys remain inacces-
sible to T . Hence, even a weak T vulnerable to semi-honest adversaries suffices, provided the same adversary
does not simultaneously compromise T and another protocol participant. Similar assumptions have been
adopted in previous works [30,70,55]. In our work, T is not expected to be computationally intensive, as
it is responsible only for simple tasks such as permutation and search. We assume T is unconditionally or
post-quantum secure, by using mechanisms like unconditionally secure signatures [4,39] or post-quantum
signatures for remote attestation [7,66].

2.7 Security Model

In this paper, we use the simulation-based model of secure multi-party computation [36] to define and prove
the proposed protocols. Below, we restate the formal security definition within this model.

Two-party Computation. A two-party protocol Γ problem is captured by specifying a random process
that maps pairs of inputs to pairs of outputs, one for each party. Such process is referred to as a functionality
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f := (f1, f2). For every input pair (x, y), the output pair is
a random variable (f1(x, y), f2(x, y)), such that the party with input x wishes to obtain f1(x, y) while the
party with input y wishes to receive f2(x, y). In the setting where f is asymmetric and only one party (say
the first one) receives the result, f is defined as f := (f1(x, y), ε).

Security in the Presence of Passive Adversaries. In the passive adversarial model, the party corrupted
by such an adversary correctly follows the protocol specification. However, the adversary obtains the internal
state of the corrupted party, including the transcript of all the messages received, and tries to use this to learn
information that should remain private. Loosely speaking, a protocol is secure if whatever can be computed
by a party in the protocol can be computed using its input and output only. In the simulation-based model,
it is required that a party’s view in a protocol can be simulated given only its input and output.

This implies that the parties learn nothing from the protocol’s execution. More formally, party i’s view
(during the execution of Γ ) on input pair (x, y) is denoted by ViewΓi (x, y) and equals (w, ri,m

i
1, . . . ,m

i
t),

where w ∈ {x, y} is the input of i-th party, ri is the outcome of this party’s internal random coin tosses, and
mi
j is the j-th message this party receives. The output of the i-th party during the execution of Γ on (x, y)

is denoted by OutputΓi (x, y) and can be generated from its own view of the execution.
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Definition 2. Let f be the deterministic functionality defined above. Protocol Γ securely computes f in the
presence of passive adversaries if there exist algorithms (SimΓ

1 ,Sim
Γ

2 ) such that:

{SimΓ

1 (x, f1(x, y))}x,y≡{ViewΓ1 (x, y)}x,y

{SimΓ

2 (y, f2(x, y))}x,y≡{ViewΓ2 (x, y)}x,y

The above definition excludes “probabilistic polynomial time” adversary and includes “≡” (instead of

“
c≡” denoting computational indistinguishability) because it formulates unconditional security.

3 Related Work

The traditional 1-out-of-2 OT (OT 2

1−2) is a protocol that involves two parties, a sender S and a receiver R
[67,32]. S has a pair of input messages (m0,m1) and R has an index s. The aim of OT 2

1−2 is to allow R to
obtain ms, without revealing anything about s to S, and without allowing R to learn anything about m1−s.
The traditional OT 2

1−2 functionality is defined as FOT 2
1−2

: ((m0,m1), s)→ (ε,ms).

There exist numerous variants of OT. For instance, (i) 1-out-of-2 OT [10,3]: which enables the receiver
to select 1 entry out of 2 entries held by S, (ii) t-out-of-n OT: which allows R to pick t entries out of n
entries held by S, where 1 ≤ t ≤ n; examples include the OTs proposed in [57,74,53], designed for the cases
where t = 1 and the OTs introduced in [22,45,19], suitable for the scenarios where t ≥ 1, (iii) OT extension
[42,41,61,5]: that supports efficient executions of OT, in the case OT needs to be invoked many times, (iv)
distributed OT [58,84,24]: that allows the database to be distributed among m servers/senders, and (v)
correlated (or random) OT [25,62,16,15]: that considers specific scenarios where the inputs of the senders
are correlated random values, rather than a set of messages in the generic OT. The correlated OTs are often
more efficient than generic OTs due to the certain structures that the input messages have.

3.1 Efficient t-out-of-n OT

To generalize the notion of 1-out-of-2 OT, t-out-of-n OTs were proposed. They are suitable for scenarios
where n > 2 and t ≥ 1. Naor and Pinkas proposed two variants of OT in [57] one suitable when t = 1 and
another one when t ≥ 1. They rely on a pseudorandom function and any standard 1-out-of-2 OT. The former
variant (when t = 1) involves log(n) invocations of a 1-out-of-2 OT, and the receiver obtains n ciphertexts
from the sender. The latter, which supports the case when t ≥ 1, requires 2 · t · log(n) invocations of a 1-out-
of-2 OT and operates under the constraint that t� n. In this variant, the receiver obtains t · n ciphertexts
from the sender.

Tzeng [74] proposed a 1-out-of-n OT, based on the Decisional Diffie-Hellman (DDH) assumption and
involves public key operations. In this scheme, the receiver obtains n ciphertexts from the sender. Another
t-out-of-n OT was proposed in [44], which relies on the Discrete logarithm problem (DLP), involves modular
exponentiation linear with n, and requires the receiver to obtain messages linear with n + t. Wei et al.
[75] proposed server-aided t-out-of-n OT, using the DDH assumption and involving modular exponentiation
linear with t and n. In this scheme, the receiver obtains a response whose size is linear with n. The efficient
OT extensions [42,41,61,5] have initially been designed for 1-out-of-2 OT setting; however, they can be
invoked multiple times to meet the requirements of t-out-of-n OTs. Nevertheless, this approach will require
the sender to obtain t · n messages and it will include a constant number of public operations to invoke a
base OT to set up the initial system parameters.

To date, the fastest 1-out-of-n semi-honest and malicious secure OTs are the OT extensions proposed in
[49] and [64] respectively, with a caveat. They have been designed to work efficiently when the input secret
messages are very short, log(n). For instance, the size of each input message is 4 when n = 16. Both schemes
use a base OT (that often relies on a computationally hard problem) and a random oracle, while the latter
also uses a pseudorandom generator. In both schemes, the receiver obtains a response of size O(m ·(λ+n · l)),
where m is the number of OT invocations, λ is a security parameter, and l is an input message’s bit size.
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These schemes do not directly offer t-out-of-n OT. To achieve t-out-of-n OTs, one can simply set m = t and
invoke either of them t times.

We will propose the first t-out-of-n OT that is unconditionally secure and efficiently works for arbitrary
length inputs.

3.2 Post-Quantum OT

There have been efforts to design unconditionally secure OTs. Some schemes use multiple senders that
maintain an identical copy of the database [58,14]. Other ones use a specific network structure, i.e., a noisy
channel, to achieve unconditionally secure OT [26,27,43]. There is a scheme that achieves unconditionally
secure OT using a fully trusted initializer [69]. The t-out-of-n OTs proposed in [77,23] achieve one-sided
unconditional security when only one of the parties is corrupt by an unbounded adversary. These schemes
still rely on computationally hard problems, such as the DLP or DDH.

There exist OTs developed to maintain security in the presence of adversaries equipped with quantum
computers [13,12,65,50,31,8]. However, they are not unconditionally secure. They rely on various assump-
tions and problems (such as short integer solutions, learning with errors, or computing isogenies between
supersingular elliptic curves) as well as primitives (such as AES, multivariate quadratic cryptography, or
McEliece cryptosystem) deemed valid and secure in the era of quantum computing, based on current knowl-
edge and assessment. Their security could be compromised if any of the underlying assumptions or problems
are proven to be solvable efficiently by future advancements in quantum algorithms. Hence, there exists no
(efficient) unconditionally secure OT that does not use noisy channels, multi-server, and trusted initializer.

3.3 OT with Constant Response Size

Researchers have proposed several OTs that enable a receiver to obtain a constant-size response to its query
[17,37,82,23]. To achieve this level of communication efficiency, these protocols require the receiver to locally
store the encryption of the entire database, in the initialization phase. During the transfer phase, the sender
assists the receiver with locally decrypting the message that the receiver is interested in. The main limitation
of these protocols is that a thin client with limited available storage space cannot locally store the encryption
of the entire database.

4 Definition

Our OT schemes fall under the 3-party OT category, initially defined in [28]. However, the original definition
primarily addresses 1-out-of-2 OTs, lacks a download efficiency property4, and does not offer the concept of
order. In this section, we present a generalized definition for 3-party OT, to capture t-out-of-n OT scenarios.
This definition will also include the download efficiency property, and the concept of order, which we refer
to as order-respecting.

A 3-party t-out-of-n OT (OT 3

t−n) involves a sender S, a receiver R, and a third party H. We assume
each party can be corrupted by a passive adversary. We define the functionality that OT 3

t−n will compute
as FOT 3

t−n
:
(
(m0, . . . ,mn−1), ε, ~p

)
→ (ε, (n, t), {mj}∀j∈~p), which takes n messages from S, no input from H,

and a vector ~p of t integers from R. It returns nothing to S, the total number of messages n and the total
number of retrieved messages t to H, and t messages to R.

Definition 3 (Security). Let FOT 3
t−n

be the OT functionality defined above. We assert that protocol Γ
securely realizes FOT 3

t−n
in the presence of passive adversaries, if for every adversary A in the real model,

there is a simulator Sim in the ideal model, where:{
SimΓS

(
(m0, . . . ,mn−1), ε

)}
m0,...,mn−1,~p

≡{
ViewΓS

(
(m0, . . . ,mn−1), ε, ~p

)}
m0,...,mn−1,~p

(1)

4 The download efficiency property was only informally discussed in [28]
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{
SimΓH(ε, (n, t))

}
m0,...,mn−1,~p

≡{
ViewΓH

(
(m0, . . . ,mn−1), ε, ~p

)}
m0,...,mn−1,~p

(2)

{
SimΓR

(
~p,FOT 3

t−n

(
(m0, . . . ,mn−1), ε, ~p

))}
m0,...,mn−1,~p

≡{
ViewΓR

(
(m0, . . . ,mn−1), ε, ~p

)}
m0,...,mn−1,~p

(3)

Definition 4 (Download Efficiency). An OT 3

t−n scheme is considered download efficient if the total
number of messages k that receiver R obtains and the bit-size of each message that R receives are constant
O(1) concerning the total number of messages n and are linear O(t) with respect to t. Thus, the total
complexity of R’s received messages is O(t). More formally, ∃k ∈ N, such that the total complexity of the
messages obtained by R is:

O
(
t · k ·Max(|m0|, . . . , |mn−1|)

)
= O(t)

Informally, the order-respecting property ensures that the messages received by R are ordered according
to a predefined priority of the indices, specified in ~p.

Definition 5 (Order-Respecting). Let ~m = [m0, . . . ,mn−1] be a vector of n messages, and ~p be the
corresponding priority vector of size t, as defined in Definition 1. An OT 3

t−n is order-respecting if a receiver
R obtains t messages in the order: m~p[0],m~p[1], . . . ,m~p[t−1].

In the above definitions, in the case of 1-out-of-n OT (where t = 1), we replace vector ~p with a single
value indx.

5 Helix OT: An Efficient 1-out-of-n OT

This section presents Helix OT, which uses a new combination of secret sharing, one-time pads, and Tree-
Based Controlled Swap (TBCS). We initially describe TBCS and then present this OT.

5.1 Tree-Based Controlled Swap

Tree-Based Controlled Swap (TBCS) is a new variant of traditional controlled swap [33] capable of handling
the swap of more than two messages, utilizing a binary tree. In TBCS(b, ~m)→ ~w, we construct a binary tree
on top of messages ~m = m0, . . . ,mn−1 that we want to swap. This tree, along with the messages, is then
permuted according to a predefined set of rules and an input bit-string b, where |b| = log2(n). This string
b is a bit representation of one of the messages’ index indx, i.e., a target message’s index. Each bit in b
determines the permutation of pairs of nodes at each corresponding level of the tree. Specifically, the least
significant bit of b determines the permutation at the leaf node level, the next bit governs the level above
the leaf nodes, and this pattern continues up the tree.

At a high level, TBCS works as follows. Beginning with the leaf nodes of the binary tree, we apply the
controlled swap to each pair of nodes (i.e., messages) that share the same parent node. A swap occurs between
these two nodes if the corresponding bit in the bit-string b is 1. Next, we move up one level and apply the
controlled swap to each pair of internal nodes sharing the same parent. If the related bit in b is 1, we swap
these nodes along with their respective sub-trees. In this case, the order of the descendant nodes remains
unchanged, and the entire sub-trees are swapped. This process is repeated until we reach the tree’s root.
By the end of this procedure, the leaf nodes of the tree will have been permuted according to the specific
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<latexit sha1_base64="97haamaJ94YTqHzqC8RlqghHOHk=">AAACInicbZDPSgMxEMaz9V+t/6re9BKsgqey20P1WPTisYJthXYp2XTahmazSzJbKEvBhxGv+hzexJPgS/gGpu0etDqQ8PF9MwzzC2IpDLruh5NbWV1b38hvFra2d3b3ivsHTRMlmkODRzLS9wEzIIWCBgqUcB9rYGEgoRWMrmd5awzaiEjd4SQGP2QDJfqCM7RWt3h0GnbTjuFaxJj9OJFAK9PTbrHklt150b/Cy0SJZFXvFr86vYgnISjkkhnT9twY/ZRpFFzCtHC2FEdajIH7qZSKm2mhkxiIGR+xAbStVCwE46fzE6f0zDo92o+0fQrp3P05kbLQmEkY2M6Q4dAsZzPzv6ydYP/ST4WKEwTFF4v6iaQY0Rkv2hMaOMqJFczysadQPmSacbRUC5aRt0zkr2hWyl61XL2tlGpXGa08OSYn5Jx45ILUyA2pkwbh5IE8kWfy4jw6r86b875ozTnZzCH5Vc7nN6sHpNs=</latexit>m2
<latexit sha1_base64="grTKGvcgwl0lXaj+BocYfJMXRGk=">AAACInicbZDPSgMxEMaz/q31X9WbXoK14KnsKqjHohePFWwrtEvJptM2NJtdktlCWQo+jHjV5/AmngRfwjcwbfegrQMJH983wzC/IJbCoOt+OkvLK6tr67mN/ObW9s5uYW+/bqJEc6jxSEb6IWAGpFBQQ4ESHmINLAwkNILBzSRvDEEbEal7HMXgh6ynRFdwhtZqFw5PwnbaMlyLGLMfRxLo+fikXSi6ZXdadFF4mSiSrKrtwnerE/EkBIVcMmOanhujnzKNgksY50tzcaTFELifSqm4GedbiYGY8QHrQdNKxUIwfjo9cUxL1unQbqTtU0in7u+JlIXGjMLAdoYM+2Y+m5j/Zc0Eu1d+KlScICg+W9RNJMWITnjRjtDAUY6sYJaPPYXyPtOMo6Wat4y8eSKLon5W9i7KF3dnxcp1RitHjsgxOSUeuSQVckuqpEY4eSTP5IW8Ok/Om/PufMxal5xs5oD8KefrB6yspNw=</latexit>m3

<latexit sha1_base64="KFsFrkLxp7uGDAVPzJn8mgG4WWQ=">AAACInicbZDPSgMxEMaz/q31X9WbXoK14KnsiqjHohePFWwrtEvJptM2NJtdktlCWQo+jHjV5/AmngRfwjcwbfegrQMJH983wzC/IJbCoOt+OkvLK6tr67mN/ObW9s5uYW+/bqJEc6jxSEb6IWAGpFBQQ4ESHmINLAwkNILBzSRvDEEbEal7HMXgh6ynRFdwhtZqFw5PwnbaMlyLGLMfRxLo+fikXSi6ZXdadFF4mSiSrKrtwnerE/EkBIVcMmOanhujnzKNgksY50tzcaTFELifSqm4GedbiYGY8QHrQdNKxUIwfjo9cUxL1unQbqTtU0in7u+JlIXGjMLAdoYM+2Y+m5j/Zc0Eu1d+KlScICg+W9RNJMWITnjRjtDAUY6sYJaPPYXyPtOMo6Wat4y8eSKLon5W9i7KF3dnxcp1RitHjsgxOSUeuSQVckuqpEY4eSTP5IW8Ok/Om/PufMxal5xs5oD8KefrB65RpN0=</latexit>m4
<latexit sha1_base64="eZG1RfQK9WzYzCIDBHncSYY/ekw=">AAACInicbZDLSgMxFIYzXmu9Vd3pJlgLrsqM4GVZdOOygm2FdiiZ9LQNzWSG5EyhDAUfRtzqc7gTV4Iv4RuYtrPQ1gMJP/9/DofzBbEUBl3301laXlldW89t5De3tnd2C3v7dRMlmkONRzLSDwEzIIWCGgqU8BBrYGEgoREMbiZ5YwjaiEjd4ygGP2Q9JbqCM7RWu3B4ErbTluFaxJj9OJJAz8cn7ULRLbvToovCy0SRZFVtF75bnYgnISjkkhnT9NwY/ZRpFFzCOF+aiyMthsD9VErFzTjfSgzEjA9YD5pWKhaC8dPpiWNask6HdiNtn0I6dX9PpCw0ZhQGtjNk2Dfz2cT8L2sm2L3yU6HiBEHx2aJuIilGdMKLdoQGjnJkBbN87CmU95lmHC3VvGXkzRNZFPWzsndRvrg7K1auM1o5ckSOySnxyCWpkFtSJTXCySN5Ji/k1Xly3px352PWuuRkMwfkTzlfP6/2pN4=</latexit>m5

<latexit sha1_base64="FSYRIspEtlDJRx+kB5i2fnEUqi8=">AAACInicbZDPSgMxEMaz9V+t/6re9BKsgqey20P1WPTisYJthXYp2XTahmazSzJbKEvBhxGv+hzexJPgS/gGpu0etDqQ8PF9MwzzC2IpDLruh5NbWV1b38hvFra2d3b3ivsHTRMlmkODRzLS9wEzIIWCBgqUcB9rYGEgoRWMrmd5awzaiEjd4SQGP2QDJfqCM7RWt3h0GnbTjuFaxJj9OJFAq9PTbrHklt150b/Cy0SJZFXvFr86vYgnISjkkhnT9twY/ZRpFFzCtHC2FEdajIH7qZSKm2mhkxiIGR+xAbStVCwE46fzE6f0zDo92o+0fQrp3P05kbLQmEkY2M6Q4dAsZzPzv6ydYP/ST4WKEwTFF4v6iaQY0Rkv2hMaOMqJFczysadQPmSacbRUC5aRt0zkr2hWyl61XL2tlGpXGa08OSYn5Jx45ILUyA2pkwbh5IE8kWfy4jw6r86b875ozTnZzCH5Vc7nN7GbpN8=</latexit>m6

<latexit sha1_base64="XHmL7TcusMpneb7KagaUdZPiUrQ=">AAACKnicbZDLSsNAFIYnXmu8VV26GXoBVyVRUDdC0Y1LBauFNpTJ9LQdnEzCzEmhhO59GHGrz+GuuPUFfAOnNQttPTDDz/+fw+F8YSKFQc+bOEvLK6tr64UNd3Nre2e3uLd/b+JUc2jwWMa6GTIDUihooEAJzUQDi0IJD+Hj1TR/GII2IlZ3OEogiFhfiZ7gDK3VKZbcyuDipOJWK1EnaxuuRYL5jyMJ9Gxc6RTLXs2bFV0Ufi7KJK+bTvGr3Y15GoFCLpkxLd9LMMiYRsEljN3qXBxrMQQeZFIqbsZuOzWQMP7I+tCyUrEITJDNTh3TqnW6tBdr+xTSmft7ImORMaMotJ0Rw4GZz6bmf1krxd55kAmVpAiK/yzqpZJiTKfcaFdo4ChHVjDLx55C+YBpxtHSdS0jf57Iorg/rvmntdPb43L9MqdVIIekRI6IT85InVyTG9IgnDyRF/JK3pxn592ZOB8/rUtOPnNA/pTz+Q07DqaJ</latexit> h
=

3
<latexit sha1_base64="7+5sPKQKzsHLWMRpmVlgHjn0cEU=">AAACKnicbZC7SgNBFIZn4329RS1thlzAKuymSGwE0cYygtFAsoTZyYkZMju7zJwVwpLehxFbfQ47sfUFfAMnyRYaPTDDz/+fw+F8YSKFQc97dworq2vrG5tb7vbO7t5+8eDw1sSp5tDmsYx1J2QGpFDQRoESOokGFoUS7sLx5Sy/ewBtRKxucJJAELF7JYaCM7RWv1hyK6OzesWtVqJ+1jNciwTzHycSaHNa6RfLXs2bF/0r/FyUSV6tfvGrN4h5GoFCLpkxXd9LMMiYRsElTN3qUhxr8QA8yKRU3EzdXmogYXzM7qFrpWIRmCCbnzqlVesM6DDW9imkc/fnRMYiYyZRaDsjhiOznM3M/7JuisPTIBMqSREUXywappJiTGfc6EBo4CgnVjDLx55C+YhpxtHSdS0jf5nIX3Fbr/mNWuO6Xj6/yGltkmNSIifEJ01yTq5Ii7QJJ4/kmbyQV+fJeXPenY9Fa8HJZ47Ir3I+vwE5TqaI</latexit> h

=
2

<latexit sha1_base64="8hNxuDOCaCNAW8gk0HOQa5XVjmg=">AAACKnicbZC7SgNBFIZnvcb1FrW0GXIBq7BrEW2EoI1lBBOFZAmzkxMzODu7zJwVwpLehxFbfQ67YOsL+AZOki008cAMP/9/DofzhYkUBj1v4qysrq1vbBa23O2d3b394sFh28Sp5tDisYz1fcgMSKGghQIl3CcaWBRKuAsfr6b53RNoI2J1i6MEgog9KDEQnKG1esWSWxle+BW3Wol6WddwLRLMfxxJoGfjSq9Y9mrerOiy8HNRJnk1e8Xvbj/maQQKuWTGdHwvwSBjGgWXMHarC3GsxRPwIJNScTN2u6mBhPFH9gAdKxWLwATZ7NQxrVqnTwextk8hnbm/JzIWGTOKQtsZMRyaxWxq/pd1UhycB5lQSYqg+HzRIJUUYzrlRvtCA0c5soJZPvYUyodMM46WrmsZ+YtElkX7tObXa/Wb03LjMqdVIMekRE6IT85Ig1yTJmkRTp7JK3kj786L8+FMnM9564qTzxyRP+V8/QA3jqaH</latexit> h
=

1

<latexit sha1_base64="qKxcAund/Hsx/4Ul3VSg/aMN5y0=">AAACInicbZDPSsNAEMY3/q31X9WbXhZbwVNJemg9Fr14rGBVaEPYbKe6uNmE3UkhhIIPI171ObyJJ8GX8A3c1hy0dWCXj++bYZhfmEhh0HU/nIXFpeWV1dJaeX1jc2u7srN7ZeJUc+jyWMb6JmQGpFDQRYESbhINLAolXIf3Z5P8egTaiFhdYpaAH7FbJYaCM7RWUNmvRUHeN1yLBIsfMwm0Na4Flapbd6dF54VXiCopqhNUvvqDmKcRKOSSGdPz3AT9nGkUXMK4fDQTx1qMgPu5lIqbcbmfGkgYv2e30LNSsQiMn09PHNMj6wzoMNb2KaRT9/dEziJjsii0nRHDOzObTcz/sl6KwxM/FypJERT/WTRMJcWYTnjRgdDAUWZWMMvHnkL5HdOMo6Vatoy8WSLz4qpR95r15kWj2j4taJXIATkkx8QjLdIm56RDuoSTB/JEnsmL8+i8Om/O+0/rglPM7JE/5Xx+A7NApOA=</latexit>m7
<latexit sha1_base64="FSYRIspEtlDJRx+kB5i2fnEUqi8=">AAACInicbZDPSgMxEMaz9V+t/6re9BKsgqey20P1WPTisYJthXYp2XTahmazSzJbKEvBhxGv+hzexJPgS/gGpu0etDqQ8PF9MwzzC2IpDLruh5NbWV1b38hvFra2d3b3ivsHTRMlmkODRzLS9wEzIIWCBgqUcB9rYGEgoRWMrmd5awzaiEjd4SQGP2QDJfqCM7RWt3h0GnbTjuFaxJj9OJFAq9PTbrHklt150b/Cy0SJZFXvFr86vYgnISjkkhnT9twY/ZRpFFzCtHC2FEdajIH7qZSKm2mhkxiIGR+xAbStVCwE46fzE6f0zDo92o+0fQrp3P05kbLQmEkY2M6Q4dAsZzPzv6ydYP/ST4WKEwTFF4v6iaQY0Rkv2hMaOMqJFczysadQPmSacbRUC5aRt0zkr2hWyl61XL2tlGpXGa08OSYn5Jx45ILUyA2pkwbh5IE8kWfy4jw6r86b875ozTnZzCH5Vc7nN7GbpN8=</latexit>m6

<latexit sha1_base64="eZG1RfQK9WzYzCIDBHncSYY/ekw=">AAACInicbZDLSgMxFIYzXmu9Vd3pJlgLrsqM4GVZdOOygm2FdiiZ9LQNzWSG5EyhDAUfRtzqc7gTV4Iv4RuYtrPQ1gMJP/9/DofzBbEUBl3301laXlldW89t5De3tnd2C3v7dRMlmkONRzLSDwEzIIWCGgqU8BBrYGEgoREMbiZ5YwjaiEjd4ygGP2Q9JbqCM7RWu3B4ErbTluFaxJj9OJJAz8cn7ULRLbvToovCy0SRZFVtF75bnYgnISjkkhnT9NwY/ZRpFFzCOF+aiyMthsD9VErFzTjfSgzEjA9YD5pWKhaC8dPpiWNask6HdiNtn0I6dX9PpCw0ZhQGtjNk2Dfz2cT8L2sm2L3yU6HiBEHx2aJuIilGdMKLdoQGjnJkBbN87CmU95lmHC3VvGXkzRNZFPWzsndRvrg7K1auM1o5ckSOySnxyCWpkFtSJTXCySN5Ji/k1Xly3px352PWuuRkMwfkTzlfP6/2pN4=</latexit>m5
<latexit sha1_base64="KFsFrkLxp7uGDAVPzJn8mgG4WWQ=">AAACInicbZDPSgMxEMaz/q31X9WbXoK14KnsiqjHohePFWwrtEvJptM2NJtdktlCWQo+jHjV5/AmngRfwjcwbfegrQMJH983wzC/IJbCoOt+OkvLK6tr67mN/ObW9s5uYW+/bqJEc6jxSEb6IWAGpFBQQ4ESHmINLAwkNILBzSRvDEEbEal7HMXgh6ynRFdwhtZqFw5PwnbaMlyLGLMfRxLo+fikXSi6ZXdadFF4mSiSrKrtwnerE/EkBIVcMmOanhujnzKNgksY50tzcaTFELifSqm4GedbiYGY8QHrQdNKxUIwfjo9cUxL1unQbqTtU0in7u+JlIXGjMLAdoYM+2Y+m5j/Zc0Eu1d+KlScICg+W9RNJMWITnjRjtDAUY6sYJaPPYXyPtOMo6Wat4y8eSKLon5W9i7KF3dnxcp1RitHjsgxOSUeuSQVckuqpEY4eSTP5IW8Ok/Om/PufMxal5xs5oD8KefrB65RpN0=</latexit>m4

<latexit sha1_base64="grTKGvcgwl0lXaj+BocYfJMXRGk=">AAACInicbZDPSgMxEMaz/q31X9WbXoK14KnsKqjHohePFWwrtEvJptM2NJtdktlCWQo+jHjV5/AmngRfwjcwbfegrQMJH983wzC/IJbCoOt+OkvLK6tr67mN/ObW9s5uYW+/bqJEc6jxSEb6IWAGpFBQQ4ESHmINLAwkNILBzSRvDEEbEal7HMXgh6ynRFdwhtZqFw5PwnbaMlyLGLMfRxLo+fikXSi6ZXdadFF4mSiSrKrtwnerE/EkBIVcMmOanhujnzKNgksY50tzcaTFELifSqm4GedbiYGY8QHrQdNKxUIwfjo9cUxL1unQbqTtU0in7u+JlIXGjMLAdoYM+2Y+m5j/Zc0Eu1d+KlScICg+W9RNJMWITnjRjtDAUY6sYJaPPYXyPtOMo6Wat4y8eSKLon5W9i7KF3dnxcp1RitHjsgxOSUeuSQVckuqpEY4eSTP5IW8Ok/Om/PufMxal5xs5oD8KefrB6yspNw=</latexit>m3
<latexit sha1_base64="97haamaJ94YTqHzqC8RlqghHOHk=">AAACInicbZDPSgMxEMaz9V+t/6re9BKsgqey20P1WPTisYJthXYp2XTahmazSzJbKEvBhxGv+hzexJPgS/gGpu0etDqQ8PF9MwzzC2IpDLruh5NbWV1b38hvFra2d3b3ivsHTRMlmkODRzLS9wEzIIWCBgqUcB9rYGEgoRWMrmd5awzaiEjd4SQGP2QDJfqCM7RWt3h0GnbTjuFaxJj9OJFAK9PTbrHklt150b/Cy0SJZFXvFr86vYgnISjkkhnT9twY/ZRpFFzCtHC2FEdajIH7qZSKm2mhkxiIGR+xAbStVCwE46fzE6f0zDo92o+0fQrp3P05kbLQmEkY2M6Q4dAsZzPzv6ydYP/ST4WKEwTFF4v6iaQY0Rkv2hMaOMqJFczysadQPmSacbRUC5aRt0zkr2hWyl61XL2tlGpXGa08OSYn5Jx45ILUyA2pkwbh5IE8kWfy4jw6r86b875ozTnZzCH5Vc7nN6sHpNs=</latexit>m2

<latexit sha1_base64="tr2kp6dwfXNJzSUmJrGFmB7lTNQ=">AAACInicbZDPSsNAEMY39V+t/6re9LJYBU8l6UE9Fr14rGBVaEPYbCft0s0m7E6EEgo+jHjV5/AmngRfwjdw2+ag1YFdPr5vhmF+YSqFQdf9cEoLi0vLK+XVytr6xuZWdXvnxiSZ5tDmiUz0XcgMSKGgjQIl3KUaWBxKuA2HF5P89h60EYm6xlEKfsz6SkSCM7RWUN07jIO8a7gWKRY/jiRQb3wYVGtu3Z0W/Su8QtRIUa2g+tXtJTyLQSGXzJiO56bo50yj4BLGlaO5ONHiHrifS6m4GVe6mYGU8SHrQ8dKxWIwfj49cUyPrNOjUaLtU0in7s+JnMXGjOLQdsYMB2Y+m5j/ZZ0MozM/FyrNEBSfLYoySTGhE160JzRwlCMrmOVjT6F8wDTjaKlWLCNvnshfcdOoeyf1k6tGrXle0CqTfXJAjolHTkmTXJIWaRNOHsgTeSYvzqPz6rw577PWklPM7JJf5Xx+A6lipNo=</latexit>m1
<latexit sha1_base64="gw0QDG+VI8/IVyznnuMcq6leHFE=">AAACInicbZDPSsNAEMY39V+t/6re9LJYBU8l6UE9Fr14rGBVaEPYbCft0s0m7E6EEgo+jHjV5/AmngRfwjdw2+ag1YFdPr5vhmF+YSqFQdf9cEoLi0vLK+XVytr6xuZWdXvnxiSZ5tDmiUz0XcgMSKGgjQIl3KUaWBxKuA2HF5P89h60EYm6xlEKfsz6SkSCM7RWUN07jIO8a7gWKRY/jiRQd3wYVGtu3Z0W/Su8QtRIUa2g+tXtJTyLQSGXzJiO56bo50yj4BLGlaO5ONHiHrifS6m4GVe6mYGU8SHrQ8dKxWIwfj49cUyPrNOjUaLtU0in7s+JnMXGjOLQdsYMB2Y+m5j/ZZ0MozM/FyrNEBSfLYoySTGhE160JzRwlCMrmOVjT6F8wDTjaKlWLCNvnshfcdOoeyf1k6tGrXle0CqTfXJAjolHTkmTXJIWaRNOHsgTeSYvzqPz6rw577PWklPM7JJf5Xx+A6e9pNk=</latexit>m0

<latexit sha1_base64="qKxcAund/Hsx/4Ul3VSg/aMN5y0=">AAACInicbZDPSsNAEMY3/q31X9WbXhZbwVNJemg9Fr14rGBVaEPYbKe6uNmE3UkhhIIPI171ObyJJ8GX8A3c1hy0dWCXj++bYZhfmEhh0HU/nIXFpeWV1dJaeX1jc2u7srN7ZeJUc+jyWMb6JmQGpFDQRYESbhINLAolXIf3Z5P8egTaiFhdYpaAH7FbJYaCM7RWUNmvRUHeN1yLBIsfMwm0Na4Flapbd6dF54VXiCopqhNUvvqDmKcRKOSSGdPz3AT9nGkUXMK4fDQTx1qMgPu5lIqbcbmfGkgYv2e30LNSsQiMn09PHNMj6wzoMNb2KaRT9/dEziJjsii0nRHDOzObTcz/sl6KwxM/FypJERT/WTRMJcWYTnjRgdDAUWZWMMvHnkL5HdOMo6Vatoy8WSLz4qpR95r15kWj2j4taJXIATkkx8QjLdIm56RDuoSTB/JEnsmL8+i8Om/O+0/rglPM7JE/5Xx+A7NApOA=</latexit>m7

<latexit sha1_base64="IzFyLzqxGj4j9IkxcQQ6K2N3DAQ=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklvqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/mkqaJw==</latexit>

0
<latexit sha1_base64="TKBS+ZhWzJHSBh4IFg1QLcWy9ow=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpkh1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCg2por</latexit>

4
<latexit sha1_base64="DrEs2iEXzLpNwmbry3cErdTil2Y=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpmB1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCifpos</latexit>

5
<latexit sha1_base64="MJRUdDOeWicYSNehh6Ncd9UyFMI=">AAACCXicbZDNTgIxFIXv+Iv4h7p00wgkrsgMC3RJdOMSo/wkMCGd0oGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRhDaJ5FJ1AqwpZ4I2DTOcdmJFcRRw2g7Gt/O8PaFKMykezTSmfoSHgoWMYGOth1Kt1C8U3Yq7EFoHL4MiZGr0C9+9gSRJRIUhHGvd9dzY+ClWhhFOZ/nySiwVm1Dip5wLomf5XqJpjMkYD2nXosAR1X66uGSGytYZoFAq+4RBC/f3RoojradRYCcjbEZ6NZub/2XdxITXfspEnBgqyPKjMOHISDSvBQ2YosTwqQVMFLOnIDLCChNjy8vbjrzVRtahVa14tUrtvlqs32Rt5eAcLuASPLiCOtxBA5pAYAjP8AKvzpPz5rw7H8vRDSfbOYM/cj5/AKQimi0=</latexit>

6
<latexit sha1_base64="Mg7iF95hZRm1JPtsM/leUm1P3ho=">AAACCXicbZDNTgIxFIXv4B+Of6hLN41A4orMsACXRDcuMcpPAhPSKR1o6HQmbYeETHgC41afw51x61P4GL6BBWah4EmafDnn3jT3+DFnSjvOl5Xb2t7Z3cvv2weHR8cnhdOztooSSWiLRDySXR8rypmgLc00p91YUhz6nHb8ye0i70ypVCwSj3oWUy/EI8ECRrA21kOpXhoUik7FWQptgptBETI1B4Xv/jAiSUiFJhwr1XOdWHsplpoRTud2eS2OJJtS4qWcC6Lmdj9RNMZkgke0Z1DgkCovXV4yR2XjDFEQSfOERkv390aKQ6VmoW8mQ6zHaj1bmP9lvUQH117KRJxoKsjqoyDhSEdoUQsaMkmJ5jMDmEhmTkFkjCUm2pRnm47c9UY2oV2tuLVK7b5abNxkbeXhAi7hClyoQwPuoAktIDCCZ3iBV+vJerPerY/VaM7Kds7hj6zPH6XGmi4=</latexit>

7

<latexit sha1_base64="mmSB6UPDYn42nEqHtZx40i7cGjU=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpkJ1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCfNpoq</latexit>

3
<latexit sha1_base64="K3LhQoOWqpK3qoM0AW3kOsBqMlc=">AAACCXicbZDNTgIxFIXv+Iv4h7p00wgkrsgMC3RJdOMSo/wkMCGd0oGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRhDaJ5FJ1AqwpZ4I2DTOcdmJFcRRw2g7Gt/O8PaFKMykezTSmfoSHgoWMYGOth1K11C8U3Yq7EFoHL4MiZGr0C9+9gSRJRIUhHGvd9dzY+ClWhhFOZ/nySiwVm1Dip5wLomf5XqJpjMkYD2nXosAR1X66uGSGytYZoFAq+4RBC/f3RoojradRYCcjbEZ6NZub/2XdxITXfspEnBgqyPKjMOHISDSvBQ2YosTwqQVMFLOnIDLCChNjy8vbjrzVRtahVa14tUrtvlqs32Rt5eAcLuASPLiCOtxBA5pAYAjP8AKvzpPz5rw7H8vRDSfbOYM/cj5/AJ2Smik=</latexit>

2
<latexit sha1_base64="KqUCcGcDRYvcDzm8fbwH5aAly6I=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklfqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/m+6aKA==</latexit>

1
<latexit sha1_base64="IzFyLzqxGj4j9IkxcQQ6K2N3DAQ=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklvqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/mkqaJw==</latexit>

0

<latexit sha1_base64="KqUCcGcDRYvcDzm8fbwH5aAly6I=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklfqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/m+6aKA==</latexit>

1
<latexit sha1_base64="IzFyLzqxGj4j9IkxcQQ6K2N3DAQ=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklvqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/mkqaJw==</latexit>

0

<latexit sha1_base64="FSYRIspEtlDJRx+kB5i2fnEUqi8=">AAACInicbZDPSgMxEMaz9V+t/6re9BKsgqey20P1WPTisYJthXYp2XTahmazSzJbKEvBhxGv+hzexJPgS/gGpu0etDqQ8PF9MwzzC2IpDLruh5NbWV1b38hvFra2d3b3ivsHTRMlmkODRzLS9wEzIIWCBgqUcB9rYGEgoRWMrmd5awzaiEjd4SQGP2QDJfqCM7RWt3h0GnbTjuFaxJj9OJFAq9PTbrHklt150b/Cy0SJZFXvFr86vYgnISjkkhnT9twY/ZRpFFzCtHC2FEdajIH7qZSKm2mhkxiIGR+xAbStVCwE46fzE6f0zDo92o+0fQrp3P05kbLQmEkY2M6Q4dAsZzPzv6ydYP/ST4WKEwTFF4v6iaQY0Rkv2hMaOMqJFczysadQPmSacbRUC5aRt0zkr2hWyl61XL2tlGpXGa08OSYn5Jx45ILUyA2pkwbh5IE8kWfy4jw6r86b875ozTnZzCH5Vc7nN7GbpN8=</latexit>m6
<latexit sha1_base64="eZG1RfQK9WzYzCIDBHncSYY/ekw=">AAACInicbZDLSgMxFIYzXmu9Vd3pJlgLrsqM4GVZdOOygm2FdiiZ9LQNzWSG5EyhDAUfRtzqc7gTV4Iv4RuYtrPQ1gMJP/9/DofzBbEUBl3301laXlldW89t5De3tnd2C3v7dRMlmkONRzLSDwEzIIWCGgqU8BBrYGEgoREMbiZ5YwjaiEjd4ygGP2Q9JbqCM7RWu3B4ErbTluFaxJj9OJJAz8cn7ULRLbvToovCy0SRZFVtF75bnYgnISjkkhnT9NwY/ZRpFFzCOF+aiyMthsD9VErFzTjfSgzEjA9YD5pWKhaC8dPpiWNask6HdiNtn0I6dX9PpCw0ZhQGtjNk2Dfz2cT8L2sm2L3yU6HiBEHx2aJuIilGdMKLdoQGjnJkBbN87CmU95lmHC3VvGXkzRNZFPWzsndRvrg7K1auM1o5ckSOySnxyCWpkFtSJTXCySN5Ji/k1Xly3px352PWuuRkMwfkTzlfP6/2pN4=</latexit>m5

<latexit sha1_base64="KFsFrkLxp7uGDAVPzJn8mgG4WWQ=">AAACInicbZDPSgMxEMaz/q31X9WbXoK14KnsiqjHohePFWwrtEvJptM2NJtdktlCWQo+jHjV5/AmngRfwjcwbfegrQMJH983wzC/IJbCoOt+OkvLK6tr67mN/ObW9s5uYW+/bqJEc6jxSEb6IWAGpFBQQ4ESHmINLAwkNILBzSRvDEEbEal7HMXgh6ynRFdwhtZqFw5PwnbaMlyLGLMfRxLo+fikXSi6ZXdadFF4mSiSrKrtwnerE/EkBIVcMmOanhujnzKNgksY50tzcaTFELifSqm4GedbiYGY8QHrQdNKxUIwfjo9cUxL1unQbqTtU0in7u+JlIXGjMLAdoYM+2Y+m5j/Zc0Eu1d+KlScICg+W9RNJMWITnjRjtDAUY6sYJaPPYXyPtOMo6Wat4y8eSKLon5W9i7KF3dnxcp1RitHjsgxOSUeuSQVckuqpEY4eSTP5IW8Ok/Om/PufMxal5xs5oD8KefrB65RpN0=</latexit>m4

<latexit sha1_base64="grTKGvcgwl0lXaj+BocYfJMXRGk=">AAACInicbZDPSgMxEMaz/q31X9WbXoK14KnsKqjHohePFWwrtEvJptM2NJtdktlCWQo+jHjV5/AmngRfwjcwbfegrQMJH983wzC/IJbCoOt+OkvLK6tr67mN/ObW9s5uYW+/bqJEc6jxSEb6IWAGpFBQQ4ESHmINLAwkNILBzSRvDEEbEal7HMXgh6ynRFdwhtZqFw5PwnbaMlyLGLMfRxLo+fikXSi6ZXdadFF4mSiSrKrtwnerE/EkBIVcMmOanhujnzKNgksY50tzcaTFELifSqm4GedbiYGY8QHrQdNKxUIwfjo9cUxL1unQbqTtU0in7u+JlIXGjMLAdoYM+2Y+m5j/Zc0Eu1d+KlScICg+W9RNJMWITnjRjtDAUY6sYJaPPYXyPtOMo6Wat4y8eSKLon5W9i7KF3dnxcp1RitHjsgxOSUeuSQVckuqpEY4eSTP5IW8Ok/Om/PufMxal5xs5oD8KefrB6yspNw=</latexit>m3
<latexit sha1_base64="97haamaJ94YTqHzqC8RlqghHOHk=">AAACInicbZDPSgMxEMaz9V+t/6re9BKsgqey20P1WPTisYJthXYp2XTahmazSzJbKEvBhxGv+hzexJPgS/gGpu0etDqQ8PF9MwzzC2IpDLruh5NbWV1b38hvFra2d3b3ivsHTRMlmkODRzLS9wEzIIWCBgqUcB9rYGEgoRWMrmd5awzaiEjd4SQGP2QDJfqCM7RWt3h0GnbTjuFaxJj9OJFAK9PTbrHklt150b/Cy0SJZFXvFr86vYgnISjkkhnT9twY/ZRpFFzCtHC2FEdajIH7qZSKm2mhkxiIGR+xAbStVCwE46fzE6f0zDo92o+0fQrp3P05kbLQmEkY2M6Q4dAsZzPzv6ydYP/ST4WKEwTFF4v6iaQY0Rkv2hMaOMqJFczysadQPmSacbRUC5aRt0zkr2hWyl61XL2tlGpXGa08OSYn5Jx45ILUyA2pkwbh5IE8kWfy4jw6r86b875ozTnZzCH5Vc7nN6sHpNs=</latexit>m2

<latexit sha1_base64="tr2kp6dwfXNJzSUmJrGFmB7lTNQ=">AAACInicbZDPSsNAEMY39V+t/6re9LJYBU8l6UE9Fr14rGBVaEPYbCft0s0m7E6EEgo+jHjV5/AmngRfwjdw2+ag1YFdPr5vhmF+YSqFQdf9cEoLi0vLK+XVytr6xuZWdXvnxiSZ5tDmiUz0XcgMSKGgjQIl3KUaWBxKuA2HF5P89h60EYm6xlEKfsz6SkSCM7RWUN07jIO8a7gWKRY/jiRQb3wYVGtu3Z0W/Su8QtRIUa2g+tXtJTyLQSGXzJiO56bo50yj4BLGlaO5ONHiHrifS6m4GVe6mYGU8SHrQ8dKxWIwfj49cUyPrNOjUaLtU0in7s+JnMXGjOLQdsYMB2Y+m5j/ZZ0MozM/FyrNEBSfLYoySTGhE160JzRwlCMrmOVjT6F8wDTjaKlWLCNvnshfcdOoeyf1k6tGrXle0CqTfXJAjolHTkmTXJIWaRNOHsgTeSYvzqPz6rw577PWklPM7JJf5Xx+A6lipNo=</latexit>m1
<latexit sha1_base64="gw0QDG+VI8/IVyznnuMcq6leHFE=">AAACInicbZDPSsNAEMY39V+t/6re9LJYBU8l6UE9Fr14rGBVaEPYbCft0s0m7E6EEgo+jHjV5/AmngRfwjdw2+ag1YFdPr5vhmF+YSqFQdf9cEoLi0vLK+XVytr6xuZWdXvnxiSZ5tDmiUz0XcgMSKGgjQIl3KUaWBxKuA2HF5P89h60EYm6xlEKfsz6SkSCM7RWUN07jIO8a7gWKRY/jiRQd3wYVGtu3Z0W/Su8QtRIUa2g+tXtJTyLQSGXzJiO56bo50yj4BLGlaO5ONHiHrifS6m4GVe6mYGU8SHrQ8dKxWIwfj49cUyPrNOjUaLtU0in7s+JnMXGjOLQdsYMB2Y+m5j/ZZ0MozM/FyrNEBSfLYoySTGhE160JzRwlCMrmOVjT6F8wDTjaKlWLCNvnshfcdOoeyf1k6tGrXle0CqTfXJAjolHTkmTXJIWaRNOHsgTeSYvzqPz6rw577PWklPM7JJf5Xx+A6e9pNk=</latexit>m0

<latexit sha1_base64="KqUCcGcDRYvcDzm8fbwH5aAly6I=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklfqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/m+6aKA==</latexit>

1
<latexit sha1_base64="K3LhQoOWqpK3qoM0AW3kOsBqMlc=">AAACCXicbZDNTgIxFIXv+Iv4h7p00wgkrsgMC3RJdOMSo/wkMCGd0oGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRhDaJ5FJ1AqwpZ4I2DTOcdmJFcRRw2g7Gt/O8PaFKMykezTSmfoSHgoWMYGOth1K11C8U3Yq7EFoHL4MiZGr0C9+9gSRJRIUhHGvd9dzY+ClWhhFOZ/nySiwVm1Dip5wLomf5XqJpjMkYD2nXosAR1X66uGSGytYZoFAq+4RBC/f3RoojradRYCcjbEZ6NZub/2XdxITXfspEnBgqyPKjMOHISDSvBQ2YosTwqQVMFLOnIDLCChNjy8vbjrzVRtahVa14tUrtvlqs32Rt5eAcLuASPLiCOtxBA5pAYAjP8AKvzpPz5rw7H8vRDSfbOYM/cj5/AJ2Smik=</latexit>

2
<latexit sha1_base64="mmSB6UPDYn42nEqHtZx40i7cGjU=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpkJ1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCfNpoq</latexit>

3

<latexit sha1_base64="qKxcAund/Hsx/4Ul3VSg/aMN5y0=">AAACInicbZDPSsNAEMY3/q31X9WbXhZbwVNJemg9Fr14rGBVaEPYbKe6uNmE3UkhhIIPI171ObyJJ8GX8A3c1hy0dWCXj++bYZhfmEhh0HU/nIXFpeWV1dJaeX1jc2u7srN7ZeJUc+jyWMb6JmQGpFDQRYESbhINLAolXIf3Z5P8egTaiFhdYpaAH7FbJYaCM7RWUNmvRUHeN1yLBIsfMwm0Na4Flapbd6dF54VXiCopqhNUvvqDmKcRKOSSGdPz3AT9nGkUXMK4fDQTx1qMgPu5lIqbcbmfGkgYv2e30LNSsQiMn09PHNMj6wzoMNb2KaRT9/dEziJjsii0nRHDOzObTcz/sl6KwxM/FypJERT/WTRMJcWYTnjRgdDAUWZWMMvHnkL5HdOMo6Vatoy8WSLz4qpR95r15kWj2j4taJXIATkkx8QjLdIm56RDuoSTB/JEnsmL8+i8Om/O+0/rglPM7JE/5Xx+A7NApOA=</latexit>m7

<latexit sha1_base64="3CEov+Y2ED5woWM/Fx0HU9m7aG4="></latexit>

An example of applying TBCS() to [m0, . . . , m7], when n = 8 and indx = 7
(accordingly b = 111).

<latexit sha1_base64="3CEov+Y2ED5woWM/Fx0HU9m7aG4="></latexit>

An example of applying TBCS() to [m0, . . . , m7], when n = 8 and indx = 7
(accordingly b = 111).

<latexit sha1_base64="37UG4/sNplt9imI86hMMj8tcK8A=">AAAC4HicbVJNbxMxEJ1dCi3hK8CRi0VSVKQq2i1S20tRaS8ci2jaSskq8nq9iVV/rGxvabTKnRviyj/jZ/APmHVyoCm2bD2/92Zn1uO8ksL5JPkdxQ82Hj7a3HrcefL02fMX3ZevLpypLeNDZqSxVzl1XArNh154ya8qy6nKJb/Mr09b/fKGWyeMPvfzimeKTrUoBaMeKdOV8Ak0EOBwCxQUVCAREzBQ4k7x3DJzEOiaItOHMbooeJjh8tDAOZzAKXyFBezAe9QJsiY4R+icQAK75B3sItOeDiBDpT19wy/wkLuP+xEchliKuAicCOgW8RF8CNoOqgynAYvKsqK2ttado4tgrhRnH+sYTLq9ZJCEQe6DdAV6sBpnk+6fcWFYrbj2TFLnRmlS+ayh1gsm+aKzvSYbK244yxopNXOLzrh2vKLsmk75CKGmirusCQ1akG1kClIai0t7Eth/IxqqnJurHJ2K+plb11ryf9qo9uVh1ghd1Z5rtkxU1pJ4Q9puk0JYzrycI6DMCvwVwmbUUubxTXTwjtL1G7kPLvYG6f5g/8te7/hkdVtb8AbeYj9S7OcxfIYzGAKLPkZFpCId5/H3+Ef8c2mNo1XMa7gz4l9/AYoVuew=</latexit>

An example of applying TBCS() to [m0, . . . , m7], when n = 8 and indx = 3
(accordingly b = 011).

<latexit sha1_base64="37UG4/sNplt9imI86hMMj8tcK8A="></latexit>

An example of applying TBCS() to [m0, . . . , m7], when n = 8 and indx = 3
(accordingly b = 011).

<latexit sha1_base64="Mg7iF95hZRm1JPtsM/leUm1P3ho=">AAACCXicbZDNTgIxFIXv4B+Of6hLN41A4orMsACXRDcuMcpPAhPSKR1o6HQmbYeETHgC41afw51x61P4GL6BBWah4EmafDnn3jT3+DFnSjvOl5Xb2t7Z3cvv2weHR8cnhdOztooSSWiLRDySXR8rypmgLc00p91YUhz6nHb8ye0i70ypVCwSj3oWUy/EI8ECRrA21kOpXhoUik7FWQptgptBETI1B4Xv/jAiSUiFJhwr1XOdWHsplpoRTud2eS2OJJtS4qWcC6Lmdj9RNMZkgke0Z1DgkCovXV4yR2XjDFEQSfOERkv390aKQ6VmoW8mQ6zHaj1bmP9lvUQH117KRJxoKsjqoyDhSEdoUQsaMkmJ5jMDmEhmTkFkjCUm2pRnm47c9UY2oV2tuLVK7b5abNxkbeXhAi7hClyoQwPuoAktIDCCZ3iBV+vJerPerY/VaM7Kds7hj6zPH6XGmi4=</latexit>

7
<latexit sha1_base64="MJRUdDOeWicYSNehh6Ncd9UyFMI=">AAACCXicbZDNTgIxFIXv+Iv4h7p00wgkrsgMC3RJdOMSo/wkMCGd0oGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRhDaJ5FJ1AqwpZ4I2DTOcdmJFcRRw2g7Gt/O8PaFKMykezTSmfoSHgoWMYGOth1Kt1C8U3Yq7EFoHL4MiZGr0C9+9gSRJRIUhHGvd9dzY+ClWhhFOZ/nySiwVm1Dip5wLomf5XqJpjMkYD2nXosAR1X66uGSGytYZoFAq+4RBC/f3RoojradRYCcjbEZ6NZub/2XdxITXfspEnBgqyPKjMOHISDSvBQ2YosTwqQVMFLOnIDLCChNjy8vbjrzVRtahVa14tUrtvlqs32Rt5eAcLuASPLiCOtxBA5pAYAjP8AKvzpPz5rw7H8vRDSfbOYM/cj5/AKQimi0=</latexit>

6
<latexit sha1_base64="DrEs2iEXzLpNwmbry3cErdTil2Y=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpmB1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCifpos</latexit>

5
<latexit sha1_base64="TKBS+ZhWzJHSBh4IFg1QLcWy9ow=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpkh1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCg2por</latexit>

4

<latexit sha1_base64="mmSB6UPDYn42nEqHtZx40i7cGjU=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpkJ1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCfNpoq</latexit>

3

<latexit sha1_base64="IzFyLzqxGj4j9IkxcQQ6K2N3DAQ=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklvqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/mkqaJw==</latexit>

0
<latexit sha1_base64="mmSB6UPDYn42nEqHtZx40i7cGjU=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpkJ1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCfNpoq</latexit>

3
<latexit sha1_base64="K3LhQoOWqpK3qoM0AW3kOsBqMlc=">AAACCXicbZDNTgIxFIXv+Iv4h7p00wgkrsgMC3RJdOMSo/wkMCGd0oGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRhDaJ5FJ1AqwpZ4I2DTOcdmJFcRRw2g7Gt/O8PaFKMykezTSmfoSHgoWMYGOth1K11C8U3Yq7EFoHL4MiZGr0C9+9gSRJRIUhHGvd9dzY+ClWhhFOZ/nySiwVm1Dip5wLomf5XqJpjMkYD2nXosAR1X66uGSGytYZoFAq+4RBC/f3RoojradRYCcjbEZ6NZub/2XdxITXfspEnBgqyPKjMOHISDSvBQ2YosTwqQVMFLOnIDLCChNjy8vbjrzVRtahVa14tUrtvlqs32Rt5eAcLuASPLiCOtxBA5pAYAjP8AKvzpPz5rw7H8vRDSfbOYM/cj5/AJ2Smik=</latexit>

2
<latexit sha1_base64="KqUCcGcDRYvcDzm8fbwH5aAly6I=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklfqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/m+6aKA==</latexit>

1

<latexit sha1_base64="K3LhQoOWqpK3qoM0AW3kOsBqMlc=">AAACCXicbZDNTgIxFIXv+Iv4h7p00wgkrsgMC3RJdOMSo/wkMCGd0oGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRhDaJ5FJ1AqwpZ4I2DTOcdmJFcRRw2g7Gt/O8PaFKMykezTSmfoSHgoWMYGOth1K11C8U3Yq7EFoHL4MiZGr0C9+9gSRJRIUhHGvd9dzY+ClWhhFOZ/nySiwVm1Dip5wLomf5XqJpjMkYD2nXosAR1X66uGSGytYZoFAq+4RBC/f3RoojradRYCcjbEZ6NZub/2XdxITXfspEnBgqyPKjMOHISDSvBQ2YosTwqQVMFLOnIDLCChNjy8vbjrzVRtahVa14tUrtvlqs32Rt5eAcLuASPLiCOtxBA5pAYAjP8AKvzpPz5rw7H8vRDSfbOYM/cj5/AJ2Smik=</latexit>

2
<latexit sha1_base64="KqUCcGcDRYvcDzm8fbwH5aAly6I=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklfqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/m+6aKA==</latexit>

1
<latexit sha1_base64="IzFyLzqxGj4j9IkxcQQ6K2N3DAQ=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklvqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/mkqaJw==</latexit>

0

<latexit sha1_base64="KqUCcGcDRYvcDzm8fbwH5aAly6I=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklfqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/m+6aKA==</latexit>

1
<latexit sha1_base64="IzFyLzqxGj4j9IkxcQQ6K2N3DAQ=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklvqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/mkqaJw==</latexit>

0

<latexit sha1_base64="IzFyLzqxGj4j9IkxcQQ6K2N3DAQ=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklvqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/mkqaJw==</latexit>

0
<latexit sha1_base64="KqUCcGcDRYvcDzm8fbwH5aAly6I=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklfqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/m+6aKA==</latexit>

1
<latexit sha1_base64="mmSB6UPDYn42nEqHtZx40i7cGjU=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpkJ1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCfNpoq</latexit>

3
<latexit sha1_base64="TKBS+ZhWzJHSBh4IFg1QLcWy9ow=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpkh1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCg2por</latexit>

4
<latexit sha1_base64="DrEs2iEXzLpNwmbry3cErdTil2Y=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpmB1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCifpos</latexit>

5
<latexit sha1_base64="MJRUdDOeWicYSNehh6Ncd9UyFMI=">AAACCXicbZDNTgIxFIXv+Iv4h7p00wgkrsgMC3RJdOMSo/wkMCGd0oGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRhDaJ5FJ1AqwpZ4I2DTOcdmJFcRRw2g7Gt/O8PaFKMykezTSmfoSHgoWMYGOth1Kt1C8U3Yq7EFoHL4MiZGr0C9+9gSRJRIUhHGvd9dzY+ClWhhFOZ/nySiwVm1Dip5wLomf5XqJpjMkYD2nXosAR1X66uGSGytYZoFAq+4RBC/f3RoojradRYCcjbEZ6NZub/2XdxITXfspEnBgqyPKjMOHISDSvBQ2YosTwqQVMFLOnIDLCChNjy8vbjrzVRtahVa14tUrtvlqs32Rt5eAcLuASPLiCOtxBA5pAYAjP8AKvzpPz5rw7H8vRDSfbOYM/cj5/AKQimi0=</latexit>

6
<latexit sha1_base64="Mg7iF95hZRm1JPtsM/leUm1P3ho=">AAACCXicbZDNTgIxFIXv4B+Of6hLN41A4orMsACXRDcuMcpPAhPSKR1o6HQmbYeETHgC41afw51x61P4GL6BBWah4EmafDnn3jT3+DFnSjvOl5Xb2t7Z3cvv2weHR8cnhdOztooSSWiLRDySXR8rypmgLc00p91YUhz6nHb8ye0i70ypVCwSj3oWUy/EI8ECRrA21kOpXhoUik7FWQptgptBETI1B4Xv/jAiSUiFJhwr1XOdWHsplpoRTud2eS2OJJtS4qWcC6Lmdj9RNMZkgke0Z1DgkCovXV4yR2XjDFEQSfOERkv390aKQ6VmoW8mQ6zHaj1bmP9lvUQH117KRJxoKsjqoyDhSEdoUQsaMkmJ5jMDmEhmTkFkjCUm2pRnm47c9UY2oV2tuLVK7b5abNxkbeXhAi7hClyoQwPuoAktIDCCZ3iBV+vJerPerY/VaM7Kds7hj6zPH6XGmi4=</latexit>

7

<latexit sha1_base64="IzFyLzqxGj4j9IkxcQQ6K2N3DAQ=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklvqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/mkqaJw==</latexit>

0
<latexit sha1_base64="KqUCcGcDRYvcDzm8fbwH5aAly6I=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklfqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/m+6aKA==</latexit>

1

<latexit sha1_base64="K3LhQoOWqpK3qoM0AW3kOsBqMlc=">AAACCXicbZDNTgIxFIXv+Iv4h7p00wgkrsgMC3RJdOMSo/wkMCGd0oGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRhDaJ5FJ1AqwpZ4I2DTOcdmJFcRRw2g7Gt/O8PaFKMykezTSmfoSHgoWMYGOth1K11C8U3Yq7EFoHL4MiZGr0C9+9gSRJRIUhHGvd9dzY+ClWhhFOZ/nySiwVm1Dip5wLomf5XqJpjMkYD2nXosAR1X66uGSGytYZoFAq+4RBC/f3RoojradRYCcjbEZ6NZub/2XdxITXfspEnBgqyPKjMOHISDSvBQ2YosTwqQVMFLOnIDLCChNjy8vbjrzVRtahVa14tUrtvlqs32Rt5eAcLuASPLiCOtxBA5pAYAjP8AKvzpPz5rw7H8vRDSfbOYM/cj5/AJ2Smik=</latexit>

2

<latexit sha1_base64="mmSB6UPDYn42nEqHtZx40i7cGjU=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpkJ1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCfNpoq</latexit>

3

<latexit sha1_base64="IzFyLzqxGj4j9IkxcQQ6K2N3DAQ=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklvqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/mkqaJw==</latexit>

0
<latexit sha1_base64="KqUCcGcDRYvcDzm8fbwH5aAly6I=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklfqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/m+6aKA==</latexit>

1

<latexit sha1_base64="K3LhQoOWqpK3qoM0AW3kOsBqMlc=">AAACCXicbZDNTgIxFIXv+Iv4h7p00wgkrsgMC3RJdOMSo/wkMCGd0oGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRhDaJ5FJ1AqwpZ4I2DTOcdmJFcRRw2g7Gt/O8PaFKMykezTSmfoSHgoWMYGOth1K11C8U3Yq7EFoHL4MiZGr0C9+9gSRJRIUhHGvd9dzY+ClWhhFOZ/nySiwVm1Dip5wLomf5XqJpjMkYD2nXosAR1X66uGSGytYZoFAq+4RBC/f3RoojradRYCcjbEZ6NZub/2XdxITXfspEnBgqyPKjMOHISDSvBQ2YosTwqQVMFLOnIDLCChNjy8vbjrzVRtahVa14tUrtvlqs32Rt5eAcLuASPLiCOtxBA5pAYAjP8AKvzpPz5rw7H8vRDSfbOYM/cj5/AJ2Smik=</latexit>

2

<latexit sha1_base64="gw0QDG+VI8/IVyznnuMcq6leHFE=">AAACInicbZDPSsNAEMY39V+t/6re9LJYBU8l6UE9Fr14rGBVaEPYbCft0s0m7E6EEgo+jHjV5/AmngRfwjdw2+ag1YFdPr5vhmF+YSqFQdf9cEoLi0vLK+XVytr6xuZWdXvnxiSZ5tDmiUz0XcgMSKGgjQIl3KUaWBxKuA2HF5P89h60EYm6xlEKfsz6SkSCM7RWUN07jIO8a7gWKRY/jiRQd3wYVGtu3Z0W/Su8QtRIUa2g+tXtJTyLQSGXzJiO56bo50yj4BLGlaO5ONHiHrifS6m4GVe6mYGU8SHrQ8dKxWIwfj49cUyPrNOjUaLtU0in7s+JnMXGjOLQdsYMB2Y+m5j/ZZ0MozM/FyrNEBSfLYoySTGhE160JzRwlCMrmOVjT6F8wDTjaKlWLCNvnshfcdOoeyf1k6tGrXle0CqTfXJAjolHTkmTXJIWaRNOHsgTeSYvzqPz6rw577PWklPM7JJf5Xx+A6e9pNk=</latexit>m0
<latexit sha1_base64="tr2kp6dwfXNJzSUmJrGFmB7lTNQ=">AAACInicbZDPSsNAEMY39V+t/6re9LJYBU8l6UE9Fr14rGBVaEPYbCft0s0m7E6EEgo+jHjV5/AmngRfwjdw2+ag1YFdPr5vhmF+YSqFQdf9cEoLi0vLK+XVytr6xuZWdXvnxiSZ5tDmiUz0XcgMSKGgjQIl3KUaWBxKuA2HF5P89h60EYm6xlEKfsz6SkSCM7RWUN07jIO8a7gWKRY/jiRQb3wYVGtu3Z0W/Su8QtRIUa2g+tXtJTyLQSGXzJiO56bo50yj4BLGlaO5ONHiHrifS6m4GVe6mYGU8SHrQ8dKxWIwfj49cUyPrNOjUaLtU0in7s+JnMXGjOLQdsYMB2Y+m5j/ZZ0MozM/FyrNEBSfLYoySTGhE160JzRwlCMrmOVjT6F8wDTjaKlWLCNvnshfcdOoeyf1k6tGrXle0CqTfXJAjolHTkmTXJIWaRNOHsgTeSYvzqPz6rw577PWklPM7JJf5Xx+A6lipNo=</latexit>m1

<latexit sha1_base64="97haamaJ94YTqHzqC8RlqghHOHk=">AAACInicbZDPSgMxEMaz9V+t/6re9BKsgqey20P1WPTisYJthXYp2XTahmazSzJbKEvBhxGv+hzexJPgS/gGpu0etDqQ8PF9MwzzC2IpDLruh5NbWV1b38hvFra2d3b3ivsHTRMlmkODRzLS9wEzIIWCBgqUcB9rYGEgoRWMrmd5awzaiEjd4SQGP2QDJfqCM7RWt3h0GnbTjuFaxJj9OJFAK9PTbrHklt150b/Cy0SJZFXvFr86vYgnISjkkhnT9twY/ZRpFFzCtHC2FEdajIH7qZSKm2mhkxiIGR+xAbStVCwE46fzE6f0zDo92o+0fQrp3P05kbLQmEkY2M6Q4dAsZzPzv6ydYP/ST4WKEwTFF4v6iaQY0Rkv2hMaOMqJFczysadQPmSacbRUC5aRt0zkr2hWyl61XL2tlGpXGa08OSYn5Jx45ILUyA2pkwbh5IE8kWfy4jw6r86b875ozTnZzCH5Vc7nN6sHpNs=</latexit>m2
<latexit sha1_base64="grTKGvcgwl0lXaj+BocYfJMXRGk=">AAACInicbZDPSgMxEMaz/q31X9WbXoK14KnsKqjHohePFWwrtEvJptM2NJtdktlCWQo+jHjV5/AmngRfwjcwbfegrQMJH983wzC/IJbCoOt+OkvLK6tr67mN/ObW9s5uYW+/bqJEc6jxSEb6IWAGpFBQQ4ESHmINLAwkNILBzSRvDEEbEal7HMXgh6ynRFdwhtZqFw5PwnbaMlyLGLMfRxLo+fikXSi6ZXdadFF4mSiSrKrtwnerE/EkBIVcMmOanhujnzKNgksY50tzcaTFELifSqm4GedbiYGY8QHrQdNKxUIwfjo9cUxL1unQbqTtU0in7u+JlIXGjMLAdoYM+2Y+m5j/Zc0Eu1d+KlScICg+W9RNJMWITnjRjtDAUY6sYJaPPYXyPtOMo6Wat4y8eSKLon5W9i7KF3dnxcp1RitHjsgxOSUeuSQVckuqpEY4eSTP5IW8Ok/Om/PufMxal5xs5oD8KefrB6yspNw=</latexit>m3

<latexit sha1_base64="KFsFrkLxp7uGDAVPzJn8mgG4WWQ=">AAACInicbZDPSgMxEMaz/q31X9WbXoK14KnsiqjHohePFWwrtEvJptM2NJtdktlCWQo+jHjV5/AmngRfwjcwbfegrQMJH983wzC/IJbCoOt+OkvLK6tr67mN/ObW9s5uYW+/bqJEc6jxSEb6IWAGpFBQQ4ESHmINLAwkNILBzSRvDEEbEal7HMXgh6ynRFdwhtZqFw5PwnbaMlyLGLMfRxLo+fikXSi6ZXdadFF4mSiSrKrtwnerE/EkBIVcMmOanhujnzKNgksY50tzcaTFELifSqm4GedbiYGY8QHrQdNKxUIwfjo9cUxL1unQbqTtU0in7u+JlIXGjMLAdoYM+2Y+m5j/Zc0Eu1d+KlScICg+W9RNJMWITnjRjtDAUY6sYJaPPYXyPtOMo6Wat4y8eSKLon5W9i7KF3dnxcp1RitHjsgxOSUeuSQVckuqpEY4eSTP5IW8Ok/Om/PufMxal5xs5oD8KefrB65RpN0=</latexit>m4
<latexit sha1_base64="eZG1RfQK9WzYzCIDBHncSYY/ekw=">AAACInicbZDLSgMxFIYzXmu9Vd3pJlgLrsqM4GVZdOOygm2FdiiZ9LQNzWSG5EyhDAUfRtzqc7gTV4Iv4RuYtrPQ1gMJP/9/DofzBbEUBl3301laXlldW89t5De3tnd2C3v7dRMlmkONRzLSDwEzIIWCGgqU8BBrYGEgoREMbiZ5YwjaiEjd4ygGP2Q9JbqCM7RWu3B4ErbTluFaxJj9OJJAz8cn7ULRLbvToovCy0SRZFVtF75bnYgnISjkkhnT9NwY/ZRpFFzCOF+aiyMthsD9VErFzTjfSgzEjA9YD5pWKhaC8dPpiWNask6HdiNtn0I6dX9PpCw0ZhQGtjNk2Dfz2cT8L2sm2L3yU6HiBEHx2aJuIilGdMKLdoQGjnJkBbN87CmU95lmHC3VvGXkzRNZFPWzsndRvrg7K1auM1o5ckSOySnxyCWpkFtSJTXCySN5Ji/k1Xly3px352PWuuRkMwfkTzlfP6/2pN4=</latexit>m5

<latexit sha1_base64="FSYRIspEtlDJRx+kB5i2fnEUqi8=">AAACInicbZDPSgMxEMaz9V+t/6re9BKsgqey20P1WPTisYJthXYp2XTahmazSzJbKEvBhxGv+hzexJPgS/gGpu0etDqQ8PF9MwzzC2IpDLruh5NbWV1b38hvFra2d3b3ivsHTRMlmkODRzLS9wEzIIWCBgqUcB9rYGEgoRWMrmd5awzaiEjd4SQGP2QDJfqCM7RWt3h0GnbTjuFaxJj9OJFAq9PTbrHklt150b/Cy0SJZFXvFr86vYgnISjkkhnT9twY/ZRpFFzCtHC2FEdajIH7qZSKm2mhkxiIGR+xAbStVCwE46fzE6f0zDo92o+0fQrp3P05kbLQmEkY2M6Q4dAsZzPzv6ydYP/ST4WKEwTFF4v6iaQY0Rkv2hMaOMqJFczysadQPmSacbRUC5aRt0zkr2hWyl61XL2tlGpXGa08OSYn5Jx45ILUyA2pkwbh5IE8kWfy4jw6r86b875ozTnZzCH5Vc7nN7GbpN8=</latexit>m6

<latexit sha1_base64="XHmL7TcusMpneb7KagaUdZPiUrQ=">AAACKnicbZDLSsNAFIYnXmu8VV26GXoBVyVRUDdC0Y1LBauFNpTJ9LQdnEzCzEmhhO59GHGrz+GuuPUFfAOnNQttPTDDz/+fw+F8YSKFQc+bOEvLK6tr64UNd3Nre2e3uLd/b+JUc2jwWMa6GTIDUihooEAJzUQDi0IJD+Hj1TR/GII2IlZ3OEogiFhfiZ7gDK3VKZbcyuDipOJWK1EnaxuuRYL5jyMJ9Gxc6RTLXs2bFV0Ufi7KJK+bTvGr3Y15GoFCLpkxLd9LMMiYRsEljN3qXBxrMQQeZFIqbsZuOzWQMP7I+tCyUrEITJDNTh3TqnW6tBdr+xTSmft7ImORMaMotJ0Rw4GZz6bmf1krxd55kAmVpAiK/yzqpZJiTKfcaFdo4ChHVjDLx55C+YBpxtHSdS0jf57Iorg/rvmntdPb43L9MqdVIIekRI6IT85InVyTG9IgnDyRF/JK3pxn592ZOB8/rUtOPnNA/pTz+Q07DqaJ</latexit> h
=

3
<latexit sha1_base64="7+5sPKQKzsHLWMRpmVlgHjn0cEU=">AAACKnicbZC7SgNBFIZn4329RS1thlzAKuymSGwE0cYygtFAsoTZyYkZMju7zJwVwpLehxFbfQ47sfUFfAMnyRYaPTDDz/+fw+F8YSKFQc97dworq2vrG5tb7vbO7t5+8eDw1sSp5tDmsYx1J2QGpFDQRoESOokGFoUS7sLx5Sy/ewBtRKxucJJAELF7JYaCM7RWv1hyK6OzesWtVqJ+1jNciwTzHycSaHNa6RfLXs2bF/0r/FyUSV6tfvGrN4h5GoFCLpkxXd9LMMiYRsElTN3qUhxr8QA8yKRU3EzdXmogYXzM7qFrpWIRmCCbnzqlVesM6DDW9imkc/fnRMYiYyZRaDsjhiOznM3M/7JuisPTIBMqSREUXywappJiTGfc6EBo4CgnVjDLx55C+YhpxtHSdS0jf5nIX3Fbr/mNWuO6Xj6/yGltkmNSIifEJ01yTq5Ii7QJJ4/kmbyQV+fJeXPenY9Fa8HJZ47Ir3I+vwE5TqaI</latexit> h

=
2

<latexit sha1_base64="8hNxuDOCaCNAW8gk0HOQa5XVjmg=">AAACKnicbZC7SgNBFIZnvcb1FrW0GXIBq7BrEW2EoI1lBBOFZAmzkxMzODu7zJwVwpLehxFbfQ67YOsL+AZOki008cAMP/9/DofzhYkUBj1v4qysrq1vbBa23O2d3b394sFh28Sp5tDisYz1fcgMSKGghQIl3CcaWBRKuAsfr6b53RNoI2J1i6MEgog9KDEQnKG1esWSWxle+BW3Wol6WddwLRLMfxxJoGfjSq9Y9mrerOiy8HNRJnk1e8Xvbj/maQQKuWTGdHwvwSBjGgWXMHarC3GsxRPwIJNScTN2u6mBhPFH9gAdKxWLwATZ7NQxrVqnTwextk8hnbm/JzIWGTOKQtsZMRyaxWxq/pd1UhycB5lQSYqg+HzRIJUUYzrlRvtCA0c5soJZPvYUyodMM46WrmsZ+YtElkX7tObXa/Wb03LjMqdVIMekRE6IT85Ig1yTJmkRTp7JK3kj786L8+FMnM9564qTzxyRP+V8/QA3jqaH</latexit> h
=

1

<latexit sha1_base64="qKxcAund/Hsx/4Ul3VSg/aMN5y0=">AAACInicbZDPSsNAEMY3/q31X9WbXhZbwVNJemg9Fr14rGBVaEPYbKe6uNmE3UkhhIIPI171ObyJJ8GX8A3c1hy0dWCXj++bYZhfmEhh0HU/nIXFpeWV1dJaeX1jc2u7srN7ZeJUc+jyWMb6JmQGpFDQRYESbhINLAolXIf3Z5P8egTaiFhdYpaAH7FbJYaCM7RWUNmvRUHeN1yLBIsfMwm0Na4Flapbd6dF54VXiCopqhNUvvqDmKcRKOSSGdPz3AT9nGkUXMK4fDQTx1qMgPu5lIqbcbmfGkgYv2e30LNSsQiMn09PHNMj6wzoMNb2KaRT9/dEziJjsii0nRHDOzObTcz/sl6KwxM/FypJERT/WTRMJcWYTnjRgdDAUWZWMMvHnkL5HdOMo6Vatoy8WSLz4qpR95r15kWj2j4taJXIATkkx8QjLdIm56RDuoSTB/JEnsmL8+i8Om/O+0/rglPM7JE/5Xx+A7NApOA=</latexit>m7

<latexit sha1_base64="IzFyLzqxGj4j9IkxcQQ6K2N3DAQ=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklvqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/mkqaJw==</latexit>

0
<latexit sha1_base64="KqUCcGcDRYvcDzm8fbwH5aAly6I=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklfqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/m+6aKA==</latexit>

1
<latexit sha1_base64="mmSB6UPDYn42nEqHtZx40i7cGjU=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpkJ1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCfNpoq</latexit>

3
<latexit sha1_base64="TKBS+ZhWzJHSBh4IFg1QLcWy9ow=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpkh1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCg2por</latexit>

4
<latexit sha1_base64="DrEs2iEXzLpNwmbry3cErdTil2Y=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpmB1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCifpos</latexit>

5
<latexit sha1_base64="MJRUdDOeWicYSNehh6Ncd9UyFMI=">AAACCXicbZDNTgIxFIXv+Iv4h7p00wgkrsgMC3RJdOMSo/wkMCGd0oGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRhDaJ5FJ1AqwpZ4I2DTOcdmJFcRRw2g7Gt/O8PaFKMykezTSmfoSHgoWMYGOth1Kt1C8U3Yq7EFoHL4MiZGr0C9+9gSRJRIUhHGvd9dzY+ClWhhFOZ/nySiwVm1Dip5wLomf5XqJpjMkYD2nXosAR1X66uGSGytYZoFAq+4RBC/f3RoojradRYCcjbEZ6NZub/2XdxITXfspEnBgqyPKjMOHISDSvBQ2YosTwqQVMFLOnIDLCChNjy8vbjrzVRtahVa14tUrtvlqs32Rt5eAcLuASPLiCOtxBA5pAYAjP8AKvzpPz5rw7H8vRDSfbOYM/cj5/AKQimi0=</latexit>

6
<latexit sha1_base64="Mg7iF95hZRm1JPtsM/leUm1P3ho=">AAACCXicbZDNTgIxFIXv4B+Of6hLN41A4orMsACXRDcuMcpPAhPSKR1o6HQmbYeETHgC41afw51x61P4GL6BBWah4EmafDnn3jT3+DFnSjvOl5Xb2t7Z3cvv2weHR8cnhdOztooSSWiLRDySXR8rypmgLc00p91YUhz6nHb8ye0i70ypVCwSj3oWUy/EI8ECRrA21kOpXhoUik7FWQptgptBETI1B4Xv/jAiSUiFJhwr1XOdWHsplpoRTud2eS2OJJtS4qWcC6Lmdj9RNMZkgke0Z1DgkCovXV4yR2XjDFEQSfOERkv390aKQ6VmoW8mQ6zHaj1bmP9lvUQH117KRJxoKsjqoyDhSEdoUQsaMkmJ5jMDmEhmTkFkjCUm2pRnm47c9UY2oV2tuLVK7b5abNxkbeXhAi7hClyoQwPuoAktIDCCZ3iBV+vJerPerY/VaM7Kds7hj6zPH6XGmi4=</latexit>

7

<latexit sha1_base64="IzFyLzqxGj4j9IkxcQQ6K2N3DAQ=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklvqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/mkqaJw==</latexit>

0
<latexit sha1_base64="KqUCcGcDRYvcDzm8fbwH5aAly6I=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklfqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/m+6aKA==</latexit>

1

<latexit sha1_base64="K3LhQoOWqpK3qoM0AW3kOsBqMlc=">AAACCXicbZDNTgIxFIXv+Iv4h7p00wgkrsgMC3RJdOMSo/wkMCGd0oGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRhDaJ5FJ1AqwpZ4I2DTOcdmJFcRRw2g7Gt/O8PaFKMykezTSmfoSHgoWMYGOth1K11C8U3Yq7EFoHL4MiZGr0C9+9gSRJRIUhHGvd9dzY+ClWhhFOZ/nySiwVm1Dip5wLomf5XqJpjMkYD2nXosAR1X66uGSGytYZoFAq+4RBC/f3RoojradRYCcjbEZ6NZub/2XdxITXfspEnBgqyPKjMOHISDSvBQ2YosTwqQVMFLOnIDLCChNjy8vbjrzVRtahVa14tUrtvlqs32Rt5eAcLuASPLiCOtxBA5pAYAjP8AKvzpPz5rw7H8vRDSfbOYM/cj5/AJ2Smik=</latexit>

2

<latexit sha1_base64="mmSB6UPDYn42nEqHtZx40i7cGjU=">AAACCXicbZDNSgMxFIXv1L86/lVdugm2BVdlpkJ1WXTjsqL9gXYomTTThmYyQ5IplKFPIG71OdyJW5/Cx/ANTNtZaOuBwMc59xLu8WPOlHacLyu3sbm1vZPftff2Dw6PCscnLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3749t53p5QqVgkHvU0pl6Ih4IFjGBtrIfSZalfKDoVZyG0Dm4GRcjU6Be+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3Z5ZU4kmxCiZdyLoia2b1E0RiTMR7SrkGBQ6q8dHHJDJWNM0BBJM0TGi3c3xspDpWahr6ZDLEeqdVsbv6XdRMdXHspE3GiqSDLj4KEIx2heS1owCQlmk8NYCKZOQWREZaYaFOebTpyVxtZh1a14tYqtftqsX6TtZWHMziHC3DhCupwBw1oAoEhPMMLvFpP1pv1bn0sR3NWtnMKf2R9/gCfNpoq</latexit>

3

<latexit sha1_base64="IzFyLzqxGj4j9IkxcQQ6K2N3DAQ=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklvqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/mkqaJw==</latexit>

0
<latexit sha1_base64="KqUCcGcDRYvcDzm8fbwH5aAly6I=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklfqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/m+6aKA==</latexit>

1

<latexit sha1_base64="K3LhQoOWqpK3qoM0AW3kOsBqMlc=">AAACCXicbZDNTgIxFIXv+Iv4h7p00wgkrsgMC3RJdOMSo/wkMCGd0oGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRhDaJ5FJ1AqwpZ4I2DTOcdmJFcRRw2g7Gt/O8PaFKMykezTSmfoSHgoWMYGOth1K11C8U3Yq7EFoHL4MiZGr0C9+9gSRJRIUhHGvd9dzY+ClWhhFOZ/nySiwVm1Dip5wLomf5XqJpjMkYD2nXosAR1X66uGSGytYZoFAq+4RBC/f3RoojradRYCcjbEZ6NZub/2XdxITXfspEnBgqyPKjMOHISDSvBQ2YosTwqQVMFLOnIDLCChNjy8vbjrzVRtahVa14tUrtvlqs32Rt5eAcLuASPLiCOtxBA5pAYAjP8AKvzpPz5rw7H8vRDSfbOYM/cj5/AJ2Smik=</latexit>

2

Fig. 1: Applying TBCS to a vector of 8 messages, where the target index indx is 3 (top) and 7 (bottom). As
shown, the first element in the output of TBCS is the message at the target index.

TBCS(b, ~m)→ ~w

• Inputs: (1) a vector of n messages ~m = [m0, . . . ,mn−1], and (2) a bit-string b of length e = log2(n).
• Output: a vector ~w of all messages in ~m, permuted.

1. construct a binary tree on messages m0, . . . ,mn−1.
2. in each level (starting from the lowest one), apply controlled swap to each pair of nodes pairf,h :=

(node2f,h, node2f+1,h) that share the same parents, using the bit-string b. Specifically, update the binary

tree as follows. ∀h, e ≥ h ≥ 1, ∀f, 0 ≤ f ≤ 2h

2
− 1 :

– if b[h− 1] = 1 and pairf,h is an internal node: swap each node, along with its descendants, with the
other node, i.e., swap sub-trees with root nodes node2f,h and node2f+1,h. In this setting, the order of
the descendants of these two nodes does not change.

– if b[h− 1] = 1 and pairf,h is a leaf node: swap each node, i.e., swap node2f,h and node2f+1,h.
– if b[h− 1] = 0: do not swap the nodes.

Let ~w be the leaf nodes of the resulting permuted tree.
3. return ~w.

Fig. 2: Tree-Based Controlled Swap (TBCS).

rules and the bits of the bit-string b. Figure 1 presents two examples of applying TBCS to a vector of eight
messages when indx = 3 and indx = 7. Figure 2 presents TBCS in detail.

TBCS offers an interesting feature. Let b be a binary representation of an index indx of a (target) message
in ~m. Then, after applying TBCS to ~m using b, the first element of the output of TBCS is always mindx. Claim
5.1 formally states this feature.
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Claim. Let ~m = [m0, . . . ,mn−1] be a vector of messages and b be a binary representation of an index,
indx, of one of these messages, i.e., 0 ≤ indx ≤ n − 1 and Decompose(indx, log2(n)) → b. After swapping
m0, . . . ,mn−1 using TBCS and b, the first element of the resulting vector is mindx. Formally, ~w[0] = mindx,
where TBCS(b, ~m)→ ~w.

Proof. The binary index b determines how the target node, mindx, is moved. We initially consider the leaf
node level. The target node, after applying the swap rules at this level, always becomes the first child of
its parent node, denoted as node′, for the following reasons. At the leaf node level, if the target node is
originally the second child (or the right-hand side node) of its parent node node′, its corresponding bit (the
least significant bit in b) is always 1, i.e., b[log2(n) − 1] = 1. Because its decimal index is an odd value.
According to the swap rule, the target node is swapped with its sibling node, resulting in the target node
becoming the first child (or the left-hand side node) of node′. Otherwise, if the target node is the first child
of node′, it does not move at that level. Thus, after applying the swap rules at this level, the target node is
always at the first position in the sub-tree with the root node node′.

We move one level up the tree. If the parent node node′ of the target node, is the second child of its own
parent node node′′, then the corresponding bit in b is always 1, i.e., b[log2(n)−2] = 1. In this scenario, node′

and its sub-tree is always swapped with the sibling of node′ and its sub-tree. If the bit is 0, no swap takes
place at this level. Hence, after applying the swap rules, the target node occupies the first position in the
sub-tree with the root node node′′.

If we continue applying the same principle, we reach the two sub-tree root nodes rt1 and rt2, which are
the left and right children of the entire tree’s root node respectively. If the target node is in the sub-tree
with root node rt2, then the corresponding bit in b is always 1. Hence, rt2 and its sub-tee is swapped with
rt1 and its sub-tee. If the target node is in the sub-tree with root node rt1, no swap occurs at this level.
Before the swap, the target node was already the first leaf node in the corresponding sub-tree. However,
after applying the swap rules, the target node becomes the first node in the entire tree; specifically, it holds
that ~w[0] = mindx. �

TBCS offers an interesting feature in a distributed setting. It allows two non-colluding parties to col-
laboratively permute messages such that the leaf node initially at a target position always appears as the
first leaf node in the final permuted tree if both parties follow the permutation rules. When combined with
XOR-based secret sharing, this method ensures oblivious filtering of messages, enabling only one message
to be sent to the recipient without disclosing this message’s original index to the parties performing the
permutation. This point becomes clearer when we explain Helix OT in detail.

5.2 An Overview of Helix OT

The primary challenges in developing Helix OT (and Priority OT) are (i) ensuring unconditional security,
(ii) guaranteeing that T learns nothing about the parties’ inputs and the result, and (iii) minimizing com-
munication and computational costs.

The main idea behind the design of this OT is to require S to encrypt the messages it possesses, permute
them using TBCS, and send the result to T . Subsequently, T permutes the messages using TBCS and sends
only the first leaf node, containing a message, in the permuted tree to R. Upon receiving the encrypted
message, R decrypts it to extract the desired plaintext message.

We proceed to provide more detail. Given the private index indx that R possesses, it represents indx
into its binary representation b and splits each bit of b into two shares, using XOR-based secret sharing.
This yields two bit-strings qS and qT . Moreover, R generates n random values ~v = [v0, . . . , vn−1]. It sends
(qS, ~v) to S and qT to T . Sender S proceeds with encrypting the messages it holds, using the elements of ~v.
It permutes the encrypted messages using TBCS and the bits of qS.

It sends the permuted encrypted messages to T , which permutes them again using TBCS and the bits of
qT . Subsequently, T sends only the message corresponding to the first node (in the leaf node level) of the
tree to R and discards the rest of the tree. R decrypts the message using indx and an element of ~r, yielding
its desired plaintext message.
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5.3 Detailed Description of Helix OT

Below, we present the protocol in more detail.

1. R-side Setup: Setup(1λ, indx)→ ~r

(a) selects n random values (r0, . . . , rn−1)
$← {0, 1}σ. Let vector ~r be defined as ~r = [r0, . . . , rn−1].

(b) sends ~r to S.
(c) stores rindx ∈ ~r and discards the rest of the elements in ~r.

2. R-side Query Generation: GenQuery(1λ, indx)→ q = (qS, qT )

(a) decompose indx into its binary representation:

Decompose(indx, e)→ b

where e = log2(n).
(b) splits every bit of the bit-string b into two shares as:

∀j, 0 ≤ j ≤ e− 1 : SS(1λ, b[j], 2, 2)→ (sS,j, sT,j)

(c) sets bit strings qS and qT as follows:

qS ← sS,0|| . . . ||sS,e−1

qT ← sT,0|| . . . ||sT,e−1

(d) sends qS to S and qT to T .

3. S-side Response Generation: GenRes(m0, . . . ,mn−1, ~r, qS)→ resT
(a) encrypts each message as follows.

∀g, 0 ≤ g ≤ n− 1 : m′
g ← mg ⊕ rg

(b) constructs a vector ~z of the encrypted messages:

~z =
[
(m′

0,m
′
1), (m

′
2,m

′
3), . . . , (m

′
n−2,m

′
n−1)

]
(c) permutes the elements of vector ~z using TBCS and qS, as:

TBCS(qS, ~z)→ ~w

(d) sets resT ← ~w and sends resT to T .

4. T -side Oblivious Filtering: OblFilter(resT , qT )→ resR
(a) permutes the elements of ~w (in resT ) using TBCS and qT :

TBCS(qT , ~w)→ ~w′

(b) sets resR always to the first element, say e, of the first pair in ~w′ and discards the rest of the elements
in ~w′. It sends resR to R.

5. R-side Message Extraction: Retreive(resR, ~r, indx)→ mindx

(a) retrieves the related message mindx by decrypting resR:

mindx = resR ⊕ rindx

(b) returns mindx.

Theorem 1. Let FOT 3
t−n

be the functionality defined in Section 4. Then, Helix OT securely computes FOT 3
t−n

in the case where t = 1, in the presence of semi-honest adversaries, with regard to Definition 3.
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5.4 Helix OT’s Security Proof

In this section, we prove the security of Helix OT, i.e, Theorem 1.

Proof. We will prove the security of the protocol when each party is corrupt.
Corrupt Sender S. The view of S during the real execution of Helix includes: ViewHelixS

(
(m0, . . . ,mn−1), ε,

indx
)

= {rS, ~r, qS}, where rS is the outcome of the internal random coin of S, ~r = [r0, . . . , rn−1] is a vector
of random value sent to S by R, qS = sS,0|| . . . ||sS,e−1 is a query that R sends to S, and each sS,j is a share,
i.e., an output of SS. We construct an ideal-model simulator SimHelixS which receives m0, . . . ,mn−1 and the
security parameter σ from S and outputs a view which has an identical distribution to the view of S in the
real model. Figure 3 shows how SimHelixS works.

SimHelixS (m0, . . . ,mn−1, σ)→ ViewHelixSimS

1. Initiates an empty view ViewHelixSimS
and appends a uniformly random

coin r′S to the view.

2. Selects n random values (d0, . . . , dn−1)
$← {0, 1}σ. Let ~d contain these

random values.
3. Selects e = log2(n) random bits s′S,0, . . . , s

′
S,e−1, where s′H,j

$← {0, 1}.
4. Sets q′S to s′S,0|| . . . ||s′S,e−1.

5. Appends ~d and q′S to ViewHelixSimS
and outputs ViewHelixSimS

= {r′S, ~d, q′S}.

Fig. 3: Simulator SimHelixS for sender S in Helix.

We will argue that the views of an adversary in the real and ideal models have identical distributions.
Random coins rS in the real model and r′S in the ideal model have identical distributions. Furthermore,

vectors ~r in the real model and ~d in the ideal model have identical distributions, as each element of ~r and ~d
is picked uniformly at random from a domain of size σ by R and SimHelixS respectively.

The bit strings qS in the real model and q′S in the ideal model have identical distributions as well, for the
following reasons. Each bit sS,j ∈ qS is an output of the XOR-based secret-sharing scheme SS, while each
bit s′S,j ∈ q′S is selected uniformly at random. Due to the security of SS, the output of SS has an identical
distribution to a bit selected uniformly at random. Thus, each sS,j has an identical distribution to s′S,j. Hence,
it holds that ViewHelixS ≡ ViewHelix

SimS
.

Corrupt T . The view of T during the real execution of Helix includes: ViewHelixT

(
(m0, . . . ,mn−1), ε, indx

)
=

{rT , qT , resT}, where rT is the outcome of the internal random coin of T , qT = sT,0|| . . . ||sT,e−1 is a query
that R sends to T , and each sT,j is an output of SS, and resT = ~w is the output of TBCS which is sent to T by
S as a response. Next, we construct an ideal-model simulator SimHelixT , given the real-model view of T . The
simulator SimHelixT receives the total number of messages n and the security parameter σ. It outputs a view
that has an identical distribution to the view of T in the real model. Figure 4 shows how SimHelixT works.

Now, we explain why the views of an adversary in the real and ideal models have identical distributions.
In the real model, random coin rT and in the ideal model random coin r′T have identical distributions.
Furthermore, the bit strings qT in the real model and q′T in the ideal model have identical distributions, for
the same reason provided above for indistinguishably of qS and q′S.

In the real model, ~w ∈ resT is a vector of encrypted elements, where each element is encrypted using a
fresh one-time pad. Because of the security of one-time pads, each element in ~w has an identical distribution
to an element, of the same size, selected uniformly at random. In the ideal model, ~e ∈ res′T is a vector of
random elements. In the real model, the elements of ~w have been swapped using TBCS(qS, .). As previously
discussed, due to the security of SS, each bit of qS can be considered as a uniformly random value. Hence,
each controlled swap at any level of the tree occurs with a probability 1

2 . At the lowest level, the elements
of each pair of leaf nodes are swapped with a probability of 1

2 .
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SimHelixT (n, σ)→ ViewHelixSimT

1. Initiates an empty view ViewHelixSimT
and appends a uniformly random

coin r′T to the view.

2. Selects e = log2(n) bits s′T,0, . . . , s
′
T,e−1, where each s′T,j

$← {0, 1}.
3. Sets q′T to s′T,0|| . . . ||s′T,e−1.

4. Constructs a vector of n random values: ~b = [a0, . . . , an−1], where

aj
$← {0, 1}σ.

5. Randomly permutes ~b as: π(~b)→ ~e.
6. Sets res′T to ~e.
7. Appends q′T and res′T to ViewHelixSimT

and outputs ViewHelixSimT
=

{r′S, q′T , res′T}.

Fig. 4: Simulator SimHelixT for T in Helix.

As we move up the tree, the sub-trees are swapped as whole units, but the probability of any specific
element being swapped at each level remains 1

2 . Each level of the tree contributes to the overall permutation
independently. Given that there are log2(n) levels, the movement of any specific element through each level
is equally probable. For a specific element to end up in a certain position, it must pass through all the
controlled swaps to reach that position. Each level contributes a swap decision independently, leading to a
uniform distribution of the elements across the final positions. Therefore, for a vector ~w of length n, the
probability that an element moves to a certain position is 1

n .
In the ideal model, ~e ∈ res′T has been randomly shuffled. As a result, the probability that an element

falls in a certain position in ~e is 1
n . Hence, resT and res′T have identical distributions. We conclude that

ViewHelixT ≡ ViewHelix
SimT

.

Corrupt Receiver R. The view of R during the real execution of Helix includes: ViewHelixR

(
(m0, . . . ,mn−1), ε,

indx
)

= {rR, indx, resR, mindx}, where rR is the outcome of the internal random coin of R, indx is the secret
index of R, resR is a single encrypted message that S sends to R, and mindx is the output of the protocol
which is the desirable message that R is interested in.

SimHelixR (n, indx,mindx, σ)→ ViewHelixSimR

1. Initiates an empty view ViewHelixSimR
and appends a uniformly random

coin r′R to the view.

2. Selects a random value rindx
$← {0, 1}σ using r′R.

3. Encrypts mindx using rindx as follows: res′R = mindx ⊕ rindx.
4. Appends indx, res′R, and mindx to ViewHelixSimR

and returns ViewHelixSimR
=

{r′R, indx, res′R,mindx}.

Fig. 5: Simulator SimHelixR for receiver R in Helix.

We will construct an ideal-model simulator SimHelixR , using the real-model view of R. This simulator
receives n, the input of R, which is private index indx, the output mindx, and the security parameter σ. It
outputs a view that has an identical distribution to the view of R in the real model. Figure 5 demonstrates
how SimHelixR operates. Now, we explain why the two views are identical. As before, in the real model,
random coin rR and in the ideal model random coin r′R have identical distributions. Moreover, values indx
and mindx are identical in both models. Also, resR in the real model and res′R in the ideal model have
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identical distributions because both have been encrypted using a fresh one-time pad, selected uniformly at
random and both ciphertexts are decrypted to mindx. Thus, it holds that ViewHelixR ≡ ViewHelix

SimR
. �

6 Priority OT: Efficient Construction of OT 3

t−n

This section presents Priority OT, a fast t-out-of-n OT, which allows a receiver to obtain its t preferred
messages in the order that it initially specifies.

6.1 An Overview

Priority OT primarily relies on random permutation, one-time pads, and a tool called a permutation map.
A permutation map is a vector indicating the new position of each element of a vector ~v of n elements after
~v is randomly permuted. In our protocol, the permutation map allows a receiver R to fetch t messages from
sender S and T without disclosing the original indices of these t messages to them. At a high level, Priority
OT operates as follows. Receiver R possesses a list ~p containing t indices of n messages held by S.

The list ~p is organized according to R’s priority. For instance, if ~p = [4, 0, 1], with t = 3 and n = 5, then
~p[0] holds the highest priority, while ~p[2] holds the lowest priority. Initially, R sends n random values to S.
These values will be used by S to encrypt its outgoing messages. Additionally, R computes a permutation
map for a vector of n elements. R asks S to encrypt and then randomly permute the n plaintext messages
it holds, according to the permutation map. Consequently, S sends the result to T . Moreover, utilizing the
permutation map, R instructs T to (i) retrieve t elements from the messages sent by S, and (ii) transmit
each element to R in a specific order. Upon receiving each message from T , R decrypts it to obtain one of
its prioritized messages.

Informally, S does not learn anything, because R does not reveal to it, its preferred indices. T does not
learn anything due to its lack of knowledge regarding (a) the original indices of the permuted messages and
(b) the secret values used for encrypting the messages. One might consider replacing the random permu-
tation with a pseudorandom permutation [46] to achieve the same goal. However, using a pseudorandom
permutation does not allow us to achieve unconditionally secure OT.

6.2 Detailed Description of Priority OT

1. R-side Setup: Setup(1λ, ~p)→ ~r
This algorithm is run every time R wants to send a query.

(a) selects n random values (r0, . . . , rn−1)
$← {0, 1}σ. Let ~r = [r0, . . . , rn−1]. These elements will be used

as a one-time pad by S to encrypt each message that S holds.
(b) sends ~r to S.
(c) locally stores t of the random values: r~p[0], . . . , r~p[t−1].

2. R-side Query Generation: GenQuery(1λ, ~p)→ q := (qS, qT )

(a) determines to which position, each index in a vector ~v of size n is moved if ~v is randomly permuted
once. To do that, it takes the following steps.

i. initiates a vector ~v, such that its i-th element is set to i:

∀i, 0 ≤ i ≤ n− 1 : ~v[i]← i

ii. randomly permutes ~v:

π(~v)→ ~w

Vector ~w can be considered as a permutation map which determines the position of each element
~v[i] after this element in ~v is permuted.
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(b) finds the index of each element of its priority vector ~p in ~w. To do that, it initiates an empty vector
~y of size t and then takes the following steps.

∀j, 0 ≤ j ≤ t− 1 : Find(~w, ~p[j])→ yj, ~y[j]← yj

Recall that the original priority vector ~p contains the priority-based ordered indices of R’s t preferred
elements in [1, . . . , n], while ~y determines the position of these indices in ~p after they are permuted
according to the permutation map ~w. Note that ~y still maintains the order of R’s t preferred indices.
For instance, ~y[0]-th element in ~w is the index of the highest priority message while ~y[t−1]-th element
in ~w is that of the lowest priority message.

(c) sets qS ← ~w and qT ← ~y. It sends qS to S and qT to T .

3. S-side Response Generation: GenRes(m0, . . . ,mn−1, ~r, qS)→ resT

(a) encrypts each message using the elements of ~r and then appends the result to a vector ~z initially
empty:

∀i, 0 ≤ i ≤ n− 1 : m′
i ← mi ⊕ ri, ~z[i]← m′

i

(b) permutes vector ~z according the permutation map ~w ∈ qS. To do that, it initiates an empty vector ~x
of size n. It finds the position of each value i in the permuted vector ~w, let yi denote that position.
It inserts i-th element from ~z into yi-th position in ~x. Specifically,

∀i, 0 ≤ i ≤ n− 1 : Find(~w, i)→ yi, ~x[yi]← ~z[i]

(c) sets resT ← ~x and sends resT to T .

4. T -side Oblivious Filtering: OblFilter(resT , qT )→ resR

(a) uses elements of ~y ∈ qT (which are priority-ordered indices of R’s preferences) to retrieve R’s preferred
encrypted messages in the permuted vector ~x ∈ resT and append them to an empty vector ~u.
Specifically, it takes the following steps.

∀j, 0 ≤ j ≤ t− 1 : ~u[j]← ~x
[
~y[j]
]

(b) sends each element of ~u in streaming fashion to R, based on their level of priority, starting from the
highest one. Specifically, for every j (where 0 ≤ j ≤ t− 1), it sets resR,j to (~u[j], j) and sends resR,j
to R.

5. R-side Message Extraction: Retrieve(resR,j, ~r, ~p)→ mp

This algorithm is invoked each time R receives an encrypted element from T .

• retrieves the related message mp with priority j, by decrypting first element u of pair resR,j := (u, j)
as:

mp = u⊕ rp

where p = ~p[j].

Theorem 2. Let FOT 3
t−n

be the functionality defined in Section 4. Then, Priority OT securely computes
FOT 3

t−n
in the presence of semi-honest adversaries, regarding Definition 3.

Theorem 3. Priority OT satisfies download efficiency and order-respecting, with regard to Definitions 4
and 5 respectively.

We prove Theorems 2 and 3 in Sections 6.3 and 6.4 respectively.
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SimPriorityS (m0, . . . ,mn−1, σ)→ ViewPrioritySimS

1. Initiates an empty view ViewPrioritySimS
and appends a uniformly random

coin r′S to the view.

2. Selects n random values (d0, . . . , dn−1)
$← {0, 1}σ. Let ~d contain these

random values.
3. Constructs a permutation map ~e as follows.

(a) Initiates a vector ~x, such that its i-th element is i:

∀i, 0 ≤ i ≤ n− 1 : ~x[i]← i

(b) Randomly permutes ~x as: π(~x)→ ~e.
4. Sets q′S to ~e.
5. Appends ~d and q′S to ViewPrioritySimS

and outputs ViewPrioritySimS
=

{r′S, ~d, q′S}.

Fig. 6: Simulator SimPriorityS for sender S in Priority OT.

6.3 Priority OT’s Security Proof

In this section, we prove the security of Priority OT, i.e., Theorem 2.

Proof. We will analyze the security of the protocol when each party is compromised by an adversary.
Corrupt Sender S. The view of S during the real execution of the protocol includes: ViewPriorityS

(
(m0, . . . ,

mn−1), ε, ~p
)

= {rS, ~r, qS}, where rS is the outcome of the internal random coin of S, used to generate its
random values, ~r = [r0, . . . , rn−1] is a vector of random values sent to S by R, and qS = ~w is a query that R
sends to S. Given the real-model view of S, we construct an ideal-model simulator SimPriorityS which receives
m0, . . . ,mn−1 and the security parameter σ from S and outputs a view which has an identical distribution
to the view of S in the real model. Figure 6 shows how SimPriorityS works.

We discuss the views of an adversary in the real and ideal models have identical distributions. Random
coin rS in the real model and r′S in the ideal model have identical distributions as the one in the real model
has been selected uniformly at random by a semi-honest adversary while the one in the ideal model has been
chosen uniformly at random by SimPriorityS . The same argument holds for ~r in the real model and ~d in the
ideal model. The reason is that each element of ~r is picked uniformly at random by a R from a domain of
size σ while each element of ~d is selected uniformly at random by SimPriorityS from a domain of the same size.
Moreover, vectors ~w ∈ qS (in the real model) and ~e ∈ q′S (in the ideal model) have identical distributions as
they both have been permuted randomly. Hence, ViewPriorityS ≡ ViewPriority

SimS
.

Corrupt T . The view of T during the real execution of Priority OT is: ViewPriorityT

(
(m0, . . . ,mn−1), ε, ~p

)
=

{rT , qT , resT}, where rT is the outcome of the internal random coin of T , qT = ~y is a query that R sends to
T , and resT = ~x is a response that S sends to T .

Next, we construct an ideal-model simulator SimPriorityT , given the real-model view of T . SimPriorityT receives
n, t, and σ. It outputs a view that has an identical distribution to the view of T in the real model. Figure 7
shows how SimPriorityT operates. We proceed to explain why the views of an adversary in the real and ideal
models are identical. In the real model, random coin rT and in the ideal model random coin r′T have identical
distributions. Because rT has been honestly selected uniformly at random by a semi-honest adversary while
r′T has been chosen uniformly at random by SimT . In the real model, ~x ∈ resT is a permuted vector of
elements, where each element is encrypted using a fresh one-time pad. Due to the security of one-time pads,
each element in ~x has an identical distribution to an element (of the same size) selected uniformly at random.
In the real model, the probability that an adversary can correctly guess the correct index of an element in
~x is 1

n , because the vector ~x has been randomly permuted; therefore, the probability that an element ends
up in a specific position in the final permutation is 1

n .
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SimPriorityT (n, t, σ)→ ViewPrioritySimT

1. Initiates an empty view ViewPrioritySimT
and appends a uniformly random

coin r′T to the view.
2. Selects n values [b0, . . . , bn−1], where each value is chosen uniformly

at random, i.e., bi
$← {0, 1}σ. Let ~b contain these values.

3. Randomly permutes ~b as: π(~b)→ ~e.
4. Selects uniformly at random t indices of the elements in ~e. Let ~c

contain these indices.
5. Sets q′T to ~c and res′T to ~e.
6. Appends q′T and res′T to ViewPrioritySimT

and outputs ViewPrioritySimT
=

{r′S, q′T , res′T}.

Fig. 7: Simulator SimPriorityT for T in Priority OT.

In the ideal model, ~e ∈ res′T is a vector of random elements that have been randomly permuted. In
this case, the probability that a specific element ends up in a specific position is 1

n . Hence, ~x and ~e (and
accordingly resT and res′T ) have identical distributions. In the real model, each element of vector ~y referees
to a position in a permuted vector ~x ∈ resT , while in the ideal model, each element of vector ~c is an index
picked uniformly at random from one of the elements’ indices in the permuted vector ~e ∈ res′T . Both vectors
~x and ~e contain random elements and the probability that an element is moved to a specific location is 1

n ,
according to the above discussion. Hence, in the real model, from T ’s view, the probability of receiving any
element in ~y is the same as the probability of receiving any other index in ~x. In the ideal model, since each
element of ~c has been picked uniformly at random, the probability of receiving any element in ~c is the same
as the probability of receiving any other index in ~e. Therefore, ~y and ~c (and accordingly qT and q′T ) have
identical distributions. We conclude that ViewPriorityT ≡ ViewPriority

SimT
.

Corrupt Receiver R. The view of R within the real execution of Priority OT includes: ViewPriorityR

(
(m0, . . . ,

mn−1), ε, ~p
)

= {rR, ~p, {resR,j}∀j,0≤j≤t−1, {ml}∀l∈~p}, where rR is the outcome of the internal random coin of
R, ~p is the priority vector of R, {resR,j}∀j,0≤j≤t−1 is a vector of encrypted messages that S sends to R, and
{ml}∀l∈~p is the output of the protocol which includes the desirable messages that R is interested in.

SimPriorityR (n, ~p, {ml}∀l∈~p, σ)→ ViewPrioritySimR

1. Initiates an empty view ViewPrioritySimR
and appends a uniformly random

coin r′R to the view.

2. Selects n random values ~b = [b0, . . . , bn−1], using r′R, where bj
$←

{0, 1}σ.

3. Encrypts each ml in {ml}∀l∈~p using an element of~b as follows, ∀j, 0 ≤
j ≤ t− 1 : res′R,j = mp ⊕ bp, where p = ~p[j].

4. Appends ~p, {res′R,j}∀j,0≤j≤t−1, and {ml}∀l∈~p to ViewPrioritySimR
and re-

turns ViewPrioritySimR
=

{
r′R, ~p, {res′R,j}∀j,0≤j≤t−1, {ml}∀l∈~p

}
.

Fig. 8: Simulator SimPriorityR for receiver R in Priority OT.

We will construct an ideal-model simulator SimPriorityR , using the real-model view of R. This simulator
receives n, the input ~p of R, the output {ml}∀l∈~p, and the security parameter σ. It outputs a view that has
an identical distribution to the view of R in the real model. Figure 8 demonstrates how SimPriorityR works.
Now, we are ready to explain why the two views are identical. In the real model, random coin rR and in the
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ideal model random coin r′R have identical distributions. Furthermore, in the real and ideal models, vector
~p is identical, the same applies to the output set {ml}∀l∈~p. Moreover, {resR,j}∀j,0≤j≤t−1 in the real model
and {res′R,j}∀j,0≤j≤t−1 in the ideal model have identical distributions because the elements of both sets have
been encrypted using fresh one-time pads and they are decrypted to identical values. Based on the above
argument we conclude that ViewPriorityR ≡ ViewPriority

SimR
. �

6.4 Proof of Theorem 3

Proof. Initially, we discuss why Priority OT satisfies the download efficiency property, w.r.t. Definition 4.
In this protocol, the size of each message that the receiver R obtains (in step 4b) can be arbitrary and is
upper-bounded by the security parameter σ. The size of this message, depending on the security parameter,
can be set to 128-bit. This size is O(1) with respect to the total number of messages n held by the sender
S. Furthermore, in total, R obtains exactly t messages, all of which are sent by T (in step 4b). Hence, the
total complexity of messages obtained by R is O(t).

We proceed to argue that Priority OT meets the order-respecting property, w.r.t. Definition 5. In the
protocol, the original priority vector ~p contains the priority-based ordered indices of R’s t preferred elements
in [1, . . . , n]. The vector ~y that R constructs in step 2b using ~p, determines the position of these indices in ~p
after they are permuted according to the permutation map ~w. This vector ~y still maintains the order of R’s
t preferred indices, in the sense that ~y[0]-th element in ~w is the index of the highest priority message, ~y[1]-th
element in ~w is the index of the second highest priority message, up to ~y[t− 1] which is ~y[t− 1]-th element
in ~w, referring to the lowest priority message. In step 4a, T retrieves and appends to ~u each encrypted value
from ~x one by one based on the order determined by ~y. Thus, the order of elements in ~u is determined by
the order that ~p specifies. Since in step 4b T sends to R each element of ~u sequentially starting from 0-th
element, R receives its preferred messages sequentially according to the priority vector ~p it initially defined.
Thus, Priority OT is order-respecting, w.r.t. Definition 5. �

7 Evaluation

We implemented Helix OT and Priority OT in C++ and evaluated their runtime and asymptotic overhead.
The source code for the implementation is publicly available, see references [1,2]. We analyze the runtime of
various phases of Helix OT and Priority OT across different parameters and schemes. Specifically, we:

– analyzed the runtime of Helix OT and Priority OT for different numbers of messages n held by the
sender, ranging from 2 to about 268 million. Table 1 provides a summary of the results.

– analyzed the runtime of Helix OT and Priority OT for different invocation frequencies, ranging from 1
to 100 million times. Table 2 outlines the results.

– analyzed the runtime of Priority OT for various values of t (from 2 to about 16 million) and n (from 2
to 268 million). Table 3 shows the results.

– compared the runtime of Helix OT and Priority OT with the base OTs in [5,59,3] for the 1-out-of-2
setting. Table 4 outlines the results.

– compared the runtime of Helix OT and the most efficient 1-out-of-n OT in [49], for different numbers of
OT invocations (from 125,000 to 1,250,000), when n = 16. Table 5 outlines the outcomes.

– compared the runtime of Helix OT and the efficient OT in [49], for different values of n (from 8 to 128)
when the number of OT invocations is 50,000 and t = 1. Table 6 shows the results.

– compared the runtime of Priority OT and the OT in [49], for different numbers of invocations (from
125,000 to 1,250,000) and values of t (from 2 to 12) when n = 16. Table 7 shows the results.

– analyzed the communication, computation, and storage complexities of Helix OT and Priority OT. Table
8 depicts the results.

– compared the features of Helix OT and Priority OT with several state-of-the-art OTs. Table 9 summarizes
the results.
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7.1 Experimental Setup

We used a MacBook Pro with an Apple M3 Pro CPU and 36 GB of RAM for the experiment. No paralleliza-
tion or other optimizations were applied. The experiment was repeated an average of 20 times. All charts
in this paper are on a logarithmic scale. We utilized the GMP library [35] for big integer arithmetic. The
security parameter of all schemes studied in this section is 128 bits. Accordingly, in Helix OT and Priority
OT, we set the size of each message that the sender holds to 128 bits.

We obtained the code from [3] and ran it in our machine to estimate its runtime. For the runtime of
STD–OT in [5], STD–OT in [59], and RO–OT in [59], we derived the reported figures from [5], specifically
from Table 3, where the GMP library was employed. For the runtime of [49], we derived the figures from
[64]. All experiments for the above schemes, including ours, were conducted on laptops. We acknowledge
that variations in experimental environments (e.g., hardware and network delay) can influence the runtime.
Nevertheless, these factors typically impact the runtime by no more than a factor of 2 or 3. As we will show,
in certain cases, the performance improvements achieved by our schemes far exceed these variations.

7.2 Runtime of Helix OT and Priority OT

As Table 1 shows, when the number of messages increases from 2 to 28 = 268,435,456, Helix OT’s runtime
increases from 0.3 to 180,806 milliseconds (ms) or 3 minutes, while the runtime of Priority grows from 0.3 to
2,943,085 ms or 49 minutes. As Figure 9a shows, for small values of n (up to 28), both protocols’ runtime is
similar. As n increases, the runtime of Priority OT grows faster than Helix OT. This is especially apparent
for n ≥ 212. At the largest values of n (228), Priority OT’s runtime is higher than that of Helix OT. Hence, as
the number of messages scales up, Helix OT becomes more efficient, demonstrating that it is more suitable
than Priority OT for the 1-out-of-n setting, i.e., when t = 1.

According to Table 1, in both schemes, (a) Phase 5 (receiver-side message retrieval) imposes very low
computation costs across all values of n and (b) Phase 1 (the receiver-side setup) and Phase 2 (query
generation) impose low cost (at most 391 ms) when n is in the range [2, 220]. This attribute shows that these
protocols can be employed by resource-constrained devices without significantly depleting their battery when
n is within the above range.

Table 1: The runtime (in ms) of Helix OT and Priority OT for different n, across various phases, when t = 1.

Protocol Phase
Number of messages: n

2 24 28 212 216 220 224 228

H
el

ix
O

T

1 0.299 0.3 0.301 0.496 3.073 44.856 761.959 16343.5
2 0.005 0.006 0.007 0.009 0.011 0.017 0.034 0.054
3 0.001 0.003 0.005 0.698 11.854 230.745 4827.7 97006.5
4 0.001 0.002 0.003 0.463 8.908 169.811 3411.47 67456.1
5 0.0003 0.0003 0.0004 0.0004 0.0005 0.002 0.003 0.036

Total 0.306 0.311 0.316 1.666 23.846 445.431 9001.166 180806.19

P
ri

o
ri

ty
O

T

1 0.3 0.3 0.31 0.459 2.865 42.884 789.428 19475.6
2 0.002 0.007 0.085 1.322 21.066 349.881 8388.79 171850
3 0.002 0.011 0.136 2.107 34.365 812.245 21650.4 2751760
4 0.0008 0.0008 0.0008 0.0009 0.001 0.004 0.006 0.027
5 0.0004 0.0004 0.0004 0.0004 0.0004 0.001 0.002 0.086

Total 0.305 0.319 0.532 3.889 58.297 1205.015 30828.626 2943085.713

As Table 2 demonstrates, when the number of OT invocations increases from 1 to 100,000,000, the
total runtime of Helix OT increases from 0.3 to 282,454 ms (or 4 minutes) while the runtime of Priority
OT increases from 0.3 to 424,795 ms (or 7 minutes). As Figure 9b indicates, both protocols demonstrate
a gradual increase in runtime for smaller numbers of invocations (1 to 102). In this case, both schemes’
runtime is almost identical. However, the growth accelerates as the number of invocations reaches 104 and
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Fig. 9: Comparison of Helix OT and Priority OT runtime for different numbers of messages and invocations.

beyond. Priority OT shows a faster increase in runtime compared to Helix OT. According to Table 2, in
both schemes, the receiver-related phases (Phases 1, 2, and 5) impose low cost (at most about 12 ms), when
the number of invocations is between 1 and 10,000.

Table 2: The runtime (in ms) of Helix OT and Priority OT for different numbers of invocations, when t = 1
and n = 2.

Protocol Phase
Number of invocations

1 10 102 103 104 105 106 107 108

H
el

ix
O

T

1 0.299 0.303 0.347 0.585 2.97 26.688 279.483 2871.42 30000

2 0.005 0.013 0.101 0.80457 8.04 80.1101 804.913 8275.36 89317.2

3 0.001 0.011 0.098 1.123 8.34 112.96 842.173 12036.8 96365.1

4 0.001 0.007 0.056 0.705 4.13 70.989 411.538 7583.49 50769.8

5 0.0003 0.0013 0.009 0.081 0.858 8.315 83.383 999.895 16002.5

Total 0.306 0.335 0.611 3.29857 24.338 299.062 2421.49 31766.965 282454.6

P
ri

o
ri

ty
O

T

1 0.3 0.302 0.328 0.567 2.96 26.714 281.152 2805.7 32327.6

2 0.002 0.008 0.073 0.667 7.01 66.784 723.319 10394.3 121818

3 0.002 0.018 0.175 1.661 17.232 168.108 1787.01 17280.7 231383

4 0.0008 0.003 0.024 0.221 2.277 22.444 235.671 2293.88 28963.8

5 0.0004 0.001 0.007 0.057 0.587 5.791 59.161 616.539 10302.9

Total 0.305 0.332 0.607 3.173 30.066 289.841 3086.313 33391.119 424795.3

According to Table 3, Priority OT scales well even for large values of n and t. For instance, when
n = 224 = 16,777,216 and t = 220 = 1,048,576, it will take about 31,905 ms to complete. For significantly
larger parameters, the runtime may increase substantially, requiring more powerful devices to handle the
increased computation. For instance, when n = 228 and t = 224, it will take about 52 minutes to terminate.

7.3 Runtime Comparison

In this section, we compare the runtime of Helix OT and Priority OT with the current state-of-the-art
OT protocols. Helix OT and Priority OT operate within a three-party setting, whereas existing protocols
function in a two-party environment. Our intention is not to diminish the merits of established OTs but
rather to highlight the potential improvements that our schemes can offer. As Table 4 indicates, for the
1-out-of-2 setting and 128 invocations of each protocol, Helix OT and Priority OT have runtimes of 0.62 ms
and 0.7 ms respectively indicating that they are much faster than the base OTs proposed in [5,59]. For Helix
OT, the enhancement rates compared to STD-OTs are very high (1,962 and 2,711 times faster), indicating
substantial efficiency gains. However, it has a moderate improvement over RO-OT (464 times faster).
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Table 3: Priority OT’s runtime (in ms) for different values of n and t.

Protocol t
Number of messages: n

24 28 212 216 220 224 228

P
ri

o
ri

ty
O

T

2 0.3257 0.5747 4.2262 64.2984 1270.43 30892.3 2961580

24 – 0.5777 4.2354 65.131 1280.34 30902 2966150

28 – – 4.2925 65.5668 1309.79 30919.6 3139240

212 – – – 66.157 1328.63 30938.1 3141950

216 – – – – 1356.14 30964.7 3142570

220 – – – – 31905.5 3143390

224 – – – – – – 3149780

Table 4: Comparing the runtime (in ms) of Helix OT and Priority OT with the following “base” OTs:
standard OT (STD–OT) in [5], STD–OT in [59], random oracle OT (RO–OT) in [59], and Supersonic OT
in [3] for 1-out-of-2 setting. The runtime is based on 128 invocations of each scheme. The text in blue shows
the improvement rate attained by our schemes, while the text in red shows the overhead rate of our schemes.

Protocol Runtime (in ms)
Rate

Helix OT Priority OT

STD–OT in [5] 1217 1962.9 1738.5

STD–OT in [59] 1681 2711.2 2401.4

RO–OT in [59] 288 464.5 411.4

Supersonic OT in [3] 0.36 0.58 0.51

Helix OT 0.62 1 0.88

Priority OT 0.7 1.12 1

Priority OT follows a similar trend but with slightly lower enhancement rates (1,738 and 2,401 for STD-
OTs and 411 for RO-OT). When compared to Supersonic OT [3], both Helix OT and Priority OT have
overhead rates (0.58 and 0.51), suggesting that they are slower than 1-out-of-2 Supersonic OT but still quite
efficient. As Figure 11 (in Appendix A) demonstrates, STD-OT in [59] has the highest runtime whereas
Supersonic OT [3] has the lowest. As discussed in Section 3.1, the 1-out-of-n OT proposed in [49] is the most
efficient 1-out-of-n OT secure against semi-honest adversaries. On the other hand, as Tables 1 and 2 show,
Helix OT is faster than Priority OT, when t = 1. Thus, we compared Helix OT with the efficient OT in
[49] in Table 5. For all invocation counts, Helix OT demonstrates a lower runtime than the OT from [49].
Overall, Helix OT offers a factor of 2.1 improvement over the OT proposed in [49].

Table 5: Comparing the runtime (in ms) of Helix OT and the most efficient 1-out-of-16 OT in [49], for
different numbers of invocations. For the OT in [49] the message size is only 4 bits. The text in blue shows
the average improvement rate achieved by our scheme.

Protocol
Number of invocations Average

1.25× 105 2.5× 105 5× 105 1.25× 106 Rate

OT in [49] 2160 4230 8500 21680 2.1

Helix OT 982.45 1962.83 3945.84 10113.07 1

We also compared the runtime of Helix OT and the OT in [49], for different values of n when t = 1. As
Table 6 illustrates, Helix OT has a lower runtime, about half the time of the OT in [49] for most values of
n. However, when n = 27, the runtime of Helix OT is about 1.3 times longer than that of the OT in [49].
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Thus, on average Helix OT offers about a factor of 2 improvement over the OT in [49]. Note that the OT in
[49] operates efficiently on a much smaller message size than Helix OT, such as 7 bits compared to 128 bits.
We aimed to compare the runtime of our (t-out-of-n) Priority OT with the state-of-the-art t-out-of-n OT.
However, to the best of our knowledge, there is no efficient (implementation of) t-out-of-n OT. It is known
that a t-out-of-n OT can be derived by sequentially executing any 1-out-of-n OT t times. Thus, we apply this
approach to the most efficient 1-out-of-n OT proposed in [49] to estimate the performance of state-of-the-art
efficient t-out-of-n and compare it with our Priority OT.

Table 7 presents the comparison results. As the table depicts, Priority OT shows lower runtime across all
configurations. For smaller values of t (e.g., t = 2), the improvement rate is 1.8, indicating that Priority OT
is about 1.8 times faster. As t increases, the improvement rate becomes more significant, reaching a peak
of 10 times faster for t = 12. This improvement across all values of t shows that Priority OT outperforms
the OT in [49], especially as t increases. As Figure 10 shows, both schemes’ runtime linearly grows as the
number of invocations increases.

Table 6: Comparing the runtime (in ms) of Helix OT and the efficient OT in [49], for different values of n,
when the number of invocations is 5× 104. For the OT in [49] the message size is at most 7 bits, i.e., log2(n)
bits. The text in blue shows the average improvement rate attained by our scheme.

Protocol
Number of messages: n Average

23 24 25 26 27 Rate

OT in [49] 700 960 1220 1330 1500 2

Helix OT 299.48 415.8 690.92 1119.26 2033.84 1

Table 7: Comparing the runtime (in ms) of Priority OT and the OT proposed in [49], for different values of
t and various numbers of OT invocations, when n = 16. For the OT in [49] the message size is only 4 bits.
The text in blue shows the highest average improvement rate attained by our scheme.

Protocol t
Number of invocations Average

1.25× 105 2.5× 105 5× 105 1.25× 106 Rate

O
T

in
[4

9
]

2 4320 8460 17000 43360 1.8

4 8640 16920 34000 86720 3.6

6 12960 25380 51000 130080 5.2

8 17280 33840 68000 173440 6.9

10 21600 42300 85000 216800 8.5

12 25920 50760 102000 260160 10

P
ri

o
ri

ty
O

T

2 2228.56 4529.27 9290.04 23495.6 1

4 2346.3 4713.24 9554.61 23963.7 1

6 2400.08 4897.03 9823.35 24541.6 1

8 2408.6 4985.46 9934.83 24569 1

10 2448.86 4993.86 9999.01 25249.2 1

12 2478.03 5136.36 10323.4 26076.2 1
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OT in [49], t = 10 OT in [49], t = 12 Priority OT, t = 2 Priority OT, t = 4

Priority OT, t = 6 Priority OT, t = 8 Priority OT, t = 10 Priority OT, t = 12

Fig. 10: Runtime comparison of OT in [49] and Priority OT for different values of t.

7.4 Complexity Analysis

In this section, we mainly analyze the asymptotic cost of our schemes. Table 8 summarizes the result of the
evaluation.

Table 8: Asymptotic costs, along with the concrete storage and download costs, for Helix OT and Priority
OT. Here, n represents the number of messages held by S, t denotes the number of indices R interested, and
σ is the security parameter. The text in blue highlights the low concrete storage and download costs for R.

Protocol Party
Communication Computation Storage R-Side Download

Complexity Complexity Complexity Concrete Complexity Concrete

Helix OT

R O(n) O(n) O(1) 3 · σ O(1) σ

S O(n) O(n) O(n) σ · (3 · n− 1) – –

T O(1) O(n) O(n) σ · (2 · n− 1) – –

Priority OT

R O(n) O(n) O(n) ≈ 3 · σ · t O(t) σ · t
S O(n) O(n) O(n) 3 · σ · n – –

T O(t) O(t) O(n) σ · n – –

Communication Complexity. We will initially focus on Helix OT. A receiver R sends n messages to the
sender S (in step 1b) and transmits two strings (in step 2d), where the size of each string is log2(n). Thus,
its communication complexity is O(n). In total, R downloads and receives a single message of size 128-bit,
which happens in step 4b. Sender S’s complexity is O(n), as it sends n encrypted messages to T in step 3d.
The complexity of T is O(1) as it sends a message to R, in step 4b. Note that the size of each message in
this scheme is short, e.g., σ = 128 bits. Next, we analyze the communication cost of Priority OT. A receiver
R sends n messages to the sender S (in step 1b). It also sends n messages to S and t messages to T in step
2c. So, the communication complexity of R is O(n). R downloads only t messages from T , which occurs in
step 4b. R obtains these t messages sequentially, one by one, based on their priority level. The complexity
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of S is O(n) as it sends n messages to T , in step 3c. The complexity of T is O(t) as it (sequentially) sends t
messages to R in step 4b.

Communication Cost Comparison. The efficient 1-out-of-n OT extensions (including the one proposed
in [49]) have a communication complexity of O(n). However, in all these schemes, a receiver’s download
complexity is at least O(n). By sequentially invoking any of these efficient 1-out-of-n OT extensions t times,
the receiver can obtain the desired messages in its preferred order. However, for each invocation, the receiver
must download all n messages.

If one opts to use existing t-out-of-n OT, such as those proposed in [44,75,57], the messages will not
be received in order. In this case, the receiver would need to wait until all n messages are downloaded (in
the worst-case scenario), decrypt them, and then arrange the plaintext messages based on their priority. As
discussed in Section 3.3, there exists OTs (e.g., those in [17,37,82,23]) that support constant response size;
however, (i) they require the receiver to locally store the encryption of the entire database, and (ii) they
are not based on OT extensions; hence, they are not efficient. In contrast, our Priority OT ensures that the
receiver obtains messages according to its preferences, receiving only one message at a time.

Storage Complexity. In Helix OT, R’s required storage size is O(1) for the following reasons. R generates
and sends n random messages to S (in step 1b) where each message is of size σ; however, they can be sent
to S in a streaming fashion when each is generated. R stores a single key of size σ in step 1c. R receives only
a single message, of size σ, from T (in step 4b). In Helix OT, the storage cost of S is O(n) as it maintains
n messages of size σ; it also encrypts and permutes the n messages using TBCS requiring an additional
σ · (2 · n− 1) space. The storage cost of T is also O(n) as it permeates n messages using TBCS that imposes
σ · (2 · n− 1) storage overhead. In Priority OT, the required storage complexity for R is O(n).

In practice, the storage needed by R can be significantly closer to linear with t due to the following
considerations. While R generates and sends n random messages of size σ to S (in step 1b), these messages
can be transmitted in a streaming manner as they are generated. R generates a permutation map on n
values; however, the size of these values is very small, as they are simply integers within the range [1, n].
Their bit size is independent of σ. Furthermore, R stores t keys in step 1c, where each key is of size σ. Also,
R downloads t messages of size σ from T (in step 4b).

The storage complexity of S is O(n) because it maintains n messages of size σ; it also encrypts and then
permutes the encrypted values using the permutation map that imposes 2 · σ · n added storage overhead.
The cost of T is O(n) as it receives n messages from S, where the size of each message is σ. According to the
above discussion, the concrete size of the storage needed for a receiver R to: (a) execute Helix OT is c ·σ and
(b) run Priority OT is approximately c̄ ·σ · t, for constant values c and c̄. In contrast, the state-of-the-art OTs
either require R to download n encrypted messages (e.g., in [44,75,57,49]) or initially store the encrypted
messages e.g., in [17,37,82,23], requiring O(n) storage size where the size of each message is at least σ.

Devices with constrained storage capacity often restrict large downloads to conserve space. Our protocols
are well-suited for these situations, as they significantly reduce storage requirements and download demands
for the receiver.

Computation Complexity. Initially, we will evaluate the parties’ computation complexity in Helix OT.
The cost of R in Phase 1 is negligible, as it needs to only select n random values. In step 2b, it invokes
e = log2(n) instances of secret sharing. In step 5a, it only decrypts a single message. Thus, R’s computation
complexity is O(n). The cost of S is also O(n) because in step 3a encrypts n messages using one-time pads
and in step 3c permutes n messages using TBCS. Similarly, T ’s cost is O(n) as it permutes n messages using
TBCS, in step 4a. We proceed to analyze the parties’ computation complexity in Priority OT. The cost of R
is O(n) because in steps 2a and 2b it generates a permutation map containing n elements using a random
permutation, and in Phase 5 it decrypts t messages using one-time pads. Also, S’s computation complexity
is O(n) as it encrypts n messages in step 3a and permutes a vector of n messages in step 3b. T ’s cost is O(t),
as it needs to find t elements in step 4a.

23



7.5 Features Comparison

Table 9 compares the features of Helix OT and Priority OT with several state-of-the-art OTs. There are un-
conditionally or post-quantum secure OTs, such as the schemes proposed in [58,14,26,27,43,69,13,65,50,31,8].
However, they either rely on exotic assumptions or are not unconditionally secure. Specifically, the uncondi-
tionally secure OTs proposed in [58,14] use multiple servers that maintain an identical copy of the database.
Other unconditionally secure OTs like the one proposed in [26,27,43] use noisy channels.

Table 9: Feature Comparison of OTs.

Protocol
Unconditional Post-quantum Constant No database No noisy No trusted

Type
security security size response replications channel initialization

STD–OT [5] × × × X X X 1–2

STD–OT [59] × × × X X X 1–2

RO–OT [59] × × × X X X 1–2

[49] × × × X X X 1–n

[58] X X X × X X 1–2

[14] X X X × X X 1–n

[26] X X × X × X 1–2

[27] X X × X × X 1–2

[43] X X × X × X 1–2

[69] X X X X X × 1–2

[13] × X × X X X 1–n

[65] × X × X X X 1–2

[50] × X × X X X 1–2

[31] × X × X X X 1–2

[8] × X × X X X 1–2

[3] X X X X X X 1–2

Helix OT X X X X X X 1–n

Priority OT X X X X X X t–n

Furthermore, the OT in [69] achieves unconditionally secure OT by using a fully trusted initializer. There
have been efforts to develop post-quantum secure OTs, like the schemes proposed in [13,65,50,31,8], but they
still rely on various computational assumptions, hence are not unconditionally secure. In contrast, Helix OT
and Priority are unconditionally secure.

8 Conclusion and Future Work

The growing prevalence of low-power devices such as IoT sensors, mobile devices, and edge computing nodes
has been transforming the landscape of modern computation. Unlike traditional settings, where cryptographic
protocols were designed for resource-rich systems, today’s secure multi-party computation and privacy-
preserving machine learning increasingly rely on participants who are resource-constrained. This marks a
significant shift in the computational paradigm, demanding the development of core cryptographic primitives,
such as Oblivious Transfer (OT), that are not only secure but also optimized for performance on resource-
constrained devices.

In this paper, we aimed to help address this challenge with two key contributions: (1) Helix OT: A
highly efficient 1-out-of-n OT scheme that achieves constant-time download complexity, ensuring minimal
bandwidth and computational burden for resource-constrained receivers and (2) Priority OT: A novel t-out-
of-n OT scheme that introduces priority-based transfer, allowing receivers to fetch the most critical data first.
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This approach reduces the overhead of storage, processing, and communication by aligning data transmission
with predefined preferences. Both schemes achieve unconditional security, ensuring resilience against quantum
adversaries. By leveraging techniques such as XOR-based secret sharing, permutation map, and a novel tree-
based controlled swap, our protocols achieve efficiency and scalability. Extensive performance evaluations
demonstrate the scalability and practicality of Helix OT and Priority OT for large-scale applications.

There are several avenues for future research. First, extending these protocols to operate efficiently in
the malicious adversarial model will enhance their applicability in more hostile settings. Second, optimizing
the protocols further to reduce communication overhead and computational latency for extremely large-scale
applications remains an important direction. Another appealing direction is to explore new applications of
the Tree-Based Controlled Swap (TBCS) for other privacy-preserving protocols such as Private Information
Retrieval or Private Set Intersection.
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A Runtime Comparison of Base OTs

As Figure 11 shows, both STD-OT schemes’ implementations (blue and orange bars) have the highest
runtime, around 103 ms, with slight differences between them. The RO-OT implementation (green bar) also
has a high runtime of 2.46 ms but is slightly faster than the STD-OT schemes. Supersonic OT (red bar) is
much faster than the other protocols. Both Helix OT (black bar) and Priority OT (light blue bar) show very
low runtime. They are much more efficient than the other protocols except for Supersonic OT. Note that
the negative values in the figure are a result of the logarithmic scale used in the chart.
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Fig. 11: Runtime comparison of Helix OT, Priority OT, STD–OT in [5], STD–OT [59], RO–OT [59], and
Supersonic OT [3], shown on a logarithmic scale.
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