
A Fast and Efficient SIKE Co-Design:
Coarse-Grained Reconfigurable Accelerators with

Custom RISC-V Microcontroller on FPGA
Jing Tian, Bo Wu, Lang Feng, Haochen Zhang, and Zhongfeng Wang

School of Electronic Science and Engineering, Nanjing University, Nanjing, China,
{tianjing,flang,zfwang}@nju.edu.cn,wubo@smail.nju.edu.cn,zhanghc0624@sina.com

Abstract. This paper proposes a fast and efficient FPGA-based hardware-software co-
design for the supersingular isogeny key encapsulation (SIKE) protocol controlled by
a custom RISC-V processor. Firstly, we highly optimize the core unit, the polynomial-
based field arithmetic logic unit (FALU), with the proposed fast convolution-like
multiplier (FCM) to significantly reduce the resource consumption while still main-
taining low latency and constant time for all the four SIKE parameters. Secondly,
we pack the small isogeny and point operations in hardware, devise a coarse-grained
reconfigurable hardware architecture (CGRHA) based on FALU as the co-processor,
and apply it to the RISC-V core with customized instructions, effectively avoiding
extra time consumption for the data exchange with the software side and meanwhile
increasing flexibility. Finally, we code the hardware in SystemVerilog language and
the software in C language and run experiments on FPGAs. In the co-processor imple-
mentation, the experiment results show that our design for the four SIKE parameters
achieves 2.6-4.4x speedup and obtains comparable or better area-time product to or
than the state-of-the-art. In the hardware-software co-design experiments, we still
have the superiority in speed and only <10% of extra time is introduced by mutual
communication.
Keywords: Supersingular isogeny Diffie-Hellman (SIDH) key exchange, elliptic curve
cryptography (ECC), modular reduction, Montgomery representation, Barrett reduc-
tion, polynomial multiplication.

1 Introduction
As summarized by Bernstein and Lange in [BL17], most of the popularly-used cryptosystems
would heavily suffer from large quantum computers by using Grover’s algorithm [Gro96]
or Shor’s algorithm [Sho94]. The public-key cryptography like the Rivest-Shamir-Adleman
(RSA) algorithm [RSA78] and Elliptic-Curve Cryptography (ECC) [Mil85] would be en-
tirely destroyed by Shor’s algorithm. Recently, much progress has been made in quantum
circuits [Vu16,KMT+17,ZWD+20], which accelerates the establishment of Post-Quantum
Cryptography (PQC). Several standardization bodies like the National Institute of Stan-
dards and Technology (NIST) and Internet Engineering Task Force (IETF) have joined in
the evaluation for PQC standardization.

From 2016 till now, four rounds of the evaluation process of PQC have been com-
pleted by the NIST [CCJ+16], in which the Supersingular Isogeny Key Encapsulation
(SIKE) protocol [ACC+17] still exists as an alternate candidate for public-key encryption
and key-establishment (PKE) algorithms based on the Key-Encapsulation Mechanism
(KEM) [HHK17]. SIKE, evolved from the Supersingular Isogeny Diffie-Hellman (SIDH)
key exchange [JDF11], is the only isogeny-based protocol that adopts the ECC arithmetic

mailto:{tianjing, flang, zfwang}@nju.edu.cn, wubo@smail.nju.edu.cn, zhanghc0624@sina.com

2 Fast and Efficient SIKE Co-Design

operations. It has the advantage of relatively short key sizes and can be well compati-
ble with conventional ECC protocols like the elliptic-curve Diffie–Hellman (ECDH) key
exchange [Mil85]. Unlike ECDH, which moves around different points on a fixed curve,
SIKE moves around different points and different curves [ACC+17]. Large-degree isogeny
computations between supersingular elliptic curves are adopted to achieve high-level post-
quantum security, which causes high computational cost and long latency. Therefore,
techniques to speed up SIKE are essential in PQC research.

1.1 Related Work
To improve the performance, many researchers have provided optimizations for the
SIKE implementation in pure software [Jao11, AFJ14, AJK+16, CLN16, FHLOJRH17,
ZSP+18,ACC+17,SLLH18,JAK18,AAK21,SAJA20,TWL+21,CFGR22] or pure hardware
[KAKJ17,KAK18,KAEK+20,EAMK20,TWW21,FBSMBA21a,FBSMBA21b,EAMK21b,
NOL+22b,FBSMB20]. On the pure software side, apart from the portable generic ones in
C language, many implementations in assembly language are targeted at specific CPU or
ARM architectures to obtain high performance or low power. The software implementa-
tions have an advantage over the hardware ones in flexibility but are at a disadvantage
in speed, limited by the fixed word length and usage of parallelism. On the pure hard-
ware side, the mainstream designs are implemented on high-end FPGA platforms and
specifically accelerated for a certain SIKE parameter without consideration for flexibility.
Most of them are dedicatedly optimized in the underlying field arithmetic, mainly for
modular multiplication. Two well-known modular multiplication algorithms, namely the
Montgomery algorithm [MP85] and the Barrett algorithm [Bar86], are widely used and
studied for SIKE. In terms of the original version, the former is more efficient than the
latter [TLW20]. Usually, the high-radix Montgomery multiplication algorithm [Oru95] and
its architecture in [BP01] are adopted by many SIKE implementations to make a tradeoff
between efficiency and resource utilization.

Recently, Tian et al. [TWL+21] proposed a low-complexity Barrett-based multiplication
algorithm (UR-Barrett) for SIKE by leveraging the special form of the prime. They
introduced a reciprocal with a small denominator for the SIKE prime and constructed a
relatively large-degree polynomial structure with an unconventional radix. All the field
arithmetic operations are then processed over the corresponding polynomial domain. In the
UR-Barrett algorithm, the large integer multiplications are broken down into small ones,
reducing the multiplicative complexity from quadratically to linearly in the polynomial
order. It means that UR-Barrett has the potential to be superior over the best Montgomery
one in complexity even though it is based on the Barrett scheme [TWL+21, TLW19].
Meanwhile, parallelism can also be improved when processing the independent coefficients.
A feed-forward circuit for UR-Barrett is presented in [TWW21], which facilitates the
implementation of SIKEp751 achieving the fastest one among all so far at the cost of
relatively more resource consumption. In this paper, we take this scheme as our starting
point and further optimize it for all the SIKE parameters for high speed and low complexity.

As for the hardware-software co-design (HSC-design) scheme, it is expected to combine
the advantages of hardware and software platforms but is still at the beginning for the
SIKE protocol [MLRB20, RFS20, EAMK21a, EKAK22]. In [MLRB20], Massolino et al.
proposed the first HSC-design methodology in simulation level. They designed a compact
and scalable MAC unit based on an FPGA platform and extracted the simulated data to
a software environment to evaluate the co-design. Two modes for the MAC are provided,
i.e., the Carmela128 (abbr. S) and the Carmela256 (abbr. F). The corresponding SIKE
experimental results show tradeoffs between flexibility and speed, either of which, however,
is slower than almost all of the previous pure hardware designs. In [RFS20], Roy et
al. for the first time, integrated the customized finite field unit into ARM and RISC-V
architectures, respectively, and implemented the SIKE designs on an FPGA development

Submitted to CHES in July 2022 3

board and evaluated the performance. Because of the limitation in clock frequency
(150MHz for the ARM and 25MHz for the RISC-V), the runtime results of both cannot be
comparable to the ARM-based pure software implementations. In [EAMK21a], Elkhatib
et al. also presented a HSC-design with RISC-V based on FPGA platforms. They selected
a very lightweight RISC-V core that can only support some basic integer operations as the
controller and adopted a single modular multiplier and a modular adder with a size of 752
bits as the hardware accelerator. This way, their clock frequency reaches 243.6MHz, much
faster than the other two. The place-and-route results based on a Virtex-7 FPGA core
show that their design has improvements in both time and area compared with the designs
in [MLRB20]. In [EKAK22], they further optimized the clock frequency up to 303MHz to
improve the timing performance and achieved the best area-time product (ATP) among
previous works. However, the HSC-design is still much slower than most pure hardware
implementations. It should be pointed out that the HSC-design in [RFS20] is the only one
so far whose timing performance is evaluated based on an FPGA development board.

Regarding the HSC-design for SIKE, it has a great challenge and potential to make a
better tradeoff among speed, area, and flexibility. The timing performance need still be
improved with an acceptable area increase while maintaining flexibility.

1.2 Our Contribution and Paper Organization
The main contributions are summarized as follows:

1. We review the popularly used modular multiplication algorithms for SIKE and
analyze their complexities in formula and numeric, respectively. The results show
that the modified UR-Barrett (mUR-Barrett) evolved from [TWL+20] has the lowest
computational complexity.

2. We take the polynomial-based field arithmetic logic unit (FALU) specifically designed
for SIKEp751 in [TWW21] as the starting point and propose an advanced FALU
supporting all the four SIKE parameters. The new FALU includes a modular
multiplier and a modular adder/subtractor.

(a) We present a general fast convolution-like multiplier (FCM) that is scalable
and configurable for both integer and polynomial multiplications. The core idea
is to reduce the complexity of multiplication in a divide-and-conquer manner
like the Karatsuba algorithm, with an organized and lower-complexity way. We
exhaustively adopt this architecture in serial and parallel for all the involved
integer and polynomial multiplications to achieve better area efficiency.

(b) By fully leveraging FCM, we propose a new constant-time modular multiplier
compatible with all the four SIKE parameters in low complexity and small
latency. The number of DSPs of the new modular multiplier is reduced by
about 70%, and that of Slices is by about 40%, much lower hardware complexity
compared with the multiplier in [TWW21]. At the same time, the interleaved
latency is only three cycles, much smaller than other previous designs. In
this way, we can still use a single modular multiplier for SIKE to achieve high
performance.

(c) For the modular adder and subtractor, we merge them and make them con-
figurable for all modes and parameters. Additionally, only one stage of the
pipeline is inserted for low latency.

3. We make the higher-level operations, i.e., the small isogeny and point-addition
operations, form a coarse-grained reconfigurable hardware architecture (CGRHA)
in the hardware side to ease the communication cost. Note that it is not worthy to
directly connect the proposed FALU with the software side since its latency is too

4 Fast and Efficient SIKE Co-Design

Table 1: Timing results of our design for the four SIKE parameters by using simulation
on EDA and testing on an FPGA development board, respectively. Measured in cycle
counts (rounded to 103).

SIKE Parameter Key Gen. Encaps. Decaps. Encaps. + Decaps.
simu. test. simu. test. simu. test. simu. test.

SIKEp751 496 503 869 880 916 928 1,784 1,807
SIKEp610 389 411 790 826 773 813 1,563 1,639
SIKEp503 316 333 560 596 586 625 1,146 1,221
SIKEp434 278 290 485 497 525 527 1,010 1,024

small to cover the overhead of the communication. It can be realized by adding a
program ROM module to save the necessary instructions. Meanwhile, all operations
have constant execution time in any parameter settings.

4. We take CGRHA as a co-processor and integrate it into a powerful RISC-V platform.
The overview of the proposed HSC-design can be illustrated in Figure 1. We test the
area based on post-place and route and evaluate the time according to the Vivado
simulation and the runtime of an FPGA development board, respectively, where the
cycle counts are summarized in Table 1. Compared with the state-of-the-art, our
design achieves the fastest speed for all four SIKE parameters and keeps high area
efficiency.

𝔽𝑝 add,sub,mult.

Data transformation

l-degree

isogeny
Point

addition,

tripling,

quadruple

(Double)

Point

multiplic

-ation

le
-degree

isogeny

SIKE

l: 2, 3, or 4 e: eA , eB ，or eB /2: In Hardware: In Hardware : In Software: In Software

Inversion

SHAKE

256

Figure 1: Overview of the proposed HSC-design of SIKE. The operations in the blue
ellipses are processed in the pure hardware accelerator, and those in the pink are carried
out by the software controller calling the required operations from the hardware. Note that
the Data Transformation module on the hardware side is necessary for transforming the
alternating data in the right format. The hash function is kept in hardware to accelerate
this operation and reduce the data exchange between software and hardware.

The rest of this paper is organized as follows. Section 2 gives a brief review of the
necessary mathematical foundations and the SIKE protocol. In addition, the efficient
modular multiplication algorithms for SIKE are summarized and compared. Section 3
presents the details of the proposed CGRHA. The integration with RISC-V is provided in
Section 4. Experimental results and comparisons are given in Section 5. Finally, Section 6
concludes the paper.

Submitted to CHES in July 2022 5

2 Preliminaries
In this section, we will first introduce the necessary mathematical foundations. Then, the
SIKE protocol will be reviewed. Finally, the modular multiplication algorithms for SIKE
will be summarized and analyzed.

2.1 Mathematical Foundations
The supersingular elliptic curve over Fp2 is usually used the Montgomery curve with the
form as:

E/Fp2 : Dy2 = x3 + Cx2 + x, (1)

where C, D ∈ Fp2 , D(C2 − 4) ̸= 0, and p = f · aeAbeB ± 1. The prime for SIKE usually is
set as p = 2eA3eB − 1. Two pairs of independent public points {PA, QA} and {PB , QB}
are selected from the curve E/Fp2 (simply denoted as E), which satisfy ⟨PA, QA⟩ = E[2eA]
and ⟨PB , QB⟩ = E[3eB], respectively.

In the SIKE protocol, the isogeny ϕ : E1 → E2 is defined as a non-constant rational
map over Fp2 . In practical computing, a large-degree isogeny is resolved into many
small-degree isogenies that are 2, 3 or 4-degree computed by the Vélu’s formula [Vél71]
iteratively. Assume a curve E over Fp2 and a point S of order le on E, where l ∈ {2, 3, 4}
and e ∈ {eA, eB , eA/2}. The le-degree isogney ϕ : E → E⟨S⟩ are computed as shown
in Algorithm 1. It needs to iteratively compute the l-degree isogeny and the point
multiplication e times.

Algorithm 1: le-Degree Isogney Computation [JAC+]
Input: A curve E and a ponit S.

1: E0 = E, S0 = S
2: for i = 0 → e − 1 do
3: Ei+1 = Ei/⟨[le−i−1]Si⟩
4: ϕi : Ei → Ei+1
5: Si+1 = ϕi(Si)
6: end for

Output: The isogeny ϕ = ϕe−1 : E → E/⟨S⟩.

Two isogeny algorithms, i.e., the isogen algorithm for computing public keys and the
isoex algorithm for establishing shared keys, are involved in the SIKE protocol. More
details of the two algorithms can be referred to the provided documentation of [JAC+].
Both are mainly composed of Algorithm 1, where the point S is computed by a double-point
multiplication based on the selected secret keys and public points or keys. For the isogen
algorithm, the goal is to find the image of the public points over the isogenous curve E/⟨S⟩
as public keys. The isoex algorithm is to compute the j-invariant of E/⟨S⟩ as the shared
keys, which is calculated as:

j(E/⟨S⟩) = 256(C2 − 3)3

C2 − 4 . (2)

2.2 The SIKE Protocol
Assume that two parties, e.g., Alice and Bob, communicate with each other based
on the SIKE protocol, and Alice sends a message to Bob. The computing process is
shown in Algorithm 2, which consists of a tuple of there algorithms: Key Generation,
Encapsulation, and Encapsulation.

6 Fast and Efficient SIKE Co-Design

Algorithm 2: SIKE Protocol [JAC+]
Input: Public parameters: E/Fp2 , p = 2eA3eB − 1, PA, QA, PB , and QB .

1: Key Generation: (Bob’s round)
skB = random{0, 1, ..., 2⌊log2 3eB ⌋ − 1},
pkB = isogen(skB , PB , QB , PA, QA)
fmB = random{0, 1, ..., 2M − 1}
Output: {skB , pkB , fmB}

2: Encapsulation: (Alice’s round)
Input: {mA, pkB}
skA = H({mA, pkB}, eA),
pkA = isogen(skA, PA, QA, PB , QB)
j = isoex(skA, pkB),
ss = H(j, M)
cA = ss ⊕ mA,
emA = H({mA, pkA, cA}, K)
Output: { pkA, cA, emA}

3: Decapsulation: (Bob’s round)
Input: {pkA, skB , cA, pkB , fmB}
j = isoex(skB , pkA),
ss = H(j, M)
m′

A = ss ⊕ cA,
sk′

A = H({m′
A, pkB}, eA)

pk′
A = isogen(sk′

A, PA, QA, PB , QB)
if (pk′

A == pkA) then
emB = H({m′

A, pkA, cA}, K)
else

emB = H({fmB , pkA, cA}, K)
Output: emB

Submitted to CHES in July 2022 7

At the beginning, Bob uses the Key Generation algorithm to generate his secret and
public keys, and discloses the public key. Meanwhile, he produces a random number for
use in the later. Then, Alice adopts the Encapsulation algorithm to generate her keys
in an encapsulating way [HHK17] and discloses her public key. Based the shared key,i.e.
the j-invariant, she encrypts her plaintext and sends the ciphertext to Bob. In addition,
she keeps a second shared key emA for verification. At the last step, Bob decrypts the
ciphertext with the shared key, recovers Alice’s keys, and checks her message using the
Encapsulation algorithm. He discloses the calculated value emB to notify Alice whether
their communication is attacked or not. This protocol has been proven IND-CCA secure.

From Algorithm 2, it can be seen that the SIKE protocol requires five large-degree
isogeny computations, six Hash functions, two random-number operations, and two XOR
operations. In existing hardware implementations for SIKE, the random numbers are taken
as given. The main focus is on the isogeny computations as they take up most of the whole
time. Note that the isogeny computations are over a finite field, dominated by modular
multiplications. We will introduce and compare several efficient modular multiplication
algorithms for SIKE in the following.

2.3 Modular Multiplication Algorithms for SIKE
The Montgomery algorithm [MP85] and Barrett algorithm [Bar86] are two widely used
modular multiplication algorithms since both of them remove the division and only involve
multiplication and addition operations.

Algorithm 3: Montgomery Modular Multiplication Algorithm [MP85]
Input: p, A, B.

Modulus p with 2N−1 < p < 2N ;
Precompute p′ = (−p−1) mod 2N ;
Operands A, B ∈ [0, p).

1: C = A · B
2: t = ((C mod R) · p′) mod 2N

3: r = (C + t · p)/2N

4: if r ≥ p then
5: r = r − p
6: end if

Output: The residue r = A × B × 2−N mod p.

Algorithm 4: Barrett Modular Multiplication Algorithm [Bar86]
Input: p, A, B.

Modulus p with 2N−1 < p < 2N ;
Precompute λ = ⌊22N /p⌋;
Operands A, B ∈ [0, p).

1: C = A · B
2: q = ⌊ C·λ

22N ⌋
3: r = C − q · p
4: if r ≥ p then
5: r = r − p, q = q + 1
6: end if

Output: The quotient q = ⌊C/p⌋ and the remainder r = C mod p.

Their procedures are summarized in Algorithms 3 and 4, respectively, where the modulus

8 Fast and Efficient SIKE Co-Design

p is an arbitrary number with the data width of N . We can see that the Montgomery takes
1 2N + 2N , 1 N + N additions and 3 N × N multiplications, while the Barrett requires
1 2N + 2N , 1 N + N , 1 N + 1 additions and 1 2N × N , 2 N × N multiplications. The
Barrett is more complex than the Montgomery. However, the Barrett can directly obtain
the remainder and the quotient, while the Montgomery needs extra operations for the
domain transformation. Moreover, the complexity of the Barrett can be further reduced if
the input operands are constrained much smaller than p, while that of the Montgomery is
consistent with p. Hence, they can be effectively applied to different scenarios. For SIKE,
the Montgomery one is usually preferred.

Algorithm 5: High-Radix Montgomery (HR-Montgomery) Modular Multiplica-
tion Algorithm [Oru95]

Input: p, A, B.
Modulus p =

∑m−1
i=0 pi

(
2k

)i, pi ∈ {0, 1, ..., 2k − 1}, 2N−1 < p < 2N ;
Precompute p̃ = (−p−1 mod 2k)p =

∑m
i=0 p̃i

(
2k

)i
, p̃i ∈ {0, 1, ..., 2k − 1};

Operands A =
∑m+2

i=0 ai

(
2k

)i
, B =

∑m+1
i=0 bi

(
2k

)i, where ai, bi ∈ {0, 1, ..., 2k − 1},
am+2 = 0.
Requirements: A, B < 2p̃ and 4p̃ < 2km.

1: S0 = 0
2: for 0 ≤ i ≤ m + 2 do
3: qi = Si mod 2k

4: Si+1 = (Si + qi · p̃) /2k + ai · B
5: end for

Output: : The residue Sm+3 = A × B × 2−km mod p.

To make a good trade-off between speed and area, the high-radix Montgomery (HR-
Montgomery) modular multiplication algorithm [Oru95] is adopted for SIDH/SIKE by the
SIKE team [JAC+] and extensively studied in existing works [KAKJ17,KAK18,KAEK+20,
EAMK20,FBSMBA21a,FBSMBA21b,EAMK21b,FBSMB20]. The flow of this algorithm
is shown in Algorithm 5, where the modulus and operands all are represented in 2k-radix
polynomials with the highest degree of (m + 2). The integer multiplication and reduction
are interleaved and computed in (m + 3) iterations. The parameters p′ and p are merged
together as p̃, which needs to satisfy 4p̃ < 2km. It means that, Generally, it requires
k + N + 2 < km. For SIKE, as the formula −p−1 mod 2k = 1 when k < eA, it has p̃ = p
and the requirement becomes N < km − 2. In this situation, this algorithm takes about
(m + 3) (k + N + m) + (k + N) and (m + 3) (k + m) + (k + N) additions, and 2(m + 3)
k × N multiplications. To reduce the complexity, the km should be selected close to N + 3
as much as possible.

By leveraging the prime form of supersingular isogeny elliptic curves, Tian et al.
presented a low-complexity Barrett-based multiplication algorithm (UR-Barrett) for
SIKE [TWL+21]. The operands are both represented in R-radix polynomials with a
degree of (n − 1). The main idea is to transform the prime as p = 2eA3eB − 1 = αRn − 1
and reduce the partial sums based on R in sequence. The most difficult thing is construct-
ing a small factor α to make the power n large while keeping the modulus p prime. In the
earlier works [KRVV16,BF18,LNL+19,TLW20], researchers set α to 2 and therefore n to 2.
As demonstrated in [TWL+21], such algorithm is inferior to the optimized multi-precision
Montgomery algorithm [FHLOJRH17]. Moreover, such settings cannot apply to most
parameters of SIKE. In UR-Barrett, α is cleverly set as a fraction where the numerator
equals 1 and the denominator is related to 2 or 3. With this setting, a relatively large n
can be easily found. For example, in [TWL+21], when α is set to 1/2 or 1/3, the orders
n for all the SIKE parameters are no less than 6. We propose the modified UR-Barrett

Submitted to CHES in July 2022 9

Algorithm 6: Modified UR-Barrett (mUR-Barrett) Modular Multiplication
Algorithm for SIKE

Input: p, A, B.
Modulus p = 2eA3eB − 1 = αRn − 1 = (αR − 1)Rn−1 +

∑n−2
i=0 (R − 1)Ri < 2wn;

Operands A, B ∈ [0, p), where A =
∑n−1

i=0 aiR
i, B =

∑n−1
i=0 biR

i,
ai, bi ∈ {0, 1, ..., R − 1}, an−1, bn−1 ∈ {0, 1, ..., αR − 1}.
Partial MAC:

1: for 0 ≤ i ≤ n − 1 do
2: Si =

∑i
j=0 ajbi−j + (

∑n−1
j=i+1 ajbi−j+n) · 1

α
3: end for

Reduction:
4: (qn−2, Sn−2) = IBR(Sn−2, R, γ)
5: (q−1, Sn−1) = IBR(Sn−1 + qn−2, αR, γ)
6: for 0 ≤ i ≤ n − 2 do
7: (qi, Si) = IBR(Si + qi−1, R, γ)
8: end for
9: Sn−1 = Sn−1 + qn−2

10: if Sn−1 > αR − 1 then
11: Sn−1 = Sn−1 − αR, S0 = S0 + 1,
12: end if
Output: : The residue

∑n−1
i=0 Si · Ri ≡ A × B mod p.

Algorithm 7: Improved Barrett Reduction (IBR) for Modulus R = 2x3y

[TWL+21]
Input: S, R, γ.

Operand S ∈ [0, 22w+γ);
Modulus R = 2x3y, where w1 = x, w2 = ⌈log2(3y)⌉, w1 + w2 = w, w1 ≈ w2;
Precompute λ = ⌊22w+γ+1/R⌋.

1: t = ⌊S/2w1⌋, s = S mod 2w1

2: q = ⌊
⌊ t

2w2−2 ⌋·λ
2w+γ+3 ⌋

3: t1 = (q mod 2w2+1) · 3y

4: r = ((t mod 2w2+1) − (t1 mod 2w2+1)) mod 2w2+1

5: if r ≥ 3y then
6: r = r − 3y, q = q + 1
7: end if
8: r = {r, s}

Output: The quotient q = ⌊S/R⌋, and the remainder r = S mod R.

10 Fast and Efficient SIKE Co-Design

(mUR-Barrett) modular multiplication algorithm as shown in Algorithm 6, where the
improved Barrett Reduction (IBR) function is presented in Algorithm 7. It must be noted
that the reductions for the partial multiply–accumulates (MAC) are in cyclic and the
cyclic reduction can be started at any term. In [TWL+21], the reduction is started from
the constant term. Though a lazy reduction is applied, one loop with (n − 1) subtractions
and additions is needed for adjustment. Hence, we here move the starting point to the
(n − 2)-th term, and then only one subtraction and one addition are used, as shown in
Steps 10-12 of Algorithm 6. It should be pointed out that (n + 1) IBR functions are
used and the complexity of IBR is related to the value of γ. For the first round of IBR
reductions, γ’s are small positive integers. For the second reduction of the (n − 2)-th term,
γ should be a very small negative integers. For simplicity, We make γ as a constant positive
integer all the time, which is much smaller than w. In general, the addition operations
in mUR-Barrett include (3n − 4)(n − 1)/2 2w + 2w, n (2w + γ) + (2w + γ), 1 w + w, 1
w + γ, (n + 2) w + 1, and(2n + 2) w/2 + w/2. The multiplications are n2 w × w, (n + 1)
(w + γ + 2) × (w + γ + 2), and (n + 1) w/2 × w/2.

Table 2: Complexity analysis and comparison for modular multiplication algorithms.

Algorithms Mont.
[MP85]

Barrett
[Bar86]

HR-Mont.
[BP01]

mUR-Barrett
(proposed)

Addition
operations

1 2N + 2N
1 N + N

1 2N + 2N
1 N + N
1 N + 1

(m + 3) (k + N + m) + (k + N)
(m + 3) (k + m) + (k + N)

(3n−4)(n−1)
2 2w + 2w

n (2w + γ) + (2w + γ)
1 w + w
1 w + γ

(n + 2) w + 1
(2n + 2) w/2 + w/2

Multiplication
operations 3 N × N

1 2N × N
2 N × N

2(m + 3) k × N
n2 w × w

(n + 1) (w + γ + 2) × (w + γ + 2)
(n + 1) w/2 × w/2

Complexity∗ 3N2 + 3N 4N2 + 4N
2(m + 3)kN

+(m + 3)(2k + 2N + m)
(n2 + (n + 1)/4)w2

+(n + 1)(w + γ + 2)2

+(3n2 − 5n + 9)w + n(2w + γ)

SIKEp751
(N = 751) 1,694,256

1.00
2,259,008

1.33

(m = 32, k = 24)†

1,317,050
0.78

(n = 12, w = 63, γ = 6)‡

675,555
0.40

SIKEp610
(N = 610) 1,118,130

1.00
1,490,840

1.33

(m = 26, k = 24)
886,646

0.79

(n = 6, w = 102, γ = 4)
484,521

0.43

SIKEp503
(N = 503) 760,536

1.00
1,014,048

1.33

(m = 22, k = 23)
605,300

0.80

(n = 10, w = 51, γ = 5)
318,536

0.42

SIKEp434
(N = 434) 566,370

1.00
755,160

1.33

(m = 20, k = 22)
460,644

0.81

(n = 6, w = 73, γ = 4)
252,108

0.45
∗ Count the multiplications quadratically and additions linearly.
† Parameters (m and k) are referred to the newest SIKE project [JAC+] provided by the SIKE team.
‡ Parameters (n, w, and γ) are referred to the project of [TWL+21].

We summarize the addition and multiplication operations of the four aforementioned
modular multiplication algorithms as shown in Table 2. The complexities are also evaluated
in formulas, where we count the multiplications quadratically and the additions linearly to
make them fairer. It should be noted that the additions are aligned to the worst case in
the counting, such as w + 1 to w + w.

To be more intuitive, we also list the numerical results for the four SIKE parameters
in the table. The variables of HR-Montgomery are referred to in the newest SIKE
project [JAC+] provided by the SIKE team and those of mUR-Barrett are referred to in
the project of [TWL+21]. Clearly, mUR-Barrett has the lowest computational complexity
in all parameters, and the original Barrett [Bar86] is the highest. Being normalized to
the original Montgomery’s [MP85], we can see that the computational complexity of
HR-Montgomery [Oru95] is reduced by about 20% in all cases thanks to the prime form of
SIKE. Compared to HR-Montgomery, the complexity of mUR-Barrett is further decreased
by nearly 50% in all situations. Note that less complexity means less time or resources

Submitted to CHES in July 2022 11

required for the implementation. So, we can conclude that the mUR-Barrett modular
algorithm has the potential to obtain a better tradeoff in performance than others. In the
following, we will further reduce the complexity, optimize the tradeoff between speed and
area, and achieve flexibility for all four SIKE parameters.

3 Proposed Coarse-Grained Reconfigurable Hardware Ar-
chitectures for SIKE

3.1 Top Level of Hardware Architecture: CGRHA
D

ata

T
ran

sfo
rm

atio
n

RAM

Program

ROM

Control

Unit

FALU
Modular

multiplier

Modular

adder/subtractor

Figure 2: Top level of hardware architecture for SIKE: CGRHA.

The top level of hardware architecture for SIKE named CGRHA is shown in Figure 2,
where the dashed lines denote the connections with CPU. It includes five modules: FALU,
RAM, Program ROM, Control Unit, and Data Transformation. FALU is used to compute
the basic field arithmetic over Fp, made up of the modular multiplier and modular
adder/subtractor. RAM is to read or write the calculated or initial data dynamically.
Program ROM is to save the computing flows of small isogeny computations and point
operations in instruction form (ROM instruction). Control Unit is for the interaction
between software and hardware. Data Transformation is to translate data into available
forms for FALU, RAM, and the software side. The computing process can be commonly
summarized as follows.

In the beginning, the initial data and configurations from CPU are written into RAM.
Then, Program ROM provides some ROM instructions to FALU to compute specific small
isogeny computations or point operations. Finally, those coarse-grained results are sent
back to CPU and reconfigured for large isogeny computations or point multiplications.
Beginnings and ends are all supervised by Control Unit. In the following, we will mainly
introduce the proposed hardware modules, i.e., FALU and Data Transformation. The
software and interactive process will be detailed in the next section.

3.2 Modular Multiplier of FALU
As stated above, the modular multiplications are the most time-consumed, so we present a
high-efficient modular multiplier which consists of the partial MAC unit and the reduc-
tion unit. Before introducing the modular multiplier, we present the proposed general
fast convolution-like multiplier (FCM) adopted by the involved integer and polynomial
multipliers.

3.2.1 A General Fast Convolution-Like Multiplier (FCM)

In [TWW21], the authors adopted a 6-point FCM to reduce the complexity of the
partial MAC. In this paper, we extend this method into a general one and exhaustively
apply it to the whole modular multiplier to achieve better area efficiency.

12 Fast and Efficient SIKE Co-Design

𝑧2
𝑥 0

𝑦 0

𝑦 0 + 𝑦 1

𝑥 1

𝑥 2

𝑥 3

𝑧0

𝑧4

𝑧1

𝑧3

𝑧5

𝑧6

𝑦 1

𝑦 2

𝑦 3

𝑦 2 + 𝑦 3

𝑥0

𝑥1

𝑦0

𝑦0 + 𝑦1
𝑧0

𝑧1

𝑧2

𝑦2

𝑦1 + 𝑦2

𝑦0 + 𝑦1 + 𝑦2

𝑥2
𝑧4

𝑧3

𝑦1

𝑥0

𝑥1

𝑦0

𝑦0 + 𝑦1
𝑧0

𝑧1

𝑧2

𝑦2

𝑦1 + 𝑦2

𝑦0 + 𝑦1 + 𝑦2

𝑥2
𝑧4

𝑧3

𝑦1

𝑥0

𝑥1

𝑦0

𝑦1

𝑦0 + 𝑦1
𝑧0

𝑧1

𝑧2

𝑥0

𝑥1

𝑦0

𝑦1

𝑦0 + 𝑦1
𝑧0

𝑧1

𝑧2

Perm-4 P-pre-mul-4 Sub-multipliers P-post-mul-4

Perm-N

P-pre-mul-N

Sub-multipliers

P-post-mul-N

X

Y

N

3𝑙𝑜𝑔2
𝑁

N

3𝑙𝑜𝑔2
𝑁

2N-1

(a)

(b)

(c) (d)

Figure 3: FCMs’ architectures: (a) 2-point FCM, (b) 3-point FCM, (c) 4-point FCM, and
(d) N -point FCM.

Figures 3(a)-(d) show the architectures of 2-, 3-, 4-, and N -point FCMs, respectively,
where N denotes the number of coefficients for a polynomial or the number of segments
for an integer. The core idea is to reduce the number of sub-multipliers with an increase of
additions, i.e., replacing strong operations with weak operations, as the methods used for
convolutions [Par07]. Actually, the MAC operations of convolution and multiplication are
the same. However, the fast convolution methods cannot be directly used for multiplications
as their outputs are quite different. For the convolution, N outputs are required to be
aligned by delay units, while for the multiplication, the number of outputs is set to
2N − 1 without such alignment. As shown in Figures 3(a) and (b), We remove the delay
units, unfold the outputs, and arrange the subscripts in ascending order. Those outputs
are the final results of a polynomial multiplication or the partial sums of an integer
multiplication. It can be seen that the complexities of multiplication are reduced to 3/4
and 2/3, respectively. Such a method can be further directly generalized to high-point
multiplications.

We have found that the nested method for a 4-point shown in Figure 3(c) is more
efficient than the direct method. The order of inputs xi(0 ≤ i < N) need be permuted,
which is computed as x̄i(0 ≤ i < N) by using the depth-first recursive function of a
binary tree presented in Algorithm 8, where N = 4 in this case. From top to bottom, we
use three 2-point FCMs denoted as the even kernel, cross kernel, and odd kernel. The
6-point FCM can be obtained by replacing the three 2-point kernels with three 3-point
kernels. Similarly, the high-level nested architecture can be obtained by substituting
the three kernels. Moreover, we can find another interesting fact that the even outputs

Submitted to CHES in July 2022 13

Algorithm 8: Depth-First Recursive Function with the Binary Tree Model for
the Input Permutation

Input: The maximum depth log2N , and the input vector xi with i ∈ {0, 1, ..., N − 1}.
1: Initialization: k = 0, depth = 0, and index = 0.
2: Perm(depth, index)
3: if depth < log2N then
4: Perm(depth + 1, index)
5: Perm(depth + 1, index + 2depth)
6: else
7: x̄k = xindex, k = k + 1
8: end if

Output: x̄i with i ∈ {0, 1, ..., N − 1}.

z2i(0 < i < N − 1) are computed by directly adding the outputs of the even kernel and odd
kernel, and the odd outputs z(2i+1), (0 ≤ i < N − 1) are calculated by using the outputs of
the cross kernel correspondingly minus those of even and odd kernels.

As shown in Figure 3(c), we divide the FCM architecture into four parts: Perm-4,
P-pre-mul-4, Sub-multipliers, and P-post-mul-4, where ’P’ means parallel, separated from
the serial architectures. Except Perm-4, P-pre-mul-4 and P-post-mul-4 are made up
of additions before and after the sub-multipliers. Based on this partition method, the
schematic diagram of N -point FCM is shown in Figure 3(d), where ’4’ is replaced by ’N ’.
Assume that N is a power of 2 and u = log2 N . We can obtain that the number of adders

of P-pre-mul-4 is
u−1∑
i=0

(2i3u−1−i), that of P-post-mul-4 is
u−1∑
i=0

((6 × 2i − 4)3u−1−i), and the

number of sub-multipliers is 3u. It should be noted that if N is equal or close to 2⌈log2 N⌉,
selecting the 2-point FCM as the basic kernel and being nested ⌈log2 N⌉ times would be
the best choice.

𝑧0 𝑧1 𝑧2
𝑧2𝑁−2

...
...

...
Carry-save

 adder

even
odd

residue

result

partial

sums w bits

Figure 4: Sum-up module for an integer multiplier with a (2N − 1)w-bit carry-save adder.

For the final output of an integer multiplier, we use a (2N − 1)w-bit carry-save adder,
where the three operands are obtained by aligning the even partial sums, odd partial sums,
and their residues, respectively, as shown in Figure 4.

We propose a serial-parallel hybrid architecture by folding part of the layers to make a
good tradeoff between time and area. As shown in Figure 5, a case study of serial-parallel
hybrid architecture is presented for an 8-point FCM using a 4-point FCM in three iterations.
The adders in the pre- and post-mul-8-4 are possibly reused to reduce the area further.
Similar architectures can be applied to others with different configurations.

It should be pointed out that our method is somewhat similar to the recursive Karat-
suba method by using the idea of divide-and-conquer. We call it a fast convolution-

14 Fast and Efficient SIKE Co-Design

𝑥 0 𝑥 1 𝑥 5 𝑥 6 𝑥 2 𝑥 3 𝑥 7 𝑥 4

D D

𝑥 2
(2)

 𝑥 0
(2)

 𝑥 3
(2)

 𝑥 1
(2)

𝑥
(2)

 𝑥
(1)

 𝑥
(0)

4-Point FCM

4 𝑤 + 1

D D

<<1

𝑧𝑒𝑣𝑒𝑛 𝑧𝑜𝑑𝑑

7(2𝑤 + 4)

7(2𝑤 + 3)

𝑧0

0 x 0 x 0 x 0 x

0 1 2

0
x

0
x

1 x x 1

0 x 1 x

S-pre-mul-
8-4

𝑋 (𝑖)
8 × w 4 × w

𝑋 1 7

4 × w

(a) (b)

Figure 5: A case study of serial-parallel hybrid architectures: (a) the architecture of serial
pre-mul-8-4 and (b) the architecture of 4-point FCM and serial post-mul-8-4.

like method because we were firstly inspired by the low-complexity cascading structure
in [TWW21] which leverages the method used for convolutions [Par07]. The Karatsuba
algorithm was firstly proposed by Karatsuba and Ofman in [KO62]. This method was
generalized for polynomial multiplications by Weimerskirch and Paar in [WP06]. Usu-
ally, previous hardware designs for polynomial and integer multiplications are separately
considered [JMEH02,vzGS05,MZB+08,FSGL10,FH15]. For the integer multiplier, the
adders for the combination of each layer are needed after the sub-multipliers (e.g., Figure
8 of [TLW20]), while the polynomial multiplier does not need. In this paper, we carefully
rearrange the inputs and outputs, postpone the combination in each stage of the integer
multiplier, and find a method to combine the polynomial and integer multipliers together.
Actually, most of their circuits are the same. We only need to apply an extra carry-save
adder for the final result of the integer multiplier.

3.2.2 Partial MAC Unit for SIKE

Perm-12

Perm-6X2

S-pre-

mul-12-6

P-pre-

mul-6
4-Point

FCM

Sum-

up

102 × 12

63 × 12

51 × 12

63 × 12

18 64-bit multipliers
P-post-

mul-6
131 × 11

S-post-

mul-12-6

64 × 6

Partial-

sum-23

Partial-

sum-11

132 × 12

208 × 6

208 × 12

({𝑎0,… ,𝑎11}

{𝑏0,… , 𝑏11})

{𝑆0 ,… , 𝑆11}

0

1

1

0

131 × 11

3 iters

Figure 6: Architecture of partial MAC unit for the modular multiplier.

In Figure 6, the partial MAC unit is proposed to implement Steps 1-3 of Algorithm 6,
where the four SIKE parameters (shown in the leftmost column of Table 3) all are covered.

Submitted to CHES in July 2022 15

The data width and the number of inputs are both set to the largest values, i.e., 102 and
12, respectively. We adopt the FCM architecture for both the polynomial and integer
multiplications. Since the degrees of the four constructed polynomials are not exactly
the same, we divide them into two categories controlled by a signal mode: one includes
SIKEp751 and SIKEp503 with the setting of n = 12 for mode = 1; the other covers
SIKEp610 and SIKEp434 with n = 6 for mode = 0. To further reduce the complexity, the
polynomial multiplication and integer multiplication are interleaved, whose correctness
is demonstrated in Appendix A. As shown in Figure 6, the polynomial and integer
multiplications are mixed, sharing the same multipliers resource, and the serial processing
and parallel processing are hybrid. The number of 64-bit sub-multipliers is reduced from
12 × 12 = 144 to 144 × 1/4 × 3/4 × 2/3 = 18. Moreover, every 64-bit sub-multiplier is
processed by a 4-point 16-bit FCM, further reducing the complexity by 7/16. Hence, this
module takes about 18 × 9 = 162 DSPs. We will give more details of the flow in the
following.

At first, the two groups of input coefficients are permuted in two ways. Perm-12 is to
permute the 12 63-bit coefficients with three times of nesting, where the basic kernel is a
3-point 63-bit FCM, nested by the 2-point FCM two times. Perm-6X2 is to permute the
first 6 102-bit coefficients with two times of nesting and split every permuted coefficient
into 2 51-bit data, forming 12 51-bits data. After the permutation, the 12 63-bit variables
are handled by two pre-mul modules. The first one is for in serial, leading to three iterative
computations, and the second one is for in parallel. Then, every 18 64-bit data are
simultaneously input into the multipliers module, which comprises 18 4-point FCMs and
the corresponding Sum-up modules. Next, the corresponding parallel and serial post-mul
modules are to deal with the outputs of the sub-multipliers. After three iterations, all
candidates of partial MAC are ready. Finally, we adopt the rules of Algorithm 6 and the
deduced function in Appendix A to compute the final results in two modes, respectively.
In short, the partial MAC of all the four SIKE parameters can be computed by this unit
with a constant time and meanwhile keeping a low complexity and low latency.

3.2.3 Reduction Unit for SIKE

To obtain a low-latency design, we still adopt the two-stage version of UR-Barrett in
Algorithm 7 of [TWW21] to implement our reduction unit, where normal IBRs and mini
IBRs (mIBRs) are considered. It should be noted that a relatively large of parameters
are involved since the four different forms of prime need to be simultaneously considered.
We still try our best to make resources shared and reused. Table 3 shows the used
multiplications and data widths of the main arguments of the IBR and mIBR functions
for the four SIKE parameters, where mul1 or mul1s corresponds to the multiplication
operation in Step 2 and mul2 or mul2s to Step 3 of Algorithm 7. They are constant
multiplications, but we use regular multipliers to match different parameters.

Seg
𝜆

M1 M2 Sub

Segm

M4

Add

M3

𝑆𝑖𝑛

𝜆𝑚

𝑅′

𝑡1𝑚
PP

t
s

q 𝑡1

𝑆𝑜𝑢𝑡

r

𝑆

𝑡𝑚

𝑠𝑚

𝑞𝑚
Add Sub

𝑅′
𝑟𝑚 𝑆𝑚

208 × 12

102 × 12

3 it ers3 it ers 3 it ers3 it ers

2 it ers2 it ers

Figure 7: Architecture of reduction unit for the modular multiplier.

16 Fast and Efficient SIKE Co-Design

Table 3: Multiplications and data widths of the main arguments of the IBR and mIBR
functions for the four SIKE parameters.

SIKE
Parameters

IBR mIBR
wS γ wλ mul1 mul2 wSm γm wλm mul1m mul2m

SIKEp751
(23723239 − 1,

12 × 63, α = 1/3)
132 6 71 71 × 71 33 × 32 71 −55 10 10 × 10 9 × 32

SIKEp610
(23053192 − 1,

6 × 102, α = 1/2)
208 4 108 108 × 108 52 × 51 108 −96 8 8 × 8 7 × 51

SIKEp503
(22503159 − 1,

10 × 51, α = 1/3)
107 5 58 58 × 58 27 × 26 58 −44 9 9 × 9 8 × 26

SIKEp434
(22163137 − 1,

6 × 73, α = 1/3)
150 4 79 79 × 79 38 × 37 79 −67 8 8 × 8 7 × 37

Figure 7 is the proposed architecture of the reduction unit, where the data widths of
intermediate variables are omitted for clarity. The Seg and Segm modules are used to
divide the input into two segments as Step 1 of Algorithm 7. Sub is to implement Step
4 of Algorithm 7. Add is used for plus the quotients and residues. Both of them are
instantiated the same in the IBR and mIBR stages. PP is to adjust the final coefficients
into the correct ranges, whose architecture is referred to in the design of Post_Process in
Figure 9 of [TWW21].

The most complex modules, M1, M2, M3, and M4, are the corresponding multipliers,
which are carefully designed respectively. To satisfy all the parameters, M1 should contain
12 71 × 71 and 6 108 × 108 multipliers. Similar to the method for the partial MAC unit,
we use the interleaved and hybrid architecture for M1 to reduce resource consumption. We
align the 12 multipliers into 6 142 × 142 multipliers and adopt 6 72 × 72 multipliers for M1
to compute the results in three iterations, where each 72-bit multiplier is implemented by a
4-point 18-bit FCM. For M2, we use 6 34 × 34 multipliers in three iterations and a 2-point
17-bit FCM for each multiplier. M3 is directly devised with 12 10 × 10 multipliers. For
M4, we use 6 9 × 34 multipliers in two iterations. It should be noted that the interleaved
latency of the proposed modular multiplier is three cycles whether we insert pipelines or
not, as there are no feedback signals in this design. We only need to pick up the right
results in the right cycles.

3.3 Modular Adder/Subtractor of FALU

a0

b0 1 R

R

0

1

0

1

flag

0x0
1x0
x11
x01

0x0
1x0
x11
x01

0

1

0

1

flag

ctr0

ctr_10

c0

ctrn-1

ca_bo0

a1

b1 1 R

R

0

1

0

1

flag

0x0
1x0
x11
x01

0x0
1x0
x11
x01

0

1

0

1

flag

ctr1

ctr_11

ca_bo1 c1

ca_bo0

...

an-1

bn-1 1 R

R

0

1

0

1

flag

0x0
1x0
x11
x01

0x0
1x0
x11
x01

0

1

0

1

flag

ctrn-1

ctr_1n-1

cn-1
ca_bon-2

...

Figure 8: Architecture for the modular adder and subtractor.

In [TWW21], the modular adder and subtractor are separately devised. In this paper,

Submitted to CHES in July 2022 17

we merge them to reduce the resource. Figure 8 shows the proposed architecture, where
the flag signal is used to select the two patterns with ’1’ for modular adder and ’0’ for
modular subtractor. It can be seen that except the (n − 1) 1-bit ca_bo signals, the ’±’
and ’mp’ operations all are independently computed in parallel. Those operations are
implemented by the Adder/Subtractor IPs where 1 LUT completes 2 bits in general. To
further reduce the LUT resources, two kinds of IPs are adopted, i.e., the 104 + 104 and
65 + 65. The former is used for the first six groups and the latter for the rests. The highest
bits are the sign bits used as the control signals.

3.4 Data Transformation

The Data Transformation module implements four conversions: RAM to software (R2S),
polynomial format to integer format (P2I), data from FALU to RAM (F2R), and RAM to
FALU (R2F). It should be noted that all of them are not resource-intensive. R2S is to
transform a 756-bit integer into 12 64-bit words for a 64-bit CPU by uniformly slicing the
integer into 12 pieces. P2I transforms the data from the polynomial format back to the
integer format. It is almost the same as the MU2NM architecture proposed in [TWW21]
with some adjustments for the data widths and parameters. Meanwhile, the involved
102-bit multiplier is also replaced with FCM to reduce the complexity.

a[0][62:0]

...
...

a[1][62:0]

a[11][62:0]

a[0][101:0]

a[1][101:0]

a[5][101:0]

a[0][62:0] a[1][62:0] ... a[11][62:0]a[10][62:0]

0a[0][101:0] ... 0a[5][101:0]

mode

0

1
out

in

a[62:0] a[125:63] ... a[755:693]a[692:630]

a[101:0] ... a[731:630]

a[62:0]

...

a[125:63]

0

0

a[755:693] 0

a[101:0]

...

a[731:630]

0

...

mode

0

1
out

in

(a) F2R

(b) R2F

Figure 9: Procedures of F2R and R2F.

Figure 9 depicts the procedures of F2R and R2F. As shown in Figure 9 (a), F2R is
used to transform the 12 102-bit coefficients (a[0]ã[11]) into a 756-bit integer saving in the
RAM, where two modes are considered. When mode = 1, SIKEp751 and SIKEp503 are
selected; otherwise, SIKEp610 and SIKEp434 are chosen. For the former, the 63 LSBs
of each coefficient are picked and aligned; for the latter, only the first six coefficients are
adopted and aligned, with zeros inserted. R2F is the inverse process as shown in Figure 9
(b), where a 756-bit integer is transformed into a vector with a width of 102 bits and a
depth of 12. The corresponding two modes are also needed.

18 Fast and Efficient SIKE Co-Design

4 RISC-V Integration
In this section, we integrate CGRHA into RISC-V platform as a co-processor to realize
high-speed and flexible SIKE co-design. RISC-V is a popular open source Instruction Set
Architecture (ISA) standard designed in 2010 [RIS10], based on which various processors
are proposed for research or industrial developments. Our platform is based on a powerful
open source RISC-V SoC project called Rocket Chip [AAB+16].

DcacheIcache

Reserved

Memory
Memory

Busy

Core

Req

... WBMEM... WBMEM

RAM

Program

ROM

FALU

Control

Unit

Data TransformationData Transformation

RAM

Program

ROM

FALU

Control

Unit

Data Transformation

Reserved Memory

RoCCRoCC

CGRHA

Software Program
customized instructions

Figure 10: The proposed RISC-V architecture for SIKE. (“MEM” and “WB” represent
the last two pipeline stages “memory access” and “writeback”, respectively.)

Rocket Chip contains a processor core with a 5-stage pipeline, and a customizable
co-processor named Rocket Custom Coprocessor (RoCC), where the proposed CGRHA is
implemented. RoCC can be controlled by the customizable instructions in RISC-V ISA,
and thus, the platform provides users with the flexibility to control CGRHA by writing
software programs with the customized instructions.The RISC-V architecture with efficient
and flexible hardware-software co-design is proposed and shown in Figure 10.

There are three main parts of the proposed system, which are listed as follows.

• Customized Instructions: To obtain the flexibility for supporting various SIKE pa-
rameters, customized instructions on the software side need to be designed. However,
how to find the best tradeoff between flexibility and speed is challenging.

• Software Program and RISC-V Core: Given the customized instructions,
the users can write software programs to conduct SIKE calculations with different
parameters. The RISC-V core sends SIKE calculation requests to CGHRA according
to users’ programs.

• Customized RoCC: Being controlled by the customized instructions sent from
the RISC-V core, the CGHRA in RoCC needs to be designed to perform the SIKE
calculations accordingly.

The above parts are further elaborated in the following subsections.

4.1 Customized Instructions for SIKE
The user can write the software program containing the RISC-V customized instructions
that can send requests (“Req” in Figure 10) to RoCC. The CGRHA in RoCC is controlled
by these requests to conduct efficient SIKE calculations. The customizable instruction is
named custom, and its format is shown as the first white row in Figure 11. There are two
supported source registers indicated by rs1/rs2, and the register values are transferred to

Submitted to CHES in July 2022 19

RoCC once xs1/xs2 is set to 1, respectively. One destination register rd is also supported,
but it is not involved in our design. Besides, funct7 is an indicator that can be set with
specific values for controlling the CGRHA in RoCC.

31

funct7 rs2 rs1 xd xs1 xs2 rd opcode

0 1 1 0 opcode

25 20 19 15 14 13 12 11 7 6 0

2 instr_startinstr_end

0 1 0 0 opcode1 data_paddr0load_init_data

rom_instr_exec

0 1 1 0 opcode3 data_paddrram_addrresults_writeback

26

Figure 11: The format of custom instruction in RISC-V ISA. (The first white row refers
to the format of the original custom; The three grey rows refer to the implementation of
our customized instructions by leveraging custom.)

When designing the detailed functionality of the custom to control RoCC for the SIKE
calculations, there are two challenges as follows.

C1. The RoCC can be designed to finish the complete SIKE calculations, so only one
custom is needed to trigger RoCC. Unfortunately, this can incur high hardware
consumption, and more seriously, it has too limited flexibility to support various
SIKE parameters.

C2. In contrast, we can use different funct7 values in custom to represent the requests
for different basic operations of SIKE, such as modular addition and modular
multiplication. However, since the proposed FALU in RoCC is highly optimized, the
time cost of the custom instructions could be more than that of the calculations on
CGRHA’s FALU. This could lead to time overhead compared with hardware-based
SIKE solutions due to the extra cost of executing many custom instructions in the
core’s pipeline.

To seek the best tradeoff between performance and flexibility and tackle challenges
C1 and C2, we hardcode some instructions inside the ROM of RoCC, which are named
ROM instructions. Each ROM instruction represents a basic operation of SIKE, such as
multiplication, addition, and read/write data. By executing a group of ROM instructions,
RoCC can perform a kind of coarse-grained SIKE calculations such as a small isogeny
computation and a point addition shown in Figure 1. The user can use custom to select
the ROM instruction group to be executed by using the source registers of custom to
indicate the ROM address of the ROM instructions. By proposing multiple groups of
ROM instructions, our RISC-V architecture can provide the users with the flexibility to
support different SIKE parameters.Therefore, challenge C1 is tackled. Besides, since each
group of ROM instructions contains multiple basic operations, the time cost is saved by
reducing the amount of the custom instructions used for controlling RoCC, so challenge C2
is also tackled. Note that each group of the ROM instructions is designed to be finished in
constant time for security.

In detail, we propose three customized instructions by using different funct7 of the
custom, which are load_init_data, rom_instr_exec, and result_writeback. They are shown
as the three grey rows in Figure 11. The initial data (38 data in total) is loaded into RoCC
from the memory once RoCC receives the request of load_init_data. The physical address
data_paddr of the initial data is stored inside the source register rs1. For rom_instr_exec,
two values instr_start and instr_end are stored in rs1 and rs2, respectively. The ROM
entries of the ROM instruction group range from instr_start to instr_end. When RoCC
receives the request of rom_instr_exec, the calculations of the group of the ROM instruc-
tions begin. For result_writeback, it writes the results (12 data in total) in the RAM of
RoCC back to the memory. The address of data to be written in the RAM is indicated by
ram_addr in rs2, while the physical address of the memory is indicated by data_paddr in
rs1.

20 Fast and Efficient SIKE Co-Design

With the support of the customized instructions for SIKE, the user can write the
software program, such as a C program, to efficiently support different SIKE parameters.

4.2 Software Program and RISC-V Core
The user can write a software program to control RoCC for coarse-grained SIKE calculations
and reconfigure the results from RoCC for completing the SIKE calculations. In the software
program, the regular RISC-V instructions and the custom instructions are both executed in
the RISC-V core. Once a custom instruction is committed after “WB” stage, a request from
custom is sent to RoCC, along with the information in custom’s format and the values of
the source registers. When RoCC is busy with the current request, the regular instructions
in the core can keep executing before the next request of custom arrives. When the next
custom is committed but RoCC is still busy with the current request, the core will be
stalled until the current request is handled. The core and RoCC share the same L1Dcache
for memory accesses. Besides, we modified the source code of the Linux system to reserve
a part of the physical memory for SIKE calculations, shown as the “Reserved Memory” in
Figure 10, so that the software and hardware can share data within the reserved memory.

By leveraging the RISC-V core of Rocket Chip, the custom instructions for coarse-
grained calculations and the regular instructions for reconfiguration can both be well
coordinated according to the user’s software program, and the efficient hardware-software
co-design can be realized.

4.3 Customized RoCC
The RoCC is customized to implement CGRHA for handling the requests from the core
and conducting SIKE calculations. The overall architecture can be found in Figure 2 and
Figure 10. During handling the software requests, the functionalities of the key modules
in CGRHA are described as follows.

load_init_data

…

rom_instr_exec

...

result_writeback

...

Core

Req

Req

Req
(1a)

(2a)

(3a)

instr_start / instr_end

data_paddr

ram_addr / data_paddr RAM

Program

ROM

FALU

Control

Unit

Data TransformationData Transformation

RAM

Program

ROM

FALU

Control

Unit

Data Transformation(1b)

(2b)

(3b)

BusySoftware Program

(2b)

in1_add

in2_add

in3_mul

...

nop

out8_sub

...

...

...

...

instr_start

instr_end

(2b)

CGRHA ...

Figure 12: The flow of the request of each customized instruction. (The colored information
refers to the example of the flows.)

• As mentioned in Section 3, FALU is proposed for efficient modular multiplication and
modular addition/subtraction. Besides, a RAM is used to store the intermediate results,
and a module for data transformation is designed to transform the data format from
different sources.

• A ROM is proposed to store multiple groups of ROM instructions. Each group is
designed to be finished in constant time for security. An example of the program ROM
is shown on the right side of Figure 2, where each entry of the ROM stores a ROM
instruction. The instructions between each solid line are from the same group. The
syntax ink_op refers to a group’s k-th instruction that inputs the data from the RAM
to FALU for calculation, and outk_op refers to the k-th instruction that outputs the

Submitted to CHES in July 2022 21

calculated result from the FALU to the RAM. For example, out8_sub refers to the 8-th
instruction that outputs the result, which is obtained from the modular subtraction of
FALU.

• A control unit is designed to decode the request from the core. After decoding the
request, it controls the program ROM, the RAM, and the data transformation module
for handling the request. Upon receiving the requests, the detailed behaviors of the
control unit are described as follows.

– Request from load_init_data: In the software program, the user can prepare the
initial data (38 data in total) inside the reserved physical memory by using the mmap
function, and store the physical address in the source register of load_init_data.
Once load_init_data in the program is executed and the request is sent to CGRHA
(shown as (1a) in Figure 12), the control unit of CGRHA will send a memory
read request according to the physical address. The data length is fixed in SIKE
calculations. The data read from the memory are first transformed and buffered in
the data transformation module. After all the initial data are read, the control unit
moves the buffered data to the RAM in CGRHA (shown as (1b) in Figure 12).

– Request from rom_instr_exec: In the user program, rom_instr_exec can be
used to send request to CGRHA for executing ROM instructions. The values
of rom_instr_exec’s two source registers are called instr_start and instr_end, which
indicate the ROM address range of the selected ROM instruction group. Upon receiv-
ing the request of rom_instr_exec, the control unit in CGRHA obtains instr_start
and instr_end (shown as (2a) in Figure 12). Then, the control unit fetch each
instruction in the range between instr_start and instr_end, and control the FALU
to execute the instructions of the selected ROM instruction group (shown as (2b) in
Figure 12). During the execution, the input/output data of FALU are fetched/stored
from/to the RAM in CGRHA, respectively.

– Request from result_writeback: After SIKE calculations are finished, the user
can use result_writeback to write the results (12 data in total) in RAM into the
reserved memory, by specifying the physical address data_paddr in rs1, and the
results’ address of the RAM ram_addr in rs2 (shown as (3a) and (3b) in Figure 12).

In summary, by applying the proposed CGRHA as the co-processor, our proposed
RISC-V co-design architecture is able to efficiently execute SIKE calculations while keeping
enough flexibility with the support of the customized instructions.

5 Experimental Results and Comparison
The implementation experiments are divided into two parts. The first part is to run the
palace & route for the time and area evaluation of the co-processor over the Xilinx Vivado
2021.1 EDA platform based on a Xilinx Virtex-7 FPGA with a core of xc7vx690tffg1157-3
that is adopted by most of the previous SIKE implementations. The second part is to test
the evaluation of the HSC-design over a HyperSilicon VeriTiger-H4000T FPGA development
platform based on a Xilinx Virtex UltraScale FPGA with a core of xcvu440flga2892. The
second part is based on a powerful open source RISC-V SoC project called Rocket
Chip [AAB+16], and the software program is tested within Linux operating system running
on the RISC-V platform. The Experimental results and comparison are presented in the
following.

22 Fast and Efficient SIKE Co-Design

Table 4: Timing performance of the proposed modular units and the major coarse-grained
operations for all the four SIKE parameters on a Virtex-7 FPGA.

Operation # Cycles Time (ns)
Modular unit

in Fp

Add./Sub. 1 5.5
Multiplier 31 170.5

Coarse-grained
operation

Ladder Step 199 1,094.5
Point Quad. 309 1,699.5
Point Triple 272 1,496.0
Get_4_Iso. 87 478.5
Eval_4_Iso. 253 1,391.5
Get_3_Iso. 148 814.0
Eval_3_Iso. 163 896.5
Get_2_Iso. 48 264
Eval_2_Iso. 131 720.5

5.1 Hardware Implementations and Comparison
To make a fair comparison with previous works, we code the proposed co-processor in
SystemVerilog language and implement it on Vivado equipped with the Virtex-7 690T
core. The whole CGRHA achieves a maximum frequency of 181.8MHz. The clock cycles
and time of the modular units and the major coarse-grained operations over the Virtex-7
FPGA are shown in Table 4. All of them maintain the same performance for the four
SIKE parameters.

5.1.1 Results and Comparison of Modular Multiplier

Since the modular multiplier dominates the hardware resources, we separately pick out
the corresponding terms and compare them with previous works. The area and timing
comparisons are shown in Table 5, where all the works can support the SIKEp751 parameter.
It should be noted that our multiplier is configurable for all the four SIKE parameters
with constant time, while the others are delicately designed for SIKEp751. Overall, the
proposed design obtains the best ATP among the existing works when considering the
slice equivalent cost (SEC) and the interleaved latency.

The HR-Montgomery based multipliers [FBSMBA21a,EKAMK19,FBSMBA21b,NOL+22a,
KAEK+20,EAMK20,NOL+22b] almost all have small area consumption. However, all of
them suffer from high latency and interleaved latency caused by the intrinsic iterations
and the inserted pipelines, which heavily constrain the upper limit of SIKE performance.
The polynomial-based UR-Barrett multiplier in [TWW21] adopts a complete feed-forward
scheme by leveraging the fully parallel schedule of the proposed algorithm. So, it has the
lowest latency and interleaved latency and assists SIKEp751 in obtaining a new speed
record at the cost of more resources. Due to the attractive timing performance, we take the
UR-Barrett multiplier as our baseline. Compared with the original version in [TWW21],
we reduce the number of Slices by about 40% and DSPs by about 70% and meantime
extend the support to all four SIKE parameters. The total latency is nearly doubled, but
the interleaved latency is only three cycles, much smaller than other previous designs.
Therefore, we can still use a single modular multiplier for SIKE to achieve a high degree
of parallelism.

5.1.2 Results and Comparison of SIKE Implementation

As introduced in Section 1, most previous works for SIKE implementations are in pure
software or pure hardware. The pure hardware implementation can achieve better time

Submitted to CHES in July 2022 23

Table 5: Area and timing comparisons of modular multipliers, where ours can be configured
for all the four SIKE parameters .

Work Slices DSPs Freq.
(MHz)

Latency
(# CCs)

Interleaved
Latency
(# CCs)

ATP 1

(SEC×µs)

[FBSMBA21a] 2 1,999 38 223 124 101 2,627
[EKAMK19] 3 967 73 232.8 144 144 5,113
[FBSMBA21b] 6,939 64 205 30 26 1,694

[NOL+22a] 1,577 32 357 144 97 1,299
[KAEK+20] - 128 167.4 100 69 5,276 4

[EAMK20] - 113 294 138 90 3,459 4

[NOL+22b] 4,129 144 183 61 48 4,860
[TWW21] 23,311 828 155.8 16 1 681

Ours 14,626 258 181.8 31 3 667
1 ATP = (Slices + DSPs × 100) × Interleaved Latency / Frequency.
2 The efficient multiplier with (16, 32).
3 O-FIOS.
4 Only the DSPs are counted since the Slices are not provided.

performance but lack flexibility. Therefore, some researchers have begun to transfer the
focus on HSC-designs. Until now, there are four works [MLRB20, RFS20, EAMK21a,
EKAK22] for HSC-designs of SIKE. Except for the design in [RFS20], the rests are
simulated and implemented on an EDA platform. To make a fair comparison, we provide
the results of the proposed SIKE co-processor with post-place and route on Vivado. The
area and timing results of ours and the other three works are shown in Table 6, where
the two designs of [MLRB20] are included. Since the Slice number of the co-processor
in [EKAK22] is not provided, we approximate it as LUTs/4 + FFs/8. We use 1 BRAM =
2 DSPs = 200 Slices for SEC as was used in [EKAK22]. The time is computed by counting
the encapsulation and decapsulation together.

It should be noted that the four previous works are with scalable basic modules for
modular multipliers. The two multipliers in [MLRB20] adopt a 128-bit MAC for low area
and a 256-bit MAC for high speed, respectively. These basic MAC units are repeatedly
used to realize the modular multiplier. The multipliers in [EAMK21a] and [EKAK22] are
iteratively computed by a 17-bit pipelined architecture. It means that the latency of their
modular multiplier of each SIKE parameter differs, while that of ours is a constant. They
can save more cycles for the smaller SIKE parameters, and the timing results of the four
parameters have larger gaps than ours. However, since our modular multiplier already has
a very small latency, we achieve about 2.6-4.4x faster speed than the state-of-the-art for
the four SIKE parameters. Considering the ATP, our design obtains the best result for
SIKEp751 and better results than most of prior arts except the design in [EKAK22] for
the other three SIKE parameters. It should be pointed out that the timing performance
is much more difficult to be improved because of the heavy data dependency. It can
easily be found in Table VII of [EKAK22] that our design is the fastest among existing
implementations for SIKEp434, SIKEp503, and SIKEp610, and slightly inferior to the
record-holder design in [TWW21] for SIKEp751. At the same time, our design achieves a
better ATP performance than most of the previous pure hardware implementations.

5.1.3 Comparison with Other NIST PQC KEM Protocols

After the announcement by NIST on July 5th, 2022, there are five KEM PKE algorithms
left, i.e., CRYSTALS-KYBER (lattice-based), BIKE (code-based), Classic McEliece (code-

24 Fast and Efficient SIKE Co-Design

Table 6: Area and timing comparisons of SIKE co-processors over a Virtex-7 FPGA.
Regarding the time and ATP of each work, the results are for SIKEp434, SIKEp503,
SIKEp610, and SIKEp751 from top to bottom.

Work Area Timing ATP
SEC† × sLUTs FFs Slices DSPs BRAMs Freq.

(MHz)
Time
(ms)

[MLRB20] (S) 11,984 7,268 3,855 57 21 153.9

49.8 685
88.0 1,210
105.9 1,457
177.5 2,442

[MLRB20] (F) 21,321 13,756 8,131 162 39 141.6

24.4 784
49.9 1,603
52.0 1,671
61.0 1,960

[EAMK21a] 9,888 13,922 4,087 78 21.5 243.6

19.2 311
25.1 406
38.7 626
55.0 890

[EKAK22] 8,211 13,228 3,706∗ 78 21 303.0

14.5 228
19.2 302
29.8 468
42.7 671

Ours 52,814 69,152 19,145 276 56 181.8

5.5 319
6.3 365
8.6 498
9.8 568

† SEC = Slices + DSPs × 100 + BRAMs × 200.
∗ The number of Slices is approximately computed by using LUTs/4 + FFs/8.

Submitted to CHES in July 2022 25

Table 7: Area and time comparisons of different NIST PQC KEM algorithms on FPGA
platforms.

PQC
KEM

FPGA
Platform

NIST
Level

Public Key
(in Bytes)

Freq.
(MHz)

Area Time (µs)
Slices/DSPs/BRAMs KeyG/E/D

CRYSTALS
-KYBER
[XL21]

Artix-7
1 800

161 2,126/2/3
23/31/41

3 1,184 39/48/62
5 1,568 58/68/86

BIKE
[RBCGG22] Artix-7 1 1,540 113 7,332/13/34 1,672/132/1,892

Classic
McEliece

[CCU+20]

Artix-7 1 261,120 105.6 36,859∗/-/236 1,920/26/95
Virtex-7 3 524,160 130.8 48,488∗/-/446 3,943/26/111
Virtex 7 5† 1,044,992 136.6 53,930∗/-/589 7,658/37/181

HQC‡

[MAB+] Artix-7 1 3,024 148 6,600/0/12.5 270/590/1,200

SIKE
(Ours) Virtex-7

1 330

181.8 19,145/276/56

1,532/2,669/2,888
2 378 1,737/3,077/3,223
3 462 2,142/4,343/4,252
5 564 2,728/4,778/5,037

∗ The number of Slices is approximately computed by using LUTs/4 + FFs/8.
† The results are for mceliece6688128.
‡ The hardware implementation of HQC provided is coded by HLS language.

based), HQC (code-based), and SIKE (isogeny-based). CRYSTALS-KYBER is selected
to be standardized for its strong security and excellent performance. The other four
algorithms still move on to the fourth round. We list the latest FPGA results of area
and time of the other four KEM algorithms [XL21,RBCGG22,CCU+20,MAB+] and our
proposed SIKE implementation in Table 7 to show their merits and demerits. It should be
noted that as there exist different FPGA platforms, the comparison is not so strict. The
following discussion only considers the performance, without regard to the security.

Overall, the key size is the best advantage of SIKE, and the timing performance is the
worst metric compared to others. Our work effectively reduces the gap to some degree.
Compared to Classic McEliece, SIKE also has area superiority. Actually, CRYSTALS-
KYBER has an obvious advantage over the rest in area and time performance and with a
moderate length of key sizes. There is still more than one order of magnitude of time gap
between CRYSTALS-KYBER and SIKE. Regarding the three code-based algorithms, all
of them are required with an asymmetric time between encapsulation and decapsulation.
Classic McEliece has better timing performance, but the key sizes and the resource
consumption show much poorer performance than the other two’s. BIKE and HQC have
many similarities in performance and can make a tradeoff between key sizes and time
performance.

5.2 System Evaluation
We first evaluate the runtime of the entire hardware-software co-design system. As shown
in Table 8, given the flexibility of our system, four kinds of SIKE calculations under
different parameter settings are tested. The runtime is separated into three steps, and the
clock cycles needed are listed. During the running of the software program, the customized
instructions can send requests to CGRHA (on RoCC) for completing coarse-grained SIKE
calculations. Under different SIKE parameters, the results show that CGRHA spends
278K-496K, 485K-869K, and 525K-916K cycles on key generation, encapsulation, and
decapsulation, respectively. When considering the runtime of the software program, the
cycle cost slightly increases due to the software instruction execution and communication
for controlling CGRHA. Benefiting from the coarse-grained calculations performed on
CGRHA, the runtime overhead caused by the software instruction execution is less than
10%. This proves that the extra time cost of sending the request is limited, and the

26 Fast and Efficient SIKE Co-Design

CGRHA is fully utilized. Compared with work [RFS20], which only evaluates SIKE434,
our work has several magnitude smaller runtime under the same parameter setting. Table 8
proves both the flexibility and the speed of our system.

Table 8: System runtime analysis under different SIKE parameters

Pure Hardware (CGRHA) Software Program with Co-Design Hardware Calculation Utilization∗

KeyG E D E+D KeyG E D E+D KeyG E D E+D
[RFS20] SIKE434 - - - - 10,700 17,800 19,100 36,900 - - - -

Ours

SIKE751 496 869 916 1,784 503 880 928 1,807 96.82% 97.94% 98.66% 98.31%
SIKE610 389 790 773 1,563 411 826 813 1,639 94.65% 95.64% 95.08% 95.36%
SIKE503 316 560 586 1,146 333 596 625 1,221 94.89% 93.96% 93.76% 93.86%
SIKE434 278 485 525 1,010 290 497 527 1,024 95.86% 97.59% 99.62% 98.63%

The unit of the listed integers is K clock cycles.
∗ Hardware Calculation utilization represents the rate of the pure hardware calculation
cycles to the software program execution cycles.

We tested our co-processor based on a full RISC-V system supporting Linux operating
system. The area consumption of the co-design system is shown in Table 9. It is indicated
that the additional area of RoCC’s control circuits is negligible compared with the area
of CGRHA. The area consumption is reasonable as the importance of PQC is rapidly
increasing.

In conclusion, the system evaluation results show that the proposed hardware-software
co-design realizes an excellent tradeoff between speed and flexibility, and thus, challenges
C1 and C2 mentioned in Section 4.1 are well tackled. Meanwhile, the hardware resource
consumption is reasonable enough for a real computer system.

6 Conclusions
In this paper, we have presented a fast and efficient hardware-software co-design for
SIKE. Many optimization techniques, especially algorithmic strength reduction and novel
architectural schemes, have been proposed and applied to the co-processor. By integrating
the co-processor with an advanced RISC-V platform, we can flexibly implement the new
HSC-design for all four SIKE parameters. Implementation results demonstrate that the
proposed design is the fastest and more efficient than most of the prior arts.

References
[AAB+16] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David

Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser,
Adam Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John
Koenig, Yunsup Lee, Eric Love, Martin Maas, Albert Magyar, Howard
Mao, Miquel Moreto, Albert Ou, David A. Patterson, Brian Richards,
Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew Waterman. The
Rocket Chip Generator. Technical report, EECS Department, University
of California, Berkeley, 2016.

Table 9: The area of our co-design system over a Virtex UltraScale FPGA.

LUTs FFs CLBs DSPs BRAMs
Full System 130,894 121,467 24,597 294 90

RISC-V Core 49,437 38,420 9,443 18 51.5
RoCC 81,457 83,047 15,154 276 38.5
- CGRHA 81,166 82,808 15,076 276 38.5

Submitted to CHES in July 2022 27

[AAK21] Mila Anastasova, Reza Azarderakhsh, and Mehran Mozaffari Kermani. Fast
strategies for the implementation of sike round 3 on arm cortex-m4. IEEE
Transactions on Circuits and Systems I: Regular Papers, 68(10):4129–4141,
2021.

[ACC+17] Reza Azarderakhsh, Matthew Campagna, Craig Costello, LD Feo, Basil
Hess, Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia, Patrick
Longa, et al. Supersingular isogeny key encapsulation. submission to the
NIST post-quantum standardization project: https://sike.org/, 152:154–155,
2017.

[AFJ14] Reza Azarderakhsh, Dieter Fishbein, and David Jao. Efficient implementa-
tions of a quantum-resistant key-exchange protocol on embedded systems.
Citeseer, 2014.

[AJK+16] Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christo-
pher Leonardi. Key compression for isogeny-based cryptosystems. In
Proceedings of the 3rd ACM International Workshop on ASIA Public-Key
Cryptography, pages 1–10, 2016.

[Bar86] Paul Barrett. Implementing the rivest shamir and adleman public key
encryption algorithm on a standard digital signal processor. In Advances
in Cryptology-crypto 86, Santa Barbara, California, Usa, pages 311–323,
1986.

[BF18] Joppe Bos and Simon Friedberger. Arithmetic considerations for isogeny
based cryptography. IEEE Transactions on Computers, pages 1–1, 2018.

[BL17] Daniel J Bernstein and Tanja Lange. Post-quantum cryptography. Nature,
549(7671):188–194, 2017.

[BP01] T. Blum and C. Paar. High-radix montgomery modular exponentiation on
reconfigurable hardware. IEEE Transactions on Computers, 50(7):759–764,
2001.

[CCJ+16] Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene
Peralta, Ray Perlner, and Daniel Smith-Tone. Report on post-quantum
cryptography, volume 12. US Department of Commerce, National Institute
of Standards and Technology, 2016.

[CCU+20] Tung Chou, Carlos Cid, S UiB, J Gilcher, T Lange, V Maram, R Mis-
oczki, R Niederhagen, KG Paterson, and E Persichetti. Classic mceliece:
conservative code-based cryptography, 10 october 2020, 2020.

[CFGR22] Hao Cheng, Georgios Fotiadis, Johann Großschädl, and Peter YA Ryan.
Highly vectorized sike for avx-512. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 41–68, 2022.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for
supersingular isogeny Diffie-Hellman. In Annual International Cryptology
Conference, pages 572–601. Springer, 2016.

[EAMK20] Rami Elkhatib, Reza Azarderakhsh, and Mehran Mozaffari-Kermani.
Highly optimized montgomery multiplier for SIKE primes on FPGA. In
2020 IEEE 27th Symposium on Computer Arithmetic (ARITH), pages
64–71. IEEE, 2020.

28 Fast and Efficient SIKE Co-Design

[EAMK21a] Rami Elkhatib, Reza Azarderakhsh, and Mehran Mozaffari-Kermani. Ac-
celerated RISC-V for SIKE. In 2021 IEEE 28th Symposium on Computer
Arithmetic (ARITH), pages 131–138. IEEE, 2021.

[EAMK21b] Rami Elkhatib, Reza Azarderakhsh, and Mehran Mozaffari-Kermani. High-
performance fpga accelerator for sike. IEEE Transactions on Computers,
2021.

[EKAK22] Rami Elkhatib, Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari
Kermani. Accelerated RISC-V for post-quantum SIKE. IEEE Transactions
on Circuits and Systems I: Regular Papers, 2022.

[EKAMK19] Rami El Khatib, Reza Azarderakhsh, and Mehran Mozaffari-Kermani.
Optimized algorithms and architectures for montgomery multiplication for
post-quantum cryptography. In International Conference on Cryptology
and Network Security, pages 83–98. Springer, 2019.

[FBSMB20] Mohammad-Hossein Farzam, Siavash Bayat-Sarmadi, and Hatameh
Mosanaei-Boorani. Implementation of supersingular isogeny-based diffie-
hellman and key encapsulation using an efficient scheduling. IEEE Trans-
actions on Circuits and Systems I: Regular Papers, 67(12):4895–4903,
2020.

[FBSMBA21a] Mohammad-Hossein Farzam, Siavash Bayat-Sarmadi, Hatameh Mosanaei-
Boorani, and Armin Alivand. Hardware architecture for supersingular
isogeny Diffie-Hellman and key encapsulation using a fast montgomery
multiplier. IEEE Transactions on Circuits and Systems I: Regular Papers,
68(5):2042–2050, 2021.

[FBSMBA21b] Sayed Mohammad-Hossein Farzam, Siavash Bayat-Sarmadi, Hatameh
Mosanaei-Boorani, and Armin Alivand. Fast supersingular isogeny Diffie–
Hellman and key encapsulation using a customized pipelined montgomery
multiplier. IEEE Transactions on Circuits and Systems I: Regular Papers,
69(3):1221–1230, 2021.

[FH15] Haining Fan and M Anwar Hasan. A survey of some recent bit-parallel gf
(2n) multipliers. Finite Fields and Their Applications, 32:5–43, 2015.

[FHLOJRH17] Armando Faz-Hernández, Julio López, Eduardo Ochoa-Jiménez, and Fran-
cisco Rodríguez-Henríquez. A faster software implementation of the super-
singular isogeny diffie-hellman key exchange protocol. IEEE Transactions
on Computers, 67(11):1622–1636, 2017.

[FSGL10] Haining Fan, Jiaguang Sun, Ming Gu, and K-Y Lam. Overlap-free
karatsuba–ofman polynomial multiplication algorithms. IET Informa-
tion security, 4(1):8–14, 2010.

[Gro96] Lov K Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219, 1996.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular anal-
ysis of the fujisaki-okamoto transformation. In Theory of Cryptography
Conference, pages 341–371. Springer, 2017.

Submitted to CHES in July 2022 29

[JAC+] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca
De Feo, Basil Hess, Amir Jalali, Koray Karabina, Brian Koziel, Brian
LaMacchia, Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost
Renes, Vladimir Soukharev, and David Urbanik. Supersingular isogeny key
encapsulation. Submission to the NIST Post-Quantum Standardization
Project, 2022, [Online] https://sike.org.

[JAK18] Amir Jalali, Reza Azarderakhsh, and Mehran Mozaffari Kermani. NEON
SIKE: supersingular isogeny key encapsulation on ARMv7. In International
Conference on Security, Privacy, and Applied Cryptography Engineering,
pages 37–51. Springer, 2018.

[Jao11] David Jao. Software for “towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies”. https://github.com/defeo/ss-isogeny-
software, 2011.

[JDF11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. In International Workshop on
Post-Quantum Cryptography, pages 19–34. Springer, 2011.

[JMEH02] Michael Jung, Felix Madlener, Markus Ernst, and Sorin A Huss. A
reconfigurable coprocessor for finite field multiplication in gf (2n). In
Proc. of IEEE Workshop on Heterogeneous Reconfigurable systems on Chip,
Hamburg, Germany, 2002.

[KAEK+20] Brian Koziel, A-Bon Ackie, Rami El Khatib, Reza Azarderakhsh, and
Mehran Mozaffari Kermani. SIKE’d up: Fast hardware architectures for
supersingular isogeny key encapsulation. IEEE Transactions on Circuits
and Systems I: Regular Papers, 67(12):4842–4854, 2020.

[KAK18] Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari Kermani. A
high-performance and scalable hardware architecture for isogeny-based
cryptography. IEEE Transactions on Computers, 67(11):1594–1609, 2018.

[KAKJ17] Brian Koziel, Reza Azarderakhsh, Mehran Mozaffari Kermani, and David
Jao. Post-quantum cryptography on FPGA based on isogenies on elliptic
curves. IEEE Transactions on Circuits and Systems I-regular Papers,
64(1):86–99, 2017.

[KMT+17] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita,
Markus Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient
variational quantum eigensolver for small molecules and quantum magnets.
Nature, 549(7671):242–246, 2017.

[KO62] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-
digital numbers by automatic computers. In Doklady Akademii Nauk,
volume 145, pages 293–294. Russian Academy of Sciences, 1962.

[KRVV16] Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid
Verbauwhede. Efficient finite field multiplication for isogeny based post
quantum cryptography. International Workshop on the Arithmetic of
Finite Fields, pages 193–207, 2016.

[LNL+19] Weiqiang Liu, Jian Ni, Zhe Liu, Chunyang Liu, and Máire O’Neill. Op-
timized modular multiplication for supersingular isogeny diffie-hellman.
IEEE Transactions on Computers, 68(8):1249–1255, 2019.

https://sike.org
https://github.com/defeo/ss-isogeny-software
https://github.com/defeo/ss-isogeny-software

30 Fast and Efficient SIKE Co-Design

[MAB+] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loıc Bidoux,
Olivier Blazy, Jurjen Bos, Jean-Christophe Deneuville, Arnaud Dion,
Philippe Gaborit, Jérome Lacan, et al. Hamming quasi-cyclic (HQC).
NIST post-quantum cryptography standardization project (round 3), 2020.

[Mil85] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in
Cryptology - CRYPTO ’85, Santa Barbara, California, USA, August 18-22,
1985, Proceedings, 1985.

[MLRB20] Pedro Maat C. Massolino, Patrick Longa, Joost Renes, and Lejla Batina.
A compact and scalable hardware/software co-design of SIKE. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages
245–271, 2020.

[MP85] Montgomery and L. Peter. Modular multiplication without trial division.
Mathematics of Computation, 44(170):519–519, 1985.

[MZB+08] Mohsen Machhout, Medien Zeghid, Belgacem Bouallegue, Rached Tourki,
et al. Efficient hardware architecture of recursive karatsuba-ofman multi-
plier. In 2008 3rd International Conference on Design and Technology of
Integrated Systems in Nanoscale Era, pages 1–6. IEEE, 2008.

[NOL+22a] Ziying Ni, Máire O’Neill, Weiqiang Liu, et al. A high performance SIKE
accelerator with high frequency and low area-time product. IEEE Trans-
actions on Circuits and Systems II: Express Briefs, 2022.

[NOL+22b] Ziying Ni, Máire O’Neill, Weiqiang Liu, et al. A high-performance SIKE
hardware accelerator. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 30(6):803–815, 2022.

[Oru95] Holger Orup. Simplifying quotient determination in high-radix modu-
lar multiplication. In Proceedings of the 12th Symposium on Computer
Arithmetic, pages 193–199. IEEE, 1995.

[Par07] Keshab K Parhi. VLSI digital signal processing systems: design and
implementation. John Wiley & Sons, 2007.

[RBCGG22] Jan Richter-Brockmann, Ming-Shing Chen, Santosh Ghosh, and Tim
Güneysu. Racing BIKE: Improved polynomial multiplication and inversion
in hardware. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 557–588, 2022.

[RFS20] Debapriya Basu Roy, Tim Fritzmann, and Georg Sigl. Efficient hard-
ware/software co-design for post-quantum crypto algorithm SIKE on ARM
and RISC-V based microcontrollers. In Proceedings of the 39th Interna-
tional Conference on Computer-Aided Design, pages 1–9, 2020.

[RIS10] RISC-V: The Free and Open RISC Instruction Set Architecture. https:
//riscv.org/, 2010.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120–126, 1978.

[SAJA20] Hwajeong Seo, Mila Anastasova, Amir Jalali, and Reza Azarderakhsh.
Supersingular isogeny key encapsulation (sike) round 2 on arm cortex-m4.
IEEE Transactions on Computers, 70(10):1705–1718, 2020.

https://riscv.org/
https://riscv.org/

Submitted to CHES in July 2022 31

[Sho94] Peter W Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th annual symposium on foundations of
computer science, pages 124–134. Ieee, 1994.

[SLLH18] Hwajeong Seo, Zhe Liu, Patrick Longa, and Zhi Hu. SIDH on ARM: faster
modular multiplications for faster post-quantum supersingular isogeny key
exchange. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 1–20, 2018.

[TLW19] Jing Tian, Jun Lin, and Zhongfeng Wang. Ultra-fast modular multiplication
implementation for isogeny-based post-quantum cryptography. In 2019
IEEE International Workshop on Signal Processing Systems (SiPS), pages
97–102. IEEE, 2019.

[TLW20] Jing Tian, Jun Lin, and Zhongfeng Wang. Fast modular multipliers for su-
persingular isogeny-based post-quantum cryptography. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 29(2):359–371, 2020.

[TWL+20] Jing Tian, Piaoyang Wang, Zhe Liu, Jun Lin, Zhongfeng Wang, and
Johann Großschädl. Faster software implementation of the SIKE protocol
based on a new data representation. Cryptology ePrint Archive, Report
2020/660, 2020. https://eprint.iacr.org/2020/660.

[TWL+21] Jing Tian, Piaoyang Wang, Zhe Liu, Jun Lin, Zhongfeng Wang, and Johann
Groszschaedl. Efficient software implementation of the sike protocol using
new data representation. IEEE Transactions on Computers, 2021.

[TWW21] Jing Tian, Bo Wu, and Zhongfeng Wang. High-speed FPGA implemen-
tation of SIKE based on an ultra-low-latency modular multiplier. IEEE
Transactions on Circuits and Systems I: Regular Papers, 68(9):3719–3731,
2021.

[Vél71] Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris,
Séries A, 273:305–347, 1971.

[Vu16] C Vu. Ibm makes quantum computing available on ibm cloud to accelerate
innovation. IBM News Room, 2016.

[vzGS05] Joachim von zur Gathen and Jamshid Shokrollahi. Efficient fpga-based
karatsuba multipliers for polynomials over f˜ 2. In Selected Areas in
Cryptography, volume 3897, pages 359–369. Springer, 2005.

[WP06] André Weimerskirch and Christof Paar. Generalizations of the karatsuba
algorithm for efficient implementations. Cryptology ePrint Archive, 2006.

[XL21] Yufei Xing and Shuguo Li. A compact hardware implementation of CCA-
secure key exchange mechanism CRYSTALS-KYBER on FPGA. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages
328–356, 2021.

[ZSP+18] Gustavo HM Zanon, Marcos A Simplicio, Geovandro CCF Pereira, Javad
Doliskani, and Paulo SLM Barreto. Faster key compression for isogeny-
based cryptosystems. IEEE Transactions on Computers, 68(5):688–701,
2018.

[ZWD+20] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao
Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, et al. Quantum
computational advantage using photons. Science, 370(6523):1460–1463,
2020.

https://eprint.iacr.org/2020/660

32 Fast and Efficient SIKE Co-Design

A Appendix: Deduction for Interleaved Multiplication of
Polynomials and Integers

We assume two kinds of polynomials, P = p0 + p1x1 + ... + p2n−1x2n−1 = [p0, p1, ..., p2n−1]
and Q = q0 + q1x1 + ... + qn−1xn−1 = [q0, q1, ..., qn−1], where the order 2n of P is twice
of that of Q while the data width w of the coefficients pi is half of that of qi. We will
demonstrate in the following that the multiplication operation over the two polynomials
can be efficiently designed and fully reused.

Assume two polynomials over P : A = [a0, a1, ..., a2n−1] and B = [b0, b1, ..., b2n−1]. The
product of A and B can be represented as:

C = A × B = [c0, ..., ci, ..., c4n−2] (3)

= [a0b0, ...,

i∑
j=0

ajbi−j , ...,

2n−1∑
j=0

ajb2n−1−j , ...,

2n−1∑
j=i−2n+1

ajbi−j , ..., a2n−1b2n−1],

where 4n2 w-bit multipliers are used, which can be reduced to 3⌈log2 4n⌉ by using the
proposed 2n-point FCM architecture.

Again, we suppose two polynomials over Q:

T = [t0, t1, ..., tn−1] = [a0 + a12w, a2 + a32w, ..., a2n−2 + a2n−12w], (4)

S = [s0, s1, ..., sn−1] = [b0 + b12w, b2 + b32w, ..., b2n−2 + b2n−12w]. (5)
We split the integer coefficients of T and S in this way just to show how to interleave the
integer multiplications with the polynomial multiplications and reuse the previous pure
polynomial multipliers. The product of the two polynomials equals:

V = T × S = [v0, ..., vi, ..., v2n−2] (6)

= {t0s0, ...,

i∑
j=0

tjsi−j , ...,

n−1∑
j=0

tjsn−1−j , ...,

n−1∑
j=i−n+1

tjsi−j , ..., tn−1sn−1]

= [a0b0 + (a0b1 + a1b0)2w + a1b122w, ...,
i∑

j=0
a2jb2i−2j +

2i+1∑
j=0

ajb2i+1−j2w +
i∑

j=0
a2j+1b2(i+1)−2j−122w, ...,

n−1∑
j=i−n+1

a2jb2i−2j +
2n−1∑

j=2i+1−2n+1
ajb2i+1−j2w +

n−1∑
j=i−n+1

a2j+1b2(i+1)−2j−122w, ...,

a2n−2b2n−2 + (a2n−2b2n−1 + a2n−1b2n−2)2w + a2n−1b2n−122w]
= [ce

0 + c12w + co
222w, ..., ce

2i + c2i+12w + co
2i+222w, ..., ce

4n−4 + c4n−32w + co
4n−222w].

It should be noticed that the number of w-bit multiplications is also 4n2. The superscripts
"e" and "o" of variables ce

2i and co
2i+2 indicate that all the subscripts of the involved multi-

plication operators are even and odd, respectively. Luckily, these even/odd accumulated
terms are just the outputs of the even/odd kernel of the 2n-point FCM, without the adders
in the last step. Therefore, we can use almost the same low-complexity architecture to
compute polynomial multiplications over P and Q. The order of the inputs is not the
same, so the Perm module should be separately devised. Additionally, for the latter, we
should use several adders to combine those ready terms to get the final results.

We give an example to make Eq. (6) more intuitive. We assume n = 3, two polynomials
A = [a0, a1, a2, a3, a4, a5] and B = [b0, b1, b2, b3, b4, b5] over P , and two polynomials T =

Submitted to CHES in July 2022 33

[t0, t1, t2] = [a0+a12w, a2+a32w, a4+a52w], S = [s0, s1, s2] = [b0+b12w, b2+b32w, b4+b52w]
over Q. Their separate multiplications are:

C = A × B = [c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10] (7)
= [a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a0b3 + a1b2 + a2b1 + a3b0,

a0b4 + a1b3 + a2b2 + a3b1 + a4b0, a0b5 + a1b4 + a2b3 + a3b2 + a4b1 + a5b0,

a1b5 + a2b4 + a3b3 + a4b2 + a5b1, a2b5 + a3b4 + a4b3 + a5b2,

a3b5 + a4b4 + a5b3, a4b5 + a5b4, a5b5].

V = T × S = [v0, v1, v2, v3, v4] (8)
= [t0s0, t0s1 + t1s0, t0s2 + t1s1 + t2s0, t1s2 + t2s1, t2s2]

[(a0b0) + (a0b1 + a1b0)2w + (a1b1)22w,

(a0b2 + a2b0) + (a0b3 + a1b2 + a2b1 + a3b0)2w + (a1b3 + a3b1)22w,

(a0b4 + a2b2 + a4b0) + (a0b5 + a1b4 + a2b3 + a3b2 + a4b1 + a5b0)2w

+(a1b5 + a3b3 + a5b1)22w,

(a2b4 + a4b2) + (a2b5 + a3b4 + a4b3 + a5b2)2w + (a3b5 + a5b3)22w,

(a4b4) + (a4b5 + a5b4)2w + (a5b5)22w].

We have:

v0 = a0b0 + (a0b1 + a1b0)2w + a1b122w = ce
0 + c12w + co

222w, (9)
v1 = a0b2 + a2b0 + (a0b3 + a1b2 + a2b1 + a3b0)2w + (a1b3 + a3b1)22w = ce

2 + c32w + co
422w

v2 = a0b4 + a2b2 + a4b0 + (a0b5 + a1b4 + a2b3 + a3b2 + a4b1 + a5b0)2w

+(a1b5 + a3b3 + a5b1)22w = ce
4 + c52w + co

622w

v3 = a2b4 + a4b2 + (a2b5 + a3b4 + a4b3 + a5b2)2w + (a3b5 + a5b3)22w = ce
6 + c72w + co

822w

v4 = a4b4 + (a4b5 + a5b4)2w + a5b522w = ce
8 + c92w + co

1022w.

Clearly, the results are consistent with the formula in Eq.(6). It should be noted that
Eq. (6) only shows the method of one-stage splitting. Actually, it can be recursively used
according to required scenarios. In this paper, we only need the one-stage splitting.

	Introduction
	Related Work
	Our Contribution and Paper Organization

	Preliminaries
	Mathematical Foundations
	The SIKE Protocol
	Modular Multiplication Algorithms for SIKE

	Proposed Coarse-Grained Reconfigurable Hardware Architectures for SIKE
	 Top Level of Hardware Architecture: CGRHA
	Modular Multiplier of FALU
	Modular Adder/Subtractor of FALU
	Data Transformation

	RISC-V Integration
	Customized Instructions for SIKE
	Software Program and RISC-V Core
	Customized RoCC

	Experimental Results and Comparison
	Hardware Implementations and Comparison
	System Evaluation

	Conclusions
	Appendix: Deduction for Interleaved Multiplication of Polynomials and Integers

