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Abstract. Bottleneck complexity is an efficiency measure of secure mul-
tiparty computation (MPC) protocols introduced to achieve load-balancing
in large-scale networks, which is defined as the maximum communication
complexity required by any one player within the protocol execution.
Towards the goal of achieving low bottleneck complexity, prior works
proposed MPC protocols for computing symmetric functions in the cor-
related randomness model, where players are given input-independent
correlated randomness in advance. However, the previous protocols with
polylogarithmic bottleneck complexity in the number of players n require
a large amount of correlated randomness that is linear in n, which limits
the per-party efficiency as receiving and storing correlated randomness
are the bottleneck for efficiency. In this work, we present for the first time
MPC protocols for symmetric functions such that bottleneck complex-
ity and the amount of correlated randomness are both polylogarithmic
in n, assuming collusion of size at most n − o(n) players. Furthermore,
one of our protocols is even computationally efficient in that each player
performs only polylog(n) arithmetic operations while the computational
complexity of the previous protocols is O(n). Technically, our efficiency
improvements come from novel protocols based on ramp secret sharing to
realize basic functionalities with low bottleneck complexity, which we be-
lieve may be of interest beyond their applications to secure computation
of symmetric functions.

1 Introduction

Secure multiparty computation (MPC) [49] is a fundamental cryptographic prim-
itive which enables n players to jointly compute a function f(x1, . . . , xn) without
revealing information on their private inputs xi to adversaries corrupting at most
t players. Due to many important applications, the asymptotic and concrete op-
timization of MPC protocols has been the subject of a large body of research.
In this work, we consider the dishonest-majority setting, where the majority of
players are corrupted, i.e., t > n/2.

⋆ The preliminary version of this paper appears in the proceedings of ITC 2024 [22].
Since we found a security flaw in the original constructions, we show fixed ones in
the current version (see Section 1.3 for details).



MPC in the correlated randomness model. A popular approach to de-
signing MPC protocols in the dishonest-majority setting is to employ correlated
randomness. In this model, players receive correlated randomness from a trusted
dealer before inputs are known (the offline phase) and then consume the ran-
domness to perform input-dependent computation (the online phase). It was
shown in [1] that the correlated randomness allows us to construct information-
theoretically secure protocols in the dishonest-majority setting, while such pro-
tocols do not exist in the plain model. Subsequently, many optimizations have
been proposed and several of them are even implemented [6, 19, 38, 18, 8, 9]. Two
primary efficiency metrics for MPC in this model are the online communication
cost and the amount of correlated randomness received from a trusted dealer
[13, 9]. This is because as opposed to local computation, communication and
storage costs are usually dominant in MPC protocols and minimizing both costs
simultaneously leads to fast and scalable protocols.

Bottleneck complexity. Traditionally, the cost of online communication has
been measured by the total amount of communication across all n players. On
the other hand, for practical applications such as peer-to-peer computations be-
tween lightweight devices, the per-party cost is a more effective measure than
the total cost. For example, several existing protocols (e.g., [17, 14, 30, 23]) re-
quire one player to communicate different messages with every other player.
Then, while the total communication cost is possibly scalable, the player must
bear communication proportional to n and his cost quickly becomes prohibitive
in large-scale MPC involving many players. In this work, we focus on a more
fine-grained efficiency measure capturing the load-balancing aspect of protocols,
called bottleneck complexity [10], which is defined as the maximum communica-
tion required by any one player during the protocol execution.

To fit large-scale networks, we aim at designing MPC protocols whose bot-
tleneck complexity scales polylogarithmically with n. Unfortunately, there is a
negative result that we cannot achieve sublinear bottleneck complexity for all
functions even without any security considerations [10]. Due to this result, a line
of works [44, 40, 21] have studied the problem of constructing protocols with low
bottleneck complexity for specific classes of functions. Above all, the class of
symmetric functions, whose values are the same no matter the order of n inputs,
is one of the most fundamental functions including majority, counting, and par-
ity functions. Recently, the authors of [40, 21] constructed information-theoretic
protocols for symmetric functions with O(log n) bottleneck complexity1. How-
ever, a main drawback of the protocols is that every player needs to receive a
large amount of correlated randomness that is linear in n per party. This means
that no matter how much bottleneck complexity in the online phase is improved,
the protocols do not work efficiently as receiving and storing correlated random-
ness is the bottleneck for efficiency. Motivated by the above considerations, in
this work, we ask:

1 The authors of [40] considered a related class of functions called abelian programs.
Their protocol can also compute symmetric functions by setting the underlying
abelian group as the ring of integers modulo n+ 1. See Remark 1 for more details.
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Can we construct MPC protocols for symmetric functions keeping both
bottleneck complexity and the amount of correlated randomness polylogarithmic

in n?

1.1 Our Results

In this work, we answer the above question affirmatively by presenting two dif-
ferent constructions of MPC protocols for symmetric functions, assuming semi-
honest adversaries colluding with at most n− o(n) players.

Theorem 1 (Informal). For a parameter ℓ, there exists an information-theoretic
MPC protocol for computing a symmetric function f : {0, 1}n → {0, 1} that has
bottleneck complexity O(log n), per-party correlated randomness of size O(ℓ log n),
and tolerates up to n−Θ(n/ℓ) semi-honest corruptions.

A typical choice of the parameter ℓ is ℓ = Θ(log n). Theorem 1 then gives a
protocol that has bottleneck complexity O(log n) and correlated randomness of
size O((log n)2). Compared to the previous works, the protocol achieves for the
first time polylog(n) bottleneck complexity and correlated randomness simulta-
neously (see Table 1). Furthermore, if we set ℓ ≈ 1/ϵ for a constant 0 < ϵ < 1/2,
then Theorem 1 gives a protocol such that both the bottleneck complexity and
the amount of correlated randomness are O(log n) for a constant fraction of
corrupted players (e.g., 99 percent of the parties are corrupted). Although the
corruption threshold t is lower than the maximum n − 1, our protocol is still
secure in the dishonest majority setting t > n/2. A more detailed comparison is
shown in Table 1. Our protocol even achieves polylog(n) computational complex-
ity since the local computation of each player involves only O(log n) arithmetic
operations in a field of size O(n). As a comparison, the previous protocols in
[40, 21] have O(n) computational complexity since every player needs to process
vectors or matrices of size O(n).

We also show another construction of protocols for symmetric functions with
polylogarithmic bottleneck complexity and correlated randomness. Compared
with the first construction, it reduces the amount of correlated randomness ex-
cluding correlated randomness required to securely compute the sum of elements
in an abelian group. If the secure summation functionality is implemented with
the state-of-the-art protocol in [21], the construction derives a protocol with
bottleneck complexity O((log n)2) and correlated randomness of size O((log n)2)
but there is no advantage of efficiency compared to the one obtained from the
first construction. If there exists a secure summation protocol over an abelian
group G with bottleneck complexity o(log |G|) and correlated randomness of
size O(log |G|), then our second construction implies a protocol that achieves
bottleneck complexity O((log n)2) and a smaller amount of correlated random-
ness o((log n)2). Unfortunately, it is currently unknown whether such a secure
summation protocol exists, which we leave for future work.

Technically, we achieve polylogarithmic bottleneck complexity and correlated
randomness with the help of ramp secret sharing [43, 7, 48, 24] (also known as
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packed secret sharing), a technique to distribute and operate on multiple se-
crets simultaneously only paying the cost of a single secret. This tool was used
to realize certain functionalities in several previous works [14, 23], but they re-
quired every player to distribute fresh shares of their local secret, which leads to
inefficient protocols in terms of bottleneck complexity. Our technical novelty is
carefully designing correlated randomness to avoid such resharing processes and
keep polylog(n) bottleneck complexity. See Section 2 for a detailed overview of
our techniques.

Table 1. Information-theoretic MPC protocols for computing symmetric functions
with sublinear bottleneck complexity in the dishonest-majority setting

Reference BC CR Corruption

[40, 21] O(logn) O(n) n− 1

[21] O(
√
n) O(

√
n) n− 1

Ours (Corollary 2) O(logn) O((logn)2) n− o(n)

Ours (Corollary 3) O(logn) O(logn) (1− ϵ)n

“BC” stands for bottleneck complexity and “CR” stands for the amount of correlated random-

ness per party. ϵ is any constant with 0 < ϵ < 1/2.

1.2 Related Work

Boyle et al. [10] constructed a generic compiler from any possibly insecure pro-
tocol to a computationally secure protocol (without correlated randomness) pre-
serving bottleneck complexity up to a polynomial factor in a security parame-
ter. However, their compiler is based on fully homomorphic encryption, which
can only be instantiated from a narrow class of cryptographic assumptions [26,
47, 27], and the concrete efficiency leaves much to be desired. Orlandi, Ravi,
and Scholl [44] constructed a protocol for symmetric functions in the corre-
lated randomness model assuming garbled circuits. However, in addition to not
achieving information-theoretic security, players need to receive a garbled circuit
with O(log n) input bits as correlated randomness. Since the minimum size of
circuits computing a worst-case function with m input bits is Ω(2m/m) [39],
the correlated randomness of [44] is Ω(λn/ log n) in the worst case, which is
not polylogarithmic in n. There are maliciously secure protocols with sublinear
bottleneck complexity for general tasks [20] and specific tasks [42, 25]. However,
these protocols assume the strong honest-majority setting (t < n/3) and/or only
achieve Ω(

√
n) bottleneck complexity.

There is a rich line of works studying total communication complexity of
MPC, e.g., [28, 4, 11, 45, 15, 36, 35, 17, 2, 16, 19, 5, 37, 12, 31, 32, 41, 30]. However,
protocols in all of the above works require full interaction among players, that
is, each player may send different messages to all the other players in each round
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of interaction. This feature necessarily results in high bottleneck complexity
Ω(n).

The authors of [34, 33] initiated the study of the communication complexity of
MPC with restricted interaction patterns. Halevi et al. [33] studied a chain-based
interaction, in which players interact over a simple directed path traversing all
players. Protocols on a chain-based interaction possibly achieve low bottleneck
complexity since each player communicates with at most two players. However,
since the last player on the chain is allowed to evaluate the function on every
possible input of his choice, the constructions in [33] cannot achieve the standard
security of MPC, which requires that corrupted players learn nothing but the
output.

1.3 Publication Note

The preliminary version of this paper appears in the proceedings of ITC 2024
[22]. Although we proposed a protocol to compute the sum of group elements
in the preliminary version, we found a security flaw in the protocol and conse-
quently, our main protocols for symmetric functions did not satisfy the specified
security (see Appendix A for details). In the current version, we show fixed proto-
cols in which the summation protocol is replaced with a different one in [21]. Our
first construction (Theorem 1) still achieves the same asymptotic performance
as the original construction. On the other hand, our second construction needs
a larger amount of correlated randomness and currently, there is no advantage
of efficiency compared to the one obtained from Theorem 1. As we mentioned in
Section 1.1, it is still possible that our second construction has an advantage over
the first one if a secure summation protocol with a smaller amount of correlated
randomness is devised.

2 Technical Overview

In this section, we provide an overview of our techniques. More detailed descrip-
tions and security proofs will be given in the following sections.

2.1 Our First Protocol for Symmetric Functions

To begin with, we recall the protocol computing symmetric functions withO(log n)
bottleneck complexity in [40, 21]. Let h : {0, 1}n → {0, 1} be a symmetric func-
tion. Since the value of h(x1, . . . , xn) depends only on the number of 1’s, which is
equal to the sum

∑
i∈[n] xi, there is the unique function f : {0, 1, . . . , n} → {0, 1}

such that h(x1, . . . , xn) = f(
∑

i∈[n] xi). Roughly speaking, the protocol in [40,

21] proceeds as follows: In the setup, players receive an additive sharing of the
truth-table Tr ∈ {0, 1}n+1 of f permuted with a random shift r ∈ {0, 1, . . . , n}.
Simultaneously, they also receive an additive sharing (ri)i∈[n] of the shift r. In the
online phase, players compute xi+ri, open y =

∑
i∈[n] xi+r, and then open the y-

th component of the permuted truth-table Tr, which is f(y−r) = h(x1, . . . , xn).
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In this protocol, however, players need to receive additive shares of the (n+ 1)-
dimensional vector Tr, which results in correlated randomness of size O(n) per
party.

Our starting point to reduce this large correlated randomness is using a ramp
secret sharing scheme to share the permuted truth-table Tr of f . Ramp secret
sharing [43, 7, 48] is a variant of secret sharing which can share a secret vector of
dimension k keeping the share size logarithmic in k and n. One may expect that
a ramp secret sharing scheme can compress the (n + 1)-dimensional vector Tr

into shares each of size logarithmic in n. However, this falls short of achieving
our goal since the efficiency of ramp secret sharing schemes comes at the cost of
decreasing a privacy threshold t to n− k. In our setting, this means that when
sharing the (n + 1)-dimensional vector Tr, we need to set a privacy threshold
t = n− (n+ 1) < 0, which guarantees no privacy.

To overcome this, we decompose the permuted truth-table Tr into ℓ vectors
Tr = (U(0),U(1), . . . ,U(ℓ−1)) each of dimension k = (n+1)/ℓ. We independently
generate shares of each vector U(j) using a ramp secret sharing scheme. Now,
a privacy threshold is t = n − (n + 1)/ℓ = n − o(n) instead of t = n − (n + 1).
In the online phase, players write y = x + r as y = σk + τ for some σ ∈
{0, 1, . . . , ℓ−1} and τ ∈ {0, 1, . . . , k−1}, which implies that the y-th component
of Tr corresponds to the τ -th component of U(σ). Then all players can together
reconstruct the output f(y− r) = h(x1, . . . , xn) by opening the τ -th component
of U(σ). A typical choice of the parameter ℓ is ℓ = Θ(log n). Then a privacy
threshold is t = n − Θ(n/ log n) and correlated randomness for each player
consists of O(ℓ) = O(log n) shares. Since a ramp secret sharing scheme requires
the underlying field to contain n + k = O(n) elements, the size of correlated
randomness is O((log n)2) in bits. Note that the bottleneck complexity is still
O(log n) since players open only one share in the online phase. On the other
hand, if we set ℓ ≈ 1/ϵ for a constant 0 < ϵ < 1/2, then both the bottleneck
complexity and the amount of correlated randomness are O(log n) while the
number of corrupted players should be at most (1− ϵ)n.

2.2 Our Second Protocol for Symmetric Functions

Next, we show another protocol for symmetric functions that achieves polylog-
arithmic bottleneck complexity and correlated randomness. Compared with the
first construction, it reduces the amount of correlated randomness excluding
correlated randomness required to securely compute the sum of elements in an
abelian group.

Our starting point is a balancing approach in [21] of expressing the truth-
table of f : {0, 1, . . . , n} → {0, 1} (induced by a symmetric function h) as a
matrix Mf instead of an (n + 1)-dimensional vector. More specifically, assume
that there are two distinct primes ℓ and k such that ℓk = n+1, and fix the one-
to-one correspondence ϕ between Zn+1 = {0, 1, . . . , n} and Zℓ × Zk = {(σ, τ) ∈
Z2 : 0 ≤ σ < ℓ, 0 ≤ τ < k} induced by the Chinese remainder theorem. Then
there exists a matrix Mf ∈ {0, 1}ℓ×k such that the computation of f(

∑
i∈[n] xi)
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can be expressed as the following inner product

f(
∑
i∈[n]

xi) = ⟨eσ,Mf · eτ ⟩, (1)

where (σ, τ) = ϕ(
∑

i∈[n] xi) and ej denotes the vector with a 1 in the j-th
coordinate and 0’s elsewhere. The task is now reduced to secure computation
of matrix-vector products of size at most max{ℓ, k}, which balances bottleneck
complexity and the amount of correlated randomness. However, if we naively
implement secure computation of the inner product (1) by sharing secret vectors
eσ and eτ in an element-wise way, then the best possible bottleneck complexity
is Ω(

√
n) since the primes ℓ, k should satisfy ℓk = Ω(n).

To achieve polylogarithmic bottleneck complexity, we use a ramp secret shar-
ing scheme and encode secret vectors eσ and eτ into small shares. This reduces
the secure computation of (1) to constructing protocols for the following func-
tionalities:

Linear transformation. Players obtain ramp shares of an ℓ-dimensional vec-
tor M · w from shares of a k-dimensional secret vector w, where M is a
public ℓ-by-k matrix.

Inner product. Players obtain ⟨v,w⟩ from ramp shares of two ℓ-dimensional
vectors v and w.

We note that a protocol for the first functionality was previously considered in
[14] but it requires every player to reshare their local shares, which results inΩ(n)
bottleneck complexity. Our technical novelty is carefully designing correlated
randomness to avoid such resharing processes and keep bottleneck complexity
polylogarithmic in n.

Linear transformation. Ramp secret sharing schemes considered in this pa-
per have linear reconstruction, that is, a secret vector can be expressed as a
linear combination of all shares over a field. This implies that given shares
of w, every player can locally compute an ℓ-dimensional vector si such that
s1 + · · ·+ sn = M ·w. If players were allowed to reshare all the si’s, they could
securely obtain shares of M ·w. However, the resharing of all the si’s results in
high bottleneck complexity Ω(n). Instead, we distribute shares of a randomly
chosen ℓ-dimensional vector r in the offline phase. This enables players to locally
compute xi such that x1+ · · ·+xn = M ·w+r and jointly reconstruct M ·w+r,
which can be done by communicating O(ℓ) field elements. Note that since r is
unknown to any player, M ·w+r is just a random vector. It can be done locally
to obtain shares of M ·w+ r from it. Players then convert these shares into the
ones of M ·w by subtracting the shares of r. In our protocol, players communi-
cate only O(ℓ) field elements in the online phase and receive a constant number
of field elements in the offline phase, excluding correlated randomness required
to securely compute the sum of elements.

Inner product. Distributing Beaver triples [1] in the offline phase is a com-
mon technique to compute the product vw from shares of two secrets v and
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w. Although this technique successfully works when computing the product of
scalars, a naive generalization does not work if we compute the inner product of
vectors shared by a ramp scheme. More specifically, a common template using
Beaver triples is distributing fresh shares of three secrets a, b and c in the offline
phase, where a and b are randomly chosen and c = ab. In the online phase,
players reconstruct v − a and w − b, and then compute shares of vw based on
the equation

vw = (v − a)(w − b) + a(w − b) + b(v − a) + c.

This can be done locally since vw is a linear combination of secrets a, b and c
with public coefficients v−a and w−b. To generalize this template, we distribute
shares of secret vectors a, b and c, where a and b are random and c = a ∗ b,
where ∗ denotes the element-wise product. As above, players reconstruct v − a
and w − b. Naturally, we extends the above equation to vectors:

v ∗w = (v − a) ∗ (w − b) + a ∗ (w − b) + b ∗ (v − a) + c.

It is easy to compute shares of the first term since v − a and w − b are public.
A technical difficulty lies in computing shares of the second and third terms.
When we only deal with scalars, players can locally compute shares of a(w − b)
from shares of a and a public constant w − b just by multiplying the shares
by the constant. However, when a secret vector a is shared by a ramp scheme,
multiplying shares of a by a constant d results in shares of a vector d · a, whose
entries are all multiplied by d. To obtain shares of a ∗ (w − b), we need to
multiply different entries of a secret vector a by different constants. For that,
we rewrite a ∗ (w − b) = diag(w − b) · a and apply the above protocol for
linear transformation with M = diag(w − b), where diag(w − b) denotes a
diagonal matrix whose (i, i)-th entry is the i-th entry of w − b. Finally, players
obtain shares of v ∗ w, jointly reconstruct it, and output ⟨1,v ∗ w⟩ = ⟨v,w⟩,
where 1 is the all-one vector. Since naively reconstructing v ∗w leaks additional
information, we let players add shares of a random secret s such that ⟨1, s⟩ = 0,
which does not affect correctness since ⟨1,v ∗w+ s⟩ = ⟨v,w⟩. In this protocol,
players communicate only O(ℓ) field elements in the online phase and receive
a constant number of field elements in the offline phase, excluding correlated
randomness required to securely compute the sum of elements.

Putting it altogether. Similarly to our first protocol, in the offline phase, we
distribute additive shares of a random mask r ∈ {0, 1, . . . , n} and ramp shares of
vectors eσr

and eτr , where ϕ(r) = (σr, τr) ∈ Zℓ×Zk. In the online phase, players
open a masked sum y =

∑
i∈[n] xi − r and compute ϕ(y) = (σy, τy). Note that

(σy+σr, τy+τr) = ϕ(
∑

i∈[n] xi) = (σ, τ). Then, players obtain ramp shares of eσ
by applying the protocol for linear transformation withw = eσr

andM being the
linear operation of shifting a vector by σy. Similarly, players run the linear trans-
formation protocol on ramp shares of eτr to obtain shares of eτ . Subsequently,
they apply the linear transformation protocol setting w = eτ and M = Mf to
obtain ramp shares of Mf · eτ . Finally, they run the inner product protocol on
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input eσ and Mf · eτ , and obtain ⟨eσ,Mf · eτ ⟩ = f(
∑

i∈[n] xi) = h(x1, . . . , xn).

A typical choice of the primes ℓ and k is ℓ = Θ(log n) and k = Θ(n/ log n).
Since a ramp secret sharing scheme requires a field of size O(n), a field ele-
ment can be described in O(log n) bits. Therefore, the bottleneck complexity
of our final protocol is O(ℓ log n) = O((log n)2) and the per-party correlated
randomness is O(log n) bits, excluding correlated randomness required to se-
curely compute the sum of elements. On the other hand, a privacy threshold
is t = n − max{ℓ, k} = n − Θ(n/ log n) since ℓ-dimensional and k-dimensional
secret vectors are shared by a ramp scheme.

3 Preliminaries

3.1 Notations

For m ∈ N, define [m] = {1, . . . ,m}. Define Zm as the ring of integers modulo
m. We identify Zm (as a set) with {z ∈ Z : 0 ≤ z ≤ m − 1}. For a subset
X of a set Y , we define Y \ X = {y ∈ Y : y /∈ X}. We write u←$Y if u is
chosen uniformly at random from a set Y . For a vector s = (si)i∈Zm

∈ Xm

and r ∈ Zm, we define Shiftr(s) as the vector obtained by shifting elements by
r. Formally, u = (ui)i∈Zm

= Shiftr(s) is defined by ui = s(i−r) mod m for all
i ∈ Zm. If X is a field F, Shiftr can be expressed by a linear operation. Formally,
define a permutation matrix Pr ∈ Fm×m as the one whose (i, j)-th entry is 1 if
j = (i− r) mod m and 0 otherwise, where we identify the sets indexing the rows
and columns of the matrix as Zm. Then it holds that Shiftr(s) = Pr · s. It also
holds that P−1

r · s = P⊤
r · s = P−r · s = Shift−r(s) Let 0m be the zero vector of

dimension m and 1m be the all-ones vector of dimension m. We simply write 0
or 1 if the dimension is clear from the context. Let ei denote the i-th unit vector
whose entry is 1 at position i, and 0 otherwise. For a vector v of dimension m,
we define diag(v) as a diagonal matrix whose (i, j)-th entry is the i-th entry of v
if j = i and 0 otherwise. For two vectors u,v over a ring, we denote the standard
inner product of u and v by ⟨u,v⟩. Throughout the paper, we fix the following
notations:

– n is the total number of players.
– t is the maximum number of corrupted players (see Section 3.2).
– K is the minimum finite field such that |K| ≥ 2n. Fix 2n pairwise distinct

elements β0, β1, . . . , βn−1, α1, . . . , αn ∈ K.

3.2 Secure Multiparty Computation

We denote the set of n players by {P1, . . . ,Pn}, where Pi is called the i-th
player. Assume that each player Pi has a private input xi from a finite set D.
Let F(x1, . . . , xn) = (y1, . . . , yn) be an n-input/n-output randomized function-
ality. We assume the correlated randomness model, in which there is a trusted
dealer who samples (r1, . . . , rn) according to a joint distribution D over the
Cartesian product R1 × · · · × Rn of n sets, and gives ri ∈ Ri to each player Pi
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before he decides his input. We assume computationally unbounded adversaries
who passively corrupt up to t players. (We do not consider active adversaries
whose corrupted players deviate from protocols arbitrarily.) Let Π be a protocol
between n players in the correlated randomness model. For a subset T ⊆ [n] of
size at most t and any input x = (xi)i∈[n], consider the following two processes:

Ideal process. This process is defined with respect to a simulator Sim. Let
(y1, . . . , yn)← F(x). The output of this process is

IdealF,Sim(T,x) := (Sim(T, (xi, yi)i∈T ), (yi)i∈[n]).

Real process. Suppose that all players each holding an input xi execute Π
honestly. Let ViewΠ,i(x) denote the view of Pi at the end of the protocol
execution (which consists of his private input xi, correlated randomness ri,
and messages that he received or sent during the execution of Π), and let
OutputΠ,i(x) be the output of Pi. The output of this process is

RealΠ(T,x) := ((ViewΠ,i(x))i∈T , (OutputΠ,i(x))i∈[n]).

We say that Π is a t-secure MPC protocol for F if for any subset T ⊆ [n] of
size at most t and any input x = (xi)i∈[n], the distributions IdealF,Sim(T,x) and
RealΠ(T,x) are perfectly identical to each other.

Let g be a deterministic function on Dn. We say that Π is a t-secure protocol
computing g if it is a t-secure protocol for the functionality that takes x as input
and gives g(x) to every player. Then we have that Π is a t-secure MPC protocol
computing g if and only if

Correctness. For any input x and any i ∈ [n], it holds with probability 1 that
OutputΠ,i(x) = g(x).

Privacy. For any set T ⊆ [n] of size at most t and any pair of inputs x =
(xi)i∈[n], w = (wi)i∈[n] such that (xi)i∈T = (wi)i∈T and g(x) = g(w), the
distributions (ViewΠ,i(x))i∈T and (ViewΠ,i(w))i∈T are perfectly identical to
each other.

We denote by Commi(Π) the total number of bits sent or received by the i-th
player Pi during the execution of a protocol Π with worst-case inputs. We define
the bottleneck complexity of Π as BC(Π) = maxi∈[n]{Commi(Π)}. We denote
by Randi(Π) the size of correlated randomness for Pi, i.e., the total number of
bits received by Pi in the setup of Π, and define CR(Π) = maxi∈[n]{Randi(Π)}.
We denote by Round(Π) the round complexity of Π, i.e., the number of sequen-
tial rounds of interaction.

Let G be a functionality. We say that a protocol Π is in the G-hybrid model if
players invoke G during the execution of Π, that is, a trusted third party receives
messages from players and gives them the correct output of G. The composition
theorem [29] implies that if a protocol Π securely realizes a functionality F in
the G-hybrid model and a protocol ΠG securely realizes G, then the composition
of Π and ΠG , i.e., the protocol obtained by replacing all invocations of G in Π
with ΠG , also securely realizes F . While the above theorem assumes sequential
composition, a set of protocols in the paper can be composed concurrently.
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3.3 Basic Algorithms and Protocols

Let G be an abelian group (e.g., a finite field or a ring of integers modulo m).
Define AdditiveG(s) as an algorithm to generate additive shares over G for a
secret s ∈ G. Formally, on input s ∈ G, AdditiveG(s) chooses (s1, . . . , sn) ∈ Gn

uniformly at random conditioned on s =
∑

i∈[n] si, and outputs it.

Broadcast. Let FBroadcast,i be the functionality which receives an input y from
the i-th player and gives y to all players. Since all players are supposed to be semi-
honest, a protocolΠBroadcast,i realizing FBroadcast,i with low bottleneck complexity
is straightforward (see [21] for a formal description). Roughly speaking, assume
that the set of n players is represented by a binary tree whose height is O(log n)
and root is Pi. Each player sends his two children the element that he received
from his parent node. The complexity of ΠBroadcast,i is CR(ΠBroadcast,i) = 0,
BC(ΠBroadcast,i) = O(ℓy), and Round(ΠBroadcast,i) = O(log n), where ℓy is the
bit-length of y.

Sum. In Fig. 1, we describe the functionality FSum,G which receives group ele-
ments x1, . . . , xn ∈ G, each from Pi, and gives s :=

∑
i∈[n] xi to all players. There

exists a protocol ΠSum,G realizing FSum,G such that CR(ΠSum,G) = O(log |G|),
BC(ΠSum,G) = O(log |G|) and Round(ΠSum,G) = O(log n) [21]. If the underlying
group G is clear from the context, we simply write FSum and ΠSum instead of
FSum,G and ΠSum,G, respectively.

Functionality FSum,G((xi)i∈[n])� �
Upon receiving a group element xi ∈ G from each player Pi, FSum,G gives every
player s :=

∑
i∈[n] xi.� �

Fig. 1. The functionality FSum,G

3.4 Ramp Secret Sharing

Recall that K is the minimum finite field such that |K| ≥ 2n and we fix 2n
pairwise distinct elements β0, β1, . . . , βn−1, α1, . . . , αn ∈ K. Let ℓ be a positive
integer such that ℓ ≤ n. Define RSSℓ(s) as an algorithm to generate shares of
the (t, ℓ, n)-ramp secret sharing scheme for a secret vector s ∈ Kℓ. Formally, for
s ∈ Kℓ, we define a set Rs of polynomials as

Rs := {φ ∈ K[X] : degφ ≤ t+ ℓ, (φ(β0), . . . , φ(βℓ−1)) = s}

On input s ∈ Kℓ, RSSℓ(s) chooses a polynomial φ uniformly at random from
Rs, and then outputs (φ(α1), . . . , φ(αn)).
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Regarding RSSℓ, we recall basic mathematical facts that we will use to con-
struct our protocols in the following lemmas. We defer the proofs to the full
version.

Lemma 1. Let T ⊆ [n] be any set of size at most t and s ∈ Kℓ. Then, there is
a polynomial ∆s ∈ Rs such that ∆s(αi) = 0 for all i ∈ T .

Proof. Let s = (s0, . . . , sℓ−1) and T = {i1, . . . , i|T |}. Consider the following
linear equations with variables (δ0, . . . , δt+ℓ):

1 β0 · · · βt+ℓ
0

...

1 βℓ−1 · · · βt+ℓ
ℓ−1

1 αi1 · · · αt+ℓ
i1

...

1 αi|T | · · · α
t+ℓ
i|T |




δ0
δ1
...

δt+ℓ

 =



s0
...

sℓ−1

0
...
0


. (2)

Since ℓ + |T | < t + ℓ + 1 and the Vandermonde matrices have full rank, there

exists a solution (δ0, . . . , δt+ℓ) to (2). The polynomial ∆s(X) =
∑t+ℓ

i=0 δiX
i is a

desired one.

Lemma 2. Let s,u ∈ Kℓ and φs ∈ Rs. If φu is uniformly distributed over Ru,
then φs + φu is uniformly distributed over Rs+u.

Proof. Fix any φ1 ∈ Ru. Observe that there is a one-to-one correspondence
between φu ∈ Ru and φ0 ∈ R0 under the relation φu = φ0 + φ1. In particular,
if φu is uniformly distributed over Ru, then the corresponding φ0 is uniformly
distributed over R0. We have that φs+φu = (φs+φ1)+φ0 and φs+φ1 ∈ Rs+u.
Therefore, φs + φu is uniformly distributed over Rs+u.

Lemma 3. Let s = (s0, . . . , sℓ−1) ∈ Kℓ. Then, there is an algorithm Reconstℓ
such that ∑

i∈[n]

Reconstℓ(j, i; vi) = sj , ∀j = 0, 1, . . . , ℓ− 1

for any possible shares (v1, . . . , vn) ← RSSℓ(s). Furthermore, Reconstℓ is linear
in the sense that Reconstℓ(j, i; v) + Reconstℓ(j, i; v

′) = Reconstℓ(j, i; v + v′) for
any v, v′ ∈ K.

Proof. The standard results on polynomial interpolation imply that for each
j = 0, 1, . . . , ℓ − 1, there exist constants L1j , . . . , Lnj depending on α1, . . . , αn

and βj only, such that

L1j · φ(α1) + · · ·+ Lnj · φ(αn) = φ(βj)

for any polynomial φ of degree at most n− 1. The statements follow if we define
Reconstℓ as Reconstℓ(j, i; v) = Lij · v for j ∈ {0, 1, . . . , ℓ− 1}, i ∈ [n] and v ∈ K.
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We introduce a deterministic algorithm FixedShareℓ that outputs predeter-
mined shares consistent with a given secret vector. Formally, we fix a deter-
ministic algorithm FixedSampleℓ which on input s ∈ Kℓ, computes a polynomial
ψs ∈ Rs. It can be implemented efficiently, e.g., with Gaussian elimination. De-
fine FixedShareℓ as follows: On input i ∈ [n] and s ∈ Kℓ, FixedShareℓ(i, s) com-
putes ψs = FixedSampleℓ(s) and outputs ψs(αi). Note that (FixedShareℓ(i, s))i∈[n]

is a tuple of possible shares of a secret vector s.

4 Our First Protocol for Symmetric Functions

We call a function h : {0, 1}n → {0, 1} symmetric if h(xσ(1), . . . , xσ(n)) =
h(x1, . . . , xn) for any input (x1, . . . , xn) ∈ {0, 1}n and any permutation σ : [n]→
[n]. By definition, the value of a symmetric function h is determined only by the
Hamming weight w of the input, i.e., w := |{i ∈ [n] : xi = 1}| =

∑
i∈[n] xi. Thus,

there is the unique function f : {0, 1, . . . , n} → {0, 1} such that f(x1+· · ·+xn) =
h(x1, . . . , xn) for all (x1, . . . , xn) ∈ {0, 1}n.

Remark 1. The authors of [44, 40] considered a related class of functions called
abelian programs. Specifically, a function h̃ : Gn → {0, 1} is called an abelian
program over an abelian group G if there exists a function f : G → {0, 1} such
that h̃(x̃1, . . . , x̃n) = f(x̃1+ · · ·+ x̃n) for all (x̃1, . . . , x̃n) ∈ Gn, where addition is
taken over G. As pointed out in [3], abelian programs can compute a symmetric
function h : {0, 1}n → {0, 1} by setting G = Zn+1 and viewing each input
xi ∈ {0, 1} as an element x̃i ∈ Zn+1 (i.e., embed {0, 1} into Zn+1). The authors of
[40] presented an information-theoretic MPC protocol Π for an abelian program
h̃ : Gn → {0, 1} such that CR(Π) = O(|G|) and BC(Π) = O(log |G|). Based
on the above correspondence, the protocol has CR(Π) = O(n) and BC(Π) =
O(log n) when computing a symmetric function h : {0, 1}n → {0, 1}.

First, for a parameter ℓ, we show an (n − Θ(n/ℓ))-secure protocol for any
symmetric function h in the FSum-hybrid model such that the bottleneck com-
plexity is O(log n) and the amount of correlated randomness is O(ℓ log n). If we
set ℓ = Θ(log n) and implement FSum with the protocol in [21], then we obtain
an (n − o(n))-secure protocol such that the bottleneck complexity is O(log n)
and the amount of correlated randomness is O((log n)2).

Theorem 2. Let h : {0, 1}n → {0, 1} be a symmetric function. Let ℓ be any
integer such that ℓ ≤ n + 1, and suppose that t ≤ n − ⌈(n + 1)/ℓ⌉. The proto-
col ΠSym described in Fig. 2 is a t-secure MPC protocol computing h in the
(FSum,Zm

,FSum,K)-hybrid model. If FSum,G is implemented by a protocol with
bottleneck complexity bSum,G and correlated randomness of size cSum,G for any
abelian group G, then the protocol ΠSym achieves CR(ΠSym) = O(ℓ log n+cSum,Zm

+
cSum,K) and BC(ΠSym) = O(bSum,Zm + bSum,K).
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Protocol ΠSym� �
Notations.

– Let h : {0, 1}n → {0, 1} be a symmetric function.
– Let f : {0, 1, . . . , n} → {0, 1} be a function such that h(x1, . . . , xn) =

f(
∑

i∈[n] xi) for all (x1, . . . , xn) ∈ {0, 1}n.
– Let ℓ ≤ n+ 1, k := ⌈(n+ 1)/ℓ⌉ and m := ℓk.
– Define F = (Fi)i∈Zm ∈ Km by Fi = f(i) if 0 ≤ i ≤ n and Fi = 0

otherwise.
Input. Each player Pi has xi ∈ {0, 1}.
Output. Every player obtains z = h(x1, . . . , xn).
Setup.

1. Let r←$Zm and (ri)i∈[n] ← AdditiveZm(r).
2. Define S ∈ Km by S = Shiftr(F) and decompose S into ℓ vectors

U(0), . . . ,U(ℓ−1) of dimension k, i.e., S = (U(0), . . . ,U(ℓ−1)).

3. For each j = 0, 1, . . . , ℓ− 1, let (v
(j)
i )i∈[n] ← RSSk(U

(j)).

4. Each player Pi receives (ri, v
(0)
i , . . . , v

(ℓ−1)
i ).

Protocol.
1. Each player Pi computes yi = xi + ri mod m.
2. Players obtain y = FSum,Zm((yi)i∈[n]).
3. Each player computes (σ, τ) ∈ Zℓ × Zk such that y = σk + τ .

4. Each player Pi computes zi = Reconstk(τ, i; v
(σ)
i ).

5. Players obtain z = FSum,K((zi)i∈[n]).
6. Each player Pi outputs z.� �
Fig. 2. Our first protocol ΠSym for computing a symmetric function
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Proof. First, we prove the correctness of ΠSym. Let x ∈ {0, 1}n be any input.

Since r =
∑

i∈[n] ri, it holds that y = r +
∑

i∈[n] xi. Since (v
(j)
i )i∈[n] are shares

of RSSk for a secret vector U(j), it also holds that

z =
∑
i∈[n]

zi =
∑
i∈[n]

Reconstk(τ, i; v
(σ)
i ) = (U(σ))τ = (S)σk+τ = (S)y = F(y−r) mod m

where (U(σ))τ is the τ -th element of U(σ) and (S)y is the y-th element of S.
Therefore, we have that z = f(

∑
i∈[n] xi) = h(x1, . . . , xn).

Next, we prove the privacy of ΠSym. Let T ⊆ [n] be the set of corrupted
players. Let H = [n]\T be the set of honest players and fix an honest player j ∈
H. Note that in the FSum-hybrid model, corrupted players’ view can be simulated
from the following elements since the other elements are locally computed from
them:

Correlated randomness. (ri, v
(0)
i , . . . , v

(ℓ−1)
i ) for all i ∈ T ;

Online messages. y =
∑

i∈[n] xi + r and z.

Let x = (xi)i∈[n], x̃ = (x̃i)i∈[n] ∈ {0, 1}n be any pair of inputs such that xi =
x̃i (∀i ∈ T ) and h(x1, . . . , xn) = h(x̃1, . . . , x̃n). It is sufficient to prove that the
distribution of the above elements during the execution of ΠSym on input x is
identical to that on input x̃. To show the equivalence of the distributions, we
show a bijection between the random strings used by ΠSym on input x and the
random strings used by ΠSym on input x̃ such that the correlated randomness
and the online messages received by T are the same under this bijection. The
set of all random strings is

R =
{(

(ri)i∈[n], ϕ
(0), . . . , ϕ(ℓ−1)

)
: ri ∈ Zm, ϕ

(j) ∈ RU(j)

}
,

where r =
∑

i∈[n] ri and (U(0), . . . ,U(ℓ−1)) = Shiftr(F). We denote the random-

ness of ΠSym on input x by R = ((ri)i∈[n], ϕ
(0), . . . , ϕ(ℓ−1)) and that on input

x̃ by R̃ = ((r̃i)i∈[n], ϕ̃
(0), . . . , ϕ̃(ℓ−1)). We consider a bijection that maps the

randomness R ∈ R to R̃ ∈ R in such a way that

r̃i =

{
ri, if i ∈ T,
ri + xi − x̃i, if i ∈ H,

ϕ̃(j) = ϕ(j) +∆Ũ(j)−U(j)

where

r :=
∑
i∈[n]

ri, (U
(0), . . . ,U(ℓ−1)) := Shiftr(F),

r̃ :=
∑
i∈[n]

r̃i, (Ũ
(0), . . . , Ũ(ℓ−1)) := Shiftr̃(F),
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and ∆Ũ(j)−U(j) ∈ RŨ(j)−U(j) is a polynomial such that ∆Ũ(j)−U(j)(αi) = 0 for
all i ∈ T , whose existence is guaranteed by Lemma 1. The image is indeed a
consistent random string, i.e., ((r̃i)i∈[n], ϕ̃

(0), . . . , ϕ̃(ℓ−1)) ∈ R, since ϕ(j) ∈ RU(j)

implies that ϕ̃(j) = ϕ(j) + ∆Ũ(j)−U(j) ∈ RŨ(j) . The above map is indeed a
bijection since it has the inverse

ri =

{
r̃i, if i ∈ T,
r̃i + x̃i − xi, if i ∈ H,

ϕ(j) = ϕ̃(j) −∆Ũ(j)−U(j) .

This bijection does not change the correlated randomness (ri, v
(0)
i , . . . , v

(ℓ−1)
i )i∈T

of T since

ṽ
(j)
i = ϕ̃(j)(αi) = ϕ(j)(αi) +∆Ũ(j)−U(j)(αi) = ϕ(j)(αi) = v

(j)
i

for all i ∈ T . It can be seen that x̃i+ r̃i = x̃i+(ri+xi− x̃i) = xi+ri for i ∈ H. In
particular, the message y is the same in both executions. Since h(x1, . . . , xn) =
h(x̃1, . . . , x̃n), the message z is also the same in both executions, which implies
that the bijection does not change online messages seen by corrupted players.

As for the efficiency of ΠSym, players need to invoke FSum,Zm
and FSum,K.

Thus, we have CR(ΠSym) = O(logm+ ℓ log |K|)+ cSum,Zm + cSum,K = O(ℓ log n+
cSum,Zm + cSum,K) and BC(ΠSym) = O(bSum,Zm + bSum,K).

Recall that the protocol ΠSum,G realizes FSum,G with bottleneck complexity
bSum,G = O(log |G|) and correlated randomness of size cSum,G = O(log |G|) [21].
Thus, we have the following corollary.

Corollary 1. Let ℓ be any integer such that ℓ ≤ n + 1, and suppose that t ≤
n − ⌈(n + 1)/ℓ⌉. Then, there exists a t-secure MPC protocol Π computing a
symmetric function h : {0, 1}n → {0, 1} such that CR(Π) = O(ℓ log n) and
BC(Π) = O(log n).

Setting ℓ = Θ(log n), we obtain the following corollary.

Corollary 2. If t = n−Θ(n/ log n), then there exists a t-secure MPC protocol
Π computing a symmetric function h : {0, 1}n → {0, 1} such that CR(Π) =
O((log n)2) and BC(Π) = O(log n).

Setting ℓ ≈ 1/ϵ for a constant 0 < ϵ < 1/2, we also obtain a (1− ϵ)n-secure
protocol such that both bottleneck complexity and the amount of correlated
randomness are O(log n).

Corollary 3. For any constant ϵ such that 0 < ϵ < 1/2, there exists a (1− ϵ)n-
secure MPC protocol Π computing a symmetric function h : {0, 1}n → {0, 1}
such that CR(Π) = O(ϵ−1 log n) = O(log n) and BC(Π) = O(log n).

Remark 2 (Round and computational complexity). We have Round(ΠSym) = 2 ·
Round(Π) if FSum is instantiated with a protocol Π. In particular, if we choose
the protocol ΠSum in [21] as Π, we have that Round(ΠSym) = O(log n). Each
player receives O(ℓ) elements in K and performs a constant number of operations
in K. The computational complexity of ΠSym is thus O(ℓ) field operations.
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5 Our Second Protocol for Symmetric Functions

In this section, we show another construction of protocols for symmetric func-
tions in the FSum-hybrid model. Compared with the first construction, it reduces
the amount of correlated randomness excluding correlated randomness required
to realize FSum. First, we construct two building-block protocols with low bot-
tleneck complexity, and then we show our main protocol.

5.1 Additional Building Blocks

For parameters k, ℓ, we consider the following sub-functionalities:

Linear transformation FLT. Given ramp shares of a k-dimensional secret vec-
tor s, players obtain ramp shares of an ℓ-dimensional vector u := M·s, where
M is a public ℓ-by-k matrix. The formal description is shown in Fig. 3.

Inner product FIP. Given ramp shares of two ℓ-dimensional vectors v and w,
players obtain the inner product ⟨v,w⟩. The formal description is shown in
Fig. 4.

We show protocols for FLT and FIP.

Proposition 1. Let k, ℓ be positive integers with ℓ ≤ k ≤ n and M be an ℓ-by-
k matrix over K. Suppose that t ≤ n − ℓ. Then, the protocol ΠLT described in
Fig. 3 is a t-secure MPC protocol for FLT in the FSum,K-hybrid model. If FSum,G
is implemented by a protocol with bottleneck complexity bSum,G and correlated
randomness of size cSum,G for any abelian group G, then the protocol ΠLT achieves
CR(ΠLT) = O(log n+ ℓ · cSum,K) and BC(ΠLT) = O(ℓ · bSum,K).

Proof. Recall that αi (resp. βj) is the point associated with the i-th share (resp.
the j-th component of a secret vector) of RSSℓ and RSSk. To simplify notations,
we denote (φ(αi))i∈T by φ(αT ) for a set T ⊆ [n] and a polynomial φ.

Let T be a subset of size at most t and (vi)i∈[n] be an input to the protocol
Π = ΠLT. Let s be the secret of RSSk determined by (vi)i∈[n] and set u = M · s.

Consider the real process. Observe that the ai’s and bi’s can be written as
ai = A(αi) and bi = B(αi) for random polynomials A←$Rr and B←$R0ℓ

.
Also, it holds that

y =
∑
i∈[n]

xi

= M ·
∑
i∈[n]

 Reconstk(0, i; vi)
...

Reconstk(k − 1, i; vi)

− ∑
i∈[n]

 Reconstℓ(0, i; ai)
...

Reconstℓ(ℓ− 1, i; ai)


= M · s− r

= u− r.
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Functionality FLT(M; (vi)i∈[n])� �
1. Players have shares (vi)i∈[n] of RSSk for a secret s = (s0, . . . , sk−1).
2. FLT receives vi ∈ K from each player Pi.
3. FLT reconstructs sj =

∑
i∈[n] Reconstk(j, i; vi) for all j = 0, 1, . . . , k − 1, and

computes u = M · s ∈ Kℓ.
4. FLT computes shares (wi)i∈[n] ← RSSℓ(u) and gives wi to each player Pi.� �
Protocol ΠLT

� �
Input. Each player Pi has the i-th share vi ∈ K of RSSk for a secret s =

(s0, . . . , sk−1).
Output. Each player Pi obtains wi, where (wi)i∈[n] ← FLT(M; (vi)i∈[n]).
Setup.

1. Let r←$Kℓ.
2. Let (ai)i∈[n] ← RSSℓ(r) and (bi)i∈[n] ← RSSℓ(0ℓ).
3. Each player Pi receives (ai, bi).

Protocol.
1. Each player Pi computes

xi = M ·

 Reconstk(0, i; vi)
...

Reconstk(k − 1, i; vi)

−
 Reconstℓ(0, i; ai)

...
Reconstℓ(ℓ− 1, i; ai)


2. Players obtain y = FSum,K((xi)i∈[n]), where FSum,K is invoked in an

element-wise way.
3. Each player Pi computes w′

i = FixedShareℓ(i,y).
4. Each player Pi outputs wi = w′

i + ai + bi.� �
Fig. 3. The functionality FLT and a protocol ΠLT implementing it
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Furthermore, for all i ∈ [n],

wi = ψy(αi) +A(αi) +B(αi),

where ψy ∈ Ry is the polynomial computed by the deterministic algorithm
FixedShareℓ. Thus, the output of the real process in the FSum-hybrid model is

RealΠ(T, (vi)i∈[n]) = ((ViewΠ,i((vi)i∈[n]))i∈T ; (OutputΠ,i((vi)i∈[n]))i∈[n])

= ((vi)i∈T , A(αT ), B(αT ),y; (ψy +A+B)(α[n])),

where r←$Kℓ, A←$Rr, y = u − r, and B←$R0ℓ
. Here, we omit xi and w′

i

from the view of corrupted players since they are locally computed by the other
elements.

Since t ≤ n − ℓ, Lemma 1 ensures that there exists a polynomial ∆r ∈ Rr

such that ∆r(αi) = 0 for all i ∈ T . If we set A′ = A−∆r, then A
′ is uniformly

distributed over R0ℓ
and A′(αi) = A(αi) for all i ∈ T from Lemma 2. Thus, we

have that

RealΠ(T, (vi)i∈[n]) = ((vi)i∈T , A
′(αT ), B(αT ),y; (ψy +A′ +∆r +B)(α[n])),

where r←$Kℓ, y = u−r, and A′, B←$R0ℓ
. Since u−r is uniformly distributed

over Kℓ, we have that

RealΠ(T, (vi)i∈[n]) = ((vi)i∈T , A
′(αT ), B(αT ),y

′; (ψy′ +A′ +∆u−y′ +B)(α[n])),

where y′←$Kℓ and A′, B←$R0ℓ
. Since ψy′ ∈ Ry′ , A′ ∈ R0k

and ∆u−y′ ∈
Ru−y′ , it holds that ψy′+A′+∆u−y′ ∈ Ru. If we set ϕ

′ := ψy′+A′+∆u−y′+B,
then ϕ′ is uniformly distributed over Ru from Lemma 2. Since ∆u−y′(αi) = 0
for all i ∈ T , we have that

RealΠ(T, (vi)i∈[n]) = ((vi)i∈T , A
′(αT ), (ϕ

′ − ψy′ −A′ −∆u−y′)(αT ),y
′;ϕ′(α[n]))

= ((vi)i∈T , A
′(αT ), (ϕ

′ − ψy′ −A′)(αT ),y
′;ϕ′(α[n])),

where y′←$Kℓ, A′←$R0ℓ
and ϕ′←$Ru.

On the other hand, we define a simulator Sim(T, (vi)i∈T , (wi)i∈T ) as follows:

First, it samples ỹ←$Kℓ and Ã←$R0ℓ
, and sets ãi = Ã(αi) and b̃i = wi −

ψỹ(αi)− Ã(αi) for i ∈ T . Then, it outputs

Sim(T, (vi)i∈T , (wi)i∈T ) = ((vi)i∈T , (ãi)i∈T , (̃bi)i∈T , ỹ).

Note that the functionality F = FLT gives players fresh shares of RSSℓ for a
secret u. Formally, the i-th player Pi receives ϕ(αi), where ϕ←$Ru. Then, the
output of the ideal process with respect to the functionality F and the simulator
Sim is

IdealF,Sim(T, (vi)i∈[n]) = (Sim(T, (vi)i∈T , ϕ̃(αT )); ϕ̃(α[n])),
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where ϕ̃←$Ru. From the construction of Sim, we have that

IdealF,Sim(T, (vi)i∈[n]) = ((vi)i∈T , Ã(αT ), (ϕ̃− ψỹ − Ã)(αT ), ỹ; ϕ̃(α[n])),

where ỹ←$Kℓ, Ã←$R0ℓ
, and ϕ̃←$Ru.

Therefore, we conclude that

IdealF,Sim(T, (vi)i∈[n]) = RealΠ(T, (vi)i∈[n]).

Since players receive two shares of RSSℓ and invoke FSum,K ℓ times, the size of
correlated randomness is CR(ΠLT) = O(log |K|+ℓ ·cSum,K) = O(log n+ℓ ·cSum,K)
and the bottleneck complexity is BC(ΠLT) = O(ℓ · bSum,K). ⊓⊔

Remark 3 (Round and computational complexity). The round complexity of ΠLT

is Round(ΠLT) = Round(Π) if FSum is instantiated with a protocol Π, since
interaction occurs only when players invoke FSum. The computationally costly
part is Step 1 of the online phase and hence the computational complexity of
ΠLT is O(ℓk) field operations per party.

Proposition 2. Let ℓ be a positive integer with ℓ ≤ n. Suppose that t ≤ n − ℓ.
Then, the protocol ΠIP described in Fig. 4 is a t-secure MPC protocol for FIP

in the (FSum,K,FLT)-hybrid model. If FSum,G is implemented by a protocol with
bottleneck complexity bSum,G and correlated randomness of size cSum,G for any
abelian group G then the protocol ΠIP achieves CR(ΠIP) = O(log n + ℓ · cSum,K)
and BC(ΠIP) = O(ℓ · bSum,K).

Let x = (x0, . . . , xℓ−1) (resp. y = (y0, . . . , yℓ−1)) be the secret determined by
shares (vi)i∈[n] (resp. (wi)i∈[n]).

First, we see the correctness of ΠIP. The linearity of RSSℓ implies that at
Step 1 of the protocol, (v′i)i∈[n] (resp. (w′

i)i∈[n]) are shares of a secret x − a
(resp. y−b). We thus have that x′ = x−a, y′ = y−b and z′ = (x−a)∗ (y−b)
at Steps 3 and 4. On the other hand, the functionality of FLT ensures that
(a′i)i∈[n] are shares of a secret

a′ := diag(y′) · a = (y − b) ∗ a

and similarly, (b′i)i∈[n] are shares of a secret b′ := (x − a) ∗ b. The linearity of
RSSℓ implies that di = z′i + a′i + b′i + ci + ri is the i-th share of a secret

z′ + a′ + b′ + c+ s = (x− a) ∗ (y − b) + (y − b) ∗ a+ (x− a) ∗ b+ a ∗ b+ s

= x ∗ y + s.

Thus it holds that d = x ∗ y + s. The correctness follows from

z = ⟨1ℓ,d⟩ = ⟨1ℓ,x ∗ y⟩+ ⟨1ℓ, s⟩ = ⟨x,y⟩.

We show the privacy of ΠIP. Let T ⊆ [n] be the set of corrupted players.
Recall that αi (resp. βj) is the point associated with the i-th share (resp. the
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Functionality FIP((vi, wi)i∈[n])� �
1. Players have shares (vi)i∈[n] and (wi)i∈[n] of RSSℓ for secrets x =

(x0, . . . , xℓ−1) and y = (y0, . . . , yℓ−1), respectively.
2. FIP receives shares vi, wi ∈ K from each player Pi.
3. FIP reconstructs

xj =
∑
i∈[n]

Reconstℓ(j, i; vi), yj =
∑
i∈[n]

Reconstℓ(j, i;wi)

for all j = 0, 1, . . . , ℓ− 1, and computes z = ⟨x,y⟩.
4. FIP gives z to every player Pi.� �
Protocol ΠIP

� �
Input. Each player Pi has the i-th shares vi, wi ∈ K of RSSℓ for secrets x =

(x0, . . . , xℓ−1) and y = (y0, . . . , yℓ−1), respectively.
Output. Each player Pi obtains z = FIP((vi, wi)i∈[n]).
Setup.

1. Let a,b←$Kℓ and c = a ∗ b, where ∗ is the element-wise multiplication.
2. Let (ai)i∈[n] ← RSSℓ(a), (bi)i∈[n] ← RSSℓ(b) and (ci)i∈[n] ← RSSℓ(c).
3. Choose a random vector s ∈ Kℓ such that ⟨1ℓ, s⟩ = 0.
4. Let (ri)i∈[n] ← RSSℓ(s).
5. Each player Pi receives (ai, bi, ci, ri).

Protocol.
1. Each player Pi computes v′i = vi − ai and w′

i = wi − bi.
2. Each player Pi computes

x′
i = (Reconstℓ(0, i; v

′
i), . . . ,Reconstℓ(ℓ− 1, i; v′i)),

y′
i = (Reconstℓ(0, i;w

′
i), . . . ,Reconstℓ(ℓ− 1, i;w′

i)).

3. Players obtain x′ = FSum((x
′
i)i∈[n]) and y′ = FSum,K((y

′
i)i∈[n]), where

FSum,K is invoked in an element-wise way.
4. Each player Pi computes z′ = x′ ∗ y′ and z′i = FixedShareℓ(i, z

′).
5. Players obtain

(a′
i)i∈[n] ← FLT(N; (ai)i∈[n]), (b′i)i∈[n] ← FLT(M; (bi)i∈[n]),

where M = diag(x′) and N = diag(y′).
6. Each player Pi computes di = z′i + a′

i + b′i + ci + ri and

di = (Reconstℓ(0, i; di), . . . ,Reconstℓ(ℓ− 1, i; di)).

7. Players obtain d = FSum,K((di)i∈[n]).
8. Every player outputs z = ⟨1ℓ,d⟩.� �

Fig. 4. The functionality FIP and a protocol ΠIP implementing it
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j-th component of a secret vector) of RSSℓ. To simplify notations, we denote
(φ(αi))i∈T by φ(αT ) for a polynomial φ. In the FSum-hybrid model, corrupted
players’ view at Steps 3 and 7 (including their correlated randomness for FSum)
only contains their inputs (x′

i,y
′
i,di)i∈T to FSum and the outputs x′,y′,d. Also,

in the FLT-hybrid model, corrupted players’ view at Step 5 (including their
correlated randomness for FLT) only contains their inputs (ai, bi)i∈T to FLT and
the outputs (a′i, b

′
i)i∈T . It is therefore sufficient to show that the joint distribution

of the following elements is simulated from (vi, wi)i∈T and z = FIP((vi, wi)i∈[n])
since the other elements are locally computed from them:

Correlated randomness. (ai, bi, ci, ri)i∈T ;
Online messages. x′ = x− a, y′ = y − b, (a′i, b

′
i)i∈T and d = x ∗ y + s.

To analyze the distribution of the above elements, we define

View = ((ai, bi, ci, ri, a
′
i, b

′
i)i∈T ,x

′,y′,d).

Observe that the distribution of View is given by

View = (ϕa(αT ), ϕb(αT ), ϕc(αT ), ϕs(αT ), ϕa′(αT ), ϕb′(αT ),x− a,y − b,x ∗ y + s),

where

a,b←$Kℓ, s←$V0 := {s ∈ Kℓ : ⟨1ℓ, s⟩ = 0}, ϕa←$Ra, ϕb←$Rb,

ϕc←$Ra∗b, ϕs←$Rs, ϕa′ ←$R(y−b)∗a, ϕb′ ←$R(x−a)∗b.

Lemma 1 ensures that for any v ∈ Kℓ, there is a polynomial ∆v ∈ Rv such that
∆v(αi) = 0 for all i ∈ T . If ϕ̃a is uniformly distributed over R0ℓ

, then ϕ̃a +∆a

is uniformly distributed over Ra from Lemma 2 and (ϕ̃a +∆a)(αi) = ϕ̃a(αi) for

all i ∈ T . Similarly, let ϕ̃b, ϕ̃c, ϕ̃s, ϕ̃a′ , ϕ̃b′ ←$R0ℓ
, and then it holds that

ϕ̃b +∆b←$Rb, ϕ̃c +∆a∗b←$Ra∗b, ϕ̃s +∆s←$Rs,

ϕ̃a′ +∆(y−b)∗a←$R(y−b)∗a, ϕ̃b′ +∆(x−a)∗b←$R(x−a)∗b.

It also holds that(
ϕ̃b +∆b

)
(αi) = ϕ̃b(αi),

(
ϕ̃c +∆a∗b

)
(αi) = ϕ̃c(αi),

(
ϕ̃s +∆s

)
(αi) = ϕ̃s(αi),(

ϕ̃a′ +∆(y−b)∗a

)
(αi) = ϕ̃a′(αi),

(
ϕ̃b′ +∆(x−a)∗b

)
(αi) = ϕ̃b′(αi)

for all i ∈ T . We thus have that

View = (ϕ̃a(αT ), ϕ̃b(αT ), ϕ̃c(αT ), ϕ̃s(αT ), ϕ̃a′(αT ), ϕ̃b′(αT ),x− a,y − b,x ∗ y + s),

where a,b←$Kℓ, s←$V0, and ϕ̃b, ϕ̃c, ϕ̃s, ϕ̃a′ , ϕ̃b′ ←$R0ℓ
. Since ã := x − a and

b̃ := y − b are uniformly distributed over Kℓ, we have that

View = (ϕ̃a(αT ), ϕ̃b(αT ), ϕ̃c(αT ), ϕ̃s(αT ), ϕ̃a′(αT ), ϕ̃b′(αT ), ã, b̃,x ∗ y + s),
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where ã, b̃←$Kℓ, s←$V0, and ϕ̃b, ϕ̃c, ϕ̃s, ϕ̃a′ , ϕ̃b′ ←$R0ℓ
. Since z = FIP((vi, wi)i∈[n]) =

⟨x,y⟩, it holds that ⟨1ℓ,x∗y−z·e0⟩ = ⟨x,y⟩−z = 0. and hence s0 := x∗y−z·e0 ∈
V0, where e0 = (1, 0, . . . , 0) ∈ Kℓ. Furthermore, since V0 is a linear space, if s is
uniformly distributed over V0, then so is s+ s0. In particular, if s, s̃←$V0, then
x ∗ y + s and z · e0 + s̃ follow the same distribution. We then have that

View = (ϕ̃a(αT ), ϕ̃b(αT ), ϕ̃c(αT ), ϕ̃s(αT ), ϕ̃a′(αT ), ϕ̃b′(αT ), ã, b̃, z · e0 + s̃),

where ã, b̃←$Kℓ, s̃←$V0, and ϕ̃a, ϕ̃b, ϕ̃c, ϕ̃a′ , ϕ̃b′ , ϕ̃s←$R0ℓ
. Therefore, we con-

clude that View is simulated from z only.
Since players receive four shares of RSSℓ and invoke FSum,K O(ℓ) times and

FLT twice, we have CR(ΠIP) = O(log |K|+ ℓ · cSum,K) = O(log n+ ℓ · cSum,K) and
BC(ΠIP) = O(ℓ · bSum,K).

Remark 4 (Round and computational complexity). Since interaction occurs only
when players invoke FSum and FLT, the round complexity ofΠIP is Round(ΠIP) =
2·Round(Π)+Round(ΠLT) = 3·Round(Π) if FSum is instantiated with a protocol
Π. The most computationally costly part of ΠIP is executing the protocol ΠLT

implementing FLT. The computational complexity is thus O(ℓ2) field operations
per party.

5.2 Main Protocol

Now, we show our main protocol.

Theorem 3. Let h : {0, 1}n → {0, 1} be a symmetric function. Let ℓ, k be
primes such that ℓ < k and n + 1 ≤ ℓk ≤ O(n), and suppose that t ≤ n − k.
The protocol Π ′

Sym described in Fig. 5 is a t-secure MPC protocol for Fh in the
(FSum,Zm

,FSum,K,FLT,FIP)-hybrid model. If FSum,G is implemented by a protocol
with bottleneck complexity bSum,G and correlated randomness of size cSum,G for
any abelian group G, then the protocol Π ′

Sym achieves CR(Π ′
Sym) = O(log n +

cSum,Zm + ℓ · cSum,K) and BC(Π ′
Sym) = O(bSum,Zm + ℓ · bSum,K).

Proof. First, we prove the correctness of Π ′
Sym. Let x ∈ {0, 1}n be any input.

Since r =
∑

i∈[n] ri, it holds that y = r−
∑

i∈[n] xi. Let (σ
′, τ ′) := (σ+u, τ + v).

Note that we have ϕ(
∑

i∈[n] xi) = ϕ(y)+ϕ(r) = (σ′, τ ′). Since (di)i∈[n] are shares

of RSSℓ for a secret vector ev, the functionality of FLT implies that (d′i)i∈[n] are

shares of a secret vector Ny · ev = P⊤
σ ·M ·Pτ · ev = P⊤

σ ·M · eτ ′ . Furthermore,
since (ci)i∈[n] are shares of RSSk for a secret vector eu, the functionality of FIP

implies that z = ⟨eu,P⊤
σ ·M · eτ ′⟩ = ⟨Pσ · eu,M · eτ ′⟩ = ⟨eσ′ ,M · eτ ′⟩ =

M[σ′, τ ′] where M[σ′, τ ′] is the (σ′, τ ′)-th entry of M. Therefore, we have that
z = f(ϕ−1(σ′, τ ′)) = f(

∑
i∈[n] xi) = h(x1, . . . , xn).

Next, we prove the privacy of Π ′
Sym. Let T ⊆ [n] be the set of corrupted

players. Recall that αi (resp. βj) is the point associated with the i-th share (resp.
the j-th component of a secret vector) of RSSℓ and RSSk. To simplify notations,
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Protocol Π ′
Sym

� �
Notations.

– Let h : {0, 1}n → {0, 1} be a symmetric function.
– Let f : {0, 1, . . . , n} → {0, 1} be a function such that h(x1, . . . , xn) =

f(
∑

i∈[n] xi) for all (x1, . . . , xn) ∈ {0, 1}n.
– Let ℓ, k be primes such that ℓ < k and n+ 1 ≤ ℓk, and set m = ℓk.
– Let ϕ : Zm → Zℓ × Zk be the ring isomorphism induced by the Chinese

remainder theorem.
– Define a matrix M ∈ Kℓ×k as follows: For (σ, τ) ∈ Zℓ × Zk, the (σ, τ)-th

entry of M is f(ϕ−1(σ, τ)) if ϕ−1(σ, τ) ∈ {0, 1, . . . , n}, and 0 otherwise,
where we identify the sets indexing the rows and columns of M as Zℓ and
Zk, respectively.

Input. Each player Pi has xi ∈ {0, 1}.
Output. Every player obtains z = h(x1, . . . , xn).
Setup.

1. Let r←$Zm, (ri)i∈[n] ← AdditiveZm(r), and (u, v) = ϕ(r).
2. Let (ci)i∈[n] ← RSSℓ(eu) and (di)i∈[n] ← RSSk(ev), where eu ∈ Kℓ (resp.

ev ∈ Kk) is the unit vector whose entry is 1 at position u ∈ Zℓ (resp.
v ∈ Zk), and 0 otherwise.

3. Each player Pi receives (ri, ci, di).
Protocol.

1. Each player Pi computes yi = xi − ri mod m.
2. Players obtain y = FSum((yi)i∈[n]).
3. Each player computes (σ, τ) = ϕ(y) ∈ Zℓ × Zk and Ny = P⊤

σ ·M ·Pτ .
4. Players obtain (d′i)i∈[n] ← FLT(Ny; (di)i∈[n]).
5. Players obtain z ← FIP((ci, d

′
i)i∈[n]).

6. Each player Pi outputs z.� �
Fig. 5. Our second protocol Π ′

Sym for computing a symmetric function
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we denote (φ(αi))i∈T by φ(αT ) for a polynomial φ. In the FSum-hybrid model,
corrupted players’ view at Step 2 only contains their inputs (yi)i∈T to FSum and
the output y. Also, in the FLT-hybrid model, corrupted players’ view at Step 5
(including their correlated randomness for FLT) only contains their inputs (di)i∈T

to FLT and the outputs (d′i)i∈T . It is sufficient to show that the joint distribution
of the following elements is simulated from (xi)i∈T and h(x1, . . . , xn) since the
other elements are locally computed from them:

Correlated randomness. (ri, ci, di) for all i ∈ T ;
Online messages. y =

∑
i∈[n] xi + r, (d′i)i∈T , and z.

To analyze the distribution of the above element, we define View = ((ri, ci, di, d
′
i)i∈T , y, z).

Observe that the distribution of View is given by

View =

(ri)i∈T , ϕc(αT ), ϕd(αT ), ϕd′(αT ), y =
∑
i∈[n]

xi +
∑
i∈[n]

ri, z

 ,

where (r1, . . . , rn)←$Zn
m, (u, v) = ϕ(

∑
i∈[n] ri), ϕc←$Reu

, ϕd←$Rev
, and ϕd′ ←$RNy·ev

.

The correctness of Π ′
Sym implies that

View =

(ri)i∈T , ϕc(αT ), ϕd(αT ), ϕd′(αT ), y =
∑
i∈[n]

xi +
∑
i∈[n]

ri, h(x1, . . . , xn)

 .

Lemma 1 ensures that for any v ∈ Kℓ, there is a polynomial ∆v ∈ Rv such
that ∆v(αi) = 0 for all i ∈ T . If ϕ̃c are uniformly distributed over R0ℓ

, then

ϕ̃c+∆eu
is uniformly distributed overReu

from Lemma 2 and (ϕ̃c+∆eu
)(αi) = 0

for all i ∈ T . Similarly, if ϕ̃d, ϕ̃d′ ←$R0k
, then it holds that ϕ̃d + ∆ev

←$Rev

and ϕ̃d′ + ∆Ny·ev
←$RNy·ev

. It also holds that (ϕ̃d + ∆ev
)(αi) = ϕ̃d(αi) and

(ϕ̃d′ +∆Ny·ev
)(αi) = ϕ̃d′(αi) for all i ∈ T . We thus have that

View =

(ri)i∈T , ϕ̃c(αT ), ϕ̃d(αT ), ϕ̃d′(αT ), y =
∑
i∈[n]

xi +
∑
i∈[n]

ri, h(x1, . . . , xn)

 ,

where (r1, . . . , rn)←$Zn
m, ϕ̃c←$R0ℓ

, ϕ̃d, ϕ̃d′ ←$R0k
. Since T ̸= [n] and (ri)i∈[n]

are independent and uniformly random elements, the joint distribution of (ri)i∈T

and y =
∑

i∈[n] xi +
∑

i∈[n] ri is the uniform distribution over Z|T |+1
m . We thus

have that

View =
(
(r̃i)i∈T , ϕ̃c(αT ), ϕ̃d(αT ), ϕ̃d′(αT ), ỹ, h(x1, . . . , xn)

)
,

where ((r̃i)i∈T , ỹ)←$Z|T |+1
m , ϕ̃c←$R0ℓ

, ϕ̃d, ϕ̃d′ ←$R0k
. Therefore, we conclude

that View is simulated from h(x1, . . . , xn) only.
Finally, since players need to invoke FSum,Zm

, FSum,K, FLT and FIP, Proposi-
tions 1 and 2 imply CR(Π ′

Sym) = O(log |K|) + cSum,Zm
+ O(log n + ℓ · cSum,K) =

O(log n+ cSum,Zm + ℓ · cSum,K) and BC(Π ′
Sym) = O(bSum,Zm + ℓ · bSum,K).

25



Remark 5 (Round and computational complexity). The round complexity ofΠ ′
Sym

is Round(Π ′
Sym) = Round(Π) + Round(ΠLT) + Round(ΠIP) = 5 · Round(Π)

if FSum is instantiated with a protocol Π. Since the computation of Ny =
P⊤

σ ·M ·Pτ is just permuting rows and columns of M, it can be done by O(ℓk)
field operations. The computational complexities of ΠLT implementing FLT and
ΠIP implementing FIP are O(ℓk) and O(ℓ2) field operations, respectively. Since
ℓ < k, the computational complexity of Π ′

Sym is O(ℓk) = O(n) field operations.

Thanks to Bertrand’s postulate [46, Theorem 5.8], we can choose primes k, ℓ
such that k = Θ(n/ log n) and ℓ = Θ(log n). If we implement FSum,G with the
protocol ΠSum,G in [21], we obtain an (n − O(n/ log n))-secure protocol for a
symmetric function h such that the bottleneck complexity is O((log n)2) and
the amount of correlated randomness is O((log n)2) but it has no advantage of
efficiency compared to the one obtained from the first construction (see Corol-
lary 2). If there exists a protocol Π for FSum,K such that CR(Π) = o(log |K|) and
BC(Π) = O(log |K|), then we obtain a protocol that achieves bottleneck com-
plexity O((log n)2) and a smaller amount of correlated randomness o((log n)2).
Unfortunately, it is currently unknown whether such Π exists, which we leave
for future work.

Note that setting k and ℓ as primes close to ϵn and 1/ϵ (resp.) leads to a
protocol with asymptotically the same complexity as Corollary 3.

6 Conclusion

In this paper, we presented two constructions of (n−o(n))-secure n-party proto-
cols that compute symmetric functions achieving polylogarithmic (in n) bottle-
neck complexity and correlated randomness simultaneously. Our first construc-
tion achieves bottleneck complexity O(log n) and requires correlated randomness
of size O((log n)2). Our second construction has larger bottleneck complexity
O((log n)2) but reduces the amount of correlated randomness excluding corre-
lated randomness required to securely compute the sum of elements in an abelian
group G. If the secure summation functionality is implemented with the state-
of-the-art protocol in [21], the construction derives a protocol with bottleneck
complexity O((log n)2) and correlated randomness of size O((log n)2) but there is
no advantage of efficiency compared to the one obtained from the first construc-
tion. If a secure summation protocol with bottleneck complexity o(log |G|) and
correlated randomness of size O(log |G|) is devised in the future, then our second
construction implies a protocol that achieves bottleneck complexity O((log n)2)
and a smaller amount of correlated randomness o((log n)2). Unfortunately, it is
currently unknown whether such a secure summation protocol exists, which we
leave for future work. In addition, we found a security flaw in the summation
protocol from the conference version of this paper. Currently, we are not able
to fix the flaw or to find an alternative protocol achieving the same level of
performance, and we also leave it for future work.
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A A Flaw in the Protocol for FSum from ITC 2024

In the preliminary version of this paper [22], we claimed that there exists a
protocol Π realizing FSum,G such that CR(Π) = 0 and BC(Π) = O(log |G|),
and used Π as a building block for our main constructions. However, we found a
security flaw in the protocol Π and consequently, Π does not securely realize the
target functionality FSum,G. More specifically, Π is described in Fig. 6. Suppose
that an adversary corrupts players P1 and P3. Then, the adversary learns z2 =
z1 + y2 = x1 + r1 + x2 + r2 at Step 3 and also learns w2 = w1 − r2 at Step 6.
Since the adversary knows x1, r1, and w1, she can compute r2 = w1 − w2 and
hence x2 = z2 − x1 − r1 − r2, which reveals more information than the sum s.
Currently, we are not able to fix the flaw in Π or to find an alternative protocol
that securely realizes FSum,G with the same level of efficiency.

Protocol Π� �
Input. Each player Pi has a group element xi ∈ G.
Output. Every player obtains s =

∑
i∈[n] xi.

Protocol.
1. Each player Pi chooses ri ←$G and sets yi = xi + ri.
2. P1 sends y1 to P2.
3. For each i = 2, 3, . . . , n− 1, Pi lets zi−1 be the message from Pi−1, com-

putes zi = zi−1 + yi, and sends zi to Pi+1.
4. Pn sends zn = zn−1 + yn to P1.
5. P1 sends w1 = zn − r1 to P2.
6. For each i = 2, 3, . . . , n − 1, Pi lets wi−1 be the message from Pi−1,

computes wi = wi−1 − ri, and sends wi to Pi+1.
7. Pn computes s = wn−1 − rn and invokes FBroadcast,n with input s.
8. Each player Pi outputs s.� �

Fig. 6. The protocol from ITC 2024 [22]
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