All papers in 2024 (350 results)

Last updated:  2024-02-27
Automating Collision Attacks on RIPEMD-160
Yingxin Li, Fukang Liu, and Gaoli Wang
As an ISO/IEC standard, the hash function RIPEMD-160 has been used to generate the Bitcoin address with SHA-256. However, due to the complex double-branch structure of RIPEMD-160, the best collision attack only reaches 36 out of 80 steps of RIPEMD-160, and the best semi-free-start (SFS) collision attack only reaches 40 steps. To improve the 36-step collision attack proposed at EUROCRYPT 2023, we explored the possibility of using different message differences to increase the number of attacked steps, and we finally identified one choice allowing a 40-step collision attack. To find the corresponding 40-step differential characteristic, we re-implement the MILP-based method to search for signed differential characteristics with SAT/SMT. As a result, we can find a colliding message pair for 40-step RIPEMD-160 in practical time, which significantly improves the best collision attack on RIPEMD-160. For the best SFS collision attack published at ToSC 2019, we observe that the bottleneck is the probability of the right-branch differential characteristics as they are fully uncontrolled in the message modification. To address this issue, we utilize our SAT/SMT-based tool to search for high-probability differential characteristics for the right branch. Consequently, we can mount successful SFS collision attacks on 41, 42 and 43 steps of RIPEMD-160, thus significantly improving the SFS collision attacks. In addition, we also searched for a 44-step differential characteristic, but the differential probability is too low to allow a meaningful SFS collision attack.
Last updated:  2024-02-27
New Records in Collision Attacks on SHA-2
Yingxin Li, Fukang Liu, and Gaoli Wang
The SHA-2 family including SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA512/256 is a U.S. federal standard pub- lished by NIST. Especially, there is no doubt that SHA-256 is one of the most important hash functions used in real-world applications. Due to its complex design compared with SHA-1, there is almost no progress in collision attacks on SHA-2 after ASIACRYPT 2015. In this work, we retake this challenge and aim to significantly improve collision attacks on the SHA-2 family. First, we observe from many existing attacks on SHA-2 that the current advanced tool to search for SHA-2 characteristics has reached the bottleneck. Specifically, longer differential characteristics could not be found, and this causes that the collision attack could not reach more steps. To address this issue, we adopt Liu et al.’s MILP-based method and implement it with SAT/SMT for SHA-2, where we also add more techniques to detect contradictions in SHA-2 characteristics. This answers an open problem left in Liu et al.’s paper to apply the technique to SHA-2. With this SAT/SMT-based tool, we search for SHA-2 charac- teristics by controlling its sparsity in a dedicated way. As a result, we successfully find the first practical semi-free-start (SFS) colliding message pair for 39-step SHA-256, improving the best 38-step SFS collision attack published at EUROCRYPT 2013. In addition, we also report the first practical free-start (FS) collision attack on 40-step SHA-224, while the previously best theoretic 40-step attack has time complexity 2110. More- over, for the first time, we can mount practical and theoretic collision attacks on 28-step and 31-step SHA-512, respectively, which improve the best collision attack only reaching 27 steps of SHA-512 at ASIACRYPT 2015. In a word, with new techniques to find SHA-2 characteristics, we have made some notable progress in the analysis of SHA-2 after the major achievements made at EUROCRYPT 2013 and ASIACRYPT 2015.
Last updated:  2024-02-27
A Computational Tsirelson's Theorem for the Value of Compiled XOR Games
Uncategorized
David Cui, Giulio Malavolta, Arthur Mehta, Anand Natarajan, Connor Paddock, Simon Schmidt, Michael Walter, and Tina Zhang
Show abstract
Uncategorized
Nonlocal games are a foundational tool for understanding entanglement and constructing quantum protocols in settings with multiple spatially separated quantum devices. In this work, we continue the study initiated by Kalai et al. (STOC '23) of compiled nonlocal games, played between a classical verifier and a single cryptographically limited quantum device. Our main result is that the compiler proposed by Kalai et al. is sound for any two-player XOR game. A celebrated theorem of Tsirelson shows that for XOR games, the quantum value is exactly given by a semidefinite program, and we obtain our result by showing that the SDP upper bound holds for the compiled game up to a negligible error arising from the compilation. This answers a question raised by Natarajan and Zhang (FOCS '23), who showed soundness for the specific case of the CHSH game. Using our techniques, we obtain several additional results, including (1) tight bounds on the compiled value of parallel-repeated XOR games, (2) operator self-testing statements for any compiled XOR game, and (3) a ``nice" sum-of-squares certificate for any XOR game, from which operator rigidity is manifest.
Last updated:  2024-02-27
The Algebraic Freelunch Efficient Gröbner Basis Attacks Against Arithmetization-Oriented Primitives
Augustin Bariant, Aurélien Boeuf, Axel Lemoine, Irati Manterola Ayala, Morten Øygarden, Léo Perrin, and Håvard Raddum
In this paper, we present a new type of algebraic attack that applies to many recent arithmetization-oriented families of permutations, such as those used in Griffin, Anemoi, ArionHash, and XHash8, whose security relies on the hardness of the constrained-input constrained-output (CICO) problem. We introduce the FreeLunch approach: the monomial ordering is chosen so that the natural polynomial system encoding the CICO problem already is a Gröbner basis. In addition, we present a new dedicated resolution algorithm for FreeLunch systems of complexity lower than applicable state-of-the-art FGLM algorithms. We show that the FreeLunch approach challenges the security of fullround instances of Anemoi, Arion and Griffin. We confirm these theoretical results with experimental results on those three permutations. In particular, using the FreeLunch attack combined with a new technique to bypass 3 rounds of Griffin, we recover a CICO solution for 7 out of 10 rounds of Griffin in less than four hours on one core of AMD EPYC 7352 (2.3GHz).
Last updated:  2024-02-27
A data aggregation protocol based on TFHE
Maria Ferrara, Antonio Tortora, and Maria Tota
Torus Fully Homomorphic Encryption (TFHE) is a probabilistic cryptosytem over the real torus which allows one to operate directly on encrypted data without first decrypting them. We present an aggregation protocol based on a variant of TFHE for computing the sum of sensitive data, working only with the corresponding ciphertexts. Our scheme is an ideal choice for a system of smart meters - electronic devices for measuring energy consumption - that demands consumers’ privacy. In contrast to some other solutions, our proposal does not require any communication among smart meters and it is quantum-safe.
Last updated:  2024-02-27
An Efficient Adaptive Attack Against FESTA
Guoqing Zhou and Maozhi Xu
At EUROCRYPT’23, Castryck and Decru, Maino et al., and Robert present efficient attacks against supersingular isogeny Diffie-Hellman key exchange protocol (SIDH). Drawing inspiration from these attacks, Andrea Basso, Luciano Maino, and Giacomo Pope introduce FESTA, an isogeny-based trapdoor function, along with a corresponding IND-CCA secure public key encryption (PKE) protocol at ASIACRYPT’23. FESTA incorporates either a diagonal or circulant matrix into the secret key to mask torsion points. In this paper, we employ a side-channel attack to construct an auxiliary verification oracle. By querying this oracle, we propose an adaptive attack strategy to recover the secret key in FESTA when the secret matrix is circulant. Compared with existing attacks, our strategy is more efficient and formal. Leveraging these findings, we implement our attack algorithms to recover the circulant matrix in secret key. Finally, we demonstrate that if the secret matrix is circulant, then the adversary can successfully recover FESTA’s secret key with a polynomial number of decryption machine queries. Consequently, our paper illustrates that FESTA PKE protocol with secret circulant matrix does not achieve IND-CCA security.
Last updated:  2024-02-27
Probabilistic Extensions: A One-Step Framework for Finding Rectangle Attacks and Beyond
Uncategorized
Ling Song, Qianqian Yang, Yincen Chen, Lei Hu, and Jian Weng
Show abstract
Uncategorized
In differential-like attacks, the process typically involves extending a distinguisher forward and backward with probability 1 for some rounds and recovering the key involved in the extended part. Particularly in rectangle attacks, a holistic key recovery strategy can be employed to yield the most efficient attacks tailored to a given distinguisher. In this paper, we treat the distinguisher and the extended part as an integrated entity and give a one-step framework for finding rectangle attacks with the purpose of reducing the overall complexity or attacking more rounds. In this framework, we propose to allow probabilistic differential propagations in the extended part and incorporate the holistic recovery strategy. Additionally, we introduce the ``split-and-bunch technique'' to further reduce the time complexity. Beyond rectangle attacks, we extend these foundational concepts to encompass differential attacks as well. To demonstrate the efficiency of our framework, we apply it to Deoxys-BC-384, SKINNY, ForkSkinny, and CRAFT, achieving a series of refined and improved rectangle attacks and differential attacks. Notably, we obtain the first 15-round attack on Deoxys-BC-384, narrowing its security margin to only one round. Furthermore, our differential attack on CRAFT extends to 23 rounds, covering two more rounds than the previous best attacks.
Last updated:  2024-02-27
Partial Differential Fault Analysis on Ascon
Yang Gao
Authenticated Encryption with Associated Data (AEAD) is a trend in applied cryptography because it combine confidentiality, integrity, and authentication into one algorithm and is more efficient than using block ciphers and hash functions separately. The Ascon algorithm, as the winner in both the CAESAR competition and the NIST LwC competition, will soon become the AEAD standard for protecting the Internet of Things and micro devices with limited computing resources. We propose a partial differential fault analysis (PDFA) technology for the Ascon algorithm, using stuck-at fault and random-nibble fault models respectively. Theoretically, after 9.9 full-round fault injections or 263 single nibble fault injections, 128-bit key can be completely recovered. In addition, we conducted the first discussion of this analysis method under different nonce configurations. In the Nonce-respect case, an average of 130 additional Tag queries are required to complete the guessing of the faulty tag, afterwards equating this case with the Nonce-misuse case. Subsequent experimental results proved the correctness of the theoretical model. Finally we discuss some countermeasures against proposed attacks, and we propose a new S-box that can be used to replace the existing S-box in ASCON to render PDFA ineffective.
Last updated:  2024-02-27
Massive Superpoly Recovery with a Meet-in-the-middle Framework -- Improved Cube Attacks on Trivium and Kreyvium
Jiahui He, Kai Hu, Hao Lei, and Meiqin Wang
The cube attack extracts the information of secret key bits by recovering the coefficient called superpoly in the output bit with respect to a subset of plaintexts/IV, which is called a cube. While the division property provides an efficient way to detect the structure of the superpoly, superpoly recovery could still be prohibitively costly if the number of rounds is sufficiently high. In particular, Core Monomial Prediction (CMP) was proposed at ASIACRYPT 2022 as a scaled-down version of Monomial Prediction (MP), which sacrifices accuracy for efficiency but ultimately gets stuck at 848 rounds of \trivium. In this paper, we provide new insights into CMP by elucidating the algebraic meaning to the core monomial trails. We prove that it is sufficient to recover the superpoly by extracting all the core monomial trails, an approach based solely on CMP, thus demonstrating that CMP can achieve perfect accuracy as MP does. We further reveal that CMP is still MP in essence, but with variable substitutions on the target function. Inspired by the divide-and-conquer strategy that has been widely used in previous literature, we design a meet-in-the-middle (MITM) framework, in which the CMP-based approach can be embedded to achieve a speedup. To illustrate the power of these new techniques, we apply the MITM framework to \trivium, \grain and \kreyvium. As a result, not only can the previous computational cost of superpoly recovery be reduced (e.g., 5x faster for superpoly recovery on 192-round \grain), but we also succeed in recovering superpolies for up to 851 rounds of \trivium and up to 899 rounds of \kreyvium. This surpasses the previous best results by respectively 3 and 4 rounds. Using the memory-efficient M\"obius transform proposed at EUROCRYPT 2021, we can perform key recovery attacks on target ciphers, even though the superpoly may contain over $2^{40}$ monomials. This leads to the best cube attacks on the target ciphers.
Last updated:  2024-02-27
VeriSimplePIR: Verifiability in SimplePIR at No Online Cost for Honest Servers
Leo de Castro and Keewoo Lee
We present VeriSimplePIR, a verifiable version of the state-of-the-art semi-honest SimplePIR protocol. VeriSimplePIR is a stateful verifiable PIR scheme guaranteeing that all queries are consistent with a fixed, well-formed database. It is the first efficient verifiable PIR scheme to not rely on an honest digest to ensure security; any digest, even one produced by a malicious server, is sufficient to commit to some database. This is due to our extractable verification procedure, which can extract the entire database from the consistency proof checked against each response. Furthermore, VeriSimplePIR ensures this strong security guarantee without compromising the performance of SimplePIR. The online communication overhead is roughly $1.1$-$1.5\times$ SimplePIR, and the online computation time on the server is essentially the same. We achieve this low overhead via a novel one-time preprocessing protocol that generates a reusable proof that can verify any number of subsequent query-response pairs as long as no malicious behavior is detected. As soon as the verification procedure rejects a response from the server, the offline phase must be rerun to compute a new proof. VeriSimplePIR represents an approach to maliciously secure cryptography that is highly optimized for honest parties while maintaining security even in the presence of malicious adversaries.
Last updated:  2024-02-27
A New Approach for Non-Interactive Zero-Knowledge from Learning with Errors
Brent Waters
We put forward a new approach for achieving non-interactive zero-knowledge proofs (NIKZs) from the learning with errors (LWE) assumption (with subexponential modulus to noise ratio). We provide a LWE-based construction of a hidden bits generator that gives rise to a NIZK via the celebrated hidden bits paradigm. A noteable feature of our construction is its simplicity. Our construction employs lattice trapdoors, but beyond that uses only simple operations. Unlike prior solutions we do not rely on a correlation intractability argument nor do we utilize fully homomorphic encryption techniques. Our solution provides a new methodology that adds to the diversity of techniques for solving this fundamental problem.
Last updated:  2024-02-26
From Random Probing to Noisy Leakages Without Field-Size Dependence
Gianluca Brian, Stefan Dziembowski, and Sebastian Faust
Side channel attacks are devastating attacks targeting cryptographic implementations. To protect against these attacks, various countermeasures have been proposed -- in particular, the so-called masking scheme. Masking schemes work by hiding sensitive information via secret sharing all intermediate values that occur during the evaluation of a cryptographic implementation. Over the last decade, there has been broad interest in designing and formally analyzing such schemes. The random probing model considers leakage where the value on each wire leaks with some probability $\epsilon$. This model is important as it implies security in the noisy leakage model via a reduction by Duc et al. (Eurocrypt 2014). Noisy leakages are considered the "gold-standard" for analyzing masking schemes as they accurately model many real-world physical leakages. Unfortunately, the reduction of Duc et al. is non-tight, and in particular requires that the amount of noise increases by a factor of $|\mathbb{F}|$ for circuits that operate over $\mathbb{F}$ (where $\mathbb{F}$ is a finite field). In this work, we give a generic transformation from random probing to average probing, which avoids this loss of $|\mathbb{F}|$. Since the average probing is identical to the noisy leakage model (Eurocrypt 2014), this yields for the first time a security analysis of masked circuits where the noise parameter $\delta$ in the noisy leakage model is independent of $|\mathbb{F}|$. The latter is particularly important for cryptographic schemes operating over large fields, e.g., the AES or the recently standardized post-quantum schemes.
Last updated:  2024-02-26
Tight Indistinguishability Bounds for the XOR of Independent Random Permutations by Fourier Analysis
Itai Dinur
The XOR of two independent permutations (XoP) is a well-known construction for achieving security beyond the birthday bound when implementing a pseudorandom function using a block cipher (i.e., a pseudorandom permutation). The idealized construction (where the permutations are uniformly chosen and independent) and its variants have been extensively analyzed over nearly 25 years. The best-known information-theoretic indistinguishability bound for the XoP construction (due to Dutta, Nandi and Saha~[IEEE Trans. Inf. Theory]) is about $q^2/2^{2n}$, where $q$ is the number of queries and $n$ is the block length. The XoP construction has also been recently analyzed in the multi-user setting and the best known bound for it (by Chen, Choi, and Lee~[CRYPTO'23]) is about $\sqrt{u} q_{\max}^2/2^{2n}$, where $u$ is the number of users and $q_{\max}$ is the number of queries per user. A generalization of the XoP construction outputs the XOR of $r \geq 2$ independent permutations, and has also received significant attention. In this paper, we improve all previous bounds obtained in the literature for the (generalized) XoP construction when $q > 2^{n/2}$ (assuming $q < 2^{n}/2$). Specifically, for the basic XoP construction with $r=2$, we obtain an indistinguishability bound of $q/2^{1.5n}$ in the single-user setting and $\sqrt{u} q_{\max}/2^{1.5n}$ in the multi-user setting. Hence, if $q_{\max} = \Theta(2^{n})$ (and $q_{\max} < 2^{n}/2$), then our bound of $\sqrt{u} q_{\max}/2^{1.5n}$ implies that the adversary's advantage remains negligible as long as $u = o(2^n)$. On the other hand, with the previous bound of $\sqrt{u} q_{\max}^2/2^{2n}$, the adversary's advantage may already be a constant with a single user ($u=1$). For the generalized XoP construction, we obtain a bound of $q/2^{(r - 0.5)n}$ in the single-user setting and $\sqrt{u} q_{\max}/2^{(r - 0.5)n}$ in the multi-user setting. Consequently, the gap between our results and the best previous ones increases sharply with $r$. For example, the best-known bound for $r = 3$, obtained by Choi et al. [ASIACRYPT'22] (in the multi-user setting), is about $\sqrt{u} q_{\max}^2/2^{2.5 n}$, while we obtain $\sqrt{u} q_{\max}/2^{2.5 n}$. Since all of our bounds are matched (up to constant factors) for $q > 2^{n/2}$ by attacks published by Patarin in 2008 (and their generalizations to the multi-user setting), they are all tight. We obtain our results by Fourier analysis of Boolean functions. Yet, most of our technical work is not directly related to the analyzed cryptosystems. It rather involves analyzing fundamental Fourier properties of the density function associated with sampling without replacement from the domain $\{0,1\}^n$. We believe that this analysis is of broad interest.
Last updated:  2024-02-26
Solving the Tensor Isomorphism Problem for special orbits with low rank points: Cryptanalysis and repair of an Asiacrypt 2023 commitment scheme
Valerie Gilchrist, Laurane Marco, Christophe Petit, and Gang Tang
The Tensor Isomorphism Problem (TIP) has been shown to be equivalent to the matrix code equivalence problem, making it an interesting candidate on which to build post-quantum cryptographic primitives. These hard problems have already been used in protocol development. One of these, MEDS, is currently in Round 1 of NIST's call for additional post-quantum digital signatures. In this work, we consider the TIP for a special class of tensors. The hardness of the decisional version of this problem is the foundation of a commitment scheme proposed by D'Alconzo, Flamini, and Gangemi (Asiacrypt 2023). We present polynomial-time algorithms for the decisional and computational versions of TIP for special orbits, which implies that the commitment scheme is not secure. The key observations of these algorithms are that these special tensors contain some low-rank points, and their stabilizer groups are not trivial. With these new developments in the security of TIP in mind, we give a new commitment scheme based on the general TIP that is non-interactive, post-quantum, and statistically binding, making no new assumptions. Such a commitment scheme does not currently exist in the literature.
Last updated:  2024-02-27
RAMenPaSTA: Parallelizable Scalable Transparent Arguments of Knowledge for RAM Programs
Khai Hanh Tang, Minh Pham, and Chan Nam Ngo
Incremental Verifiable Computation (IVC) allows a prover to prove to a verifier the correct execution of a sequential computation. Recent works focus on improving the universality and efficiency of IVC Schemes, which can be categorized into Accumulation and Folding-based IVCs with Folding-based ones being more efficient (due to their deferred proof generation until the final step). Unfortunately, both approaches satisfy only heuristic security as they model the Random Oracle (RO) as a circuit in their non-constant depth recursive composition of the base Scheme. Such drawback is two-fold: to connect the consecutive execution step the RO is recursively modeled as a circuit during the folding or the accumulating process, and again in the final SNARK wrapper circuit (a common practice in Folding-based IVCs). We revisit this problem, with a focus on the Folding-based IVCs due to their efficiency, and propose the detachment of RO invocation from the folding circuit. We can instead accumulate such invocations, yielding the so-called Conditional Folding (CF) Scheme to overcome the first drawback. One can consider our CF Scheme a hybrid Folding-Accumulation Scheme with provable security. We provide a non-trivial practical construction for our CF scheme that is natively parallelizable, which offers great efficiency. We rigorously prove the security of our CF scheme (also for the case of folding in parallel; and our scheme can be made non-interactive using Fiat-Shamir). Our CF scheme is generic and does not require trusted setup. It can be adapted to construct the first IVC for RAM programs, i.e. Parallelizable Scalable Transparent Arguments of Knowledge for RAM Programs that we dub RAMenPaSTA, that can be used to build zero-knowledge virtual machines (zkVMs). Both our CF Scheme and RAMenPaSTA can be of independent research interests.
Last updated:  2024-02-26
Split-State Non-Malleable Codes and Secret Sharing Schemes for Quantum Messages
Naresh Goud Boddu, Vipul Goyal, Rahul Jain, and João Ribeiro
Non-malleable codes are fundamental objects at the intersection of cryptography and coding theory. These codes provide security guarantees even in settings where error correction and detection are impossible, and have found applications to several other cryptographic tasks. One of the strongest and most well-studied adversarial tampering models is $2$-split-state tampering. Here, a codeword is split into two parts which are stored in physically distant servers, and the adversary can then independently tamper with each part using arbitrary functions. This model can be naturally extended to the secret sharing setting with several parties by having the adversary independently tamper with each share. Previous works on non-malleable coding and secret sharing in the split-state tampering model only considered the encoding of classical messages. Furthermore, until recent work by Aggarwal, Boddu, and Jain (IEEE Trans. Inf. Theory 2024 & arXiv 2022), adversaries with quantum capabilities and shared entanglement had not been considered, and it is a priori not clear whether previous schemes remain secure in this model. In this work, we introduce the notions of split-state non-malleable codes and secret sharing schemes for quantum messages secure against quantum adversaries with shared entanglement. Then, we present explicit constructions of such schemes that achieve low-error non-malleability. More precisely, we construct efficiently encodable and decodable split-state non-malleable codes and secret sharing schemes for quantum messages preserving entanglement with external systems and achieving security against quantum adversaries having shared entanglement with codeword length $n$, any message length at most $n^{\Omega(1)}$, and error $\varepsilon=2^{-{n^{\Omega(1)}}}$. In the easier setting of average-case non-malleability, we achieve efficient non-malleable coding with rate close to $1/11$.
Last updated:  2024-02-26
The Impact of Reversibility on Parallel Pebbling
Jeremiah Blocki, Blake Holman, and Seunghoon Lee
The (parallel) classical black pebbling game is a helpful abstraction which allows us to analyze the resources (time, space, space-time, cumulative space) necessary to evaluate a function $f$ with a static data-dependency graph $G$ on a (parallel) computer. In particular, the parallel black pebbling game has been used as a tool to quantify the (in)security of Data-Independent Memory-Hard Functions (iMHFs). Recently Blocki et al. (TCC 2022) introduced the parallel reversible pebbling game as a tool to analyze resource requirements when we additionally require that computation is reversible. Intuitively, the parallel reversible pebbling game extends the classical parallel black pebbling game by imposing restrictions on when pebbles can be removed. By contrast, the classical black pebbling game imposes no restrictions on when pebbles can be removed to free up space. One of the primary motivations of the parallel reversible pebbling game is to provide a tool to analyze the full cost of quantum preimage attacks against an iMHF. However, while there is an extensive line of work analyzing pebbling complexity in the (parallel) black pebbling game, comparatively little is known about the parallel reversible pebbling game. Our first result is a lower bound of $\Omega\left(N^{1+1/\sqrt{\log N}} \right)$ on the reversible cumulative pebbling cost for a line graph on $N$ nodes. This yields a separation between classical and reversible pebbling costs demonstrating that the reversibility constraint can increase cumulative pebbling costs (and space-time costs) by a multiplicative factor of $\Omega\left(N^{1/\sqrt{\log N}} \right)$ --- the classical pebbling cost (space-time or cumulative) for a line graph is just $\mathcal{O}(N)$. On the positive side, we prove that any classical parallel pebbling can be transformed into a reversible pebbling strategy whilst increasing space-time (resp. cumulative memory) costs by a multiplicative factor of at most $\mathcal{O}\left(N^{2/\sqrt{\log N}}\right)$ (resp. $\mathcal{O}\left(N^{\mathcal{O}(1)/\sqrt[4]{\log N}}\right)$). We also analyze the impact of the reversibility constraint on the cumulative pebbling cost of depth-robust and depth-reducible DAGs exploiting reversibility to improve constant factors in a prior lower bound of Alwen et al. (EUROCRYPT 2017). For depth-reducible DAGs we show that the state-of-the-art recursive pebbling techniques of Alwen et al. (EUROCRYPT 2017) can be converted into a recursive reversible pebbling attack without any asymptotic increases in pebbling costs. Finally, we extend a result of Blocki et al. (ITCS 2020) to show that it is Unique Games hard to approximate the reversible cumulative pebbling cost of a DAG $G$ to within any constant factor.
Last updated:  2024-02-26
Practical Attack on All Parameters of the DME Signature Scheme
Pierre Briaud, Maxime Bros, Ray Perlner, and Daniel Smith-Tone
DME is a multivariate scheme submitted to the call for additional signatures recently launched by NIST. Its performance is one of the best among all the candidates. The public key is constructed from the alternation of very structured linear and non-linear components that constitute the private key, the latter being defined over an extension field. We exploit these structures by proposing an algebraic attack which is practical on all DME parameters.
Last updated:  2024-02-26
Leakage-Tolerant Circuits
Yuval Ishai and Yifan Song
A leakage-resilient circuit for $f:\{0,1\}^n\to\{0,1\}^m$ is a randomized Boolean circuit $C$ mapping a randomized encoding of an input $x$ to an encoding of $y=f(x)$, such that applying any leakage function $L\in \cal L$ to the wires of $C$ reveals essentially nothing about $x$. A leakage-tolerant circuit achieves the stronger guarantee that even when $x$ and $y$ are not protected by any encoding, the output of $L$ can be simulated by applying some $L'\in \cal L$ to $x$ and $y$ alone. Thus, $C$ is as secure as an ideal hardware implementation of $f$ with respect to leakage from $\cal L$. Leakage-resilient circuits were constructed for low-complexity classes $\cal L$, including (length-$t$ output) $\mathcal{AC}0$ functions, parities, and functions with bounded communication complexity. In contrast, leakage-tolerant circuits were only known for the simple case of probing leakage, where $L$ outputs the values of $t$ wires in $C$. We initiate a systematic study of leakage-tolerant circuits for natural classes $\cal L$ of global leakage functions, obtaining the following main results. Leakage-tolerant circuits for depth-1 leakage. Every circuit $C_f$ for $f$ can be efficiently compiled into an $\cal L$-tolerant circuit $C$ for $f$, where $\cal L$ includes all leakage functions $L$ that output either $t$ parities or $t$ disjunctions (alternatively, conjunctions) of any number of wires or their negations. In the case of parities, our simulator runs in $2^{O(t)}$ time. We provide partial evidence that this may be inherent. Application to stateful leakage-resilient circuits. Using a general transformation from leakage-tolerant circuits, we obtain the first construction of stateful $t$-leakage-resilient circuits that tolerate a continuous parity leakage, and the first such construction for disjunction/conjunction leakage in which the circuit size grows sub-quadratically with $t$. Interestingly, here we can obtain $\mathtt{poly}(t)$-time simulation even in the case of parities.
Last updated:  2024-02-26
Transaction Fee Mechanism Design in a Post-MEV World
Maryam Bahrani, Pranav Garimidi, and Tim Roughgarden
The incentive-compatibility properties of blockchain transaction fee mechanisms have been investigated with passive block producers that are motivated purely by the net rewards earned at the consensus layer. This paper introduces a model of active block producers that have their own private valuations for blocks (representing, for example, additional value derived from the application layer). The block producer surplus in our model can be interpreted as one of the more common colloquial meanings of the phrase ``maximal extractable value (MEV).'' We first prove that transaction fee mechanism design is fundamentally more difficult with active block producers than with passive ones: With active block producers, no non-trivial or approximately welfare maximizing transaction fee mechanism can be incentive-compatible for both users and block producers. These impossibility results can be interpreted as a mathematical justification for augmenting transaction fee mechanisms with additional components such as orderflow auctions, block producer competition, trusted hardware, or cryptographic techniques. We then proceed to a more fine-grained model of block production that is inspired by current practice, in which we distinguish the roles of ``searchers'' (who actively identify opportunities for value extraction from the application layer and compete for the right to take advantage of them) and ``proposers'' (who participate directly in the blockchain protocol and make the final choice of the published block). Searchers can effectively act as an ``MEV oracle'' for a transaction fee mechanism, thereby enlarging the design space. Here, we first consider a transaction fee mechanism that resembles how searchers have traditionally been incorporated into the block production process, with each transaction effectively sold off to a searcher through a first-price auction. We then explore the design space with searchers more generally, and design a mechanism that circumvents our impossibility results for mechanisms without searchers. Our mechanism (the ``SAKA'' mechanism) is deterministic, incentive-compatible (for users, searchers, and the block producer), and sybil-proof, and it guarantees roughly 50% of the maximum-possible welfare when transaction sizes are small relative to block sizes. We conclude with a matching negative result: even when transactions are small relative to blocks, no incentive-compatible, sybil proof, and deterministic transaction fee mechanism can guarantee more than 50% of the maximum-possible welfare.
Last updated:  2024-02-26
Fuzzy Private Set Intersection with Large Hyperballs
Aron van Baarsen and Sihang Pu
Traditional private set intersection (PSI) involves a receiver and a sender holding sets $X$ and $Y$, respectively, with the receiver learning only the intersection $X\cap Y$. We turn our attention to its fuzzy variant, where the receiver holds \(|X|\) hyperballs of radius \(\delta\) in a metric space and the sender has $|Y|$ points. Representing the hyperballs by their center, the receiver learns the points $x\in X$ for which there exists $y\in Y$ such that $\mathsf{dist}(x,y)\leq \delta$ with respect to some distance metric. Previous approaches either require general-purpose multi-party computation (MPC) techniques like garbled circuits or fully homomorphic encryption (FHE), leak details about the sender’s precise inputs, support limited distance metrics, or scale poorly with the hyperballs' volume. This work presents the first black-box construction for fuzzy PSI (including other variants such as PSI cardinality, labeled PSI, and circuit PSI), which can handle polynomially large radius and dimension (i.e., a potentially exponentially large volume) in two interaction messages, supporting general \(L_{p\in[1,\infty]}\) distance, without relying on garbled circuits or FHE. The protocol excels in both asymptotic and concrete efficiency compared to existing works. For security, we solely rely on the assumption that the Decisional Diffie-Hellman (DDH) holds in the random oracle model.
Last updated:  2024-02-26
How to Validate a Verification?
Houda Ferradi
This paper introduces \textsl{signature validation}, a primitive allowing any \underline{t}hird party $T$ (\underline{T}héodore) to verify that a \underline{v}erifier $V$ (\underline{V}adim) computationally verified a signature $s$ on a message $m$ issued by a \underline{s}igner $S$ (\underline{S}arah). A naive solution consists in sending by Sarah $x=\{m,\sigma_s\}$ where $\sigma_s$ is Sarah's signature on $m$ and have Vadim confirm reception by a signature $\sigma_v$ on $x$. Unfortunately, this only attests \textsl{proper reception} by Vadim, i.e. that Vadim \textsl{could have checked} $x$ and not that Vadim \textsl{actually verified} $x$. By ``actually verifying'' we mean providing a proof or a convincing argument that a program running on Vadim's machine checked the correctness of $x$. This paper proposes several solutions for doing so, thereby providing a useful building-block in numerous commercial and legal interactions for proving informed consent.
Last updated:  2024-02-26
Attribute-Based Signatures with Advanced Delegation, and Tracing
Cécile Delerablée, Lénaïck Gouriou, and David Pointcheval
Attribute-based cryptography allows fine-grained control on the use of the private key. In particular, attribute-based signature (ABS) specifies the capabilities of the signer, which can only sign messages associated to a policy that is authorized by his set of attributes. Furthermore, we can expect signature to not leak any information about the identity of the signer. ABS is a useful tool for identity-preserving authentication process which requires granular access-control, and can furthermore be enhanced with additional properties, for example delegation where users are able to manage a set of keys derived from their original one. In this paper, we address delegation of signing keys. Our first delegation works for any subset of the original attributes, which is the intuitive approach of delegation. Furthermore, we also provide another kind of delegation where the delegator can choose a policy at delegation time to produce keys that can sign any message under this specific policy. This last approach to delegation is a direct application of a new version of the indexing technique, which was first introduced by Okamoto and Takashima in order to prove adaptive security in ABS and its counterpart for encryption, ABE. On top of that, we prove that our scheme is compatible with a well studied feature of ABS, traceability, by using an approach based on Linearly-Homomorphic signatures. All our schemes also guarantee the anonymity of the real signer. The unforgeability of our schemes is proven using the SXDH assumption, and our constructions use the Dual Pairing Vector Spaces (DPVS) framework developed by Okamoto and Takashima, which has been widely used for all kind of attribute and functional cryptography mechanisms.
Last updated:  2024-02-26
Registered Functional Encryptions from Pairings
Ziqi Zhu, Jiangtao Li, Kai Zhang, Junqing Gong, and Haifeng Qian
This work initiates the study of concrete registered functional encryption (Reg-FE) beyond ``all-or-nothing'' functionalities: - We build the first Reg-FE for linear function or inner-product evaluation (Reg-IPFE) from pairings. The scheme achieves adaptive IND-security under $k$-Lin assumption in the prime-order bilinear group. A minor modification yields the first Registered Inner-Product Encryption (Reg-IPE) scheme from $k$-Lin assumption. Prior work achieves the same security in the generic group model. -We build the first Reg-FE for quadratic function (Reg-QFE) from pairings. The scheme achieves very selective simulation-based security (SIM-security) under bilateral $k$-Lin assumption in the prime-order bilinear group. Here, ``very selective'' means that the adversary claims challenge messages, all quadratic functions to be registered and all corrupted users at the beginning. Besides focusing on the compactness of the master public key and helper keys, we also aim for compact ciphertexts in Reg-FE. Let $L$ be the number of slots and $n$ be the input size. Our first Reg-IPFE has weakly compact ciphertexts of size $O(n\cdot\log L)$ while our second Reg-QFE has compact ciphertexts of size $O(n+\log L)$. Technically, for our first Reg-IPFE, we employ nested dual-system method within the context of Reg-IPFE; for our second Reg-QFE, we follow Wee's ``IPFE-to-QFE'' transformation [TCC' 20] but devise a set of new techniques that make our pairing-based Reg-IPFE compatible. Along the way, we introduce a new notion named Pre-Constrained Registered IPFE which generalizes slotted Reg-IPFE by constraining the form of functions that can be registered.
Last updated:  2024-02-26
Haven++: Batched and Packed Dual-Threshold Asynchronous Complete Secret Sharing with Applications
Nicolas Alhaddad, Mayank Varia, and Ziling Yang
Asynchronous complete secret sharing (ACSS) is a foundational primitive in the design of distributed algorithms and cryptosystems that require secrecy. Dual-threshold ACSS permits a dealer to distribute a secret to a collection of $n$ servers so that everyone holds shares of a polynomial containing the dealer's secret. This work contributes a new ACSS protocol, called Haven++, that uses packing and batching to make asymptotic and concrete advances in the design and application of ACSS for large secrets. Haven++ allows the dealer to pack multiple secrets in a single sharing phase, and to reconstruct either one or all of them later. For even larger secrets, we contribute a batching technique to amortize the cost of proof generation and verification across multiple invocations of our protocol. The result is an asymptotic improvement in amortized communication and computation complexity, both for ACSS itself and for its application to asynchronous distributed key generation. We implement Haven++ and find that it improves performance over the hbACSS protocol of Yurek et al. by a factor of 3-10$\times$ or more across a wide range of parameters for the number of parties and batch size.
Last updated:  2024-02-26
Proofs for Deep Thought: Accumulation for large memories and deterministic computations
Benedikt Bünz and Jessica Chen
We construct two new accumulation schemes. The first one is for checking that $\ell$ read and write operations were performed correctly from a memory of size $T$. Unlike all prior work, the prover time is entirely independent of $T$ and only depends on $\ell$. The second one is for deterministic computations. It does not require committing to the intermediate wires of the computation but only the input and output. This is achieved by building an accumulation scheme for a modified version of the famous GKR protocol. We show that these schemes are highly compatible and that the accumulation for GKR can further reduce the cost of the memory-checking scheme. Using the BCLMS (Crypto 21) compiler, these protocols yield an efficient incrementally verifiable computation (IVC) scheme that is particularly useful for machine computations with large memories and deterministic steps.
Last updated:  2024-02-25
Under What Conditions Is Encrypted Key Exchange Actually Secure?
Jake Januzelli, Lawrence Roy, and Jiayu Xu
A Password-Authenticated Key Exchange (PAKE) protocol allows two parties to agree upon a cryptographic key, in the setting where the only secret shared in advance is a low-entropy password. The standard security notion for PAKE is in the Universal Composability (UC) framework. In recent years there have been a large number of works analyzing the UC-security of Encrypted Key Exchange (EKE), the very first PAKE protocol, and its One-encryption variant (OEKE), both of which compile an unauthenticated Key Agreement (KA) protocol into a PAKE. In this work, we present a comprehensive and thorough study of the UC-security of both EKE and OEKE in the most general setting and using the most efficient building blocks: 1. We show that among the seven existing results on the UC-security of (O)EKE, six are flawed; 2. We show that for (O)EKE to be UC-secure, the underlying KA protocol needs to satisfy the properties of strong pseudorandomness, pseudorandom non-malleability, and collision resistance, all of which are missing in existing works; 3. We give UC-security proofs for EKE and OEKE using Programmable-Once Random Function (POPF), which is the most efficient instantiation to date and is around 4 times faster than the standard instantiation using Ideal Cipher (IC). Our results in particular allow for PAKE constructions from post-quantum KA protocols such as Kyber. We also give a security analysis of POPF in a new composition framework called almost UC, which we believe is interesting in its own right.
Last updated:  2024-02-25
Circuit Bootstrapping: Faster and Smaller
Ruida Wang, Yundi Wen, Zhihao Li, Xianhui Lu, Benqiang Wei, Kun Liu, and Kunpeng Wang
We present a novel circuit bootstrapping algorithm that outperforms the state-of-the-art TFHE method with 9.9× speedup and 15.6× key size reduction. These improvements can be attributed to two technical contributions. Firstly, we redesigned the circuit bootstrapping workflow to operate exclusively under the ring ciphertext type, which eliminates the need of conversion between LWE and RLWE ciphertexts. Secondly, we improve the LMKC+ blind rotation algorithm by reducing the number of automorphisms, then propose the first automorphism type multi-value functional bootstrapping. These automorphism-based techniques lead to further key size optimization, and are of independent interest besides circuit bootstrapping. Based our new circuit bootstrapping we can evaluate AES-128 in 26.2s (single thread), achieving 10.3× speedup compared with the state-of-the-art TFHE-based approach.
Last updated:  2024-02-25
Theoretical Explanation and Improvement of Deep Learning-aided Cryptanalysis
Weixi Zheng, Liu Zhang, and Zilong Wang
At CRYPTO 2019, Gohr demonstrated that differential-neural distinguishers (DNDs) for Speck32/64 can learn more features than classical cryptanalysis's differential distribution tables (DDT). Furthermore, a non-classical key recovery procedure is devised by combining the Upper Confidence Bound (UCB) strategy and the BayesianKeySearch algorithm. Consequently, the time complexity of 11-round key recovery attacks on Speck32/64 is significantly reduced compared with the state-of-the-art results in classical cryptanalysis. This advancement in deep learning-assisted cryptanalysis has opened up new possibilities. However, the specific encryption features exploited by DNDs remain unclear. In this paper, we begin by analyzing the features learned by DND based on the probability distribution of a ciphertext pair. Our analysis reveals that DND not only learns the differential features of the ciphertext pair but also captures the XOR information of the left and right branches of the ciphertext pair. This explains why the performance of DND can outperform DDT in certain cases. For other ciphers, we can also predict whether deep learning methods can achieve superior results to classical methods based on the probability distribution of the ciphertext pair. Next, we modify the input data format and network structure based on the specific features that can be learned to train DND specifically. With these modifications, it is possible to reduce the size of their parameters to only 1/16 of their previous networks while maintaining high precision. Additionally, the training time for the DNDs is significantly reduced. Finally, to improve the efficiency of deep learning-assisted cryptanalysis, we introduce Bayes-UCB to select promising ciphertext structures more efficiently. We also introduce an improved BayesianKeySearch algorithm to retain guessed keys with the highest scores in key guessing. We use both methods to launch 11-round, 12-round, and 13-round key recovery attacks on Speck32/64. The results show that under the same conditions, the success rate of 11-round key recovery attacks has increased from Gohr's 36.1% to 52.8%, the success rate of 12-round key recovery attacks has increased from Gohr's 39% to 50%, and the success rate of 13-round key recovery attacks has increased from Zhang et al.'s 21% to 24%. In addition, the time complexity of these experiments is also significantly reduced.
Last updated:  2024-02-24
Formal Verification of Emulated Floating-Point Arithmetic in Falcon
Vincent Hwang
We show that there is a discrepancy between the emulated floating-point multiplications in the submission package of Falcon and the claimed behavior. In particular, we show that floating-point products with absolute values the smallest normal positive floating-point number are incorrectly zeroized. However, we show that the discrepancy doesn’t effect the complex fast Fourier transform by modeling the floating-point addition, subtraction, and multiplication in CryptoLine. We later implement our own floating-point multiplications in Armv7-M assembly and Jasmin and prove their equivalence with our model, demonstrating the possibility of transferring the challenging verification task (verifying highly-optimized assembly) to the presumably more readable code base (Jasmin).
Last updated:  2024-02-24
POPSTAR: Lightweight Threshold Reporting with Reduced Leakage
Hanjun Li, Sela Navot, and Stefano Tessaro
This paper proposes POPSTAR, a new lightweight protocol for the private computation of heavy hitters, also known as a private threshold reporting system. In such a protocol, the users provide input measurements, and a report server learns which measurements appear more than a pre-specified threshold. POPSTAR follows the same architecture as STAR (Davidson et al, CCS 2022) by relying on a helper randomness server in addition to a main server computing the aggregate heavy hitter statistics. While STAR is extremely lightweight, it leaks a substantial amount of information, consisting of an entire histogram of the provided measurements (but only reveals the actual measurements that appear beyond the threshold). POPSTAR shows that this leakage can be reduced at a modest cost ($\sim$7$\times$ longer aggregation time). Our leakage is closer to that of Poplar (Boneh et al, S&P 2021), which relies however on distributed point functions and a different model which requires interactions of two non-colluding servers (with equal workloads) to compute the heavy hitters.
Last updated:  2024-02-24
On the cryptosystems based on two Eulerian transfor-mations defined over the commutative rings $Z_{2^s}, s>1$.
Vasyl Ustimenko
We suggest the family of ciphers s^E^n, n=2,3,.... with the space of plaintexts (Z*_{2^s})^n, s >1 such that the encryption map is the composition of kind G=G_1A_1G_2A_2 where A_i are the affine transformations from AGL_n(Z_{2^s}) preserving the variety (Z*_{2^s)}^n , Eulerian endomorphism G_i , i=1,2 of K[x_1, x_2,...., x_n] moves x_i to monomial term ϻ(x_1)^{d(1)}(x_2)^{d(2)}...(x_n)^{d(n)} , ϻϵ Z*_{2^s} and act on (Z*_{2^s})^n as bijective transformations. The cipher is converted to a protocol supported cryptosystem. Protocols of Noncommutative Cryptography implemented on the platform of Eulerian endomorphism are used for the delivery of G_i and A_i from Alice to Bob. One can use twisted Diffie-Hellman protocols which security rests on the complexity of Conjugacy Power problem or hidden tame homomorphism protocol which security rests of the word decomposition problem. Instead of the delivery of G_i Alice and Bob can elaborate these transformations via the inverse twisted Diffie-Hellman protocol implemented on the platform of tame Eulerian transformations of (Z*_{2^s})^n. The cost of single protocol is O(n^3) and the cost of the computation of the reimage of used nonlinear map is O(n^2). So the verification of n^t , t≥1 signatures takes time O(n^{t+2}). Instead of inverse twisted Diffie-Hellman protocol correspondents can use inverse hidden tame homomorphism protocol which rests on the complexity of word decomposition for tame Eulerian transformations. We use natural bijections between Z*_{2^s} and Z_{2^{s-1}}, Z*_{2^s} and finite field F_{2^{s-1}} and Z*_{2^s} and Boolean ring B_{s-1} of order 2^{s-1} to modify the family of ciphers or cryptosystems via the change of AGL_n(Z_{2^s}) for the AGL_n(K), where K is one of the rings Z_{2^{s-1}, F_{2^{s-1} and B_{s-1}. New ciphers are defined via the multiplications of two different commutative rings Z_{2^s} and K. It does not allow to treat them as stream ciphers of multivariate cryptography and use corresponding cryptanalytic technique. Adversary is not able to use known cryptanalytical methods such as linearisation attacks. We discuss the option of change the mentioned above elements of AGL_n(Z_{2^s) or AGL_n(K) for nonlinear multivariate transformation F of (Z_{2^s})^n or K^n with the symmetric trapdoor accelerator T, i.e. the piece of information such that the knowledge of T allows to compute the value F(p) in arbitrarily chosen p ϵ P in time O(n^2) and to solve the equation of kind F(x)=c for each c from C in time O(n ^2).
Last updated:  2024-02-23
Plinko: Single-Server PIR with Efficient Updates via Invertible PRFs
Alexander Hoover, Sarvar Patel, Giuseppe Persiano, and Kevin Yeo
We study single-server private information retrieval (PIR) where a client wishes to privately retrieve the $x$-th entry from a database held by a server without revealing the index $x$. In our work, we focus on PIR with client pre-processing where the client may compute hints during an offline phase. The hints are then leveraged during queries to obtain sub-linear online time. We present Plinko that is the first single-server PIR with client pre-processing that obtains optimal trade-offs between client storage and query time for all parameters. Our scheme uses $t = \tilde{O}(n/r)$ query time for any client storage size $r$. This matches known lower bounds of $r \cdot t = \Omega(n)$ up to logarithmic factors for all parameterizations whereas prior works could only match the lower bound when $r = \tilde{O}(\sqrt{n})$. Moreover, Plinko is also the first updateable PIR scheme where an entry can be updated in worst-case $\tilde{O}(1)$ time. As our main technical tool, we define the notion of an invertible pseudorandom function (iPRF) that generalizes standard PRFs to be equipped with an efficient inversion algorithm. We present a construction of an iPRF from one-way functions where forward evaluation runs in $\tilde{O}(1)$ time and inversion runs in time linear in the inverse set (output) size. Furthermore, our iPRF construction is the first that remains efficient and secure for arbitrary domain and range sizes (including small domains and ranges). In the context of single-server PIR, we show that iPRFs may be used to construct the first hint set representation where finding a hint containing an entry $x$ may be done in $\tilde{O}(1)$ time.
Last updated:  2024-02-23
Closing the Efficiency Gap between Synchronous and Network-Agnostic Consensus
Giovanni Deligios and Mose Mizrahi Erbes
In the consensus problem, $n$ parties want to agree on a common value, even if some of them are corrupt and arbitrarily misbehave. If the parties have a common input $m$, then they must agree on $m$. Protocols solving consensus assume either a synchronous communication network, where messages are delivered within a known time, or an asynchronous network with arbitrary delays. Asynchronous protocols only tolerate $t_a < n/3$ corrupt parties. Synchronous ones can tolerate $t_s < n/2$ corruptions with setup, but their security completely breaks down if the synchrony assumptions are violated. Network-agnostic consensus protocols, as introduced by Blum, Katz, and Loss [TCC'19], are secure regardless of network conditions, tolerating up to $t_s$ corruptions with synchrony and $t_a$ without, under provably optimal assumptions $t_a \leq t_s$ and $2t_s + t_a < n$. Despite efforts to improve their efficiency, all known network-agnostic protocols fall short of the asymptotic complexity of state-of-the-art purely synchronous protocols. In this work, we introduce a novel technique to compile any synchronous and any asynchronous consensus protocols into a network-agnostic one. This process only incurs a small constant number of overhead rounds, so that the compiled protocol matches the optimal round complexity for synchronous protocols. Our compiler also preserves under a variety of assumptions the asymptomatic communication complexity of state-of-the-art synchronous and asynchronous protocols. Hence, it closes the current efficiency gap between synchronous and network-agnostic consensus. As a plus, our protocols support $\ell$-bit inputs, and can be extended to achieve communication complexity $O(n^2\kappa + \ell n)$ under the assumptions for which this is known to be possible for purely synchronous protocols.
Last updated:  2024-02-23
Threshold Garbled Circuits with Low Overhead
Schuyler Rosefield, abhi shelat, and LaKyah Tyner
The folklore approach to designing a threshold variant of symmetric cryptographic algorithms involves applying generic MPC methods to se- cret sharing techniques: the MPC first combines participant input shares using the secret sharing scheme, and then evaluates the cryptographic function on the reconstructed key. Hardening this secure against n − 1 malicious parties requires some mechanism to ensure input consistency, e.g., adding MACs to inputs, which consequently, increases the number of inputs and gates to the MPC. In many cases, this extra overhead is substantially more than the underlying cost of evaluating the symmetric cryptographic algorithm. We present a scheme that can convert any suitable maliciously secure dishonest majority boolean-circuit FMPC into a threshold scheme Fthresh with almost no overhead. Specifically, we present an SUC-secure scheme that allows for reactive threshold t-of-n boolean circuit evaluation amongst a group of n parties P , for any t ≤ n, against a malicious adversary that corrupts any number of parties less than the threshold t. Moreover, mul- tiple circuits can be evaluated sequentially with the secret-shared authen- ticated outputs of a circuit to be used subsequently as inputs for a new circuit by any S ⊆ P of size |S| ≥ t. Building upon the works of Wang et al, Hazay et al, and Yang et al, [WRK17, HSSV17, YWZ20] for dishonest majority FMPC, our key insight is to create threshold versions of the “authenticated bits” used to han- dle input in these recent n-party garbled circuits protocols. The resulting design incurs a small overhead to produce the reusable “threshold authen- ticated bits” during preprocessing, and adds no extra communication to evaluate with the authenticated input during the online phase. Using our methods, thresholdizing a boolean circuit has essentially no performance overhead. For example, to compute HMAC, a full Setup+Eval execution of the (n − 2)-out-of-n thresholdized version is approximately 4% more expensive than the state-of-the-art n-party MPC. In contrast, using the folklore method is approximately 100% more expensive. This is especially true for small circuits such as AES which has 6800 gates and thus incurs the most overhead for thresholdizing. Simply considering the online Eval cost, our approach can evaluate AES blocks at 2.3/s with 16 parties, exceeding the baseline MPC cost without preprocessing, and sur- passing the folklore method that only achieves .33/s blocks. Ultimately, this result makes threshold boolean circuit MPC as feasible as any MPC application.
Last updated:  2024-02-23
Alternative Key Schedules for the AES
Christina Boura, Patrick Derbez, and Margot Funk
The AES block cipher is today the most important and analyzed symmetric algorithm. While all versions of the AES are known to be secure in the single-key setting, this is not the case in the related-key scenario. In this article we try to answer the question whether the AES would resist better differential-like related-key attacks if the key schedule was different. For this, we search for alternative permutation-based key schedules by extending the work of Khoo et al. at ToSC 2017 and Derbez et al. at SAC 2018. We first show that the model of Derbez et al. was flawed. Then, we develop different approaches together with MILP-based tools to find good permutations that could be used as the key schedule for AES-128, AES-192 and AES-256. Our methods permitted to find permutations that outperform the permutation exhibited by Khoo et al. for AES-128. Moreover, our new approach based on two MILP models that call one another allowed us to handle a larger search space and thus to search for alternative key schedules for the two bigger versions of AES. This method permitted us to find permutations for AES-192 and AES-256 that provide better resistance to related-key differential attacks. Most importantly, we showed that these variants can resist full-round boomerang attacks.
Last updated:  2024-02-23
Exploring the Advantages and Challenges of Fermat NTT in FHE Acceleration
Andrey Kim, Ahmet Can Mert, Anisha Mukherjee, Aikata Aikata, Maxim Deryabin, Sunmin Kwon, HyungChul Kang, and Sujoy Sinha Roy
Recognizing the importance of fast and resource-efficient polynomial multiplication in homomorphic encryption, in this paper, we introduce a novel method that enables integer multiplier-less Number Theoretic Transform (NTT) for computing polynomial multiplication. First, we use a Fermat number as an auxiliary modulus of NTT. However, this approach of using Fermat number scales poorly with the degree of polynomial. Hence, we propose a transformation of a large-degree univariate polynomial into small-degree multi-variable polynomials. After that, we compute these NTTs on small-degree polynomials with Fermat number as modulus. We design an accelerator architecture customized for the novel multivariate NTT and use it for benchmarking practical homomorphic encryption applications. The accelerator can achieve a 1,200× speed-up compared to software implementations. We further discuss the potential and limitations of the proposed polynomial multiplication method in the context of homomorphic encryption.
Last updated:  2024-02-26
The Complexity of Algebraic Algorithms for LWE
Matthias Johann Steiner
Arora & Ge introduced a noise-free polynomial system to compute the secret of a Learning With Errors (LWE) instance via linearization. Albrecht et al. later utilized the Arora-Ge polynomial model to study the complexity of Gröbner basis computations on LWE polynomial systems under the assumption of semi-regularity. In this paper we revisit the Arora-Ge polynomial and prove that it satisfies a genericity condition recently introduced by Caminata & Gorla, called being in generic coordinates. For polynomial systems in generic coordinates one can always estimate the complexity of DRL Gröbner basis computations in terms of the Castelnuovo-Mumford regularity and henceforth also via the Macaulay bound. Moreover, we generalize the Gröbner basis algorithm of Semaev & Tenti to arbitrary polynomial systems with a finite degree of regularity. In particular, existence of this algorithm yields another approach to estimate the complexity of DRL Gröbner basis computations in terms of the degree of regularity. In practice, the degree of regularity of LWE polynomial systems is not known, though one can always estimate the lowest achievable degree of regularity. Consequently, from a designer's worst case perspective this approach yields sub-exponential complexity estimates for general, binary secret and binary error LWE. In recent works by Dachman-Soled et al. the hardness of LWE in the presence of side information was analyzed. Utilizing their framework we discuss how hints can be incorporated into LWE polynomial systems and how they affect the complexity of Gröbner basis computations.
Last updated:  2024-02-23
Trapdoor Memory-Hard Functions
Benedikt Auerbach, Christoph U. Günther, and Krzysztof Pietrzak
Memory-hard functions (MHF) are functions whose evaluation provably requires a lot of memory. While MHFs are an unkeyed primitive, it is natural to consider the notion of trapdoor MHFs (TMHFs). A TMHF is like an MHF, but when sampling the public parameters one also samples a trapdoor which allows evaluating the function much cheaper. Biryukov and Perrin (Asiacrypt'17) were the first to consider TMHFs and put forth a candidate TMHF construction called Diodon that is based on the Scrypt MHF (Percival, BSDCan'09). To allow for a trapdoor, Scrypt's initial hash chain is replaced by a sequence of squares in a group of unknown order where the order of the group is the trapdoor. For a length $n$ sequence of squares and a group of order $N$, Diodon's cumulative memory complexity (CMC) is $O(n^2\log N)$ without the trapdoor and $O(n \log(n) \log(N)^2)$ with knowledge of it. While Scrypt is proven to be optimally memory-hard in the random oracle model (Alwen et al., Eurocrypt'17), Diodon's memory-hardness has not been proven so far. In this work, we fill this gap by rigorously analyzing a specific instantiation of Diodon. We show that its CMC is lower bounded by $\Omega(\frac{n^2}{\log n} \log N)$ which almost matches the upper bound. Our proof is based Alwen et al.'s lower bound on Scrypt's CMC but requires non-trivial modifications due to the algebraic structure of Diodon. Most importantly, our analysis involves a more elaborate compression argument and a solvability criterion for certain systems of Diophantine equations.
Last updated:  2024-02-23
Aggregating Falcon Signatures with LaBRADOR
Marius A. Aardal, Diego F. Aranha, Katharina Boudgoust, Sebastian Kolby, and Akira Takahashi
Several prior works have suggested to use non-interactive arguments of knowledge with short proofs to aggregate signatures of Falcon, which is part of the first post-quantum signatures selected for standardization by NIST. Especially LaBRADOR, based on standard structured lattice assumptions and published at CRYPTO’23, seems promising to realize this task. However, no prior work has tackled this idea in a rigorous way. In this paper, we thoroughly prove how to aggregate Falcon signatures using LaBRADOR. First, we improve LaBRADOR by moving from a low-splitting to a high-splitting ring, allowing for faster computations. This modification leads to some additional technical challenges for proving the knowledge soundness of LaBRADOR. Moreover, we provide the first complete knowledge soundness analysis for the non-interactive version of LaBRADOR. Here, the multi-round and recursive nature of LaBRADOR requires a complex and thorough analysis. For this purpose, we introduce the notion of predicate special soundness (PSS). This is a general framework for evaluating the knowledge error of complex Fiat-Shamir arguments of knowledge protocols in a modular fashion, which we believe to be of independent interest. Lastly, we explain the exact steps to take in order to adapt the LaBRADOR proof system for aggregating Falcon signatures and provide concrete estimates for proof sizes. Additionally, we formalize the folklore approach of obtaining aggregate signatures from the class of hash-then-sign signatures through arguments of knowledge.
Last updated:  2024-02-27
A Zero-Dimensional Gröbner Basis for Poseidon
Matthias Johann Steiner
In this paper we construct dedicated weight orders $>$ so that a $>$-Gröbner bases of Poseidon can be found via linear transformations for the preimage as well as the CICO problem. In particular, with our Gröbner bases we can exactly compute the $\mathbb{F}_q$-vector space dimension of the quotient space for all possible Poseidon configurations. This in turn resolves previous attempts to assess the security of Poseidon against Gröbner basis attacks, since the vector space dimension quantifies the complexity of computing the variety of a zero-dimensional polynomial system.
Last updated:  2024-02-23
NiLoPher: Breaking a Modern SAT-Hardened Logic-Locking Scheme via Power Analysis Attack
Prithwish Basu Roy, Johann Knechtel, Akashdeep Saha, Saideep Sreekumar, Likhitha Mankali, Mohammed Nabeel, Debdeep Mukhopadhyay, Ramesh Karri, and Ozgur Sinanoglu
LoPher brings, for the first time, cryptographic security promises to the field of logic locking in a bid to break the game of cat-and-mouse seen in logic locking. Toward this end, LoPher embeds the circuitry to lock within multiple rounds of a block cipher, by carefully configuring all the S-Boxes. To realize general Boolean functionalities and to support varying interconnect topologies, LoPher also introduces additional layers of MUXes between S-Boxes and the permutation operations. The authors of LoPher claim resilience against SAT-based attacks in particular. Here, we show the first successful attack on LoPher. First, we uncover a significant limitation for LoPher’s key-space configuration, resulting in large numbers of equivalent keys and, thus, a largely simplified search space for attackers in practice. Second, motivated by their well-proven working against ciphers, we employ a power side-channel attack against LoPher. We find that ISCAS-85 benchmarks locked with LoPher can all be broken in few thousands of traces. Finally, we also outline a simple and low-cost countermeasure to render LoPher more secure.
Last updated:  2024-02-23
C'est très CHIC: A compact password-authenticated key exchange from lattice-based KEM
Afonso Arriaga, Manuel Barbosa, Stanislaw Jarecki, and Marjan Skrobot
Several Password Authenticated Key Exchange (PAKE) protocols have been recently proposed that leverage a Key-Encapsulation Mechanism (KEM) to create an efficient and easy-to-implement post-quantum secure PAKE. This line of work is driven by the intention of the National Institute of Standards and Technology (NIST) to soon standardize a lattice-based post-quantum KEM called $\mathsf{Kyber}$. In two recent works, Beguinet et al. (ACNS 2023) and Pan and Zeng (ASIACRYPT 2023) proposed generic compilers that transform KEM into PAKE, relying on an Ideal Cipher (IC) defined over a group. However, although IC on a group is often used in cryptographic protocols, special care must be taken to instantiate such objects in practice, especially when a low-entropy key is used. To address this concern, Dos Santos et al. (EUROCRYPT 2023) proposed a relaxation of the IC model under the Universal Composability (UC) framework called Half-Ideal Cipher (HIC). They demonstrate how to construct a UC-secure PAKE protocol, named $\mathsf{EKE\textrm{-}KEM}$, from a KEM and a modified 2-round Feistel construction called $\mathsf{m2F}$. Remarkably, $\mathsf{m2F}$ sidesteps the use of IC over a group, instead employing an IC defined over a fixed-length bitstring domain, which is easier to instantiate. In this paper, we introduce a novel PAKE protocol called $\mathsf{CHIC}$ that improves the communication and computation efficiency of $\mathsf{EKE\textrm{-}KEM}$. We do so by opening $\mathsf{m2F}$ construction in a white-box manner and avoiding the HIC abstraction in our analysis. We provide a detailed proof of the security of $\mathsf{CHIC}$ and establish precise security requirements for the underlying KEM, including one-wayness and anonymity of ciphertexts, and uniformity of public keys. Our analysis improves prior work by pinpointing the necessary and sufficient conditions for a tight security proof. Our findings extend to general KEM-based EKE-style protocols, under both game-based definitions (with Perfect Forward Secrecy) and UC PAKE definitions, and show that a passively secure KEM is not sufficient. In this respect, our results align with those of Pan and Zeng (ASIACRYPT 2023), but contradict the analyses of KEM-to-PAKE compilers by Beguinet et al. (ACNS 2023) and Dos Santos et al. (EUROCRYPT 2023). Finally, we provide an implementation of $\mathsf{CHIC}$, highlighting its minimal overhead compared to an underlying CCA-secure KEM - $\mathsf{Kyber}$. An interesting aspect of the implementation is that we reuse existing $\mathsf{Kyber}$ reference code to solve an open problem concerning instantiating the half-ideal cipher construction. Specifically, we reuse the rejection sampling procedure, originally designed for public-key compression, to implement the hash onto the public key space, which is a component in the half-ideal cipher. As of now, to the best of our knowledge, CHIC stands as the most efficient PAKE protocol from black-box KEM that offers rigorously proven UC security.
Last updated:  2024-02-23
SweetPAKE: Key exchange with decoy passwords
Afonso Arriaga, Peter Y.A. Ryan, and Marjan Skrobot
Decoy accounts are often used as an indicator of the compromise of sensitive data, such as password files. An attacker targeting only specific known-to-be-real accounts might, however, remain undetected. A more effective method proposed by Juels and Rivest at CCS'13 is to maintain additional fake passwords associated with each account. An attacker who gains access to the password file is unable to tell apart real passwords from fake passwords, and the attempted usage of a false password immediately sets off an alarm indicating a password file compromise. Password-Authenticated Key Exchange (PAKE) has long been recognised for its strong security guarantees when it comes to low-entropy password authentication and secure channel establishment, without having to rely on the setup of a PKI. In this paper, we introduce SweetPAKE, a new cryptographic primitive that offers the same security guarantees as PAKE for key exchange, while allowing clients with a single password to authenticate against servers with $n$ candidate passwords for that account and establish a secure channel. Additional security properties are identified and formalized to ensure that (a) high-entropy session keys are indistinguishable from random, even if later on the long-term secret password becomes corrupted (forward secrecy); (b) upon password file leakage, an adversary cannot tell apart real from fake passwords; and (c) a malicious client cannot trigger a false alarm. We capture these properties by extending well-established game-based definitions of PAKE. Furthermore, we propose a new UC formulation that comprehensively unifies both SweetPAKE (session key indistinguishability and sugarword indistinguishability) and a related notion known as Oblivious-PAKE. Finally, we propose efficient SweetPAKE and Oblivious-PAKE protocols constructed from Password-Authenticated Public-Key Encryption (PAPKE) that satisfy all the proposed notions.
Last updated:  2024-02-23
Concretely Efficient Lattice-based Polynomial Commitment from Standard Assumptions
Intak Hwang, Jinyeong Seo, and Yongsoo Song
Polynomial commitment is a crucial cryptographic primitive in constructing zkSNARKs. To date, most practical constructions are either insecure against quantum adversaries or lack homomorphic properties, which are useful in recursive compositions of SNARKs. Recently, lattice-based constructions from functional commitments have drawn attention for possessing all the desirable properties, but they yet lack concrete efficiency, and their extractability, which is essential for SNARKs, requires further analysis. In this paper, we propose a novel construction of an extractable polynomial commitment scheme based on standard lattice-based assumptions, which is transparent and publicly verifiable. Our polynomial commitment has a square-root proof size and verification complexity, but it provides concrete efficiency in proof size, proof generation, and verification. When compared with the recent code-based construction based on Brakedown (CRYPTO 23), our construction provides comparable performance in all aspects.
Last updated:  2024-02-23
Single-Input Functionality against a Dishonest Majority: Practical and Round-Optimal
Zhelei Zhou, Bingsheng Zhang, Hong-Sheng Zhou, and Kui Ren
In this work, we focus on Single-Input Functionality (SIF), which can be viewed as a special case of MPC. In a SIF, only one distinguished party called the dealer holds a private input. SIF allows the dealer to perform a computation task with other parties without revealing any additional information about the private input. SIF has diverse applications, including multiple-verifier zero-knowledge, and verifiable relation sharing. As our main contribution, we propose the first 1-round SIF protocol against a dishonest majority in the preprocessing model, which is highly efficient. The only prior work that achieves 1-round online communication assumes an honest majority and is only a feasibility result (Applebaum et al., Crypto 2022). We implement our protocols and conduct extensive experiments to illustrate the practical efficiency of our protocols. As our side product, we extend the subfield Vector Oblivious Linear Evaluation (sVOLE) into the multi-party setting, and propose a new primitive called multi-verifier sVOLE, which may be of independent interest.
Last updated:  2024-02-23
A Two-Layer Blockchain Sharding Protocol Leveraging Safety and Liveness for Enhanced Performance
Yibin Xu, Jingyi Zheng, Boris Düdder, Tijs Slaats, and Yongluan Zhou
Sharding is a critical technique that enhances the scalability of blockchain technology. However, existing protocols often assume adversarial nodes in a general term without considering the different types of attacks, which limits transaction throughput at runtime because attacks on liveness could be mitigated. There have been attempts to increase transaction throughput by separately handling the attacks; however, they have security vulnerabilities. This paper introduces Reticulum, a novel sharding protocol that overcomes these limitations and achieves enhanced scalability in a blockchain network without security vulnerabilities. Reticulum employs a two-phase design that dynamically adjusts transaction throughput based on runtime adversarial attacks on either or both liveness and safety. It consists of `control' and `process' shards in two layers corresponding to the two phases. Process shards are subsets of control shards, with each process shard expected to contain at least one honest node with high confidence. Conversely, control shards are expected to have a majority of honest nodes with high confidence. Reticulum leverages unanimous voting in the first phase to involve fewer nodes in accepting/rejecting a block, allowing more parallel process shards. The control shard finalizes the decision made in the first phase and serves as a lifeline to resolve disputes when they surface. Experiments demonstrate that the unique design of Reticulum empowers high transaction throughput and robustness in the face of different types of attacks in the network, making it superior to existing sharding protocols for blockchain networks.
Last updated:  2024-02-22
Single Pass Client-Preprocessing Private Information Retrieval
Arthur Lazzaretti and Charalampos Papamanthou
Recently, many works have considered Private Information Retrieval (PIR) with client-preprocessing: In this model a client and a server jointly run a preprocessing phase, after which client queries can run in time sublinear in the size of the database. In addition, such approaches store no additional bits per client at the server, allowing us to scale PIR to a large number of clients. In this work, we propose the first client-preprocessing PIR scheme with ``single pass'' client-preprocessing. In particular, our scheme is concretely optimal with respect to preprocessing, in the sense that it requires exactly one linear pass over the database. This is in stark contrast with existing works, whose preprocessing is proportional to $\lambda \cdot N$, where $\lambda$ is the security parameter (e.g., $\lambda=128$). Our approach yields a preprocessing speedup of 45-100$\times$ and a query speedup of up to 20$\times$ when compared to previous state-of-the-art schemes (e.g., Checklist, USENIX 2021), making preprocessing PIR more attractive for a myriad of use cases that are ``session-based''. In addition to fast preprocessing, our scheme features extremely fast updates (additions and edits)---in constant time. Previously, the best known approach for handling updates in client-preprocessing PIR had time complexity $O(\log N)$, while also adding a $\log N$ factor to the bandwidth. We implement our update algorithm and show concrete speedups of about 20$\times$ in update time when compared to the previous state-of-the-art updatable scheme (e.g., Checklist, USENIX 2021).
Last updated:  2024-02-22
Pseudorandom unitaries with non-adaptive security
Tony Metger, Alexander Poremba, Makrand Sinha, and Henry Yuen
Pseudorandom unitaries (PRUs) are ensembles of efficiently implementable unitary operators that cannot be distinguished from Haar random unitaries by any quantum polynomial-time algorithm with query access to the unitary. We present a simple PRU construction that is a concatenation of a random Clifford unitary, a pseudorandom binary phase operator, and a pseudorandom permutation operator. We prove that this PRU construction is secure against non-adaptive distinguishers assuming the existence of quantum-secure one-way functions. This means that no efficient quantum query algorithm that is allowed a single application of $U^{\otimes \mathrm{poly}(n)}$ can distinguish whether an $n$-qubit unitary $U$ was drawn from the Haar measure or our PRU ensemble. We conjecture that our PRU construction remains secure against adaptive distinguishers, i.e., secure against distinguishers that can query the unitary polynomially many times in sequence, not just in parallel.
Last updated:  2024-02-22
Recommendations for the Design and Validation of a Physical True Random Number Generator Integrated in an Electronic Device
David Lubicz and Viktor FIscher
These Recommendations describe essential elements of the design of a secure physical true random number generator (PTRNG) integrated in an electronic device. Based on these elements, we describe and justify requirements for the design, validation and testing of PTRNGs, which are intended to guarantee the security of generators aimed at cryptographic applications.
Last updated:  2024-02-22
Diving Deep into the Preimage Security of AES-like Hashing
Shiyao Chen, Jian Guo, Eik List, Danping Shi, and Tianyu Zhang
Since the seminal works by Sasaki and Aoki, Meet-in-the-Middle (MITM) attacks are recognized as an effective technique for preimage and collision attacks on hash functions. At Eurocrypt 2021, Bao et al. automated MITM attacks on AES-like hashing and improved upon the best manual result. The attack framework has been furnished by subsequent works, yet far from complete. This paper elucidates three key contributions dedicated in further generalizing the idea of MITM and refining the automatic model on AES-like hashing. (1) We introduce S-box linearization to MITM pseudo-preimage attacks on AES-like hashing. The technique suits perfectly with superposition states to preserve information after S-box with an affordable cost. (2) We propose distributed initial structures, an extension on the original concept of initial states, that selects initial degrees of freedom in a more versatile manner to enlarge the search space. (3) We exploit the structural similarities between encryption and key schedule in constructions (e.g. Whirlpool and Streebog) to model propagations more accurately and avoid repeated costs. Weaponed with these innovative techniques, we further empower the MITM framework and improve the attack results on AES-like designs for preimage and collision. We obtain the first preimage attacks on 10-round AES-192, 10-round Rijndael-192/256, and 7.75-round Whirlpool, reduced time and/or memory complexities for preimage attacks on 5-, 6-round Whirlpool and 7.5-, 8.5-round Streebog, as well as improved collision attacks on 6- and 6.5-round Whirlpool.
Last updated:  2024-02-21
Divide and Surrender: Exploiting Variable Division Instruction Timing in HQC Key Recovery Attacks
Robin Leander Schröder, Stefan Gast, and Qian Guo
We uncover a critical side-channel vulnerability in the Hamming Quasi-Cyclic (HQC) round 4 optimized implementation arising due to the use of the modulo operator. In some cases, compilers optimize uses of the modulo operator with compile-time known divisors into constant-time Barrett reductions. However, this optimization is not guaranteed: for example, when a modulo operation is used in a loop the compiler may emit division (div) instructions which have variable execution time depending on the numerator. When the numerator depends on secret data, this may yield a timing side-channel. We name vulnerabilities of this kind Divide and Surrender (DaS) vulnerabilities. For processors supporting Simultaneous Multithreading (SMT) we propose a new approach called DIV-SMT which enables precisely measuring small division timing variations using scheduler and/or execution unit contention. We show that using only 100 such side-channel traces we can build a Plaintext-Checking (PC) oracle with above 90% accuracy. Our approach may also prove applicable to other instances of the DaS vulnerability, such as KyberSlash. We stress that exploitation with DIV-SMT requires co-location of the attacker on the same physical core as the victim. We then apply our methodology to HQC and present a novel way to recover HQC secret keys faster, achieving an 8-fold decrease in the number of idealized oracle queries when compared to previous approaches. Our new PC oracle attack uses our newly developed Zero Tester method to quickly determine whether an entire block of bits contains only zero-bits. The Zero Tester method enables the DIV-SMT powered attack on HQC-128 to complete in under 2 minutes on our targeted AMD Zen2 machine.
Last updated:  2024-02-21
New Models for the Cryptanalysis of ASCON
Mathieu Degré, Patrick Derbez, Lucie Lahaye, and André Schrottenloher
This paper focuses on the cryptanalysis of the ASCON family using automatic tools. We analyze two different problems with the goal to obtain new modelings, both simpler and less computationally heavy than previous works (all our models require only a small amount of code and run on regular desktop computers). The first problem is the search for Meet-in-the-middle attacks on reduced-round ASCON-Hash. Starting from the MILP modeling of Qin et al. (EUROCRYPT 2023 & ePrint 2023), we rephrase the problem in SAT, which accelerates significantly the solving time and removes the need for the ``weak diffusion structure'' heuristic. This allows us to reduce the memory complexity of Qin et al.'s attacks and to prove some optimality results. The second problem is the search for lower bounds on the probability of differential characteristics for the ASCON permutation. We introduce a lossy MILP encoding of the propagation rules based on the Hamming weight, in order to find quickly lower bounds which are comparable to the state of the art. We find a small improvement over the existing bound on 7 rounds.
Last updated:  2024-02-21
Accelerating Training and Enhancing Security Through Message Size Optimization in Symmetric Cryptography
Uncategorized
ABHISAR, Madhav Yadav, and Girish Mishra
Show abstract
Uncategorized
This research extends Abadi and Andersen's exploration of neural networks using secret keys for information protection in multiagent systems. Focusing on enhancing confidentiality properties, we employ end-to-end adversarial training with neural networks Alice, Bob, and Eve. Unlike prior work limited to 64-bit messages, our study spans message sizes from 4 to 1024 bits, varying batch sizes and training steps. An innovative aspect involves training model Bob to approach a minimal error value close to zero and examining its effect on the feasibility of the model. This research unveils the neural networks' adaptability and scalability in encryption and decryption across diverse scenarios, offering valuable insights into their optimization potential for secure communication.
Last updated:  2024-02-21
Attacking ECDSA with Nonce Leakage by Lattice Sieving: Bridging the Gap with Fourier Analysis-based Attacks
Yiming Gao, Jinghui Wang, Honggang Hu, and Binang He
The Hidden Number Problem (HNP) has found extensive applications in side-channel attacks against cryptographic schemes, such as ECDSA and Diffie-Hellman. There are two primary algorithmic approaches to solving the HNP: lattice-based attacks and Fourier analysis-based attacks. Lattice-based attacks exhibit better efficiency and require fewer samples when sufficiently long substrings of the nonces are known. However, they face significant challenges when only a small fraction of the nonce is leaked, such as 1-bit leakage, and their performance degrades in the presence of errors. In this paper, we address an open question by introducing an algorithmic tradeoff that significantly bridges the gap between these two approaches. By introducing a parameter $x$ to modify Albrecht and Heninger's lattice, the lattice dimension is reduced by approximately $(\log_2{x})/ l$, where $l$ represents the number of leaked bits. We present a series of new methods, including the interval reduction algorithm, several predicates, and the pre-screening technique. Furthermore, we extend our algorithms to solve the HNP with erroneous input. Our attack outperforms existing state-of-the-art lattice-based attacks against ECDSA. We break several records including 1-bit and less than 1-bit leakage on a 160-bit curve, while the best previous lattice-based attack for 1-bit leakage was conducted only on a 112-bit curve.
Last updated:  2024-02-21
An Efficient Hash Function for Imaginary Class Groups
Kostas Kryptos Chalkias, Jonas Lindstrøm, and Arnab Roy
This paper presents a new efficient hash function for imaginary class groups. Many class group based protocols, such as verifiable delay functions, timed commitments and accumulators, rely on the existence of an efficient and secure hash function, but there are not many concrete constructions available in the literature, and existing constructions are too inefficient for practical use cases. Our novel approach, building on Wesolowski's initial scheme, achieves a staggering 500-fold increase in computation speed, making it exceptionally practical for real-world applications. This optimisation is achieved at the cost of a smaller image of the hash function, but we show that the image is still sufficiently large for the hash function to be secure. Additionally, our construction is almost linear in its ability to be parallelized, which significantly enhances its computational efficiency on multi-processor systems, making it highly suitable for modern computing environments.
Last updated:  2024-02-21
Multiplex: TBC-based Authenticated Encryption with Sponge-Like Rate
Thomas Peters, Yaobin Shen, and François-Xavier Standaert
Authenticated Encryption (AE) modes of operation based on Tweakable Block Ciphers (TBC) usually measure efficiency in the number of calls to the underlying primitive per message block. On the one hand, many existing solutions reach a primitive-rate of 1, meaning that each n-bit block of message asymptotically needs a single call to the TBC with output length n. On the other hand, while these modes look optimal in a blackbox setting, they become less attractive when leakage comes into play, since all these calls must then be equally well protected to maintain security. Leakage-resistant modes improve this situation, by generating ephemeral keys every constant number of calls. However, rekeying is inherently suboptimal in primitive-rate, since a TBC call can only be used either to refresh a key or to encrypt a block. Even worse, existing solutions achieving almost n bits of security for n-bit secret keys have at most a primitive-rate 2/3. Hence the question: Can we design a highly-secure TBC-based rekeying mode with ``nearly optimal'' primitive-rate? We answer this question positively with Multiplex, a new mode that has primitive-rate d/(d+1) given a TBC with a dn-bit tweak. Multiplex achieves $n-\log_2(dn)$ bits of security for both (i) misuse-resilience CCA security in the blackbox setting and (ii) Ciphertext Integrity with Misuse-resistant and unbounded Leakage in encryption and decryption (CIML2). It also provides (iii) confidentiality with leakage up to the birthday bound. Furthermore, Multiplex can run d+1 calls in parallel in each iteration. The combination of these features gives a mode of operation that inherits most of the good implementation features and flexibility of a Duplex sponge -- therefore paving the way towards sound comparisons between TBC-based and permutation-based AE.
Last updated:  2024-02-21
Registered Attribute-Based Signature
Yijian Zhang, Jun Zhao, Ziqi Zhu, Junqing Gong, and Jie Chen
This paper introduces the notion of registered attribute-based signature (registered ABS). Distinctly different from classical attribute-based signature (ABS), registered ABS allows any user to generate their own public/secret key pair and register it with the system. The key curator is critical to keep the system flowing, which is a fully transparent entity that does not retain secrets. Our results can be summarized as follows. -This paper provides the first definition of registered ABS, which has never been defined. -This paper presents the first generic fully secure registered ABS over the prime-order group from $k$-Lin assumption under the standard model, which supports various classes of predicate. -This paper gives the first concrete registered ABS scheme for arithmetic branching program (ABP), which achieves full security in the standard model. Technically, our registered ABS is inspired by the blueprint of Okamoto and Takashima[PKC'11]. We convert the prime-order registered attribute-based encryption (registered ABE) scheme of Zhu et al.[ASIACRYPT'23] via predicate encoding to registered ABS by employing the technique of re-randomization with specialized delegation, while we employ the different dual-system method considering the property of registration. Prior to our work, the work of solving the key-escrow issue was presented by Okamoto and Takashima[PKC'13] while their work considered the weak adversary in the random oracle model.
Last updated:  2024-02-21
IDEA-DAC: Integrity-Driven Editing for Accountable Decentralized Anonymous Credentials via ZK-JSON
Shuhao Zheng, Zonglun Li, Junliang Luo, Ziyue Xin, and Xue Liu
Decentralized Anonymous Credential (DAC) systems are increasingly relevant, especially when enhancing revocation mechanisms in the face of complex traceability challenges. This paper introduces IDEA-DAC, a paradigm shift from the conventional revoke-and-reissue methods, promoting direct and Integrity-Driven Editing (IDE) for Accountable DACs, which results in better integrity accountability, traceability, and system simplicity. We further incorporate an Edit-bound Conformity Check that ensures tailored integrity standards during credential amendments using R1CS-based ZK-SNARKs. Delving deeper, we propose ZK-JSON, a unique R1CS circuit design tailored for IDE over generic JSON documents. This design imposes strictly $O(N)$ rank-1 constraints for variable-length JSON documents of up to $N$ bytes in length, encompassing serialization, encryption, and edit-bound conformity checks. Additionally, our circuits only necessitate a one-time compilation, setup, and smart contract deployment for homogeneous JSON documents up to a specified size. While preserving core DAC features such as selective disclosure, anonymity, and predicate provability, IDEA-DAC achieves precise data modification checks without revealing private content, ensuring only authorized edits are permitted. In summary, IDEA-DAC offers an enhanced methodology for large-scale JSON-formatted credential systems, setting a new standard in decentralized identity management efficiency and precision.
Last updated:  2024-02-20
Quantum Pseudorandomness Cannot Be Shrunk In a Black-Box Way
Samuel Bouaziz--Ermann and Garazi Muguruza
Pseudorandom Quantum States (PRS) were introduced by Ji, Liu and Song as quantum analogous to Pseudorandom Generators. They are an ensemble of states efficiently computable but computationally indistinguishable from Haar random states. Subsequent works have shown that some cryptographic primitives can be constructed from PRSs. Moreover, recent classical and quantum oracle separations of PRS from One-Way Functions strengthen the interest in a purely quantum alternative building block for quantum cryptography, potentially weaker than OWFs. However, our lack of knowledge of extending or shrinking the number of qubits of the PRS output still makes it difficult to reproduce some of the classical proof techniques and results. Short-PRSs, that is PRSs with logarithmic size output, have been introduced in the literature along with cryptographic applications, but we still do not know how they relate to PRSs. Here we answer half of the question, by showing that it is not possible to shrink the output of a PRS from polynomial to logarithmic qubit length while still preserving the pseudorandomness property, in a relativized way. More precisely, we show that relative to Kretschmer's quantum oracle (TQC 2021) short-PRSs cannot exist (while PRSs exist, as shown by Kretschmer's work).
Last updated:  2024-02-20
Secure Integrated Sensing and Communication under Correlated Rayleigh Fading
Martin Mittelbach, Rafael F. Schaefer, Matthieu Bloch, Aylin Yener, and Onur Gunlu
We consider a secure integrated sensing and communication (ISAC) scenario, in which a signal is transmitted through a state-dependent wiretap channel with one legitimate receiver with which the transmitter communicates and one honest-but-curious target that the transmitter wants to sense. The secure ISAC channel is modeled as two state-dependent fast-fading channels with correlated Rayleigh fading coefficients and independent additive Gaussian noise components. Delayed channel outputs are fed back to the transmitter to improve the communication performance and to estimate the channel state sequence. We establish and illustrate an achievable secrecy-distortion region for degraded secure ISAC channels under correlated Rayleigh fading. We also evaluate the inner bound for a large set of parameters to derive practical design insights for secure ISAC methods. The presented results include in particular parameter ranges for which the secrecy capacity of a classical wiretap channel setup is surpassed and for which the channel capacity is approached.
Last updated:  2024-02-20
SoK: Parameterization of Fault Adversary Models - Connecting Theory and Practice
Dilara Toprakhisar, Svetla Nikova, and Ventzislav Nikov
Since the first fault attack by Boneh et al. in 1997, various physical fault injection mechanisms have been explored to induce errors in electronic systems. Subsequent fault analysis methods of these errors have been studied, and successfully used to attack many cryptographic implementations. This poses a significant challenge to the secure implementation of cryptographic algorithms. To address this, numerous countermeasures have been proposed. Nevertheless, these countermeasures are primarily designed to protect against the particular assumptions made by the fault analysis methods. These assumptions, however, encompass only a limited range of the capabilities inherent to physical fault injection mechanisms. In this paper, we narrow our focus to fault attacks and countermeasures specific to ASICs, and introduce a novel parameterized fault adversary model capturing an adversary's control over an ASIC. We systematically map (a) the physical fault injection mechanisms, (b) adversary models assumed in fault analysis, and (c) adversary models used to design countermeasures into our introduced model. This model forms the basis for our comprehensive exploration that covers a broad spectrum of fault attacks and countermeasures within symmetric key cryptography as a comprehensive survey. Furthermore, our investigation highlights a notable misalignment among the adversary models assumed in countermeasures, fault attacks, and the intrinsic capabilities of the physical fault injection mechanisms. Through this study, we emphasize the need to reevaluate existing fault adversary models, and advocate for the development of a unified model.
Last updated:  2024-02-27
A generic algorithm for efficient key recovery in differential attacks – and its associated tool
Christina Boura, Nicolas David, Patrick Derbez, Rachelle Heim Boissier, and María Naya-Plasencia
Differential cryptanalysis is an old and powerful attack against block ciphers. While different techniques have been introduced throughout the years to improve the complexity of this attack, the key recovery phase remains a tedious and error-prone procedure. In this work, we propose a new algorithm and its associated tool that permits, given a distinguisher, to output an efficient key guessing strategy. Our tool can be applied to SPN ciphers whose linear layer consists of a bit-permutation and whose key schedule is linear or almost linear. It can be used not only to help cryptanalysts find the best differential attack on a given cipher but also to assist designers in their security analysis. We applied our tool to four targets: RECTANGLE, PRESENT-80, SPEEDY-7-192 and GIFT-64. We extend the previous best attack on RECTANGLE-128 by one round and the previous best differential attack against PRESENT-80 by 2 rounds. We improve a previous key recovery step in an attack against SPEEDY and present more efficient key recovery strategies for RECTANGLE-80 and GIFT. Our tool outputs the results in only a second for most targets.
Last updated:  2024-02-20
CAPABARA: A Combined Attack on CAPA
Dilara Toprakhisar, Svetla Nikova, and Ventzislav Nikov
Physical attacks pose a substantial threat to the secure implementation of cryptographic algorithms. While considerable research efforts are dedicated to protecting against passive physical attacks (e.g., side-channel analysis (SCA)), the landscape of protection against other types of physical attacks remains a challenge. Fault attacks (FA), though attracting growing attention in research, still lack the prevalence of provably secure designs when compared to SCA. The realm of combined attacks, which leverage the capabilities of both SCA and FA adversaries, introduces powerful adversarial models, rendering protection against them challenging. This challenge has consequently led to a relatively unexplored area of research, resulting in a notable gap in understanding and efficiently protecting against combined attacks. The CAPA countermeasure, published at CRYPTO 2018, addresses this challenge with a robust adversarial model that goes beyond conventional SCA and FA adversarial models. Drawing inspiration from the principles of Multiparty Computation (MPC), CAPA claims security against higher-order SCA, higher-order fault attacks, and their combination. In this work, we present a combined attack that breaks CAPA within the constraints of its assumed adversarial model. In response, we propose potential fixes to the design of CAPA that increase the complexity of the proposed attack, although not provably thwarting it. With this presented combined attack, we highlight the difficulty of effectively protecting against combined attacks.
Last updated:  2024-02-20
Efficient Zero-Knowledge Arguments and Digital Signatures via Sharing Conversion in the Head
Jules Maire and Damien Vergnaud
We present a novel technique within the MPC-in-the-Head framework, aiming to design efficient zero-knowledge protocols and digital signature schemes. The technique allows for the simultaneous use of additive and multiplicative sharings of secret information, enabling efficient proofs of linear and multiplicative relations. The applications of our technique are manifold. It is first applied to construct zero-knowledge arguments of knowledge for Double Discrete Logarithms (DDLP). The resulting protocol achieves improved communication complexity without compromising efficiency. We also propose a new zero-knowledge argument of knowledge for the Permuted Kernel Problem. Eventually, we suggest a short (candidate) post-quantum digital signature scheme constructed from a new one-way function based on simple polynomials known as fewnomials. This scheme offers simplicity and ease of implementation. Finally, we present two additional results inspired by this work but using alternative approaches. We propose a zero-knowledge argument of knowledge of an RSA plaintext for a small public exponent that significantly improves the state-of-the-art communication complexity. We also detail a more efficient forward-backward construction for the DDLP.
Last updated:  2024-02-20
Mirrored Commitment: Fixing ``Randomized Partial Checking'' and Applications
Paweł Lorek, Moti Yung, and Filip Zagórski
Randomized Partial Checking (RPC} was proposed by Jakobsson, Juels, and Rivest and attracted attention as an efficient method of verifying the correctness of the mixing process in numerous applied scenarios. In fact, RPC is a building block for many electronic voting schemes, including Prêt à Voter, Civitas, Scantegrity II as well as voting-systems used in real-world elections (e.g., in Australia). Mixing is also used in anonymous transfers of cryptocurrencies. It turned out, however, that a series of works showed, however, subtle issues with analyses behind RPC. First, that the actual security level of the RPC protocol is way off the claimed bounds. The probability of successful manipulation of $k$ votes is $(\frac{3}{4})^k$ instead of the claimed $\frac{1}{2^k}$ (this difference, in turn, negatively affects actual implementations of the notion within existing election systems. This is so since concrete implemented procedures of a given length were directly based on this parameter). Further, privacy guarantees that a constant number of mix-servers is enough turned out to also not be correct. We can conclude from the above that these analyses of the processes of mixing are not trivial. In this paper, we review the relevant attacks, and we present Mirrored-RPC -- a fix to RPC based on ``mirrored commitment'' which makes it optimally secure; namely, having a probability of successful manipulation of $k$ votes $\frac{1}{2^k}$. Then, we present an analysis of the privacy level of both RPC and mRPC. We show that for $n$ messages, the number of mix-servers (rounds) needed to be $\varepsilon$-close to the uniform distribution in total variation distance is lower bounded by: \[ r(n, \varepsilon) \geq \log_{2}{n \choose 2}/\varepsilon. \] This proof of privacy, in turn, gives insights into the anonymity of various cryptocurrencies (e.g., Zerocash) using anonymizing pools. If a random fraction $q$ of $n$ existing coins is mixed (in each block), then to achieve full anonymity, the number of blocks one needs to run the protocol for, is: \[ rb(n, q, \varepsilon) \geq - \frac{\log n + \log (n-1) - \log (2\varepsilon)}{ {\log({1-q^2}})}. \]
Last updated:  2024-02-20
Practical Improvements to Statistical Ineffective Fault Attacks
Barış Ege, Bob Swinkels, Dilara Toprakhisar, and Praveen Kumar Vadnala
Statistical Fault Attacks (SFA), introduced by Fuhr et al., exploit the statistical bias resulting from injected faults. Unlike prior fault analysis attacks, which require both faulty and correct ciphertexts under the same key, SFA leverages only faulty ciphertexts. In CHES 2018, more powerful attacks called Statistical Ineffective Fault Attacks (SIFA) have been proposed. In contrast to the previous fault attacks that utilize faulty ciphertexts, SIFA exploits the distribution of the intermediate values leading to fault-free ciphertexts. As a result, the SIFA attacks were shown to be effective even in the presence of widely used fault injection countermeasures based on detection and infection. In this work, we build upon the core idea of SIFA, and provide two main practical improvements over the previously proposed analysis methods. Firstly, we show how to perform SIFA from the input side, which in contrast to the original SIFA, requires injecting faults in the earlier rounds of an encryption or decryption operation. If we consider the start of the operation as the trigger for fault injection, the cumulative jitter in the first few rounds of a cipher is much lower than the last rounds. Hence, performing the attack in the first or second round requires a narrower parameter range for fault injection and hence less fault injection attempts to recover the secret key. Secondly, in comparison to the straightforward SIFA approach of guessing 32-bits at a time, we propose a chosen input approach that reduces the guessing effort to 16-bits at a time. This decreases the key search space for full key recovery of an AES-128 implementation from $2^{34}$ to $2^{19}$.
Last updated:  2024-02-20
Toward Malicious Constant-Rate 2PC via Arithmetic Garbling
Carmit Hazay and Yibin Yang
A recent work by Ball, Li, Lin, and Liu [Eurocrypt'23] presented a new instantiation of the arithmetic garbling paradigm introduced by Applebaum, Ishai, and Kushilevitz [FOCS'11]. In particular, Ball et al.'s garbling scheme is the first constant-rate garbled circuit over large enough bounded integer computations, inferring the first constant-round constant-rate secure two-party computation (2PC) over bounded integer computations in the presence of semi-honest adversaries. The main source of difficulty in lifting the security of garbling schemes-based protocols to the malicious setting lies in proving the correctness of the underlying garbling scheme. In this work, we analyze the security of Ball et al.'s scheme in the presence of malicious attacks. - We demonstrate an overflow attack, which is inevitable in this computational model, even if the garbled circuit is fully correct. Our attack follows by defining an adversary, corrupting either the garbler or the evaluator, that chooses a bad input and causes the computation to overflow, thus leaking information about the honest party's input. By utilizing overflow attacks, we show that $1$-bit leakage is necessary for achieving security against a malicious garbler, discarding the possibility of achieving full malicious security in this model. We further demonstrate a wider range of overflow attacks against a malicious evaluator with more than $1$ bit of leakage. - We boost the security level of Ball et al.'s scheme by utilizing two variants of Vector Oblivious Linear Evaluation, denoted by VOLEc and aVOLE. We present the first constant-round constant-rate 2PC protocol over bounded integer computations, in the presence of a malicious garbler with $1$-bit leakage and a semi-honest evaluator, in the {VOLEc,aVOLE}-hybrid model and being black-box in the underlying group and ring. Compared to the semi-honest variant, our protocol incurs only a constant factor overhead, both in computation and communication. The constant-round and constant-rate properties hold even in the plain model.
Last updated:  2024-02-19
A Concrete Analysis of Wagner's $k$-List Algorithm over $\mathbb{Z}_p$
Antoine Joux, Hunter Kippen, and Julian Loss
Since its introduction by Wagner (CRYPTO `02), the $k$-list algorithm has found significant utility in cryptanalysis. One important application thereof is in computing forgeries on several interactive signature schemes that implicitly rely on the hardness of the ROS problem formulated by Schnorr (ICICS `01). The current best attack strategy for these schemes relies the conjectured runtime of the $k$-list algorithm over $\mathbb{Z}_p$. The tightest known analysis of Wagner's algorithm over $\mathbb{Z}_p$ is due to Shallue (ANTS `08). However, it hides large polynomial factors and leaves a gap with respect to desirable concrete parameters for the attack. In this work, we develop a degraded version of the $k$-list algorithm which provably enforces the heuristic invariants in Wagner's original. In the process, we devise and analyze a new list merge procedure that we dub the interval merge. We give a thorough analysis of the runtime and success probability of our degraded algorithm, and show that it beats the projected runtime of the analysis by Shallue for parameters relevant to the generalized ROS attack of Benhamouda et al. (EUROCRYPT `21). For a $256$-bit prime $p$, and $k = 8$, our degraded $k$-list algorithm runs in time $\approx 2^{70.4}$, while Shallue's analysis states that the Wagner's original algorithm runs in time $\approx 2^{98.3}$.
Last updated:  2024-02-19
Polynomial Commitments from Lattices: Post-Quantum Security, Fast Verification and Transparent Setup
Valerio Cini, Giulio Malavolta, Ngoc Khanh Nguyen, and Hoeteck Wee
Polynomial commitment scheme allows a prover to commit to a polynomial $f \in \mathcal{R}[X]$ of degree $L$, and later prove that the committed function was correctly evaluated at a specified point $x$; in other words $f(x)=u$ for public $x,u \in\mathcal{R}$. Most applications of polynomial commitments, e.g. succinct non-interactive arguments of knowledge (SNARKs), require that (i) both the commitment and evaluation proof are succinct (i.e., polylogarithmic in the degree $L$) - with the latter being efficiently verifiable, and (ii) no pre-processing step is allowed. Surprisingly, as far as plausibly quantum-safe polynomial commitments are concerned, the currently most efficient constructions only rely on weak cryptographic assumptions, such as security of hash functions. Indeed, despite making use of the underlying algebraic structure, prior lattice-based polynomial commitments still seem to be much behind the hash-based ones. Moreover, security of the aforementioned lattice constructions against quantum adversaries was never formally discussed. In this work, we bridge the gap and propose the first (asymptotically and concretely) efficient lattice-based polynomial commitment with transparent setup and post-quantum security. Our interactive variant relies on the standard (Module-)SIS problem, and can be made non-interactive in the random oracle model using Fiat-Shamir transformation. In addition, we equip the scheme with a knowledge soundness proof against quantum adversaries which can be of independent interest. In terms of concrete efficiency, for $L=2^{20}$ our scheme yields proofs of size $2$X smaller than the hash-based \textsf{FRI} commitment (Block et al., Asiacrypt 2023), and $70$X smaller than the very recent lattice-based construction by Albrecht et al. (Eurocrypt 2024).
Last updated:  2024-02-19
HARTS: High-Threshold, Adaptively Secure, and Robust Threshold Schnorr Signatures
Renas Bacho, Julian Loss, Gilad Stern, and Benedikt Wagner
Threshold variants of the Schnorr signature scheme have recently been at the center of attention due to their applications to Bitcoin, Ethereum, and other cryptocurrencies. However, existing constructions for threshold Schnorr signatures among a set of $n$ parties with corruption threshold $t_c$ suffer from at least one of the following drawbacks: (i) security only against static (i.e., non-adaptive) adversaries, (ii) cubic or higher communication cost to generate a single signature, (iii) strong synchrony assumptions on the network, or (iv) $t_c+1$ are sufficient to generate a signature, i.e., the corruption threshold of the scheme equals its reconstruction threshold. Especially (iv) turns out to be a severe limitation for many asynchronous real-world applications where $t_c < n/3$ is necessary to maintain liveness, but a higher signing threshold of $n-t_c$ is needed. A recent scheme, ROAST, proposed by Ruffing et al. (ACM CCS `22) addresses (iii) and (iv), but still falls short of obtaining subcubic complexity and adaptive security. In this work, we present HARTS, the first threshold Schnorr signature scheme to incorporate all these desiderata. More concretely: - HARTS is adaptively secure and remains fully secure and operational even under asynchronous network conditions in the presence of up to $t_c < n/3$ malicious parties. This is optimal. - HARTS outputs a Schnorr signature of size $\lambda$ with a near-optimal amortized communication cost of $O(\lambda n^2 \log{n})$ bits and $O(1)$ rounds per signature. - HARTS is a high-threshold scheme: no fewer than $t_r+1$ signature shares can be combined to yield a full signature, where $t_r\geq 2n/3 > 2t_c$. This is optimal. We prove our result in a modular fashion in the algebraic group model. At the core of our construction, we design a new simple, and adaptively secure high-threshold AVSS scheme which may be of independent interest.
Last updated:  2024-02-19
Polynomial-Time Key-Recovery Attack on the ${\tt NIST}$ Specification of ${\tt PROV}$
River Moreira Ferreira and Ludovic Perret
In this paper, we present an efficient attack against ${\tt PROV}$, a recent variant of the popular Unbalanced Oil and Vinegar (${\tt UOV}$) multivariate signature scheme, that has been submitted to the ongoing ${\tt NIST}$ standardization process for additional post-quantum signature schemes. A notable feature of ${\tt PROV}$ is its proof of security, namely, existential unforgeability under a chosen-message attack (${\tt EUF-CMA}$), assuming the hardness of solving the system formed by the public-key non-linear equations. We present a polynomial-time key-recovery attack against the first specification of ${\tt PROV}$ (v$1.0$). To do so, we remark that a small fraction of the ${\tt PROV}$ secret-key is leaked during the signature process. Adapting and extending previous works on basic ${\tt UOV}$, we show that the entire secret-key can be then recovered from such a small fraction in polynomial-time. This leads to an efficient attack against ${\tt PROV}$ that we validated in practice. For all the security parameters suggested in by the authors of ${\tt PROV}$, our attack recovers the secret-key in at most $8$ seconds. We conclude the paper by discussing the apparent mismatch between such a practical attack and the theoretical security claimed by ${\tt PROV}$ designers. Our attack is not structural but exploits that the current specification of ${\tt PROV}$ differs from the required security model. A simple countermeasure makes ${\tt PROV}$ immune against the attack presented here and led the designers to update the specification of ${\tt PROV}$ (v$1.1$).
Last updated:  2024-02-19
Circle STARKs
Ulrich Haböck, David Levit, and Shahar Papini
Traditional STARKs require a cyclic group of a smooth order in the field. This allows efficient interpolation of points using the FFT algorithm, and writing constraints that involve neighboring rows. The Elliptic Curve FFT (ECFFT, Part I and II) introduced a way to make efficient STARKs for any finite field, by using a cyclic group of an elliptic curve. We show a simpler construction in the lines of ECFFT over the circle curve $x^2 + y^2 = 1$. When $p + 1$ is divisible by a large power of $2$, this construction is as efficient as traditional STARKs and ECFFT. Applied to the Mersenne prime $p = 2^{31} − 1$, which has been recently advertised in the IACR eprint 2023:824, our preliminary benchmarks indicate a speed-up by a factor of $1.4$ compared to a traditional STARK using the Babybear prime $p = 2^{31} − 2^{27} + 1$.
Last updated:  2024-02-19
Fault Attacks on UOV and Rainbow
Juliane Krämer and Mirjam Loiero
Multivariate cryptography is one of the main candidates for creating post-quantum public key cryptosystems. Especially in the area of digital signatures, there exist many practical and secure multivariate schemes. The signature schemes UOV and Rainbow are two of the most promising and best studied multivariate schemes which have proven secure for more than a decade. However, so far the security of multivariate signature schemes towards physical attacks has not been appropriately assessed. Towards a better understanding of the physical security of multivariate signature schemes, this paper presents fault attacks against SingleField schemes, especially UOV and Rainbow. Our analysis shows that although promising attack vectors exist, multivariate signature schemes inherently offer a good protection against fault attacks.
Last updated:  2024-02-19
Reduce and Prange: Revisiting Prange's Information Set Decoding for LPN and RSD
Jiseung Kim and Changmin Lee
The learning parity with noise (LPN) problem has been widely utilized in classical cryptography to construct cryptographic primitives. Various variants of LPN have been proposed, including LPN over large fields and LPN with regular noise, depending on the underlying space and the noise regularity. These LPN variants have proven to be useful in constructing cryptographic primitives. We propose an improvement to the Gaussian elimination attack, which is also known as Prange's information set decoding algorithm, for solving the LPN problem. Contrary to prevailing knowledge, we find that the Gaussian elimination attack is highly competitive and currently the best method for solving LPN over large fields. Our improvement involves applying partial Gaussian elimination repeatedly, rather than the whole Gaussian algorithm, which we have named the ``Reduce and Prange's algorithm". Moreover, we provide two applications of Reduce and Prange algorithms: One is the hybrid algorithm of ours and Berstein, Lange and Peters's algorithm at PQCrypto'08, and the other one is Reduce and Prange algorithm for LPN with regular noise. Last, we provide a concrete estimation of the bit-security of LPN variants using our Reduce and Prange's frameworks. Our results show that the bit-security of LPN over $\mathbb{F}_q$ is reduced by 5-11 bits when $\log q = 128$ compared to previous analysis by Liu et al. (will appear at Eurocrypt'24). Furthermore, we show that our algorithm outperforms recent work by Briaud and Øygard (Eurocrypt'23) and Liu et al. for certain parameters. It reduces the bit-security of LPN with regular noise by 5-28 bits.
Last updated:  2024-02-22
The Multi-user Constrained PRF Security of Generalized GGM Trees for MPC and Hierarchical Wallets
Chun Guo, Xiao Wang, Xiang Xie, and Yu Yu
Multi-user (mu) security considers large-scale attackers that, given access to a number of cryptosystem instances, attempt to compromise at least one of them. We initiate the study of mu security of the so-called GGMtree that stems from the PRG-to-PRF transformation of Goldreich, Goldwasser, and Micali, with a goal to provide references for its recently popularized use in applied cryptography. We propose a generalized model for GGM trees and analyze its mu prefix-constrained PRF security in the random oracle model. Our model allows to derive concrete bounds and improvements for various protocols, and we showcase on the Bitcoin-Improvement-Proposal standard Bip32 hierarchical wallets and function secret sharing (FSS) protocols. In both scenarios, we propose improvements with better performance and concrete security bounds at the same time. Compared with the state-of-the-art designs, our SHACAL3- and KeccaK-𝑝-based Bip32 variants reduce the communication cost of MPC-based implementations by 73.3%∼93.8%, while our AES-based FSS substantially improves mu security while reducing computations by 50%.
Last updated:  2024-02-19
Amortized Large Look-up Table Evaluation with Multivariate Polynomials for Homomorphic Encryption
Heewon Chung, Hyojun Kim, Young-Sik Kim, and Yongwoo Lee
We present a new method for efficient look-up table (LUT) evaluation in homomorphic encryption (HE), based on Ring-LWE-based HE schemes, including both integer-message schemes such as Brakerski-Gentry-Vaikuntanathan (BGV) and Brakerski/Fan-Vercauteren (BFV), and complex-number-message schemes like the Cheon-Kim-Kim-Song (CKKS) scheme. Our approach encodes bit streams into codewords and translates LUTs into low-degree multivariate polynomials, allowing for the simultaneous evaluation of multiple independent LUTs with minimal overhead. To mitigate noise accumulation in the CKKS scheme, we propose a novel noise-reduction technique, accompanied by proof demonstrating its effectiveness in asymptotically decreasing noise levels. We demonstrate our algorithm's effectiveness through a proof-of-concept implementation, showcasing significant efficiency gains, including a 0.029ms per slot evaluation for 8-input, 8-output LUTs and a 280ms amortized decryption time for AES-128 using CKKS on a single GPU. This work not only advances LUT evaluation in HE but also introduces a transciphering method for the CKKS scheme utilizing standard symmetric-key encryption, bridging the gap between discrete bit strings and numerical data.
Last updated:  2024-02-26
Information-Theoretic Homomorphic Encryption and 2-Party Computation
Jonathan Trostle
Homomorphic encryption has been an active area of research since Gentry's breakthrough results on fully homomorphic encryption. We present secret key somewhat homomorphic schemes where client privacy is information-theoretic (server can be computationally unbounded). As the group order in our schemes gets larger, entropy approaches max- imal entropy (perfect security). Our basic scheme is additive somewhat homomorphic. In one scheme, the server handles circuit multiplication gates by returning the mulitiplicands to the client which does the multiplication and sends back the encrypted product. We give a 2-party protocol that also incorporates server inputs where the client privacy is information-theoretic. Server privacy is not information-theoretic, but rather depends on hardness of the subset sum problem. Correctness for the server in the malicious model can be verified by a 3rd party where the client and server privacy are information-theoretically protected from the verifier. Scaling the 2PC protocol via separate encryption parameters for smaller subcircuits allows the ciphertext size to grow logarithmically as circuit size grows.
Last updated:  2024-02-26
Deep Learning Based Analysis of Key Scheduling Algorithm of Advanced Ciphers
Narendra Kumar Patel and Hemraj Shobharam Lamkuche
The advancements in information technology have made the Advanced Encryption Standard (AES) and the PRESENT cipher indispensable in ensuring data security and facilitating private transactions. AES is renowned for its flexibility and widespread use in various fields, while the PRESENT cipher excels in lightweight cryptographic situations. This paper delves into a dual examination of the Key Scheduling Algorithms (KSAs) of AES and the PRESENT cipher, which play a crucial role in generating round keys for their respective encryption techniques. By implementing deep learning methods, particularly a Neural Network model, our study aims to unravel the complexities of these KSAs and shed light on their inner workings.
Last updated:  2024-02-19
Understanding User-Perceived Security Risks and Mitigation Strategies in the Web3 Ecosystem
Janice Jianing Si, Tanusree Sharma, and Kanye Ye Wang
The advent of Web3 technologies promises unprecedented levels of user control and autonomy. However, this decentralization shifts the burden of security onto the users, making it crucial to understand their security behaviors and perceptions. To address this, our study introduces a comprehensive framework that identifies four core components of user interaction within the Web3 ecosystem: blockchain infrastructures, Web3-based Decentralized Applications (DApps), online communities, and off-chain cryptocurrency platforms. We delve into the security concerns perceived by users in each of these components and analyze the mitigation strategies they employ, ranging from risk assessment and aversion to diversification and acceptance. We further discuss the landscape of both technical and human-induced security risks in the Web3 ecosystem, identify the unique security differences between Web2 and Web3, and highlight key challenges that render users vulnerable, to provide implications for security design in Web3.
Last updated:  2024-02-18
YPIR: High-Throughput Single-Server PIR with Silent Preprocessing
Samir Jordan Menon and David J. Wu
We introduce YPIR, a single-server private information retrieval (PIR) protocol that achieves high throughput (up to 75% of the memory bandwidth of the machine) without any offline communication. For retrieving a 1-bit (or 1-byte) record from a 32-GB database, YPIR achieves 10.9 GB/s/core server throughput and requires 2.5 MB of total communication. On the same setup, the state-of-the-art SimplePIR protocol achieves a 12.6 GB/s/core server throughput, requires 1.5 MB total communication, but additionally requires downloading a 724 MB hint in an offline phase. YPIR leverages a new lightweight technique to remove the hint from high-throughput single-server PIR schemes with small overhead. We also show how to reduce the server preprocessing time in the SimplePIR family of protocols by a factor of $10$-$15\times$. By removing the need for offline communication, YPIR significantly reduces the server-side costs for private auditing of Certificate Transparency logs. Compared to the best previous PIR-based approach, YPIR reduces the server-side costs by a factor of $5.6\times$. Note that to reduce communication costs, the previous approach assumed that updates to the Certificate Transparency log servers occurred in weekly batches. Since there is no offline communication in YPIR, our approach allows clients to always audit the most recent Certificate Transparency logs (e.g., updating once a day). Supporting daily updates using the prior scheme would cost $30\times$ more than YPIR (based on current AWS compute costs).
Last updated:  2024-02-17
A note on PUF-Based Robust and Anonymous Authentication and Key Establishment Scheme for V2G Networks
Milad Seddigh and Seyed Hamid Baghestani
Vehicle-to-grid (V2G) provides effective charging services, allows bidirectional energy communication between the power grid and electric vehicle (EV), and reduces environmental pollution and energy crises. Recently, Sungjin Yu et al. proposed a PUF-based, robust, and anonymous authentication and key establishment scheme for V2G networks. In this paper, we show that the proposed protocol does not provide user anonymity and is vulnerable to tracing attack. We also found their scheme is vulnerable to ephemeral secret leakage attacks.
Last updated:  2024-02-17
A New Approach to Generic Lower Bounds: Classical/Quantum MDL, Quantum Factoring, and More
Minki Hhan
This paper studies the limitations of the generic approaches to solving cryptographic problems in classical and quantum settings in various models. - In the classical generic group model (GGM), we find simple alternative proofs for the lower bounds of variants of the discrete logarithm (DL) problem: the multiple-instance DL and one-more DL problems (and their mixture). We also re-prove the unknown-order GGM lower bounds, such as the order finding, root extraction, and repeated squaring. - In the quantum generic group model (QGGM), we study the complexity of variants of the discrete logarithm. We prove the logarithm DL lower bound in the QGGM even for the composite order setting. We also prove an asymptotically tight lower bound for the multiple-instance DL problem. Both results resolve the open problems suggested in a recent work by Hhan, Yamakawa, and Yun. - In the quantum generic ring model we newly suggested, we give the logarithmic lower bound for the order-finding algorithms, an important step for Shor's algorithm. We also give a logarithmic lower bound for a certain generic factoring algorithm outputting relatively small integers, which includes a modified version of Regev's algorithm. - Finally, we prove a lower bound for the basic index calculus method for solving the DL problem in a new idealized group model regarding smooth numbers. The quantum lower bounds in both models allow certain (different) types of classical preprocessing. All of the proofs are significantly simpler than the previous proofs and are through a single tool, the so-called compression lemma, along with linear algebra tools. Our use of this lemma may be of independent interest.
Last updated:  2024-02-16
zkPi: Proving Lean Theorems in Zero-Knowledge
Evan Laufer, Alex Ozdemir, and Dan Boneh
Interactive theorem provers (ITPs), such as Lean and Coq, can express formal proofs for a large category of theorems, from abstract math to software correctness. Consider Alice who has a Lean proof for some public statement $T$. Alice wants to convince the world that she has such a proof, without revealing the actual proof. Perhaps the proof shows that a secret program is correct or safe, but the proof itself might leak information about the program's source code. A natural way for Alice to proceed is to construct a succinct, zero-knowledge, non-interactive argument of knowledge (zkSNARK) to prove that she has a Lean proof for the statement $T$. In this work we build zkPi, the first zkSNARKfor proofs expressed in Lean, a state of the art interactive theorem prover. With zkPi, a prover can convince a verifier that a Lean theorem is true, while revealing little else. The core problem is building an efficient zkSNARKfor dependent typing. We evaluate zkPion theorems from two core Lean libraries: stdlib and mathlib. zkPisuccessfuly proves 57.9% of the theorems in stdlib, and 14.1% of the theorems in mathlib, within 4.5 minutes per theorem. A zkPiproof is sufficiently short that Fermat could have written one in the margin of his notebook to convince the world, in zero knowledge, that he proved his famous last theorem. Interactive theorem provers (ITPs) can express virtually all systems of formal reasoning. Thus, an implemented zkSNARKfor ITP theorems generalizes practical zero-knowledge's interface beyond the status quo: circuit satisfiability and program execution.
Last updated:  2024-02-16
WhisPIR: Stateless Private Information Retrieval with Low Communication
Uncategorized
Leo de Castro, Kevin Lewi, and Edward Suh
Show abstract
Uncategorized
Recent constructions of private information retrieval (PIR) have seen significant improvements in computational performance. However, these improvements rely on heavy offline preprocessing that is typically difficult in real-world applications. Motivated by the question of PIR with no offline processing, we introduce WhisPIR, a fully stateless PIR protocol with low per-query communication. WhisPIR clients are all ephemeral, meaning that they appear with only the protocol public parameters and disappear as soon as their query is complete, giving no opportunity for additional "offline" communication that is not counted towards the overall query communication. As such, WhisPIR is highly suited for practical applications that must support many clients and frequent database updates. We demonstrate that WhisPIR requires significantly less communication than all other lattice-based PIR protocols in a stateless setting. WhisPIR is outperformed in computation only by SimplePIR and HintlessPIR when the database entries are large (several kilobytes). WhisPIR achieves this performance by introducing a number of novel optimizations. These include improvements to the index expansion algorithm of SealPIR & OnionPIR that optimizes the algorithm when only one rotation key is available. WhisPIR also makes novel use of the non-compact variant of the BGV homomorphic encryption scheme to further save communication and computation. To demonstrate the practicality of WhisPIR, we apply the protocol to the problem of secure blocklist checking, an important user-safety application in end-to-end encrypted messaging.
Last updated:  2024-02-16
Beyond the circuit: How to Minimize Foreign Arithmetic in ZKP Circuits
Michele Orrù, George Kadianakis, Mary Maller, and Greg Zaverucha
Zero-knowledge circuits are frequently required to prove gadgets that are not optimised for the constraint system in question. A particularly daunting task is to embed foreign arithmetic such as Boolean operations, field arithmetic, or public-key cryptography. We construct techniques for offloading foreign arithmetic from a zero-knowledge circuit including: (i) equality of discrete logarithms across different groups; (ii) scalar multiplication without requiring elliptic curve operations; (iii) proving knowledge of an AES encryption. To achieve our goal, we employ techniques inherited from rejection sampling and lookup protocols. We implement and provide concrete benchmarks for our protocols.
Last updated:  2024-02-19
Extractable Witness Encryption for KZG Commitments and Efficient Laconic OT
Nils Fleischhacker, Mathias Hall-Andersen, and Mark Simkin
We present a concretely efficient and simple extractable witness encryption scheme for KZG polynomial commitments. It allows to encrypt a message towards a triple $(\mathsf{com}, \alpha, \beta)$, where $\mathsf{com}$ is a KZG commitment for some polynomial $f$. Anyone with an opening for the commitment attesting $f(\alpha) = \beta$ can decrypt, but without knowledge of a valid opening the message is computationally hidden. Our construction is simple and highly efficient. The ciphertext is only a single group element. Encryption and decryption both require a single pairing evaluation and a constant number of group operations. Using our witness encryption scheme, we construct a simple and highly efficient laconic OT protocol, which significantly outperforms the state of the art in most important metrics.
Last updated:  2024-02-16
Threshold Encryption with Silent Setup
Sanjam Garg, Dimitris Kolonelos, Guru-Vamsi Policharla, and Mingyuan Wang
We build a concretely efficient threshold encryption scheme where the joint public key of a set of parties is computed as a deterministic function of their locally computed public keys, enabling a silent setup phase. By eliminating interaction from the setup phase, our scheme immediately enjoys several highly desirable features such as asynchronous setup, multiverse support, and dynamic threshold. Prior to our work, the only known constructions of threshold encryption with silent setup relied on heavy cryptographic machinery such as indistinguishability Obfuscation or witness encryption for all of $\mathsf{NP}$. Our core technical innovation lies in building a special purpose witness encryption scheme for the statement ``at least $t$ parties have signed a given message''. Our construction relies on pairings and is proved secure in the Generic Group Model. Notably, our construction, restricted to the special case of threshold $t=1$, gives an alternative construction of the (flexible) distributed broadcast encryption from pairings, which has been the central focus of several recent works. We implement and evaluate our scheme to demonstrate its concrete efficiency. Both encryption and partial decryption are constant time, taking $<7\,$ms and $<1\,$ms, respectively. For a committee of $1024$ parties, the aggregation of partial decryptions takes $<200\,$ms, when all parties provide partial decryptions. The size of each ciphertext is $\approx 8\times$ larger than an ElGamal ciphertext.
Last updated:  2024-02-16
Note on the cryptanalysis of Speedy
Tim Beyne and Addie Neyt
At Eurocrypt 2023, a differential attack on the block cipher Speedy-7-192 was presented. This note shows that the main differential characteristic that this attack is based on has probability zero.
Last updated:  2024-02-16
Election Eligibility with OpenID: Turning Authentication into Transferable Proof of Eligibility
Véronique Cortier, Alexandre Debant, Anselme Goetschmann, and Lucca Hirschi
Eligibility checks are often abstracted away or omitted in voting protocols, leading to situations where the voting server can easily stuff the ballot box. One reason for this is the difficulty of bootstraping the authentication material for voters without relying on trusting the voting server. In this paper, we propose a new protocol that solves this problem by building on OpenID, a widely deployed authentication protocol. Instead of using it as a standard authentication means, we turn it into a mechanism that delivers transferable proofs of eligibility. Using zk-SNARK proofs, we show that this can be done without revealing any compromising information, in particular, protecting everlasting privacy. Our approach remains efficient and can easily be integrated into existing protocols, as we have done for the Belenios voting protocol. We provide a full-fledged proof of concept along with benchmarks showing our protocol could be realistically used in large-scale elections.
Last updated:  2024-02-16
Kleptographic Attacks against Implicit Rejection
Uncategorized
Antoine Joux, Julian Loss, and Benedikt Wagner
Show abstract
Uncategorized
Given its integral role in modern encryption systems such as CRYSTALS-Kyber, the Fujisaki-Okamoto (FO) transform will soon be at the center of our secure communications infrastructure. An enduring debate surrounding the FO transform is whether to use explicit or implicit rejection when decapsulation fails. Presently, implicit rejection, as implemented in CRYSTALS-Kyber, is supported by a strong set of arguments. Therefore, understanding its security implications in different attacker models is essential. In this work, we study implicit rejection through a novel lens, namely, from the perspective of kleptography. Concretely, we consider an attacker model in which the attacker can subvert the user's code to compromise security while remaining undetectable. In this scenario, we present three attacks that significantly reduce the security level of the FO transform with implicit rejection. Notably, our attacks apply to CRYSTALS-Kyber.
Last updated:  2024-02-16
Anonymity on Byzantine-Resilient Decentralized Computing
Kehao Ma, Minghui Xu, Yihao Guo, Lukai Cui, Shiping Ni, Shan Zhang, Weibing Wang, Haiyong Yang, and Xiuzhen Cheng
In recent years, decentralized computing has gained popularity in various domains such as decentralized learning, financial services and the Industrial Internet of Things. As identity privacy becomes increasingly important in the era of big data, safeguarding user identity privacy while ensuring the security of decentralized computing systems has become a critical challenge. To address this issue, we propose ADC (Anonymous Decentralized Computing) to achieve anonymity in decentralized computing. In ADC, the entire network of users can vote to trace and revoke malicious nodes. Furthermore, ADC possesses excellent Sybil-resistance and Byzantine fault tolerance, enhancing the security of the system and increasing user trust in the decentralized computing system. To decentralize the system, we propose a practical blockchain-based decentralized group signature scheme called Group Contract. We construct the entire decentralized system based on Group Contract, which does not require the participation of a trusted authority to guarantee the above functions. Finally, we conduct rigorous privacy and security analysis and performance evaluation to demonstrate the security and practicality of ADC for decentralized computing with only a minor additional time overhead.
Last updated:  2024-02-16
SoK: Decentralized Storage Network
Chuanlei Li, Minghui Xu, Jiahao Zhang, Hechuan Guo, and Xiuzhen Cheng
Decentralized Storage Networks (DSNs) represent a paradigm shift in data storage methodology, distributing and housing data across multiple network nodes rather than relying on a centralized server or data center architecture. The fundamental objective of DSNs is to enhance security, reinforce reliability, and mitigate censorship risks by eliminating a single point of failure. Leveraging blockchain technology for functions such as access control, ownership validation, and transaction facilitation, DSN initiatives aim to provide users with a robust and secure alternative to traditional centralized storage solutions. This paper conducts a comprehensive analysis of the developmental trajectory of DSNs, focusing on key components such as Proof of Storage protocols, consensus algorithms, and incentive mechanisms. Additionally, the study explores recent optimization tactics, encountered challenges, and potential avenues for future research, thereby offering insights into the ongoing evolution and advancement within the DSN domain.
Last updated:  2024-02-16
LatticeFold: A Lattice-based Folding Scheme and its Applications to Succinct Proof Systems
Dan Boneh and Binyi Chen
Folding is a recent technique for building efficient recursive SNARKs. Several elegant folding protocols have been proposed, such as Nova, Supernova, Hypernova, Protostar, and others. However, all of them rely on an additively homomorphic commitment scheme based on discrete log, and are therefore not post-quantum secure. In this work we present LatticeFold, the first lattice-based folding protocol based on the Module SIS problem. This folding protocol naturally leads to an efficient recursive lattice-based SNARK and an efficient PCD scheme. LatticeFold supports folding low-degree relations, such as R1CS, as well as high-degree relations, such as CCS. The key challenge is to construct a secure folding protocol that works with the Ajtai commitment scheme. The difficulty, is ensuring that extracted witnesses are low norm through many rounds of folding. We present a novel technique using the sumcheck protocol to ensure that extracted witnesses are always low norm no matter how many rounds of folding are used. Our evaluation of the final proof system suggests that it is as performant as Hypernova, while providing post-quantum security.
Last updated:  2024-02-16
Fiat-Shamir for Bounded-Depth Adversaries
Liyan Chen, Yilei Chen, Zikuan Huang, Nuozhou Sun, Tianqi Yang, and Yiding Zhang
We study how to construct hash functions that can securely instantiate the Fiat-Shamir transformation against bounded-depth adversaries. The motivation is twofold. First, given the recent fruitful line of research of constructing cryptographic primitives against bounded-depth adversaries under worst-case complexity assumptions, and the rich applications of Fiat-Shamir, instantiating Fiat-Shamir hash functions against bounded-depth adversaries under worst-case complexity assumptions might lead to further applications (such as SNARG for P, showing the cryptographic hardness of PPAD, etc.) against bounded-depth adversaries. Second, we wonder whether it is possible to overcome the impossibility results of constructing Fiat-Shamir for arguments [Goldwasser, Kalai, FOCS ’03] in the setting where the depth of the adversary is bounded, given that the known impossibility results (against p.p.t. adversaries) are contrived. Our main results give new insights for Fiat-Shamir against bounded-depth adversaries in both the positive and negative directions. On the positive side, for Fiat-Shamir for proofs with certain properties, we show that weak worst-case assumptions are enough for constructing explicit hash functions that give $\mathsf{AC}^0[2]$-soundness. In particular, we construct an $\mathsf{AC}^0[2]$-computable correlation-intractable hash family for constant-degree polynomials against $\mathsf{AC}^0[2]$ adversaries, assuming $\oplus \mathsf{L}/\mathsf{poly} \not\subseteq \widetilde{\mathsf{Sum}}_{n^{-c}} \circ\mathsf{AC}^0[2]$ for some $c > 0$. This is incomparable to all currently-known constructions, which are typically useful for larger classes and against stronger adversaries, but based on arguably stronger assumptions. Our construction is inspired by the Fiat-Shamir hash function by Peikert and Shiehian [CRYPTO ’19] and the fully-homomorphic encryption scheme against bounded-depth adversaries by Wang and Pan [EUROCRYPT ’22]. On the negative side, we show Fiat-Shamir for arguments is still impossible to achieve against bounded-depth adversaries. In particular, • Assuming the existence of $\mathsf{AC}^0[2]$-computable CRHF against p.p.t. adversaries, for every poly-size hash function, there is a (p.p.t.-sound) interactive argument that is not $\mathsf{AC}^0[2]$-sound after applying Fiat-Shamir with this hash function. • Assuming the existence of $\mathsf{AC}^0[2]$-computable CRHF against $\mathsf{AC}^0[2]$ adversaries, there is an $\mathsf{AC}^0[2]$-sound interactive argument such that for every hash function computable by $\mathsf{AC}^0[2]$ circuits the argument does not preserve $\mathsf{AC}^0[2]$-soundness when applying Fiat-Shamir with this hash function. This is a low-depth variant of the result of Goldwasser and Kalai.
Last updated:  2024-02-16
Revisiting Differential-Linear Attacks via a Boomerang Perspective with Application to AES, Ascon, CLEFIA, SKINNY, PRESENT, KNOT, TWINE, WARP, LBlock, Simeck, and SERPENT
Hosein Hadipour, Patrick Derbez, and Maria Eichlseder
In 1994, Langford and Hellman introduced differential-linear (DL) cryptanalysis, with the idea of decomposing the block cipher E into two parts, EU and EL, such that EU exhibits a high-probability differential trail, while EL has a high-correlation linear trail.Combining these trails forms a distinguisher for E, assuming independence between EU and EL. The dependency between the two parts of DL distinguishers remained unaddressed until EUROCRYPT 2019, where Bar-On et al. introduced the DLCT framework, resolving the issue up to one S-box layer. However, extending the DLCT framework to formalize the dependency between the two parts for multiple rounds remained an open problem. In this paper, we first tackle this problem from the perspective of boomerang analysis. By examining the relationships between DLCT, DDT, and LAT, we introduce a set of new tables facilitating the formulation of dependencies between the two parts of the DL distinguisher across multiple rounds. Then, as the main contribution, we introduce a highly versatile and easy-to-use automatic tool for exploring DL distinguishers, inspired by automatic tools for boomerang distinguishers. This tool considers the dependency between differential and linear trails across multiple rounds. We apply our tool to various symmetric-key primitives, and in all applications, we either present the first DL distinguishers or enhance the best-known ones. We achieve successful results against Ascon, AES, SERPENT, PRESENT, SKINNY, TWINE, CLEFIA, WARP, LBlock, Simeck, and KNOT. Furthermore, we demonstrate that, in some cases, DL distinguishers outperform boomerang distinguishers significantly.
Last updated:  2024-02-16
Adaptive Security in SNARGs via iO and Lossy Functions
Brent Waters and Mark Zhandry
We construct an adaptively sound SNARGs in the plain model with CRS relying on the assumptions of (subexponential) indistinguishability obfuscation (iO), subexponential one-way functions and a notion of lossy functions we call length parameterized lossy functions. Length parameterized lossy functions take in separate security and input length parameters and have the property that the function image size in lossy mode depends only on the security parameter. We then show a novel way of constructing such functions from the Learning with Errors (LWE) assumption. Our work provides an alternative path towards achieving adaptively secure SNARGs from the recent work of Waters and Wu. Their work required the use of (essentially) perfectly re-randomizable one way functions (in addition to obfuscation). Such functions are only currently known to be realizable from assumptions such as discrete log or factoring that are known to not hold in a quantum setting.
Last updated:  2024-02-17
2PC-MPC: Emulating Two Party ECDSA in Large-Scale MPC
Offir Friedman, Avichai Marmor, Dolev Mutzari, Omer Sadika, Yehonatan C. Scaly, Yuval Spiizer, and Avishay Yanai
Motivated by the need for a massively decentralized network concurrently servicing many clients, we present novel low-overhead UC-secure, publicly verifiable, threshold ECDSA protocols with identifiable abort. For the first time, we show how to reduce the message complexity from O(n^2) to O(n) and the computational complexity from O(n) to practically O(1) (per party, where n is the number of parties). We require only a broadcast channel for communication. Therefore, we natively support use-cases like permissionless bridges and decentralized custody, where P2P channels between every pair of parties are infeasible. Consequently, the message complexity is reduced and the protocol is publicly verifiable. We enable all communication to be public (over a broadcast channel), by using a threshold additively homomorphic encryption scheme and novel zero-knowledge proofs. To further reduce the computation and communication overheads, our protocols employ novel batching and amortization techniques, which may be of independent interest. Our second main contribution is the introduction of the notion of a 2PC-MPC protocol - a two-party ECDSA protocol where the second party is fully emulated by a network of n parties. This notion assures that both the first party (the client) and (a threshold) of the network are required to participate in signing, while abstracting away the internal structure of the network. In particular, the communication and computation complexities of the client remain independent of the network properties (e.g. size). This allows ultimate decentralization in distributed custody use-cases, as recent growing interest in the industry demands. We report that our implementation completes the signing phase in 1.23 and 12.703 seconds, for 256 and 1024 parties, respectively.
Last updated:  2024-02-15
Short Signatures from Regular Syndrome Decoding, Revisited
Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux
We revisit the construction of signature scheme using the MPC-in-the-head paradigm, and focus in particular on constructions from the regular syndrome decoding assumption, a well-known variant of the syndrome decoding assumption. We obtain two main contributions: – We observe that previous signatures in the MPC-in-the-head paradigm must rely on a salted version of the GGM puncturable pseudorandom function (PPRF) to avoid collision attacks. We design a new efficient PPRF construction provably secure in the multi-instance setting. The security analysis of our PPRF, in the ideal cipher model, is quite involved and forms a core technical contribution of our work. While previous constructions had to rely on a hash function, our construction uses only a fixed-key block cipher and is considerably more efficient as a result. Our improved PPRF can be used to speed up many MPC-in-the-head signatures, and illustrate it on two signatures: the recent SDitH (submitted to the NIST), and a new signature scheme that we introduce. – We introduce a new signature scheme from the regular syndrome decoding assumption, based on a new protocol for the MPC-in-the-head paradigm, which significantly reduces communication compared to previous works. Our scheme is conceptually simple, though its security analysis requires a delicate and nontrivial combinatorial analysis.
Last updated:  2024-02-16
Communication-Optimal Convex Agreement
Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer
Byzantine Agreement (BA) allows a set of $n$ parties to agree on a value even when up to $t$ of the parties involved are corrupted. While previous works have shown that, for $\ell$-bit inputs, BA can be achieved with the optimal communication complexity $\mathcal{O}(\ell n)$ for sufficiently large $\ell$, BA only ensures that honest parties agree on a meaningful output when they hold the same input, rendering the primitive inadequate for many real-world applications. This gave rise to the notion of Convex Agreement (CA), introduced by Vaidya and Garg [PODC'13], which requires the honest parties' outputs to be in the convex hull of the honest inputs. Unfortunately, all existing CA protocols incur a communication complexity of at least $\Omega(\ell n^2)$. In this work, we introduce the first CA protocol with the optimal communication of $\mathcal{O}(\ell n)$ bits for inputs in $\mathbb{Z}$ of size $\ell = \Omega(\kappa \cdot n^2 \log n)$, where $\kappa$ is the security parameter.
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.