Paper 2024/988

Privacy-Preserving Dijkstra

Benjamin Ostrovsky, California Institute of Technology
Abstract

Given a graph G(V,E), represented as a secret-sharing of an adjacency list, we show how to obliviously convert it into an alternative, MPC-friendly secret-shared representation, so-called d-normalized replicated adjacency list (which we abbreviate to d-normalized), where the size of our new data-structure is only 4x larger -- compared to the original (secret-shared adjacency list) representation of G. Yet, this new data structure enables us to execute oblivious graph algorithms that simultaneously improve underlying graph algorithms' round, computation, and communication complexity. Our d-normalization proceeds in two steps: First, we show how for any graph , given a secret-shared adjacency list, where vertices are arbitrary alphanumeric strings that fit into a single RAM memory word, we can efficiently and securely rename vertices to integers from to that will appear in increasing order in the resulting secret-shared adjacency list. The secure renaming takes rounds and secure operations. Our algorithm also outputs two secret-shared arrays: a mapping from integers to alphanumeric names and its sorted inverse. Of course, if the adjacency list is already in such a format, this step could be omitted. Second, given a secret-shared adjacency list for any graph , where vertices are integers from to and are sorted, we show an oblivious -normalization algorithm that takes rounds and secure operations. We believe that both conversions are of independent interest. We demonstrate the power of our data structures by designing a privacy-preserving Dijkstra's single-source shortest-path algorithm that simultaneously achieves secure operations and rounds. Our secure Dijkstra algorithm works for any adjacency list representation as long as all vertex labels and weights can individually fit into a constant number of RAM memory words. Our algorithms work for two or a constant number of servers in the honest but curious setting. The limitation of our result (to only a constant number of servers) is due to our reliance on linear work and constant-round secure shuffle.

Note: Corrected typos in pseudocode, added section on weak d-normalized algorithm, and on secure MST.

Metadata
Available format(s)
PDF
Category
Cryptographic protocols
Publication info
Preprint.
Keywords
Oblivious Graph AlgorithmsMPCOblivious RAMDistributed ORAMGRAMSingle-Source Shortest PathSecure Dijkstra
Contact author(s)
ben ostrovsky @ caltech edu
History
2025-01-06: last of 2 revisions
2024-06-19: received
See all versions
Short URL
https://ia.cr/2024/988
License
Creative Commons Attribution-NonCommercial-NoDerivs
CC BY-NC-ND

BibTeX

@misc{cryptoeprint:2024/988,
      author = {Benjamin Ostrovsky},
      title = {Privacy-Preserving Dijkstra},
      howpublished = {Cryptology {ePrint} Archive, Paper 2024/988},
      year = {2024},
      url = {https://eprint.iacr.org/2024/988}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.