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Abstract. In this work, we study cryptosystems that can be executed
securely without fully trusting all machines, but only trusting the user’s
brain. This paper focuses on signature scheme. We first introduce a new
concept called “server-aided in-brain signature,” which is a cryptographic
protocol between a human brain and multiple servers to sign a message
securely even if the user’s device and servers are not completely trusted.
Second, we propose a concrete scheme that is secure against mobile hack-
ers in servers and malware infecting user’s devices.
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1 Introduction

1.1 Motivation

Most traditional cryptosystems are designed to be secure on the assumption
that secret information such as decryption keys and signing keys are kept secret
against attackers, and the machine executing the algorithm is trustworthy. In
reality, however, the security is not always guaranteed because the machine may
be infected with malware that leaks secret information and computes in different
ways than intended algorithm. Of course, if the user makes sure that the machine
is not infected with malware before executing the algorithm, such problems will
not occur. But it is a hard task for individual users to thoroughly check for
malware infection on their devices.

One approach to address such problem is to use TPM and TEE. The de-
vice security of TPM and TEE guarantees the secrecy of secret information and
the correct execution of cryptographic process. However, building a secure sys-
tem and attacking it are always a cat-and-mouse game. Even highly protected
systems may be compromised by extremely sophisticated malware or advanced
attacks. Therefore, it is important to design a system whose security does not
rely on the security of a particular device or machine.

Secure multiparty computation (MPC) and threshold cryptography are pow-
erful tools to realize such a system, because they allow algorithms to be securely
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and jointly executed by independent entities who do not trust each other. How-
ever, by using only MPC and threshold cryptography, we cannot solve an im-
portant issue; how to reflect human intention. For example, threshold signature
can be used to generate signatures in the distributed manner, but how multiple
signers agree to initiate the signing process is out of its scope. That is, it has no
mechanism to reflect the signing intention of a (legitimate) human user.

The goal of this work is to develop a system in which only the legitimate
human user can initiate the cryptographic process, and its security is guaranteed
without trusting any particular device or machine.

Now consider an approach that simply combines an existing password-based
user authentication scheme and an MPC; when a user wants to perform cryp-
tographic process, first the user performs password-based user authentication
using their password memorized in their brain, and if it passed, servers execute
the MPC. This approach cannot achieve our goal, because in a password-based
authentication, a user needs to type in their password on their terminal device
and the device executes a protocol. This means that malware on the device can
learn the password and may abuse it!

1.2 Our Contributions

In this paper, we focus on digital signature among various cryptographic pro-
cesses. We summarize our contributions in the following.

Formal Definition of Server-Aided In-Brain Signature. As the first contribution,
we introduce a concept called “server-aided in-brain signature,” in-brain sig for
short. Roughly speaking, an in-brain sig scheme consists of MPCs that are per-
formed among a user and several servers to generate a public key and signatures.
Unlike regular MPCs, which are performed by only machines, MPCs in in-brain
sig allow a human user to participate, i.e, instead of user’s device, a human user
(or a human brain) performs the protocol with servers. Therefore, all calcula-
tions a user needs should be simple enough to be done in human brain (or only
using a pencil and paper). A password memorized in user’s brain is used to re-
flect human intention, but it does not have to be typed in any user’s devices.
This is possible because the user themselves participate in the MPCs. Therefore,
in-brain sig is one of the solutions to achieve our goal.

As attackers against in-brain sig, we consider malware that infects a user’s
device and a hacker controlling a server, and they may behave actively, i.e.,
not follow protocols. We also consider mobile hackers, where a hacker corrupts
several servers at different times. To ensure the security against active malware
in a user device, we require each user to use two devices. See Sec. 3 for details.

Constructing an In-Brain Signature Scheme. The second contribution is propos-
ing a concrete in-brain sig scheme based on threshold (EC)DSA. The overview
of our in-brain sig scheme is as follows.

– Servers share a secret information (called master secret) in advance.
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– A signing key for a user is determined by the user’s password and the master
secret using a pseudo-random function (PRF). The human user and servers
jointly compute it by running an MPC. Further, servers jointly compute
the corresponding public key using the threshold key generation protocol of
(EC)DSA.

– In case servers are hacked, each server does not keep the user’s signing-key
share in its storage.

– When signing is requested, the user and servers re-generate the signing key
and the corresponding public key. The password-based authentication is done
by comparing the re-generated public key and the original one. Only after
the successful authentication, servers perform the threshold signing protocol
of (EC)DSA to compute a signature.

Our MPCs are carefully designed to minimize the calculation done by a human
user. The security against malware that controls one of user devices and against
a mobile hacker that controls predetermined number of servers, e.g., one-out-of
three servers, is ensured through the use of secure MPCs and threshold signature
scheme. By using a PRF to derive a signing key, offline dictionary attacks on
users’ passwords is prevented. Therefore, passwords only need to be long enough
to resist online dictionary attacks.

1.3 Related Works

There are many proposals to solve the shortcomings of password-based user
authentication mentioned above.

Human identification schemes and leakage-resilient password systems, first
introduced in [12], are challenge-response authentication protocols that allow
human users to compute responses in their brains, and passwords are never
leaked to the user’s device, unlike typical password-based schemes. However,
these schemes are symmetric systems, that is, the server that authenticates the
user verifies the authenticity based on the password shared with the user. There-
fore, once the server is hacked, the password leaks.

Boldyreva et al. [2] proposed a system that allows a human user to be authen-
ticated based on a password and exchange a session key. Similar to human iden-
tification schemes, any devices between the user and the authentication server
cannot learn the password but the server needs to share the password to authen-
ticate the user. So, it is vulnerable to server hacking.

Many systems that utilize human brainwave (e.g., brainwave communication,
brainprint, passthoughts) have also been proposed. They, however, need special
devices to measure human brainwave, and the system security relies on the device
security as in the system with TEEs.

The survey by Halunen and Latvala [9] introduced many systems in which
human’s intention can be reflected into the systems. However, we cannot use
them, because in these systems, user’s device is assumed not to be infected, i.e.,
the system rely on a security of a single device.
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2 Preliminaries

In this paper, λ ∈ N denotes the security parameter, Fq denotes the field with
prime order q. For a non-negative function f : N → R, we say that f(x) is
negligible in x (or simply f is negligible) if for any polynomial function p, there
exists n0 ∈ N s.t. f(x) ≤ 1/p(x) holds for all x ≥ n0. Let negl be a negligible
function.

2.1 Secret Sharing and Multi-party Computation

Secret sharing schemes, especially threshold schemes, introduced by Shamir [15]
and Blakley [1], is a basic tool to realize secure distributed systems. A secret
sharing scheme5, a secret value s is divided into n pieces, called “shares,” each
one is given to a “shareholder.” From t + 1 shares, the original secret can be
uniquely reconstructed, where t is the predetermined threshold, while t or less
shares give no information about s. Following many literature, we denote i-
th share of s by [s]i, and the list of n shares by [s] = ([s]1, . . . , [s]n). [s] also
represents the situation where s is secret-shared among shareholders.

In the additive scheme for t = n− 1, n shares of a secret s ∈ G are random
elements that satisfy s =

∑
i[s]i in some additive group G. In Shamir’s (t, n)

scheme for t < n − 1, each share is represented by [s]i = fs(i), where fs is a
t-degree random polynomial in some finite field F such that fs(0) = s.

Multiparty computation (MPC) is a protocol used to compute f(x1, . . . , xm)
for a given function f and secret inputs x1, . . . , xm. Among several approaches
to construct MPCs, we focus on MPCs based on secret sharing schemes.

In an MPC for computing a function f , for each input value xj , a party who
knows the value of xj first generates [xj ] and shares them among all parties.
Next, the parties jointly compute [y] = [f(x1, . . . , xm)] by performing a certain
protocol πf . Then, the computation result y is reconstructed from shares [y].
For various functions, efficient PMCs have been proposed so far. Theoretically
any functions theoretically can be evaluated by MPCs. Especially, the MPC
(denoted by πRSS) that generates a random element allows to securely evaluate
even probabilistic functions.

Efficiency of MPCs highly depends on compatibility of the evaluated function
and the base field/group of the underlying secret sharing scheme. MPCs in which
each value is shared over Fq for large prime q is suitable for arithmetic functions.
On the other hand, binary MPCs in which each value is shared in binary repre-
sentation, that is, shared over (F2)

ℓ, is suitable for logical operations and integer
comparisons. In order to evaluate a complex function or algorithm, MPCs for
share conversion (e.g. [10]) can be used to convert shares over a domain (e.g.,
Fq) into shares over another domain (e.g., (F2)

ℓ).
As the security of MPCs, there are various attack models. They are classified

based on several points of view. In this paper, we consider the model so-called
honest majority with abort [11]. In this model, adversaries can be active (i.e.,

5 In this paper, we consider only threshold schemes.
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they may deviate from the protocol), but majority of parties are honest, and if a
dishonest behavior is detected, parties abort the protocol and the correct output
does not need to be output.

To define the security of an MPC πf for a function f(x1, . . . , xm), the ideal/real
simulation paradigm is often used. In the real world, an adversary A, control-
ling up to t parties PA(⊂ {P1, . . . , Pn}), and honest parties execute πf . Let
RealA(z)(x1, . . . , xm) denote the list of output of the honest parties and A in the
real execution of πf . In this execution, A can follow any arbitrary strategy, while
honest parties follow the instructions of πf . On the other hand, in the ideal world,
there are a simulator Sim controlling PA, honest parties, and a functionality Ff

that receives x1, . . . , xm from parties/simulator and outputs f(x1, . . . , xm). In
this world, roughly, each party sends input to Ff (via a secure channel), and
receives y = f(x1, . . . , xm) from Ff . For modeling “with abort,” there are some
special instructions. For detail definition, refer [11]. Let IdealSim(z)(x1, . . . , xm)
denote the list of output of the honest parties (that is equal to y from Ff ) and
Sim in the execution of the ideal world. We way πf is a secure MPC for f if for
every ppt adversary A, there exists a ppt simulator Sim s.t. RealA(z)(x1, . . . , xm)
and IdealSim(z)(x1, . . . , xm) are indistinguishable, where z is an auxiliary input.

If there exists a secure MPC πf for a function f and a secure MPC πh for a
function h, we can easily construct a secure MPC πh◦f ; (1) compute [y] = [f(x)]
from secret-shared x using πf , (2) without reconstructing y, compute [z] = [h(y)]
using πh, (3) reconstruct z from shares [z].

2.2 Digital Signature

A signature scheme consists of three algorithms, (SigKGen,SigSign,SigVerify).

SigKGen(1λ)→ (pk, sk) : The probabilistic key generation algorithm takes the
security parameter λ as input, and generates a public (verification) key pk
and a secret (signing) key sk.

SigSign(m, sk)→ σ : The signing algorithm takes a message m ∈ M and a
signing key sk as input, and outputs a signature σ.

SigVerify(m,σ, pk)→ acc/rej : The verification algorithm takes a message m, a
signature σ, and a public key pk as input, and outputs acc or rej.

Correctness. For all m ∈M and (pk, sk)← SigKGen(1λ),

Pr[SigVerify(m,SigSign(m, sk), pk)) = acc] = 1

must hold.

Security. The typical security notion of digital signature scheme is existential
unforgeability against chosen message attack (EUF-CMA) defined as follows.

Definition 1 (EUF-CMA for digital signature). Let ΠDS = (SigKGen,SigSign,SigVerify)
be a digital signature scheme. The EUF-CMA game between a challenger C and
an adversary (or forger) B is defined as follows.
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1. The challenger C generates (pk, sk)← SigKGen(1λ), and sends pk to B.
2. B asks a query mj to the sign oracle qsig times, where qsig = qsig(λ) is a

polynomial in λ. As the response, C computes σj ← SigSign(mj , sk), and
sends σj to B.

3. B outputs a forged message-signature pair (m̃, σ̃).
4. If m̃ ̸= mj for all j ∈ {1, . . . , qsig} and SigVerify(m̃, σ̃, pk) = acc, B wins the

game.

B’s advantage in this game is defined as

Adveuf-cma
ΠDS,B (λ) := Pr[m̃ /∈ {m1, . . . ,mqsig} ∧ SigVerify(m̃, σ̃, pk) = acc].

If Adveuf-cma
ΠDS,B (λ) is negl(λ) for any ppt algorithm B, ΠDS is said to be EUF-CMA.

2.3 Threshold Signature

Threshold signature is an extension of signature schemes in which distributed
signers, rather than a single signer, jointly generate a public key and signatures
associated with the public key. For typical signature schemes such as DSA and
BLS signature, threshold signature schemes have been proposed [8, 16].

Each scheme has some parameters — the number of signers, the number of
signers required to sign, the maximum number of colluding signers for security.
For simplicity, we consider threshold signature schemes in which there are 3
signers, S1,S2,S3, all of them are required to join a signing protocol in order to
successfully generate a signature, and one signer can be malicious (that is, we
assume no collusion of signers).6

For a message spaceM, a threshold signature scheme ΠtDS associated to a
digital signature scheme ΠDS = (SigKGen,SigSign,SigVerify) consists of a pair of
protocols (πSigKGen, πSigSign).

πSigKGen(1
λ)→ (pk, sk1, sk2, sk3) : The key generation protocol is performed by

signers S1,S2,S3. It takes the security parameter λ as input, and at the end
of the protocol, each Si obtains a signing-key share ski, and all of them agree
the corresponding public key pk.

πSigSign(m, sk1, sk2, sk3)→ σ : The signing protocol is performed by S1,S2,S3.
It takes a message m ∈ M as a public input and a signing-key share ski as
a private input from Si, and outputs a signature σ.

Correctness. For all λ ∈ N and m ∈M, if (pk, sk1, sk2, sk3)← πSigKGen(1
λ), σ ←

πSigSign(m, sk1, sk2, sk3), then Pr[SigVerify(m,σ, pk) = acc] = 1 must hold.

Security. We consider the existential unforgeability against chosen message at-
tack (EUF-CMA).

6 We can similarly define the system model and security for different parameters.
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Definition 2 (EUF-CMA for threshold signature[8]). Let ΠtDS = (πSigKGen, πSigSign)
be a threshold signature scheme, and SigVerify is the associated verification al-
gorithm. The EUF-CMA game between a challenger Cth and an adversary Bth

controlling one signer (denoted by S3 WLOG) is defined as follows.

1. The challenger Cth (playing the role of S1 and S2) and Bth (playing the role
of S3) jointly perform πSigKGen(1

λ), and Cth obtains pk, sk1, sk2.

2. Bth asks a query mj to the sign oracle qsig times, where qsig = qsig(λ) is a
polynomial in λ. Cth (playing the role of S1 and S2) and Bth (playing the
role of S3) run πSigSign(mj , sk1, sk2, ∗) to compute σj.

3. Bth outputs a forged message-signature pair (m̃, σ̃).

4. If m̃ ̸= mj for all j ∈ {1, . . . , qsig} and SigVerify(m̃, σ̃, pk) = acc, Bth wins
the game.

Bth’s advantage in this game is defined as

Advt-euf-cma
ΠtDS,Bth

(λ) := Pr[m̃ /∈ {m1, . . . ,mqsig} ∧ SigVerify(m̃, σ̃, pk) = acc].

If Advt-euf-cma
ΠtDS,Bth

(λ) is negl(λ) for any ppt algorithm Bth, ΠtDS is said to be EUF-
CMA.

If ΠDS has EUF-CM security and ΠtDS associating to ΠDS satisfies the sim-
ulatability defined below, then ΠtDS also has EUF-CMA security[8].

Definition 3 (Simulatability[8]). Let ΠtDS = (πSigKGen, πSigSign) be a thresh-
old signature scheme. ΠtDS is said to be simulatable if it satisfies the following
conditions.

1. There exists a simulator sim1 that takes pk and the public information of
πSigKGen as input, and simulates the view that the adversary A can see in the
protocol execution of πSigKGen.

2. There exists a simulator sim2 that takes (m, pk) and t = 1 secret-key share
and the public information of πSigSign as input, and simulates the view that
the adversary A can see in the protocol execution of πSigSign.

2.4 (EC)DSA and Threshold (EC)DSA

DSA and its elliptic-curve variant are popular digital signature schemes, in which
a key pair is (sk = x, pk = gx) over a cyclic group ⟨g⟩ with prime order q.

Damgard et al [5] proposed a threshold signature scheme associated to (EC)DSA.
It is shown that their πSigKGen and πSigSign have UC-security [4] that is stronger
security notion than simulatability. Therefore, the threshold signature scheme is
EUF-CMA secure. In their distributed key generation protocol πSigKGen consists
of two steps: (1) Run the MPC πRSS to generate a random secret key sk ∈ Zq,
(2) run the MPC πPowOpen that jointly computes gsk from [sk] and a public g.
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2.5 Pseudo-random Function

Pseudo-random function (PRF) is a keyed function used to generate a pseudo-
random string (or an element in some domain). For a PRF PRF, let KPRF(λ) be
its key space.

Definition 4 (Pseudorandom function). The PRF game played by a dis-
tinguisher D is defined as follows: First, b ←$ {0, 1}, k ←$ KPRF(λ) are chosen.
D is given the security parameter λ and access to the oracle O(·). If b = 1,
O(·) := PRFk(·), otherwise (b = 0), O(·) = RND(·), where RND is a random
function whose range and domain are the same as PRF. After polynomial times
of oracle access, D outputs b′ ∈ {0, 1}.

If for any ppt distinguisher D, the advantage

AdvprPRF,D(λ) =
∣∣Pr[DO(1λ) = 1 | b = 1]− Pr[DO(1λ) = 1 | b = 0]

∣∣
is negligible in λ, then PRF is said to be a pseudo-random function.

In this paper, we consider a PRF that has the following properties. (i)PRF
takes a bit string as input, and outputs x ∈ Zq for a large prime. (ii) PRF can
be computed by an efficient MPC secure against active attack in the honest
majority with abort model. Naor-Reingold PRF [13] is a candidate.

3 Server-aided In-brain Signature

Our goal is to provide a mechanism in which only a password in a human brain
can initiate the key-generation and signing process, and its security is guaranteed
without trusting all machines, but only trusting the user’s brain. In this section,
we introduce a new framework, called Server-aided In-brain Signature, or in-
brain sig for short, as an approach to our goal.

3.1 Definition of In-brain Sig

An in-brain sig is a system by which human users securely generate their pub-
lic(verification) key and signatures supported by partially trusted servers. In
case servers get hacked, we assume three servers S1,S2,S3. Further, we assume
that each user U is assigned a unique user identifier uid , chooses a password
pw ∈ PW randomly in advance, and memorizes it in their brain memory, where
PW be a pre-determined password space.

A server-aided in-brain sig scheme consists of four protocols and one algo-
rithm (πSetup, πKGen, πSign, πRefresh,Verify) as follows. LetM be the message space.

πSetup(1
λ)→ (state1, state2, state3) : The setup protocol is performed by servers

S1,S2,S3. Each Si obtains a secret state statei as its output.
πKGen((uid , pw), state1, state2, state3)→ pk : The key generation protocol is per-

formed by a (human) user U and servers S1,S2,S3. U’s input is uid and pw ,
each server’s input is its state statei. The output is user’s public key pk.
After this protocol, (uid , pk) is published for later reference.7

7 We assume that if (uid , pk) has been published, πKGen is never done.
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πSign(pk, (uid ,m, pw), state1, state2, state3)→ σ : The signing protocol is per-
formed by U,S1,S2,S3. U’s input is uid , a message m ∈M to be signed, and
pw , whereas each server’s input is statei. Further, this protocol takes a pub-
lic value pk, which is published with specified uid . 8 The protocol outputs a
signature σ as a public output. (uid ,m, σ) is published.

πRefresh(state1, state2, state3)→ (state ′1, state
′
2, state

′
3) : The refresh protocol is

performed by S1,S2,S3 to refresh servers’ states statei.

Verify(pk,m, σ)→ acc/rej : The verification algorithm takes pk,m, σ as input,
and outputs acc or rej as in ordinary signature schemes.

Remark 1 (On User’s Terminal Devices). We assume that each user U can use
two terminal devices T1,T2. This is because if the user relies on a single termi-
nal device, an active malware in it may impersonate servers. To detect such a
malicious behavior, we need a server authentication mechanism. At this moment
we have no idea of brain-friendly server authentication system.

In all above protocols, all data sent to/from U are transmitted via T1 or T2.
The protocols specify T1 or T2 to be used for each value sent to/from U.

Remark 2 (On the Refresh protocol). To protect the system against “mobile
hackers,” we provide a refresh protocol performed constantly, say, once a week.
Mobile hackers (or originally mobile viruses) was introduce in [14] to model the
behavior of hackers in the real world; hackers are always trying to take over
servers, while server administrators are managing to detect and eliminate them
as soon as possible, so hackers cannot stay on one server and may move to
another. E.g., the first server S1 is hijacked first, next the second server S2 is
hijacked after S1 is cleaned. Even if only one server is hijacked at any time, the
mobile hacker may gather secret information from all servers. So, continuous
refreshing of secret information is generally used in proactively-secure systems
[14, 7, 3].

Feasibility. For feasibility, in addition to normal requirement (e.g., all algorithms
must be polynomial time), we require that all calculations by the user are simple
enough to be done in the brain or using only paper and pencils.

Correctness. An in-brain sig scheme must satisfy the correctness: For all λ ∈
N and m ∈ M, if pw ←$ PW, (state1, state2, state3) ← πSetup(1

λ), pk ←
πKGen((uid , pw), state1, state2, state3), σ ← πSign(pk, (uid ,m, pw), state1, state2, state3),
then

Pr[Verify(pk,m, σ) = acc] = 1

holds. Furthermore, this equation should hold even if state1, state2, state3 are
refreshed by πRefresh protocol for any number of times.

8 We assume that if (uid , pk) has not been published, πSign is never done.
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3.2 Security Notions

For the security of in-brain signature, we consider existential forgery as the
adversary’s goal, and two types of adversaries, malware in user’s devices and
hackers controlling servers.

We set the following assumptions.

– During the execution of πSetup and πKGen, all malware in user’s devices and
hackers controlling servers are passive adversaries, i.e., they never deviate
from the protocols.

– Malware controls at most one user terminal devices in each protocol execu-
tion. This assumption is necessary to take an advantage of the use of two
devices.

– A secure channel can be established between each pair of servers based on
mutual authentication. Therefore, no one can eavesdrop on them or send
information to a server pretending to be another server.

– When we consider the security against malware (that can be active) in a
device, the other terminal and all servers are considered being under passive
malware/hackers. Similarly, when we consider the security against hacker
(that can be active) controlling a server, user terminals and other servers
are considered being under passive malware/hackers. We leave modeling the
security in the presence of independent active adversaries as a future work.

We define selective security in which an adversary (malware or hacker) de-
clares the target user at the beginning of the security game.

Security against malware in user’s device is defined by EUF-CMAdev game
performed by an adversary A and a challenger C. In this game, A controls either
of two terminal devices and corrupts any users other than one target user, and
C plays the role of the target user, all servers, and a terminal device that is not
controlled by A.

EUF-CMAdev Game. First, the adversary A outputs a user identifier uid t.
Let Ut be the target user whose user ID is uid t. The challenger C executes
πSetup protocol, randomly chooses a password pw t ←$ PW of Ut, and initializes
Msigned := ∅. Next, A issues the following four types of queries. In the following,
role(∈ {1, 2}) indicates the terminal device controlled by A.

Start-key-generation query StartKGen(sid , role) : Amust issue this query
only once before all StartSign queries. Ut and servers perform πKGen((uid t, pw t),
state1, state2, state3)→ pkt. C sends A pkt and all values what Trole can see.

Start-signing query StartSign(sid , role,m) : If sid has already been used,
this query is ignored. Otherwise, Ut starts the protocol πSign(pkt, (uid t,m, pw t),
state1, state2, state3). The device Tj (j ̸= role) is not controlled by A, so it
forwards all values correctly. The protocol πSign is performed until Trole is
supposed to send a value in the protocol description, and all values Trole can
see is sent to A.

Send-message query Send(sid , dest , src,msg) : Issuing this type of query, A
sends msg to the destination dest ∈ {Ut,S1,S2,S3} as sent from the source
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src ∈ {Uuid ,S1,S2,S3}. (uid is any user identifier.) If Send(sid ,Ut, src,msg)
is issued after StartSign(sid , role, ∗) query, msg is treated as the message
that src sends to Ut through the controlled device Trole . (If corresponding
StartSign does not exist, this query is ignored.) If dest = Si, src = Uuid

must be hold. Upon receiving msg , dest starts πKGen or πSign, or continues
it if it has already started, following the protocol description, i.e., computes
something, sends something to some one. πKGen or πSign is performed until
Trole is supposed to send a value to someone in the protocol description, and
all values Trole can see is sent to A.

Refresh query Refresh : C performs πRefresh.

When (uid ,m, σ) is published after StartSign(sid , ∗,m) and a series of Send
queries with the same sid , C adds m toMsigned.

Finally, A outputs a forged message-signature pair (m̃, σ̃). If m̃ ̸∈ Msigned

and Verify(m̃, σ̃, pkt) = acc, then we say A wins the game.

Security against a mobile hacker controlling a server is defined by EUF-
CMAserver game performed by an adversary A and a challenger C. In this game,
A controls servers (one at any given time) and corrupts any users other than one
target user, and the challenger C plays the role of the target user, un-controlled
servers. Both devices are considered being under passive adversaries . So, all
values sent between the target user and servers are passed directly.

EUF-CMAserver Game. First, A outputs uid t and iA ∈ {1, 2, 3}. Let Ut be the
target user, AiA be the corrupted server. The challenger C executes πSetup proto-
col, randomly chooses a password pw t ←$ PW of Ut, and initializesMsigned := ∅.

Next, A issues the following four types of queries.

Start-key-generation query StartKGen(sid) : This type of query has to be
issued only once and before all StartSign queries. Ut and servers perform
πKGen((uid t, pw t), state1, state2, state3)→ pkt. C sends A all values what SiA
can see in the protocol including pkt.

Start-signing query StartSign(sid ,m) : If sid has already been used, this
query is ignored. Otherwise, Ut starts the protocol πSign(pkt, (uid t,m, pw t), state1,
state2, state3). The protocol πSign is performed until SiA is supposed to send
a value in the protocol description, and all values SiA can see is sent to A.

Send-message query Send(sid , dest , src,msg) : Issuing this type of query, A
sends msg to a destination dest as a message from a source src. (dest , src)
has to be (Si,Uuid) for some uid and i ̸= iA, or (Ut,SiA). In the case of
src = Uuid ̸= Ut, the user Uuid is considered controlled by A. Upon receiving
msg , dest starts πKGen or πSign, or continues it if it has already started,
following the protocol description. πKGen or πSign is performed until SiA or the
controlled user Uuid is supposed to send a value in the protocol description,
and all values SiA and Uuid can see is sent to A.

Refresh query Refresh(i′A) : C performs πRefresh. Corrupted server is changed
to Si′A .

When (uid t,m, σ) is published after StartSign(sid , ∗,m) and a series of Send
queries the same sid , C adds m toMsigned.
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At the end of the game, A outputs a forged message-signature pair (m̃, σ̃). If
m̃ ̸∈ Msigned and Verify(m̃, σ̃, pkt) = acc, then we say A wins the game.

Definition 5. If for any ppt adversary A,

Pr[A wins EUF-CMAdev game] ≤ qsend/|PW|+ negl(λ) (1)

holds, then the in-brain sig scheme is said to be secure against malware in a
device (EUF-CMAdev), where qsend is the number of Send queries. Further, if
for any ppt adversary A,

Pr[A wins EUF-CMAserver game] ≤ qsend/|PW|+ negl(λ) (2)

holds, then scheme is said to be secure against hacker controlling a server (EUF-
CMAserver).

Remark 3. The term qsend/|PW| is corresponding to the winning probability of
the online dictionary attack. To check one password in the online attack, A has
to issue Send queries several times, and the number of times depends on the
description of πSign protocol. Here, we use qsend as the number of trials.

4 In-brain Sig Based on (EC)DSA

In this section, we give a concrete construction of in-brain sig based on (EC)DSA.

4.1 Key Idea

First of all, to prevent exposing pw to malware in user’s device, U should never
type pw in it. Instead, in our scheme, U receives a one-time-pad key x1 from S1
through the first terminal device, and then sends the one-time-pad ciphertext
x2 := pw + x1 to S2 through the second one. (x1, x2) can be seen as shares of
(2, 2)-threshold scheme, so not only one device infected by malware but also a
server controlled by hacker cannot know pw . By S1 and S2 re-sharing x1 and x2,
respectively, we easily obtain the situation that pw is shared among servers.

Next, servers jointly generate user’s key pair based on shared pw . Unfortu-
nately, human memorable passwords are not complex enough. If we simply set
sk := pw, attackers can conduct offline dictionary attack. Note that anyone can
check if guessed password is correct or not by using the published pk. To prevent
offline attack, in our scheme, sk is determined by pw , the user identifier uid , and
a system master key msk as

sk := PRFmsk (pw∥uid).

By secret-sharing msk among servers beforehand, servers are able to jointly
generate sk from shared pw , while an attacker cannot evaluate PRFmsk without
legitimately performing a protocol. In this way, off-line dictionary attack can be
prevented.
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4.2 Protocol Description

Let the password space be PW = Zℓpw
n for some n and ℓpw. Concrete exam-

ple of these parameters will be discussed later. Let SigSignDSA and SigVerifyDSA

be the signing and verification algorithms of DSA (or ECDSA), πDSA
SigSign be the

distributed signing algorithm given in [5], πRSS, πZSS, πPowOpen be protocols de-
scribed above. Let PRF : KPRF × {0, 1}L → Zq be a pseudorandom function,
where q is the order of g, and πPRF be an MPC to compute PRFmsk(x) from
shared msk and x. Let πcomv be an MPC that converts shares in PW into
shares in {0, 1}ℓpw logn.

πSetup(1
λ). Servers run πRSS to generate random msk ∈ KPRF.

πKGen((uid, pw), [msk]). The outline of this protocol is depicted in Fig. 1.

1. U randomly chooses a session ID sid , and sends (sid , uid) to S1 using the
first terminal device T1.

2. S1 chooses x1 ←$ PW randomly, sends (sid , x1) back to U, and sends
(sid , uid) to S2,S3.

3. U calculates x2 := pw +x1 ∈ PW in his brain, and sends (sid , uid , x2) to S2
using the second device T2.

4. If S2 has not received the same (sid , uid) from S1, S2 discards (sid , uid) and
aborts the protocol. Otherwise, sends (sid , uid) to S1,S3.

5. S1 and S2 secret-share x1 and x2, respectively, among three servers. Each
server Si computes [pw ]i := [x2]i − [x1]i.

6. Performing πcomv, servers convert shares [pw ] over PW into [pw ]bin over
{0, 1}ℓpw logn. Servers compute [sk] = [PRFmsk (pw∥uid)] from [msk], [pw]bin

and uid by using πPRF, compute pk := gsk from [sk] by using πPowOpen,
and publish (uid, pk). Finally, servers discard all information obtained in
the protocol.

πSign(pk, (uid,m, pw), [msk]).

1. U accesses S1 and gets a random session identifier sid , and sends (sid , uid ,m)
to S1 using the first terminal device T1.

2. S1 chooses x1 ←$ PW randomly, sends (sid , x1) back to U, sends (sid , uid ,m)
to S2,S3.

3. U calculates x2 := pw + x1 in the brain, and sends (sid , uid , x2,m) to S1
through T2.

4. S2 sends (sid , uid ,m) to S1,S3. If the same (sid , uid ,m) has not been sent
from S1, the protocol aborts.

5. Servers jointly compute [sk] in the same way as in πKGen, and perform
πPowOpen and obtain pk′ := gsk. If pk′ ̸= pk, where pk is the published
one, then this protocol aborts. If not, servers perform πSigSign to compute
σ := πSigSign(pk,m, [sk]) and publish (uid ,m, σ). Finally, servers discard all
information they obained in the protocol.

Verify(pk,m, σ). This is exactly the same as SigVerifyDSA.
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U(pw) S1([msk]1) S2([msk]2) S3([msk]3)

T1

T2

sid←$ {0, 1}λ� sid

-sid, uid
x1 ←$ PW� sid, x1

-sid, uid, x2x2 := pw + x1

S1 secret-shares x1

S2 secret-shares x2

[pw ] := [x2 − x1]
local

computation

πPRF, πconv
[sk] is computed

from [pw ], uid , [msk]
πPowOpen pk is computed from [sk]�pk

Fig. 1. Outline of πKGen

πRefresh(state1, state2, state3). Servers jointly perform an MPC (denoted by πZSS)
that generates shares of 0, and each Si obtains zi as a share. Then, Each Si sets
state ′i := statei + zi.

Correctness Clearly, the correctness of (EC)DSA and underlying MPCs lead the
correctness of our scheme.

Feasibility It is clear that all servers’ computation is done in polynomial time.
What a human user needs to do in their brain is ℓpw -times addition over Zn. So,
feasibility depends on the choice of PW = (Zn)

ℓpw . Here we give three choices;

– n = 10. As stated in [6], additive sharing over Z10 is human friendly. Even
ℓpw is relatively long, addition over PW is feasible. The cons of this choice
is that it is not so easy to memory a long decimal string, and an MPC to
convert pw ∈ (Z10)

ℓpw into {0, 1}ℓ can be costly.
– n = 16. We can consider addition over Z16 feasible enough in human brains,

though it is a bit harder than that over Z10. Hexadecimal strings have the
advantage of being shorter than decimal strings, and shares of pw ∈ (Z16)

ℓpw

can be converted into shares over {0, 1}ℓ using existing MPC such as [10].
– n = 64. In this case, we can use a string of ASCII characters that is generally

used as a password, and realize shortest string among three choices. Also,
shares of pw ∈ (Z64)

ℓpw can be converted into shares over {0, 1}ℓ easily as
the case of n = 16. The disadvantage of this option is that addition over
Z64 is infeasible in human brains. We suggest the use of an addition table
(64 × 64 table). All users can use the same table, and its validity is easily
verified without trusting any machines.

Security For the security of our scheme is stated in the following theorem whose
proof will appear in Appendix A.
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Theorem 1. If PRF is a pseudo-random function, all MPCs used as subpro-
tocols are secure against active adversaries in the honest majority with abort
model, then the scheme is EUF-CMAdevand EUF-CMAserver.

5 Conclusion

The aim of our study is to realize the secure use of cryptography in the absence of
fully trusted machines. In this paper, as the first attempt, we considered how to
design secure signature schemes. We proposed one framework called server-aided
in-brain signature, and gave one concrete construction. However, the scheme is
secure against only one adversary, and we makes some assumptions on it as
stated in Section 3.2. We need more study to eliminate them. In addition, it is
important task to implement in-brain signature schemes and test its performance
and usability.

Our another future work is construction of human-oriented cryptographic
schemes other than signature schemes. An example is devising a method to
encrypt messages in brain with server support but without disclosing any infor-
mation about the messages to both the servers and own device terminals.
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A Proof of Theorem 1

A.1 Security against Malware in User Devices

First, we show the security in the simple case in which A does not issue refresh
queries. We prove with a game sequence.

G0: This is the EUF-CMAdev game for our scheme. So,

Pr[A wins G0] = Pr[A wins EUF-CMAdev game].

In our scheme, servers jointly generate a signature of some message m for Ut

under the following three conditions.

– (i) S1 receives (sid , uid t,m),
– (ii) S2 receives (sid , uid t, x2,m) for the same (sid ,m), and
– (iii) x1 that is chosen by S1 as the response of (i) and x2 that is received by

S2 in (ii) satisfy

PRFmsk (pw t∥uid t) = PRFmsk (x2 − x1∥uid t). (3)

In G0, there are three cases when these conditions are satisfied.
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(a1) A receives x′
2 := pw t + x1 as the response of StartSign(sid , 2,m), and

makes a query Send(sid ,S2,Ut, (sid , uid t, x2,m)). In this case, a signature
of m is generated only if x1 chosen by S1 satisfies Equation (3).

(a2) A receives x1 as the response of StartSign(sid , 1,m), and makes a query
Send(sid ,Ut,S1, (sid , x

′
1)). In this case, a signature of m is generated only

if x2 := pw t + x′
1 computed by Ut satisfies Equation (3).

(a3) A does not make queries StartSign(sid , ∗,m), but issues Send(sid ,S1,Ut, (sid , uid t,m)),
receives x1 as the response, issues Send(sid ,S2,Ut, (sid , uid t, x2,m)) for
some x2. In this case, a signature of m is generated only if Equation (3)
holds.

We note that if m’s signature is successfully generated, m is added to Msigned

in the case of (a1) and (a2), but m is not added in the case of (a3).
From these observations, we consider the following game sequence.

G1 : This game is the same as G0 except that, when StartKGen(∗, 2) or
StartSign(∗, 2, ∗) is queried, x2 is randomly chosen from PW and set x1 :=
x2 − pw t, instead of Ut calculating x2 := pwt + x1. If role = 2, A cannot see x1

and the relation pw t = x2 − x1 retains. So, this change does not affect to A’s
view, that is,

Pr[A wins G1] = Pr[A wins G0].

In this game, x2 received from Ut is information theoretically independent
from the password pw t.

G2 : This game is the same as G1 except that C randomly chooses msk , eval-
uates skuid := PRFmsk (x2 − x1∥uid), pkuid := gskuid and σ := SigSign(m, skuid)
without using MPCs and πSigSign protocol. From the correctness of the MPC and
πSigSign, this change does not affect the winning probability:

Pr[A wins G2] = Pr[A wins G1].

G3 : In this game, PRFmsk (·) is replaced with a (truly) random function RND(·)
whose domain and range are the same as PRF. A gets information about msk
only through values PRFmsk (pw∥uid). Therefore there exists a distinguisher of
PRF whose advantage is larger than |Pr[A wins G3] − Pr[A wins G2]|, and we
have

|Pr[A wins G3]− Pr[A wins G2]| = negl(λ)

if PRF is psendorandom.
In this game, Equation (3) that is the condition of generating a signature for

m is replaced by the following equation.

RND(pw t∥uid t) = RND(x2 − x1∥uid t) (4)

In addition, all values associated to uid( ̸= uid t) are independent from values
associated to uid t.

G4 : In this game, C aborts the game if 1) either of (a1), (a2), (a3) defined above
occurs, and 2) x2 − x1 ̸= pwt and Equation (4) holds.
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Since RND is a random function with domain Zq, the abort probability is
bounded by |SID|/q, where SID is the set of sid used in the game, and we have

|Pr[A wins G4]− Pr[A wins G3]| ≤ |SID|/q = negl(λ).

In this game, Equation (4) is replaced by the following equation.

pw t = x2 − x1 (5)

Now let Equess be the event that Equation (5) is satisfied in case of (a3).

G5 : In G5, C aborts if Equess occurs. A’s view until Equess occurs is independent
from the value of pw t. So, this event occurs with probability |SID|/|PW| or less.
Therefore, we have

|Pr[A wins G5]− Pr[A wins G4]| ≤ |SID|/|PW|.

In this game, Msigned includes all messages m for which C computes σ =
SigSign(m, skuidt

) as the response of A’s queries. So, A wins G5 only if forging
a signature for a message m̃ C has never signed.

Finally, we show that A’s winning probability in G5 is negligibly small pro-
vided that (EC)DSA is EUF-CMA by constructing an adversary B playing the
EUF-CMA game using A. First, B receives pk from the challenger of EUF-
CMA game. B sets pkt := pk, and runs A. Basically, B responds A’s queries
in the same way to the challenger of G5, but asks own sign oracle to compute
σ := SigSign(m, skuidt

). If A outputs a forged pair (m̃, σ̃), B outputs it. It is
clear that A’s environment is perfectly simulated by B, and if A wins G5, then
m̃ is not included inMsigned. Therefore, we have

Pr[A wins G5] ≤ Adveuf-cma
ΠDSA,B(λ).

From the above argument, we have Equation (1).
Next, we consider the case that A issues refresh queries. Since πRefresh is

performed by servers, A cannot see any information by these queries. So, Equa-
tion (1) holds even in this case.

A.2 Security against Mobile Hacker controlling Servers

We use the following game sequence.

G0: This is the EUF-CMAserver game for our scheme.

G1: This game is the same asG0 except that all executions of MPCs are replaced
by ideal functionalities as follows; In πSetup, C randomly chooses msk ←$ KPRF.
In πKGen and πSign protocols, each serial execution of sharing x1, x2, πconv, πPRF,
πPowOpen is replaced with the access to the ideal functionality F (x1, x2, uid) =
gPRFmsk (x2−x1∥uid) that is simulated by C. As the result, all servers obtain pk =
gPRFmsk (x2−x1∥uid). In the execution of πKGen, C keeps the intermediate result
skuid := PRFmsk (x2−x1∥uid) as well as pk. All executions of πSign(pkt, (uid t,m, pw t), [msk ])
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are replaced with the access to the ideal functionality of SigSign(m, skuidt
). All

servers receive σ as the result. When A issues Refresh, C does nothing.
If πRSS, πconv, πPRF, πPowOpen, πSigSign, πZSS are secure MPCs, there exists

a simulator for each MPC that simulates the execution of the MPC. Since A
can run these simulators by itself, these replacements do not affect A’s winning
probability except negligible probability.

In this game, a signature of m for Ut is generated only if (x1, x2, uid) satisfy-
ing the next equation is input to the ideal functionality to compute F (x1, x2, uid).

gPRFmsk (pwt∥uidt) = gPRFmsk (x2−x1∥uidt) (6)

G2: This game is the same asG1 except that the ideal functionality of F (x1, x2, uid) =
gPRFmsk (x2−x1∥uid) is replaced with gRND(x2−x1∥uid), where RND is a random func-
tion. The difference between A’s winning probabilities in G1 and G2 is bounded
by the advantage of PRF, which is assumed to be negligible.

In this game, a signature of m for Ut is generated only if (x1, x2, uid) satisfy-
ing the next equation is passed to the ideal functionality to compute F (x1, x2, uid).

gRND(pwt∥uidt) = gRND(x2−x1∥uidt) (7)

G3: This game is the same as G2 except that C aborts the game if x2−x1 ̸= pw t

and RND(x2 − x1∥uid t) = RND(pw t∥uid t) hold. The difference between A’s
winning probabilities in G2 and G3 is upper bounded by the abort probability,
which is estimated as qsend/q = negl(λ), where qsend is the number of Send.

In this game, a signature of m for Ut is generated only if (x1, x2, uid) satisfy-
ing the next equation is passed to the ideal functionality to compute F (x1, x2, uid).

pw t = x2 − x1 (8)

Let Eguess be the event that

– for some m, A does not issue StartSign(sid ,m) but
– issues Send(sid ,S1,Uuid , (sid , uid t,m)) and Send(sid ,S2,Uuid , (sid , uid t, x2,m)),

and
– x2 = pw t+x1 holds, where x1 is the response of Send(sid ,S1,Uuid , (sid , uid t,m)).

If (and only if) Eguess occurs, m is not added toMsigned even if a signature of
m is generated by SigSign(m, skuidt

).

G4: This game is the same as G3 except that it is aborted if Eguess occurs. The
A’s view until this event occurs is independent from pw t. So, the probability this
event occurs is upper bounded by |SID|/|PW|. |SID| is upper bounded by the
number of Send queries, qsend. Therefore, the difference between A’s winning
probabilities in G3 and G4 is upper bounded by qsend/|PW|.

InG4,Msigned includes all messages for which C computes σ = SigSign(m, skuidt
)

as the response of A’s queries. So, A wins G4 only if forging a signature for m̃ C
has never signed.

Finally, we show that A’s winning probability in G4 is upper bounded by the
UF-CMA advantage of (EC)DSA in the following way.
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Let consider the following adversary algorithm B that uses A as a subrou-
tine. First, B receives pk∗ from the challenger of EUF-CMA game. B chooses
random pw t ←$ PW, sets pkt := pk∗, and considers RND(pw t∥uid t) = sk∗,
where sk∗ is the unknown secret key corresponding to pk∗. Then, B runs A. For
A’s queries, B can respond almost all queries simulating Ut, honest servers, and
the functionalities, except evaluation of F (x1, x2, uid t) such that x2 − x1 = pw t

and calculation of SigSign(m, skt). In the former case, instead of evaluating
F (x1, x2, uid t) = gRND(x2−x1∥uidt), B sets F (x1, x2, uid t) := pk∗. In the latter
case, B makes use of own signing oracle to compute SigSign(m, sk∗). When A
outputs a forged pair (m̃, σ̃), B outputs it.

From the modification of G4, if A wins the game, (m̃, σ̃) is not inMsigned,
that means B has never queried on m̃ to the signing oracle. Therefore, B’s winning
probability is the same as A’s winning probability in G4.

Consequently, we have Equation (2).


