
Scalable and Lightweight State-Channel Audits

Christian Badertscher1, Maxim Jourenko?3, Dimitris Karakostas2(B), and
Mario Larangeira3

1 IOG, christian.badertscher@iohk.io
2 University of Edinburgh, dkarakos@ed.ac.uk

3 Tokyo Institute of Technology & IOG,
jourenko.m.ab@m.titech.ac.jp,

mario{.larangeira@iohk.io,@c.titech.ac.jp}

Abstract. Payment channels are one of the most prominent off-chain
scaling solutions for blockchain systems. However, regulatory institutions
have difficulty embracing them, as the channels lack insights needed for
Anti-Money Laundering (AML) auditing purposes. Our work tackles the
problem of a formal reliable and controllable inspection of off-ledger pay-
ment channels, by offering a novel approach for maintaining and reliably
auditing statistics of payment channels. We extend a typical trustless
Layer 2 protocol and provide a lightweight and scalable protocol s.t.:
(i) every state channel is provably auditable w.r.t. a configurable set of
policy queries, s.t. a regulator can retrieve reliable insights about the
channel; (ii) no information beyond the answers to auditing queries is
leaked; (iii) the cryptographic operations are inexpensive, the setup is
simple, and storage complexity is independent of the transaction graph’s
size. We present a concrete protocol, based on Hydra Isomorphic State
Channels (FC’21), and tie the creation of a state channel to real-world
identifiers, both in a plain and privacy-preserving manner. For this, we
employ verifiable credentials for decentralized identifiers, specifically ver-
ifiable Legal Entity Identifiers (vLEI) that increasingly gain traction for
financial service providers and regulated institutions.

1 Introduction

Layer 2 protocols enable interactions between parties without the immediate
aid of a public ledger [26,21]. This family of protocols includes payment [20],
state [16], and multiplayer channels [10,15] which require only an initial step that
locks the funds of the parties in the Layer 1 ledger, as well as networks [31]. Off-
chain protocols ease the burden of a blockchain system and enable the generation,
and verification of transactions in a low-cost and fast manner, which depends
exclusively on the network delays instead of the ledger’s confirmation time. As a
consequence, payment channels are often the go-to scalability solution in large-
scale deployments of cryptocurrencies.
? This work was supported by Input Output Global and JST CREST JPMJCR2113,
Japan.

Notably, the main efficiency benefit of Layer 2 protocols, namely the ability
to transact in bulk off-chain, also makes them opaque. It is known that the Layer
1 ledger is oblivious to the Layer 2 transactions since none of them is registered in
public. This feature introduces a significant burden to regulated institutions and
service providers, like banks and government bodies in the presence of auditing
according to Anti-Money Laundering (AML) policies.

For a more concrete example, consider that a typical question that authorities
ask is whether two parties transacted during a certain period of time and whether
the exchanged funds were above some legal threshold. It is trivial to answer such
questions in centralized systems and, thus they are part of everyday activities of
a compliance department. In practice, AML, Know-Your-Costumer (KYC), and
Anti-Terror regulation techniques crucially rely on transaction monitoring. The
discussion around Central Bank Digital Currencies (CBDC) [17,24,18] strongly
suggests that regulation is a major concern and a current topic of discussion
in the industry and academia. Here, the off-chain setting poses a significant
gap in addressing such concerns, especially regarding privacy and regulatory
compliance, and the topic is currently actively discussed [6].

Evidently, in the presence of digital currencies and smart contracts, new tools
are required to answer questions a regulator might pose. Without such tools, an
auditor would need to reliably obtain essentially all off-chain transactions which
is not only impractical, but goes against the scalability improvements offered by
Layer 2 protocols for its users. To the best of our knowledge, selective disclosure
capabilities, which are able to answer policy queries, have not been suggested for
Layer 2 protocols. Consequently, it is unclear how off-chain protocols can be used
efficiently and effectively in a regulatory compliant manner. The existing gap was
further identified in a joint report of the ECB and the Bank of Japan [36, §4.2.3],
as well as recent Systematization of Knowledge (SoK) work [11] as follows: “Is
auditing of transactions that do not appear in the ledger (or happen “off the
chain”) possible?” To the best of our knowledge, our work is the first attempt
to formalize the problem statement and close this gap with a positive result.

While our solution puts forth a generic approach to the problem that can be
applied to most Layer 2 systems, we offer a first formal result by enhancing the
Hydra Protocols [10,28,27]. The Hydra Protocol [10] is a recent generalization of
multiparty state channels with smart contract capabilities. In Hydra, a group of
parties initiate an isomorphic off-chain channel, the “head”. Isomorphism ensures
that the head’s state is enforceable in the Layer 1 ledger, s.t. the head can be used
as a ledger on its own, i.e., detached from the consensus protocol. Eventually,
a head is closed by replicating the head’s state to the ledger seamlessly, thus
Hydra puts forth a computational layer that allows the concurrently creation of
multiple heads with a well defined computational model, i.e., a state machine.

State-Channel Audit Basic Requirements. State channel audits are an ex-
tremely broad goal, but the general approach is to allow regulated institutions
to (1) perform bookkeeping efficiently and (2) interact with (potentially) iden-
tifiable participants in a way that the obtained statistics are provably sound.

2

Relevant statistics and policies. In the context of transaction systems, an indi-
vidual participant (such as a financial service provider) will be subject to audits
of several types, where an authority or regulator R defines the set of statistics
that a participant is required to maintain. We call those statistics “policies” and
denote the policy set by =. Typically, a regulated institution needs to identify
other participants or be assured they are identifiable (KYC). There are also ad-
ditional prototypical statistics, e.g., that have been identified as relevant in the
context of Central Bank Digital Currencies (CBDCs) [25,17,5]: (1) Have parties
(P1, P2) transacted directly? (2) Have (P1, P2) transacted more than Ttx assets
in one transaction? (3) Within a window of N consecutive transactions, have
(P1, P2) transacted more than Ttx assets on aggregate? (4) Did the balance of
party P exceed Tbal at any point in time? (5) Within a window of t minutes, has
P sent/received more than Tsend/Trecv assets on aggregate?
Requirements for an audit protocol. An audit protocol is a cryptographic protocol
which needs to satisfy several security-relevant features: (1) Soundness: no ma-
licious party (incl. the auditor) can forge a response to an audit query w.r.t. the
public execution trail of the audit protocol; (2) Termination: the audit process
should terminate even if either R or the audited party abort; (3) Availability: R
can query any supported policy at any point in time; (4) Audit Privacy ([36]):
an audit request should not leak more than the answer to the query.

Aside of the above main properties, one might be interested in further re-
quirements (cf. [11]). First, in certain use-cases the audit trail should be publicly
verifiable, i.e., R cannot dispute an honest-party’s audit results and a malicious
user cannot deny how their interactions with an honest authority. Second, at
least a subset of the parties should be identifiable and connected to a real-world
entity. Finally, auditing should not impose high costs, e.g., blockchain fees.

The audit procedure should ideally introduce very little overhead and com-
plexity to existing transaction protocols. Thus, as a design principle, we aim at
a solution where any piece of information that is to be additionally published,
for the sake of an audit, needs to be succinct (as some data is expected to be on
chain). Furthermore, the storage requirement of honest participants should be
less than linear on the number of all transactions created in the Hydra head.
Related Work. Auditability of distributed ledgers has been a point of interest
for many years. zkLedger [34], PRCash [39], Garman et al. [19], PGC [12] are
examples of ledgers that, to some degrees, support auditing by design, i.e., they
are designed with auditing capabilities in mind. A relevant line of work concerns
efficiently proving the ownership of cryptocurrency assets in a privacy-preserving
manner. These works, like Provisions [13], are termed “proofs of solvency” and
are primarily used by exchanges. Further, in the context of CBDCs, as mentioned
above, extensive auditing capabilities are a core design element and has in fact
gained a lot of traction recently [30,40]. The setting and the corresponding solu-
tions however depart heavily from simple peer-to-peer transaction systems since
a bank is needed to settle transactions, so they do not provide a (lightweight)
solution or drop-in replacement for existing payment channel systems to enable
auditing capabilities for decentralized currencies.

3

Contributions and Roadmap. Our work presents an auditability extension
to Layer 2 ledgers and introduces a concrete construction based on the Hydra
protocol [10]. The extension is lightweight and requires only small additional val-
ues to be published on the main chain. First, Section 3 introduces our proposed
auditing framework in a generic Layer 2 model. Then Section 4 focuses on the
Hydra protocol [10] to make it auditable. We provide formal definitions of the
main goals by extending Hydra’s security experiment. Our construction enables
identifiability of parties via decentralized identifiers (DIDs) [1], which are inte-
grated in a plain and privacy-preserving manner. To connect our design with
practice, we explore the verifiable credentials for Legal Entity Identifiers (LEI)
issued by GLEIF [3], a widely accepted way to identify regulated institutions
or financial service providers in traditional settlement layers. This integrated
real-world identification allows to make the realistic assumption that at least
one participant (is obliged to) perform the audit reliably. Specifically, if at least
one participant is identifiable [36] in a legal jurisdiction accepted by the auditor,
where accessibility to crucial information can be achieved through enforcement,
they risk legal implications if valid (in the cryptographic sense) but inconsistent
audit information about a state channel are observed, i.e., if parties equivocate.
Finally, Section 4.3 presents our main result, a Hydra protocol that enables au-
dits between a regulating authority and the users. Our protocol achieves the main
requirements of correctness, soundness, and privacy, as well as public verifiabil-
ity, identifiability, and efficient auditing. Also it is scalable for policies that can
be computed by a Turing machine executing an online algorithm in sub-linear
space, where each input is evaluated in sub-linear time.

2 Preliminaries

Before we introduce our construction, it is convenient to briefly recall a state
channel protocol, the Hydra construction, and decentralized identifiers which are
crucial to ground the identity of the protocol players.

2.1 Hydra: Isomorphic State Channels

Hydra [10] is an isomorphic state channel developed for the Cardano [7].4 Briefly,
it allows any set of parties to move part of the ledger’s state off-chain,i.e., the
“Hydra head” where participants interact directly. The state machine model is
inspired by the Extended UTxO model [9] and Chimeric Ledgers [41].

Hydra employs a multi-signature scheme 〈MS-Setup, MS-KG, MS-AVK〉, to
generate the global setup parameters, key pairs, and aggregate public key. While
the Hydra head operates, there exist two core data types. First, a snapshot
U = 〈s, U, h, T, S, σ̂〉, where: i) s is its number which is generated sequentially;
ii) U is its corresponding UTxO set; iii) h is the hash value of the UTxO set;
iv) T is the set of transactions that relates this snapshot to the previous one; v) S
4 A detailed description of Hydra is available in Appendix A.

4

is its array of signatures (a signature accumulator); vi) σ̂ is the all participants
multi-signature of the snapshot. Second, a transaction τ = 〈i, tx, h, S, σ̂〉, where:
i) i is the index of the party issuing it; ii) tx is the transaction’s information;
iii) h is the hash value of tx; iv) S is its array of signatures; v) σ̂ is its multi-
signature. U .s denotes the snapshot’s number (similar for all other parameters
of a snapshot and transaction).

The Hydra protocol proceeds in phases. Initially, each party generates their
key pair and collects their UTxOs. The keys will form the head’s aggregate public
key, while the UTxOs form the initial UTxO set. After the parties gather, the
Hydra Protocol comprises the actions in Table 1.

Action Object/State Identifier

Onchain

Initialize
Commit
Abort

Open head
Close head
Contest
Finalize

init = 〈initial, vkagg, hMT, n, T 〉
commit = 〈vcom,Oi〉

abort = 〈πMT〉
collectCom = 〈initial, vkagg, hMT, n, T 〉

close = 〈πMT, ξ〉
cont = 〈πMT, ξ〉
fanout = 〈πMT〉

Offchain (in-head)

Request
Acknowledge

Confirm
Request

Ack. snapshot
Conf. snapshot

reqTx = 〈τ〉
ackTx = 〈τ.h, σj〉
confTx = 〈τ.h, σ̂〉

reqSn = 〈U .s,U .T 〉
ackSn = 〈U .s, σj〉
confSn = 〈U .s, σ̂〉

Table 1. The parameters are: (i) initial is a state identifier; (ii) hMT is the root of a
Merkle tree for the verification keys of all parties; (iii) n is the number of head members;
(iv) T is the length of the contestation period; (v) vcom is a validating script, which
ensures that the outputs are locked to the right instance of the state machine; (vi) πMT
the head’s identifier; (vii) ξ is information about the head’s state (e.g., a snapshot).

The head is initialized when one of the parties publishes on Layer 1 the state
identifier, which establishes the head’s initial state and parameters. Each party
acknowledges this, s.t. the initiator collects the commitments and opens the head.
To create a transaction τ , a party P multicasts τ to all head participants, who
validate and sign it. State changes are completed with a new snapshot, where
a “leader” collects all not-yet-snapshot transactions and multicasts them, each
party validates and signs them, and the leader broadcasts a multi-signature.

A head is closed by publishing on Layer 1 a confirmed snapshot that parties
may contest, e.g., if incorrect. After the contesting period ends, a finalizing
transaction on Layer 1 allows each party to redeem their assets from the head.

Finally, the EUTxOmodel was extended in the multi-asset EUTxOma ledger [8],
which enables token bundles. These bundles store both a ledger’s native currency
and fungible and non-fungible tokens. A relevant application for our setting is
state thread tokens, that is non-fungible tokens stored within a state machine’s
assets, which we will use in the context of vLEIs.

5

2.2 Decentralized Identifiers and vLEIs

Decentralized Identifiers (DIDs), which recently achieved the status of W3C
recommendation [1], are reminiscent of traditional digital certificates, e.g., X.509.
They aim to be highly dynamic, configurable objects, suited for decentralized
applications. In its basic form, a DID structure contains information associated
to an entity that enables performing cryptographic operations like signing. A
DID is always connected to a particular method protocol, that defines how a
DID is created, where the associated cryptographic material (DID document) is
stored, how it is updated or revoked, and how to retrieve the document given an
identity. Our work assumes a prototypical and minimal set of features. A DID
object did has the form did:method:id, that is a pointer to access public key
material relevant to this DID. method specifies the method and id is typically
the hash of the DID’s (master) verification key; did.vk denotes the result of
resolving did to obtain its verification key.

A verifiable credential (VC) [2], vc, is a signed statement by a (trusted) cre-
dential issuer, that asserts certain claims about a subject vc.sub identified by
a did. Here, we are interested in a VC called vLEI [3] that is of a particular
simple type. The claim appearing in a vLEI is just the LEI, the Legal Entity
Identifier, issued by GLEIF [3]. Recall that the LEI is not a new invention [4],
but the initiative to cast it as VC is very recent. In more detail, a vLEI can be
abstracted as the tuple vc = (sub, n, σ) denoting the subject (the DID of the
organization for which the LEI is issued), the LEI-number, and the signature of
the GLEIF-accredited LEI issuer, respectively. We assume that such an accred-
itation happens within a smart contract maintained by GLEIF for example.

3 Auditable State Channels

This section reviews UTxO ledgers and Layer 2 protocols and formally presents
the audit extension framework and its security properties.
The UTxO Ledger. In the Unspent Transaction Output (UTxO) model of
blockchains, such as Bitcoin [33], the ledger’s state Σ is a set of UTxO which
are tuple of form (b, ν, δ) where b ∈ N is an amount of coins, δ ∈ {0, 1}∗ and ν ∈
{0, 1}∗ is a verification script such that the UTxO can be spent by a transaction
if presented a witness w ∈ {0, 1}∗ where ν(w, δ) = 1. A transaction tx of form
(In,Out) can be used to change the ledger’s state by specifying a set of UTxO
Out as well a list of UTxO In. A transaction can only modify a ledger’s state
if all UTxO in In are within Σ, i.e. In ⊆ Σ, and otherwise is called invalid.
Two transactions tx0 and tx1 are conflicting if tx0.In ∩ tx1.In 6= ∅. We denote
following state transition function ◦ on sets of UTxO O where ◦ : O,X → O
where O◦X = O∪(

⋃
tx:X tx.Out)\(

⋃
tx:X tx.In) or O◦X = ⊥ if X contains either

conflicting or with respect to O invalid transactions. Then, when the transaction
tx = (In,Out) is applied to the ledger, it’s state changes to Σ′ = Σ ◦ {tx}. Note
that while the Extended UTxO model [9] (EUTxO) explicitly include δ in its
definition, Bitcoin’s [33] UTxO can embed δ within their script ν.

6

Layer 2 Ledgers. Similar to Jourenko et al. [27] we assume the existence of
a family of protocols that construct Layer 2 ledgers L2. Moreover, we define
their security properties analogous to Hydra [10]. Layer 2 Ledgers are structures
created on a physical ledger L, such as Bitcoin, are executed by n ≥ 2 parties H
where Hcont ⊆ H are honest parties. It function as follows: (1) A Layer 2 ledger
maintains a set of UTxOs as state Σ2, (2) UTxO can be moved in-between the
physical ledger’s state Σ and Σ2, (3) the parties operating L2 have means to
modify Σ2 through a set of – potentially implicit – transactions X and (4) when
performing m transactions on L2 at most a sublinear amount of transactions
are committed on L. Note that concrete implementations can restrict moving
UTxO between L and L2 to setup and tear-down of the protocol. Moreover,
transactions on L2 can have lower expressiveness than those on L. We observe
that a wide variety of protocols fall into this family of constructions such as
Bitcoin’s Lightning payment channels [35] where n = 2 parties lock some of
their UTxO on L , effectively moving them to L2 during the opening of the
channel to perform a potentially arbitrary amount of transactions, which are
limited to payments, using the coins locked in these UTxOs. Lastly the parties
will retrieve their coins by closing the channel and moving two UTxO into L
that represent the channels latest balance distribution. On the other side, the
Hydra protocol [10] allows for the creation of a multi-party state channel among
an arbitrary amount of parties that holds a set of UTxO as state explicitly
and where transactions can modify the Hydra channel’s state with the same
expressiveness as on the physical ledger L.
A Protocol Framework for Trustless Layer 2 Ledgers. We assume that
any transaction that modifies the state of L2 has to be acknowledged by all
parties H, so we consider the following framework. At any point, a party can
broadcast (reqTx, tx) to all other parties requesting confirmation of transaction
tx. If a party Pi, 0 ≤ i ≤ n receives (reqTx, tx) then Pi acknowledges it if it is
neither invalid nor conflicting with any previously acknowledged transactions. If
tx is acknowledged, Pi broadcasts (ack, tx) to all parties in H. In the following,
let Ŝi be the set of all transactions for which party Pi broadcasts (ack, tx) and
let C̄j be the set of all transactions for which party Pj , 0 ≤ j ≤ n received
(ack, tx) from all parties in H. This framework does not limit existing protocols
and instead covers what – potentially implicitly – is already done in existing
trustless Layer 2 ledger constructions like Payment Channels or Hydra [10].

The extension to an auditable Layer 2 ledger can be simply formalized at this
abstract layer: given a designated auditor R and the set of admissible policy
queries =, a set of functions on the (confirmed) transaction C̄, the auditor is
allowed to ask queries of the form (query, Q) upon which it is allowed to interact
with a participant Pi of its choice, and the auditor finally produces the functional
output (auditRes, Q, v). Furthermore, the auditable Layer 2 ledger must support
a validity predicate V to judge the validity of an auditor’s output in an execution.
Security Properties. We define security of Layer 2 ledgers analogous to Hydra
[10]. In the following let the UTxO set O0 be the initial state of L2, i.e. Σ2 and
Ofinal be the final state of L2 upon its tear-down. For audits, we state the most

7

fundamental property, soundness, and defer the definition of further properties
(including privacy) directly to our concrete Hydra realization.

A trustlessly secure Layer 2 ledger has following properties [10].
• Consistency (L2): For all, i, j, O0 ◦ (C̄i ∪ C̄j) 6= ⊥, i.e., no two uncorrupted
parties see conflicting transactions confirmed;

• Liveness (L2): For any transaction tx input via (new, sid, tx), the following
eventually holds: tx ∈ ∩i∈[n]C̄i∨∀i : O0◦(C̄i∪{tx}) = ⊥, i.e., every party will
observe the transaction confirmed or every party will observe the transaction
in conflict with his confirmed transaction;

• Soundness (L): ∃S̃ ⊆ ∩i∈HŜi : Ofinal = O0 ◦ S̃, i.e., the final UTxO set
results from a set of seen transactions;

• Completeness (L): For S̃ as above, ∪Pi∈HcontC̄i ⊆ S̃, i.e., all transactions seen
as confirmed by an honest party at the end of the protocol are considered;

• Audit Soundness: For any request (query, Q) byR towards any party Pj hold-
ing confirmed transaction set C̄j as above, the auditor’s output (auditRes, Q, v)
satisfies v.val = Q(C̄j) whenever V(v, C̄j) = 1;

• Audit Correctness: For any request (query, Q) by R towards any honest
party Pj holding confirmed transaction set C̄j as above, the auditor’s output
(auditRes, Q, v) satisfies V(v, C̄j) = 1;

• Audit Privacy: This is defined through a game played by two adversaries
Aτ and AAud that do not share any private information and a challenger C.
Let O0 and O1 be two UTxO sets generated by two executions of a trustless
Layer 2 ledger L2

0 and L2
1 on a common initial UTxO set O0 chosen by Aτ .

The game is executed by having C pick bC ∈ {0, 1} and Aτ submit a sequence
of tuples (bA, τ) upon which τ is applied on L2

bA
. At any point AAud can

submit (query, Q) upon which C responds with (auditRes, Q, vb) for both L2
b ,

b ∈ {0, 1} respectively, if v0.val = v1.val and with ⊥ otherwise. Finally,
AAud submits bAud and wins if bAud = bC . The advantage of the attacker
is defined as |Pr(bAud = bC) − 1

2 | and a protocol has audit privacy if the
advantage of any efficient adversary is negligible.

4 Auditable Hydra Isomorphic State Channels

In this section we provide a concrete instantiation of an auditable Layer 2 pro-
tocol. Our proposal extends Hydra [10] (cf. Section 2.1), to introduce audit
capabilities, and makes use of Decentralized Identifiers (DID) (Section 2.2), to
enable meaningful auditing based on real-world identities.

4.1 Auditable Hydra

We now describe the auditing extension to the Hydra Protocol (Table 2). Au-
diting is performed between a special party, the regulating authority R, and the
set of the Hydra head’s participants P.
Parameters. The auditing protocol supports a set of policies =, each of which
takes as input a transaction graph, given by any participant, or subset of P, in the

8

Action Object/State Identifier

Auditing
onchain

Initialize
Commit snapshot

Close head

auditInit = 〈=, vkR, T , tlei〉
commitSn = 〈CG〉
closeHead = 〈CG〉

Auditing
offchain

Request
Respond
Validate

reqAudit = 〈Q,PQ〉
resAudit = 〈πP 〉

valAudit = 〈bPπ , dPQ〉

Table 2. In addition to the parameters of Table 1, the auditable Hydra protocol is
parameterized by the following: (i) = is a set of auditable policies Q; (ii) vkR is the
public key of the auditing authority R; state thread token tlei via which the smart
contract of the vLEI issuer(s) can be referenced to verify credentials; (iii) CG is a
commitment to a representation of the transaction graph G, honestly-generated by
function Com(·); (iv) πP is a proof of a party’s response to an auditing request, honestly-
generated by function ProofGen(·) (given a policy in = and a transaction graph G);
The verification generates two values, a bit bPπ and the information dPQ.

head. Each request can be addressed, from the R, to any head participant even
after the head is already closed. Moreover, the protocol requires pre-negotiated
timing parameters T that specify an upper limit on the rate of transactions,
which is used to implement time based policies as further described in Section 4.5.
Finally, the Hydra participants must agree on the vLEI credential issuer, in the
form of the unique state token associated to the issuer-maintained contract on
the main chain tlei. That is, the issuer-governed list of accredited public keys
that certify verifiable credentials (in this case simple vLEI identifiers).
Initializing. We extend the initialization procedure in a non-trivial way, to
achieve query support as well as building trust in the form of identification. When
the head is initialized, each participant P ∈ P is given a set of policies = and the
public key of R vkR. These parameters are used for auditing requests, when R
queries a head participant about policies in =. This step can be combined with
the original Hydra’s initializing process, i.e., init, in a straightforward manner.

Recall that each party acknowledges and verifies the initialization by posting
a transaction which locks their outputs to head. In an auditable Hydra head,
committing UTxOs is extended to give the participant two options: either submit
an ordinary commit-transaction or an audit-commit-transaction.

An audit-commit is richer as it contains additional elements. First, aside of
the referenced locked UTxO set Oi, a party Pi specifies, in the data field of the
transaction’s output, a DID identifier didi and a verifiable credential vci. A valid
commit transaction must satisfy the property of the standard commit transaction
regarding the validity of Oi. Second, the transaction is signed w.r.t. didi.vk.
Third, vci is a vLEI credential s.t. vci.sub = didi the credential’s signature verifies
as valid w.r.t. a public key identified via a valid reference into the data field of an
unspent output identified via state-thread token tlei. That is, the state machine
maintained by the trusted LEI issuer. In summary, an audit-commit binds a
UTxO set not only to one particular Hydra-head, but additionally presents a real-
world credential via which the participant can be identified. A natural extension

9

can make this process privacy-preserving, where the party reveals the credential
only to the regulator and proves publicly that the regulator can identify them.5

As before, the head’s initiator collects the commitments and formally opens
the head by publishing a transaction with collectCom in the main ledger. The
only change here is that this state transition is only successful if at least one
committed output is from an audit-commit transaction.
Snapshot commitment and head closing. The head participants regularly
commit publicly to the head’s snapshot. In this way, the authority gains access
to a commitment of the transaction graph. In effect, in this step the participants
commit to the version of the transaction history that R can query. The final
such commitment is published upon closing the head, which again can be part
of the close step of the original Hydra protocol.
Main chain and on-chain verification. The head’s status is kept by the
variable η which is part of the state of the state machine (SM), and it is up-
dated by the onchain verification (OCV) algorithms, namely Initial, Close and
Contest and Final, as in the original Hydra protocol. Here, we add the audit
related algorithm ProofGen. Each head participant runs the Prot algorithm rep-
resenting the head SM, hence the auditable head protocol AHP is the tuple
(Prot, Initial,Close,Contest,Final,ProofGen). Note that the participants can be
asked audit queries, so they are equipped with ProofGen, while only the R is
requested to execute ProofVal, thereby AHP does not contain ProofVal.
Auditing. Each participant is equipped with the algorithm ProofGen, while the
R can execute ProofVal. Respectively for answering audit queries, and checking
the validity of the proof. The auditing proceeds in three phases. First, R makes
a request by sending a policy Q ∈ = to a subset of participants PQ ⊆ P. Second,
each queried participant constructs a response π. If the participant is honest,
it constructs the response π by running their respective ProofGen algorithm.
Third, R verifies the responses. Specifically, for every response π it obtains two
bits 〈bπ, dQ〉 by running ProofVal on each reply. If, for some party, the proof bit
is false, that is bπ = 0, then R outputs this party, signifying that its response
was invalid. Additionally, the authority outputs the policy query response dQ,
which corresponds to a response with a valid proof bit.6
Smart contracts and addresses. Smart contracts are a challenge for au-
ditability, as party interactions through smart contracts strongly depend on
their code. Storing the code and all interactions for auditability would result
in a memory cost linear to head’s transactions, violating our efficiency require-
ments. However, not tracking this information would allow parties to trivially
avoid auditability by using a smart contract with the sole purpose of forwarding
coins to a recipient. Similarly, tracking all newly created addresses within a Hy-
dra head would result in high memory costs, but not tracking them would enable
audit evasion. Note that this issue only applies to addresses and smart contracts
that are active. Addresses that do not spend coins, e.g., belong to parties ex-

5 The privacy-preserving variant is deferred to Section 5.1.
6 As we will show in the security analysis, audit soundness guarantees that, if the
proof bit is 1, then the policy response data is correct.

10

ternal to the Hydra head, are visible on-chain when the respective UTxOs are
decommitted. Note that smart contracts can be made uniquely distinct via non-
fungible thread tokens [8]. So, to resolve these issues, we employ the following
simplification. For each smart contract interaction, one party declares ownership
of that contract by signing its thread token. We model the smart contract as a
black box s.t. all interactions with it are considered as interactions that its owner
party helped to facilitate. This results in a memory cost linear in the number of
parties that execute the Hydra head. Similarly, each address is claimed by one
party as its alias, s.t. interactions with that address are attributed to that party.

4.2 Security Experiment

We now instantiate the generic security properties outlined in the previous sec-
tion for the specific case of Auditable Hydra Protocol. Prior to describing the
security experiment for AHP and the implied security notions, we present the
more detailed execution.
General Setup. To analyze security we can consider an experiment similar
to the original Hydra [10]. Once the main chain machine arrives in the final
state, the adversary wins if certain conditions are not satisfied. Consider the
following random variables in an execution of the auditable head protocol AHP =
(Prot, Initial,Close,Contest,Final,ProofGen):
• The set of n parties Pi running the auditable head protocol with the param-
eters from the setup phase and an initial UTxO set O0;
• The adversary A who can see the messages exchanged by the participants
Pi and chooses the initial UTxO set O0;
• The regulator R which can choose a single policy Q ∈ = and submit it to
any Pi with i ∈ [n];
• The set of (at the time) uncorrupted parties Hcont who produced ξ upon
close/contest request and ξ was applied to correct the information η;
• The set of corrupted participants C;
• Every party Pi’s and performs 〈vki, ski〉 ← MS-KG(S), and computes the
aggregate signature vkagg ← MS-AVK(S, vk), for the local verification key
vector vk of the i-th party.

The head-protocol machine Prot has the following environment interface:
• On input of (init, sid, i, vkagg, ski,O0), Pi initializes Prot;
• On input of (new, sid, τ), Pi submits a new transaction τ ;
• When the party output (seen, sid, τ), it announces it has seen τ ;
• When the party output (conf, sid, τ), it announces that in its local view τ

has been confirmed;
• On input of (close, sid), it starts head closure and outputs a certificate ξ;
• On input of (cont, sid, η), it contests closure and outputs a certificate ξ.

The Experiment. Now, consider the following experiment for the protocol AHP
and its OCV functions with audit algorithms.
1. Global Parameters S ← MS-Setup, and S is passed to adversary A along

with the set of policies = and the regulator public key vkR;

11

2. For each party Pi, key material 〈vki, ski〉 ← MS-KG(S) is generated, and
the vector vk of all parties’ public keys and vkagg are passed to A, which
returns the initial set O0;

3. Each party Pi’s protocol machine is initialized with (init, sid, i, vkagg, ski,O0),
where O0 was chosen by A;

4. The adversary now controls inputs to the parties, (e.g., new transactions,
close/contest requests) and sees outputs (e.g., seen and confirmed transac-
tions). The following bookkeeping takes place:
• when an uncorrupted party pi outputs ξ upon command (close, sid),

record (close, i, ξ), for the certificate ξ;
• when an uncorrupted party pi outputs ξ upon command (cont, sid, η),
record (cont, i, η, ξ), such that η is the context information.

5. In “parallel” to the above, the experiment sets C, Hcont ← ∅, and does the
following to simulate the main chain:
• Initialize η ← (O0, 0, ∅);
• When A supplies (i, ξ′) : If i is uncorrupted, ξ′ gets replaced by the ξ
record in (close, i, ξ) andHcont ← Hcont∪{i}. Then η ← Close(vkagg, η, ξ)
and C ← C ∪ {i} is computed. If Close rejects, everything in this step is
discarded and the step is repeated;

• The adversary gets to repeatedly supply (i, ξ) for i /∈ C; if i is uncor-
rupted, ξ gets replaced by the ξ recorded in (cont, i, ξ) and Hcont ←
Hcont∪{i}. Then, η ← Contest(vkagg, η, ξ) and C ← C∪{i} is computed.
If Contest rejects, everything in this step is discarded.

• When A supplies Ofinal, b← Final(η,Ofinal) is computed.
6. A can submit (audit, sid, i, reqAudit) s.t. reqAudit = 〈Q,P〉 for Q ∈ = and

the participants subset P, and receives the reply (AuditReply, sid, resAudit)
for resAudit = 〈πP〉, s.t. πP is computed by each participant’s ProofGen exe-
cution, i.e., πP is the |P|-long π proofs tuple;

7. The experiment ends when A sends (Halt, sid).
Collusion and listener participant. A significant technical challenge is to
formally define the properties of audit security properties to cope with the case
of total collusion of the head participants. In order to better illustrate this sce-
nario, assume the existence of at least one single honest participant. In such a
case, any regulator can cross check the replies from all the participants and po-
tentially pinpoint the set of cheaters given their inability to properly reply to the
regulator queries. On the other hand, in the case where all the participants of the
head are malicious, then they can collude to generate a correct and consistent
pair (G∗, C∗G), of an artificial transaction graph that satisfies all the expecta-
tions of the auditor. In such challenging scenario, the regulator/auditor cannot
distinguish it from an honest execution of the protocol. The honest participant
assumption is a strong guarantee, which does not exist in this case.
Security events. As in the original Hydra, security is captured by a number
of events, which correspond to each outlined security property.7 All events hold

7 The original Hydra’s security events are described in Appendix A.

12

in the presence of an active adversary. We use the standard notation that a
transaction τ is valid for a set of UTxO O if O ◦ τ 6= ⊥.

Each participant Pi stores a short representation CGi and auditing statistics
of the graph G throughout the head’s life cycle. For every honest Pi, statistics
about Gi and CGi

are correct audit information the auditor can expect from an
audit query. The existence of an honest participant provides an execution de-
scription (G,CG), which is assumed to be correct and honest. Our formalization
assumes a special protocol participant, PL, that is not part of the protocol, i.e.,
is a “virtual participant”, who observes the protocol’s execution and records all
transactions. Thus, PL keeps (GL, CGL) which is considered the true execution
of the protocol. Note that such participant does not exist in reality, however it
allows us to correctly define and capture the desired audit security properties.

Following, we outline the security properties for the audit hydra head with
respect to the listener participant PL. Intuitively, correctness guarantees that any
honest user’s response will be valid, i.e., R will accept its proof (bPi

π = 1). Also
soundness guarantees that, if the regulator accepts a party Pi’s proof as correct
(bPi
π = 1), then it should be infeasible for another participant to also present an

acceptable proof for a contradictory response to the same policy query.

Definition 1 (Audit Correctness). Given policy Q ∈ =, let 〈bPi
π , d

Pi

Q 〉 be
the bits output by R for the response of an honest party Pi; it should hold that
bPi
π = bPL

π = 1, for the replies with respect to the listener participant PL.

Definition 2 (Audit Soundness). Given policy Q ∈ =, let 〈bPi
π , d

Pi

Q 〉 be the
bits output by R for the response of a party Pi; it should hold that, if bPi

π = bPL
π =

1, then dPi

Q = dPL
Q , for the replies with respect to the listener participant PL.

Finally, privacy ensures that R gains no additional information about the
transaction graph, beyond what is revealed by the query answer. We assume
R is an external party to the channel, only observing its public footprint. This
assumption is required as Layer 2 transactions are not private by default [22].
Although transaction privacy has been researched extensively for Layer 1 proto-
cols, in Layer 2 some proposals only try to increase unlinkability [23,37], but they
are still susceptible side-channel attacks and collusion between certain trusted
parties. Therefore, our work aims to maintain the level of privacy that Layer 2
solutions offer while enabling auditing.

Definition 3 (Audit Privacy). Assume two adversaries that share no private
state, but both observe the public trace of the execution, denoted Aτ and AAud.
Aτ drives the generation of the transaction graph, by submitting transactions and
choosing an initial UTxO set, while AAud submits audit queries. A challenger
C carries the security experiment described above for two executions w.r.t. two
different UTxO sets, O0

0 and O1
0. C picks a random bit b which corresponds to

the execution subject to audits.
The execution proceeds as described above, where Aτ controls the UTxO set

and transaction generation. For every action Aτ performs, it specifies to which
UTxO set it corresponds. At any moment AAud submits audit queries to C. If the

13

functional output of the query w.r.t. to both O0
0 and O1

0 is the same, C replies to
AAud with it; otherwise, if the functional output is different, C outputs a special
value ⊥. Finally, AAud submits a bit bAud, and wins if bAud = b.

Privacy is violated if the adversary AAud in the above game wins with prob-
ability 1

2 + ε for non-negligible values of ε.

4.3 Snapshots and Audit Protocol

We now implement the auditable Hydra protocol following Section 4.1. Our
construction assumes that at least one head participant is honest and all policies,
for which R might query the parties, are known beforehand.

Our implementation supports queries with aggregatable values. Specifically,
consider a transaction graph G and the value v of a specific policy w.r.t. G.
Given a new transaction τ that is applied on G, the new policy value should be
computable given only v and τ , that is without needing to access G.
Protocol idea. The main idea of our construction (Figure 1) is that participants
maintain a set of statistics about the transaction graph, which are sufficient to
answerR’s queries. Abstractly speaking, the protocol needs two primitives. First,
it needs a (binding and hiding) commitment function, which gets as input a set
of values (the statistics maintained about a transaction graph) and outputs a
succinct value CG. Second, it needs a proof scheme. Intuitively, proof generation
takes two inputs, a policy Q ∈ = and some witness (the maintained statistics),
and outputs a proof π, which contains also the answer to the query. For verifi-
cation, one must know the commitment CG, a policy Q, and a proof value π,
and the output is a bit indicating the validity of π w.r.t. CG. From a security
perspective, the scheme should guarantee that every honestly-generated proof is
valid and that no wrong claims can be proven w.r.t. the committed values.
Construction. The construction relies on a zero-knowledge set (ZKS) [32]. A
ZKS is a tuple of algorithms 〈SetupZKS,CommitZKS,QueryZKS,VerifyZKS〉. In-
tuitively, a ZKS enables a party to create (via CommitZKS) a succinct commit-
ment to a set of values S, s.t. they can later prove efficiently (via QueryZKS)
inclusion (k ∈ S) or non-inclusion (k 6∈ S) statements. Crucially, a ZKS reveals
no additional information about the committed set beyond the proven state-
ment. This property is important as the auditor R should not obtain data about
the transaction graph, beyond the information revealed as part of the auditing
process (cf. Definition 3). For this reason, primitives like Merkle trees or some
accummulators [14] are not suitable, as they don’t guarantee the ZK property.

In our construction, each element of the set corresponds to a possible answer
to all supported policies, for any subset of parties to which the policy can apply.
Note that each policy and each party is uniquely identifiable, so the elements can
be ordered in a deterministic manner. We note that a property of ZKS is hiding
the size of the committed set. In our application this property is not needed,
since the number of parties and the policies are known to R. Therefore, we use
the relaxed notion of nearly ZKS [29], which preserves the ZKS properties but
only leaks the committed set’s size. Specifically, we use a nearly ZKS scheme
based on polynomial commitments [29] (see Appendix B for more details).

14

For each policy Q ∈ = exists a function q. This function outputs the answer
to the policy query, given a previous answer and a transaction. For example, for
the policy “Have P, P ′ transacted?”, q(b, τ) is 1 if either b = 1 or τ transfers
funds between P, P ′.8 When a transaction τ is added in the head, each party P
updates affected elements of their set. For each element l with a policy function
q, P updates its value with 〈q(l, τ), Q, τ.h〉, where τ.h is the hash of τ . Since
transactions are broadcast to all parties, honest parties maintain the same set.

Note on updatable commitments: In the standard KZG setting, each new
transaction requires an update on the information kept by the participants,
including the regeneration of the commitment. A more efficient alternative is to
use updatable variants, e.g., a recent concrete construction by Tas and Boneh [38]
which allows efficient updates.

When evaluating policies, the parties involved in τ are looked up in U .I,
where addresses and state thread tokens are substituted with parties. Policies
have access to both τ and U .I, so they can differentiate whether a party was
involved directly through a transaction or facilitated a transaction as owner
of a state machine. State machine owners are considered intermediaries of a
transaction, s.t. they are always considered to be both sender and receiver of the
transaction. While this holds true for transactions that perform a state transition
of a state machine where a state thread token is in both the transaction’s inputs
and outputs, this is not the case for initial and final states. Respectively, when
evaluating the policies of transactions that create and close a state machine, the
owner is implicitly considered to be both sender and receiver.

When R makes a policy query Q, an honest participant P retrieves the
element l which corresponds to the query’s answer,9 constructs an inclusion
proof πl for l w.r.t. the latest published commitment CG, and responds with
πP = (l, πl). R then validates the element corresponds to the correct policy and
verifies the inclusion proof w.r.t. the latest commitment CG. If the checks pass,
it sets a bit b = 1, otherwise it sets b = 0, and outputs 〈b, l〉.

4.4 Security Analysis

We now show that the auditable Hydra protocol (Figure 1) satisfies the proper-
ties of Section 4.2.

Since our state-machine extension (Table 2) preserves Hydra’s structure and
merely includes additional values in initializations and snapshots, Hydra’s secu-
rity guarantees (Appendix A) are preserved, providing the assurance of safety
and liveness for snapshots that now also include the audit-related commitment.

Therefore, we can proceed to prove the main audit guarantees. First, Theo-
rem 1 proves that the auditable Hydra protocol satisfies audit correctness. This
property is directly inherited from the properties of the original Hydra. Second,
Theorem 2 focuses on audit soundness. Our proof relies both on Hydra’s prop-
erties, namely that all parties observe all transactions, and the binding property
8 Section 4.5 offers more examples of relevant policies.
9 For ease of notation,Q contains both the policy query and the parties under question.

15

πAudit keeps the initially empty variables T , which is an array of policy
answers, and C, a commitment to T .

Initialize: Upon receiving auditInit for some set of policies =, wait for array
TL from PL. Then set T = TL.
Graph Update: Upon receiving confTx for some transaction τ , do the follow-
ing. For each element l of T , which corresponds to a policy Q with function
q, replace l with 〈q(l, τ), Q, τ.h〉, where τ.h is τ ’s hash. Then run Commit
Snapshot as below.
Commit Snapshot: Upon receiving commitSn, compute T ’s commitment C
and output 〈C〉.
Close Head: Upon receiving closeHead, output 〈C〉.
Audit request: Upon receiving reqAudit for policy Q, which corresponds to
element l of T , create an inclusion proof πl for l and output π = (l, πl).
Audit validation: Upon receiving resAudit with a proof π = (l, πl) for policy
Q, do the following checks: (i) verify that the response corresponds to Q; (ii)
validate the inclusion proof πl w.r.t. C. If both checks pass, set b = 1, otherwise
set b = 0. Finally output 〈b, l〉.

Auditable Hydra Protocol πAudit

Fig. 1. The Auditable Hydra Protocol.

of the used ZKS primitive. Third, Theorem 3 proves our protocol satisfies audit
privacy. The main idea here is that, due to the zero-knowledge property of the
ZKS, the auditor R cannot obtain information about the transaction graph or
its statistics, beyond the information revealed by each answered policy query.

Theorem 1 (Audit Correctness). Given a secure implementation of the
Hydra state-machine (Appendix A), the auditable Hydra protocol of Figure 1
satisfies audit correctness (Definition 1).

Proof. By assumption, a correct and secure realization of the Hydra state ma-
chine implies consistency and liveness of the head operations [10]. Specifically,
an honest user only accepts confirmed transactions, which are (i) non-conflicting
(due to safety) and (ii) the same for all parties (due to liveness). So all honest
parties, including the listener participant, construct locally the same set of pol-
icy answers and each honest party’s response is consistent with the published
commitment. ut

Theorem 2 (Audit Soundness). Given a secure implementation of the Hy-
dra state-machine (Appendix A), the auditable Hydra protocol of Figure 1 satis-
fies audit soundness (Definition 2).

Proof. Audit soundness follows similarly to consistency. Specifically, since honest
parties accept only confirmed transactions and all such transactions are available

16

to all parties, honest parties answer with the same value as the listener in the
security experiment (Section 4.2). Additionally, due to the binding property of
the ZKS which is used in the protocol, an adversary cannot present a forged
inclusion proof for a given snapshot’s commitment. ut

Theorem 3 (Audit Privacy). Given a secure implementation of the Hydra
state-machine (Appendix A), the auditable Hydra protocol of Figure 1 satisfies
audit privacy (Definition 3).

Proof. First, by assumption the adversary AAud (Definition 3) that submits
audit queries does not know the transaction graph. This implies that no party
that is in the Hydra head colludes with AAud (that is, withR), otherwise privacy
cannot be guaranteed, since all parties observe all transactions.

Consequently, AAud has access only to the following information: i) the se-
quence of published commitments; ii) the inclusion proof for each answered
query; iii) the answer to specific policy queries. First, due to the zero-knowledge
(hiding) property of the ZKS commitment, AAud cannot infer any information
about the values in the set given the published commitment or an inclusion
proof. Second, the answer to a policy query is not sufficient to violate audit pri-
vacy by definition (cf. Definition 3). Therefore, audit privacy is guaranteed by
the construction in Figure 1. ut

4.5 Implementation Considerations

Our construction opens various practicality questions.
Termination. The auditing protocol should terminate. This can be achieved via
timeouts, so if a party fails to respond within reasonable time then it fails the
audit. Similarly, the protocol can define a time period during which the authority
can issue policy queries, akin to real-world document retention policies.
Disputes. A dispute resolution mechanism could help in case R tries to reject
an honest party’s response. This is enabled via the DID features, by requiring
the user to sign their responses, s.t. a corrupted authority could not challenge
an honest party’s response unless forging their DID signature.
Storage. The storage complexity is proportional to the size of the array. There-
fore, for a set of policies =, each pertaining to a pair of parties, the complexity
is O(|=| · n2), where n is the number of the head’s participants. Note that the
authority R can make a query for any supported policy at any point in time,
after the head’s creation. This requirement forces each party to indefinitely keep
a local copy of the array. In addition, a party’s response contains an inclusion
proof, so it is logarithmic on the number of elements.
Costs. The cost of auditing for each participant should be upper-bounded and
excess costs, e.g., blockchain fees, should be paid by R. This guarantees that a
malicious authority cannot impose heavy costs on a head’s participants albeit it
limits R, since its budget needs to cover the extra fees for auditing queries. In
practice, this can again be guaranteed by using a blockchain, where the authority
reimburses the transaction fees that a user pays for replying to a query.

17

Time Parameter. The protocol requires pre-negotiated timing parameters T =
(nt, tl, tε), where nt, tl, tε ∈ N Here nt is number of transactions, tl is a time
duration and tε is the drift of a party’s local clock. The value T is chosen s.t. less
than tn transactions are issued in the head within any time window tl. This is
not intended to limit transaction throughput, but instead an estimate provided
by the parties to enable implementation of timing based parameters with time
and space complexity independent of the transaction graph’s size.
Adjustments to Snapshot Generation. Let T = (nt, tl, tε) be the timing
parameter provided during protocol setup. We require that each snapshot that
is created offchain in a Hydra Head contains a timestamp ts ∈ N and par-
ties reject the snapshot if |ts − tc| ≥ tε. Parties maintain a list T which con-
tains entries of form (τ, t) where τ is a transaction and t ∈ N is a point in
time where tc − tl ≤ t ≤ tc where tc is the party’s local time. For each new
transaction τ to be issued in the head parties refuse including τ in the Hydra
head if |T | = nt. Moreover, we modify Hydra’s snapshot request from reqSn =
〈U .s,U .T 〉 into reqSn = 〈U .s,U .T,U .I〉 where U .I = (A,C). In the following,
let Pi, 1 ≤ i ≤ n be any party that participates in the auditable Hydra head.
Then A = {(α, Pi, σi)|∀α where 〈α, θ,H(D)〉 ∈ τ.Oo∨〈α, θ,H(D)〉 ∈ τ.Oi where
τ ∈ U .T, τ = 〈[I], [Oo]〉, 〈Oi,S, D,w〉 ∈ τ.[I] : ∃!(α, Pi, σi) ∈ A} specifies the
aliases of all parties, i.e. informally for each address α that is in a transaction’s
inputs or outputs within a snapshot U , there exists exactly one tuple (α, Pi, σi)
in A that includes a signature σi of Pi and declares α to be an address of Pi.
Analogously C = {(ts, Pi, σi)|∀ state thread token ts ∈ θ where 〈α, θ,H(D)〉 ∈
τ.Oo ∨ 〈α, θ,H(D)〉 ∈ τ.Oi where τ ∈ U .T, τ = 〈[I], [Oo]〉, 〈Oi,S, D,w〉 ∈ τ.[I]
: ∃!(ts, Pi, σi) ∈ C} declares ownership of CEMs, i.e. informally for each state
thread token ts that is in a transaction’s inputs or outputs within a snapshot U ,
there exists exactly one tuple (ts, Pi, σi) in C that includes a signature σi of Pi
and declares the CEM that is uniquely identified through ts to be owned by Pi.
Aggregatable Policy ValuesOur scheme only supports policies with aggregat-
able values, s.t. users only keep the array of policy answers, instead of the entire
transaction graph. In the following we briefly describe how auditable properties
as mentioned in Section 1 can be computed and analyze their computational
and memory costs. Note that the aim of utilizing aggregatable values is to ren-
der the memory and computational requirements of updating these properties
to be independent of the amount of transactions performed. Recall that a party,
upon receiving confTx for some transaction τ , updates each element l of T , which
corresponds to a policy Q with function q, with 〈q(l, τ), Q, τ.h〉 ∈ {0, 1} where
the response to a policy Q is 1 if and only if the answer to that policy is true.

From now we deem that two parties Pi, i ∈ {0, 1} transact directly with a
transaction τ = 〈[I], [O]〉 if it contains a UTxO O ∈ [O] where O = 〈α, θ,H(D)〉
and an transaction input I ∈ [I], I = 〈O,S, D,w〉 where I.Oα contains one of
Pi’s addresses (or I.O.θ contains a thread token associated with Pi) and O.α
has an address of P1−i (or O.θ contains a thread token associated with P1−i) .

Have parties (P1, P2) transacted directly? This can be done by storing one bit
value for each pair of parties which is initialized with 0. As soon as P1 and P2 are

18

observed to have transacted directly, the value is flipped to 1, i.e., parties have
transacted. The computational requirement is constant and the total memory
requirements to store this for all party pairs is O(n2).

Have parties (P1, P2) transacted directly an amount of more than Ttx coins
in one transaction? This is done analogous to computing whether P1 and P2
transacted directly, however, in addition an auxiliary value c ∈ N is stored which
is initialized with 0 and set to c′ ∈ N if P1 and P2 transact directly an amount
of coins c′ > c. Once c > Ttx is observed, a bit value storing the answer to this
property is set to 1. As above the computational requirement for updating this
value is constant and the total memory requirements to store this for all pairs
of parties is O(n2).

Within every window of N consecutive transactions, have parties (P1, P2)
transacted an aggregate amount of more than Ttx coins? This is done analogous
to computing whether P1 and P2 transacted directly, however, in addition an
auxiliary list of numbers c0, . . . , cN are stored, together with a pointer value
p ∈ {0, 1, . . . , N}. The entries in the list as well as p are initialized to 0. Once
two parties are observed to transact directly a value of c ∈ N coins the value
cp is set to c and p is set to (p + 1) mod N . If

∑N
0 ≥ Ttx is observed, a bit

value storing the answer to this property is set to 1. The computational cost of
updating this value is O(N) and the total memory requirements to store this for
all pairs of parties is O(n2N).

Did the balance of party P exceed Tbal at any point in time? This can be
done by storing a bit value for each pair of parties which is initialized to 0 if
their initial balance at the start of the protocol is Tbal and 1 otherwise. If at any
point in time the observed total balance of a party exceeds Tbal the respective
bit value is set to 1.

Does there exist a path of length N and value Ttx between P1 and P2 in the
transaction graph? This can be done by storing a graph with n nodes where
each party P is represented by a node vP and there exists an edge between
nodes vP1 and vP2 if parties P1 and P2 have transacted directly with another.
Note that the amount of edges is up to O(n2). Moreover, we store a list D of
form {dPi,Pj

|i, j ∈ N, 0 ≤ i, j ≤ n, i 6= j} which stores the shortest path length
between nodes vPi

and vPj
. The graph is initialized to have no edges and D is ini-

tialized correspondingly. Once P1 and P2 are observed to have transacted directly
with another and no edge between vP1 and vP2 exists, we proceed as follows. An
edge between vP1 and vP2 is created and Dijkstra’s shortest path algorithm is
executed twice, to compute the shortest paths from vP1 and vP2 respectively to
all reachable nodes and we update D correspondingly for parties vP1 and vP2 .
Note that the weight of each edge is implicitly set to 1. Afterwards, for each pair
of parties vPi

and vPj
in the graph we evaluate if d{Pi,Pj} ≥ d{Pi,Pk} + d{Pk,Pj}

where k ∈ {1, 2} and update D if a shortest path is found in the process. The
computational cost is O(n2) and the storage requirements to store all required
auxiliary data is O(n2).

Within any window of t minutes, has party P sent more than Tsend assets
on aggregate? Recall that parties limit the transaction throughput based on the

19

timing parameter T = (nt, tl) such that within any time window tl at most nt
transactions are included in the Hydra head. Let tc ∈ N be a party’s local time
at moment of evaluating this policy. Then for each party P we store a list TP,s
with entries of form (t, b) where t ∈ N is the time stored for the snapshot in
which a transaction τ was included in the Hydra head in which P sent b ∈ N
assets and tc − t ≤ t ≤ tc. When evaluating this policy the value

∑
(t,b)∈TP,s

b ≥
Tsend the respective bit value is set to 1. Note that the required storage for this
policy is O(tntn

tl
), i.e. it depends on the timing parameter T = (nt, tl) and the

computational complexity is analogous.
Within any window of t minutes, has party P received more than Trecv assets

on aggregate? This is analogous to the above question on whether P has sent
more than Tsend with the difference of storing how much assets a party has
received within a time window Trecv.

5 Enhancements

In this section we propose enhancements to the auditable protocol of Section 4.
Specifically, we detail how the protocol can support auditing in a privacy-preserving
manner, such that parties can be audited without revealing their real-world iden-
tity. Next, we discuss how the protocol can be expanded to guarantee consistency
even under a setting where all participants in the Hydra head collude.

5.1 Privacy-Preserving Audit-Commits

In the simple version, verifying the statement that a credential vci is issued for
a DID didi is based purely on signatures. While this gives an extremely effi-
cient implementation, a financial service provider identified by a LEI does not
always want to reveal its presence publicly. For this case, one can validate a
non-interactive zero-knowledge argument or proof of knowledge (NIZK). More
precisely, we need a NIZK for the following relation that turns the vLEI into an
anonymous credential. The statement is given by x = (vklei, τ, com, C, pkR, method)
and the witness is w = (vk, vclei = (sub, n, σlei), στ , r1, r2). The relation must as-
sert that each of the following equations hold:
• com = Com((sub, n); r1)
• C = EncpkR((sub, n); r2)
• Verify(vklei, (sub, n), σlei) = 1
• Verify(vk, τ, σ) = 1
• sub = did:method:id with id = H(vk) (where H is a public hash function).
The equations express that the party controls a valid DID of a given method

by a signature on the transaction, and for which a valid credential has been
issued by the vLEI issuer. Using this NIZK, the validity is determined in the
expected way.10 First, aside of the referenced locked UTxO set Oi, a party Pi
10 We assume that the CRS required for the NIZK is part of the parameter set of

the Hydra protocol, and part of the initial agreement of participants. Likewise, we
assume that the accepted DID method is publicly known, such as KERI for vLEI.

20

specifies, in the data field of the output of the transaction, the two party specific
elements of the statement (com, C) and the proof π of the above relation. Second,
a valid commit transaction must satisfy the property of the standard commit
transaction regarding the validity ofOi. Additionally, πi must be a valid proof for
the statement x = (vklei, τ, comi, Ci, pkR, method), composed of the two values
(comi, Ci) and the public parameters pkR, vklei (obtained via reference to state
machine identified by tlei). The remaining actions remain the same, in particular,
collecting those commitments is now done as described in Section 4.1.

5.2 Consistency in Case of Full Corruption

A design goal of our audit protocol is simplicity, in particular easy deployment
on top of any Hydra head implementation. A crucial assumption, backed with
real-world identification, is that identified parties are disincentivized to fake the
reporting due to legal enforcement. It is still worthwhile to investigate what
guarantees we could still obtain if all Hydra head participants colluded.

In that setting it is not clear anymore what the “true” transaction graph looks
like, because this notion is not well-defined anymore. The best we can do here
is to have parties publicly commit to the transaction graph and prove it, using
a SNARK type of proof that the committed statistics in the form of the ZKS is
formed correctly based on the committed transaction graph. We further need a
sequence of such snapshots on the mainchain for security purposes in order to
avoid any sort of equivocation later. Those snapshots are further required to be
valid continuations of the state of the state channel and therefore, akin to typical
rollup systems, need a second SNARK to prove their validity. We observe that
such a solution is much more involved, both in design and deployment, as well
as with respect to the cost of performing consistent checkpoints.

6 Conclusion

Our work proposes the first auditable Layer 2 protocol, where a regulator can
audit a wide range of policies in a scalable and privacy-preserving manner. We
instantiate the protocol as an extension of Hydra state channels [10]. Our scheme
is very lightweight and the storage complexity depends only on the number of
supported policies and participants and not on the channels’ transaction graph.

Our work poses various questions for future work. First, our instantiation
assumes a set of pre-defined audit policies. Adding policies on the fly, after the
channel is opened, would be particularly useful. Additionally, one could consider
other policies, beyond aggregatable (cf. Section 4.5), that could be supported,
e.g., via storing a partial graph, and which policies require access to the full
graph, thus being impractical. Second, regarding privacy, there are two paths
for future work. First, a thorough exploration of audit commits could enhance
the scheme’s guarantees, as discussed briefly in Section 5.1. Second, existing
Layer 2 solutions offer minimal to no privacy guarantees w.r.t. participants in
the protocol. An interesting direction is defining auditable privacy-preserving

21

state channel protocols, that maintain a high level of privacy while also being
efficient. Third, our scheme assumes at least one honest participant. We briefly
discuss (Section 5.2) if auditing is possible when all participants collude, but
a more thorough analysis could investigate concrete implementations with such
guarantees. Finally, Hydra was recently enhanced with head merging [27], s.t. two
groups of participants can join a single head. This introduces auditing challenges,
e.g., if the heads support different policies, that merit further consideration.

References

1. W3c recommendation on decentralized identifiers. https://www.w3.org/TR/did-
core/ (2022), accessed: 2023-09-15

2. W3c recommendation on verifiable credentials. https://www.w3.org/TR/vc-data-
model/ (2022), accessed: 2023-09-15

3. Global legal entity identifier foundation (gleif). https://www.gleif.org/en/
about/this-is-gleif (2023), accessed: 2023-09-15

4. Legal identity identifier lookup service. https://www.lei-lookup.com/ (2023), ac-
cessed: 2023-09-15

5. Bank, E.C.: Exploring anonymity in central bank digital currencies
(2019), https://www.ecb.europa.eu/paym/intro/publications/pdf/ecb.
mipinfocus191217.en.pdf

6. Buterin, V., Illum, J., Nadler, M., Schär, F., Soleimani, A.: Blockchain privacy and
regulatory compliance: Towards a practical equilibrium. Available at SSRN (2023)

7. Cardano: Cardano. https://cardano.org/ (2023), [Online; accessed 7-March-
2023]

8. Chakravarty, M.M.T., Chapman, J., MacKenzie, K., Melkonian, O., Müller, J.,
Peyton Jones, M., Vinogradova, P., Wadler, P.: Native custom tokens in the ex-
tended utxo model. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of
Formal Methods, Verification and Validation: Applications. pp. 89–111. Springer
International Publishing, Cham (2020)

9. Chakravarty, M.M., Chapman, J., MacKenzie, K., Melkonian, O., Jones, M.P.,
Wadler, P.: The extended utxo model. In: 4th Workshop on Trusted Smart Con-
tracts (2020)

10. Chakravarty, M.M., Coretti, S., Fitzi, M., Gaži, P., Kant, P., Kiayias, A., Rus-
sell, A.: Fast isomorphic state channels. In: International Conference on Financial
Cryptography and Data Security. pp. 339–358. Springer (2021)

11. Chatzigiannis, P., Baldimtsi, F., Chalkias, K.: Sok: Auditability and account-
ability in distributed payment systems. In: Sako, K., Tippenhauer, N.O. (eds.)
Applied Cryptography and Network Security - 19th International Conference,
ACNS 2021, Kamakura, Japan, June 21-24, 2021, Proceedings, Part II. Lec-
ture Notes in Computer Science, vol. 12727, pp. 311–337. Springer (2021).
https://doi.org/10.1007/978-3-030-78375-4_13, https://doi.org/10.1007/
978-3-030-78375-4_13

12. Chen, Y., Ma, X., Tang, C., Au, M.H.: PGC: Decentralized confidential payment
system with auditability. In: Chen, L., Li, N., Liang, K., Schneider, S.A. (eds.)
ESORICS 2020, Part I. LNCS, vol. 12308, pp. 591–610. Springer, Heidelberg (Sep
2020). https://doi.org/10.1007/978-3-030-58951-6_29

22

https://www.gleif.org/en/about/this-is-gleif
https://www.gleif.org/en/about/this-is-gleif
https://www.ecb.europa.eu/paym/intro/publications/pdf/ecb.mipinfocus191217.en.pdf
https://www.ecb.europa.eu/paym/intro/publications/pdf/ecb.mipinfocus191217.en.pdf
https://cardano.org/
https://doi.org/10.1007/978-3-030-78375-4_13
https://doi.org/10.1007/978-3-030-78375-4_13
https://doi.org/10.1007/978-3-030-78375-4_13
https://doi.org/10.1007/978-3-030-58951-6_29

13. Dagher, G.G., Bünz, B., Bonneau, J., Clark, J., Boneh, D.: Provisions: Privacy-
preserving proofs of solvency for bitcoin exchanges. In: Ray, I., Li, N., Kruegel, C.
(eds.) ACM CCS 2015. pp. 720–731. ACM Press (Oct 2015). https://doi.org/
10.1145/2810103.2813674

14. Damgård, I., Triandopoulos, N.: Supporting non-membership proofs with bilinear-
map accumulators. Cryptology ePrint Archive, Report 2008/538 (2008), https:
//eprint.iacr.org/2008/538

15. Dziembowski, S., Eckey, L., Faust, S., Hesse, J., Hostáková, K.: Multi-party virtual
state channels. In: Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. pp. 625–656. Springer (2019)

16. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: PERUN: Virtual pay-
ment channels over cryptographic currencies. Cryptology ePrint Archive, Report
2017/635 (2017), https://eprint.iacr.org/2017/635

17. of England, B.: Central bank digital currency opportunities, challenges and design
(2020), https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/
central-bank-digital-currency-opportunities-challenges-and-design.pdf

18. G7-UK2021: Public policy principles for retail central bank digital currencies.
https://www.mof.go.jp/english/policy/international_policy/convention/
g7/g7_20211013_2.pdf (2021)

19. Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anonymous
payments. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 81–
98. Springer, Heidelberg (Feb 2016)

20. Green, M., Miers, I.: Bolt: Anonymous payment channels for decentralized curren-
cies. Cryptology ePrint Archive, Report 2016/701 (2016), https://eprint.iacr.
org/2016/701

21. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: Off the
chain transactions. Cryptology ePrint Archive, Report 2019/360 (2019), https:
//eprint.iacr.org/2019/360

22. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: Layer-
two blockchain protocols. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS,
vol. 12059, pp. 201–226. Springer, Heidelberg (Feb 2020). https://doi.org/10.
1007/978-3-030-51280-4_12

23. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: Tumblebit:
An untrusted bitcoin-compatible anonymous payment hub. In: Network and Dis-
tributed System Security Symposium (2017)

24. of International Settlements, B.: Central bank digital currencies: Foundational
principles and core features. https://www.bis.org/publ/othp33.htm (2020)

25. of International Settlements, B.: Central bank digital currencies: foundational prin-
ciples and core features (2020), https://www.bis.org/publ/othp33.pdf

26. Jourenko, M., Kurazumi, K., Larangeira, M., Tanaka, K.: SoK: A taxonomy
for layer-2 scalability related protocols for cryptocurrencies. Cryptology ePrint
Archive, Report 2019/352 (2019), https://eprint.iacr.org/2019/352

27. Jourenko, M., Larangeira, M.: State machines across isomorphic layer 2 ledgers
(2023)

28. Jourenko, M., Larangeira, M., Tanaka, K.: Interhead hydra: Two heads are better
than one. In: Pardalos, P., Kotsireas, I., Guo, Y., Knottenbelt, W. (eds.) Math-
ematical Research for Blockchain Economy. pp. 187–212. Springer International
Publishing, Cham (2023)

29. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to poly-
nomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,

23

https://doi.org/10.1145/2810103.2813674
https://doi.org/10.1145/2810103.2813674
https://eprint.iacr.org/2008/538
https://eprint.iacr.org/2008/538
https://eprint.iacr.org/2017/635
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf
https://www.mof.go.jp/english/policy/international_policy/convention/g7/g7_20211013_2.pdf
https://www.mof.go.jp/english/policy/international_policy/convention/g7/g7_20211013_2.pdf
https://eprint.iacr.org/2016/701
https://eprint.iacr.org/2016/701
https://eprint.iacr.org/2019/360
https://eprint.iacr.org/2019/360
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://www.bis.org/publ/othp33.htm
https://www.bis.org/publ/othp33.pdf
https://eprint.iacr.org/2019/352

vol. 6477, pp. 177–194. Springer, Heidelberg (Dec 2010). https://doi.org/10.
1007/978-3-642-17373-8_11

30. Kiayias, A., Kohlweiss, M., Sarencheh, A.: PEReDi: Privacy-enhanced, regulated
and distributed central bank digital currencies. In: Yin, H., Stavrou, A., Cremers,
C., Shi, E. (eds.) ACM CCS 2022. pp. 1739–1752. ACM Press (Nov 2022). https:
//doi.org/10.1145/3548606.3560707

31. Kiayias, A., Litos, O.S.T.: A composable security treatment of the lightning net-
work. Cryptology ePrint Archive, Report 2019/778 (2019), https://eprint.iacr.
org/2019/778

32. Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: 44th FOCS. pp. 80–
91. IEEE Computer Society Press (Oct 2003). https://doi.org/10.1109/SFCS.
2003.1238183

33. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
34. Narula, N., Vasquez, W., Virza, M.: zkLedger: Privacy-preserving auditing for

distributed ledgers. Cryptology ePrint Archive, Report 2018/241 (2018), https:
//eprint.iacr.org/2018/241

35. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments. See https://lightning. network/lightning-network-paper. pdf (2016)

36. Stella, P.: Balancing confidentiality and auditability in a distributed ledger en-
vironment (2020), https://www.ecb.europa.eu/paym/intro/publications/pdf/
ecb.miptopical200212.en.pdf

37. Tairi, E., Moreno-Sanchez, P., Maffei, M.: A2L: Anonymous atomic locks for scal-
ability and interoperability in payment channel hubs. Cryptology ePrint Archive,
Report 2019/589 (2019), https://eprint.iacr.org/2019/589

38. Tas, E.N., Boneh, D.: Vector commitments with efficient updates. Cryp-
tology ePrint Archive, Paper 2023/1830 (2023). https://doi.org/10.4230/
LIPICS.AFT.2023.29, https://eprint.iacr.org/2023/1830, https://eprint.
iacr.org/2023/1830

39. Wüst, K., Kostiainen, K., Capkun, V., Capkun, S.: PRCash: Fast, private and
regulated transactions for digital currencies. In: Goldberg, I., Moore, T. (eds.) FC
2019. LNCS, vol. 11598, pp. 158–178. Springer, Heidelberg (Feb 2019). https:
//doi.org/10.1007/978-3-030-32101-7_11

40. Wüst, K., Kostiainen, K., Delius, N., Capkun, S.: Platypus: A central bank digital
currency with unlinkable transactions and privacy-preserving regulation. In: Yin,
H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022. pp. 2947–2960. ACM
Press (Nov 2022). https://doi.org/10.1145/3548606.3560617

41. Zahnentferner, J.: Chimeric ledgers: Translating and unifying UTXO-based and
account-based cryptocurrencies. Cryptology ePrint Archive, Report 2018/262
(2018), https://eprint.iacr.org/2018/262

A Hydra Details
The Hydra Layer 2 construction [10] was developed for the Cardano blockchain [7].
It is defined as a Constraint-Emitting Machine derived from Mealy Machines [9]
and puts forth an isomorphic state channel. Briefly, it allows an arbitrary set
of players to take part of the ledger’s state off-chain into a so called “Hydra
head”, i.e., group of participants that interact directly with each other, in the
same manner as on Layer 1. In detail, the parties act on the ledger, which is ab-
stracted as a state machine. The state machine model, inspired by the Extended
UTxO model [9] and Chimeric Ledgers [41], is as follows.

24

https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1145/3548606.3560707
https://eprint.iacr.org/2019/778
https://eprint.iacr.org/2019/778
https://doi.org/10.1109/SFCS.2003.1238183
https://doi.org/10.1109/SFCS.2003.1238183
https://eprint.iacr.org/2018/241
https://eprint.iacr.org/2018/241
https://www.ecb.europa.eu/paym/intro/publications/pdf/ecb.miptopical200212.en.pdf
https://www.ecb.europa.eu/paym/intro/publications/pdf/ecb.miptopical200212.en.pdf
https://eprint.iacr.org/2019/589
https://doi.org/10.4230/LIPICS.AFT.2023.29
https://doi.org/10.4230/LIPICS.AFT.2023.29
https://eprint.iacr.org/2023/1830
https://eprint.iacr.org/2023/1830
https://eprint.iacr.org/2023/1830
https://doi.org/10.1007/978-3-030-32101-7_11
https://doi.org/10.1007/978-3-030-32101-7_11
https://doi.org/10.1145/3548606.3560617
https://eprint.iacr.org/2018/262

Definition 4 (Ledger State Machine). Given a hash function H, the Ledger
State Machine is a set of primitives and types such the former is given by
• Four strings α, D, θ and w, for respectively the address, data, value/quantity
of an asset, and the cryptographic witness;

• Script S: a script (program) constructed in the ledger’s programming lan-
guage;

• List [. . .]: an ordered list of items;

whereas the types are given by
• UTxO: A single UTxO O, also named output, is given by the tuple 〈α, θ,H(D)〉;
• Input: A single input I is given by the tuple 〈O,S, D,w〉;
• Transaction: A transaction τ is given by a set of inputs and an ordered list
of outputs, that is τ = 〈[I], [O]〉;

• Ledger: It is modeled as a collection of transactions [τ], that is L = [τ].

From now we present a brief description of some components of the Hydra
Protocol which suffice for our purpose. For a complete description of the protocol
we refer the reader to [10].

Hydra is parameterized by the signature algorithms MS-Setup (generate
global setup parameters), MS-KG (generate multi-signature key pairs), MS-AVK
(generate multi-signature aggregate public key). In addition, while the Hydra
head operates, there exist two core data types:
• a snapshot U = 〈s, U, h, T, S, σ̂〉, where: i) s is its number which is generated
sequentially; ii) U is its corresponding UTxO set; iii) h is the hash value of
the UTxO set; iv) T is the set of transactions that relates this snapshot to
the previous one; v) S is its array of signatures (a signature accumulator);
vi) σ̂ is the all participants multi-signature of the snapshot.

• a transaction τ = 〈i, tx, h, S, σ̂〉, where: i) i is the index of the party issuing
it; ii) tx is the transaction’s information; iii) h is the hash value of tx; iv) S
is its array of signatures; v) σ̂ is its multi-signature.

For completeness, in order to denote the snapshot’s number, we use U .s (similar
for all other parameters of a snapshot and transaction).
Party gathering. Prior to initiating the head protocol, each party Pi obtains
the global setup parameters as S ← MS-Setup and generates their own key pair
〈vki, ski〉 ← MS-KG(S). In addition, each party collects their respective UTxO
Oi, forming the initial UTxO set O0. Finally, given the vector vk of all parties’
public keys, the aggregate public key is generated vkagg ← MS-AVK(S, vk) and
published. After the parties gather, the Hydra Protocol comprises the actions in
Table 1, and proceeds as follows.
Initialization. To initialize the head, a “head initiator” posts the state iden-
tifier init within a transaction on the main ledger, which establishes the head’s
initial state and parameters. Following, each party acknowledges and verifies
the initialization by posting a transaction with a commit state identifier, which
locks their outputs to the Hydra head. If all goes well, the initiator collects the
commitments and formally opens the head via the publication of a transaction
with collectCom in the main ledger. Otherwise, i.e., if a party fails to commit

25

correctly, the head is aborted, which can be publicly verifiable via a published
transaction containing abort in the ledger.
Transaction generation. Once that head is initialized, in order to create a
new transaction, a party first creates the τ , which contains the transaction’s
information (i.e., who sends how much value to whom). Next, it multicasts τ to
all head members via the message with the reqTx state identifier. Each member
validates τ w.r.t. their local state and, if the validation is successful, sends a
message with the ackTx response which contains a signature on τ with their own
key. When all members reply with ackTx, the transaction’s creator sends confTx
to all parties, which contains a multisignature (produced from the vector of each
member’s individual signature). Finally, upon receiving confTx each party inserts
τ to their respective local state.
State change/Snapshot generation. Every head state change is completed
only with a new snapshot. In order to create a new snapshot, a 3-step process
takes place, which is (1) the “snapshot leader” collects all not-yet-snapshot trans-
actions into the to be confirmed snapshot U along with the snapshot’s number.
Then (2) it multicasts U to all head members via messages containing reqSn,
and, as long as U is valid w.r.t. to its local state, each party responds with ackSn
which contains a signature. Finally, (3) upon collecting signatures from all mem-
bers, the leader creates a multisignature and sends the snapshot confirmation
confSn to all other parties, which then accept U as the latest canonical one.
Thereby a new state of the head.
Closing. To close the head, any party P publishes a close via a regular trans-
action on the main ledger, which contains a confirmed, signed snapshot. If the
snapshot is not the latest, i.e., if P attempts to omit some transactions by pub-
lishing an old snapshot, other parties can contest the closing by publishing the
transaction containing cont within a pre-specified period, which has the (cor-
rect) latest snapshot (as given by Table 1). Finally, after the contesting period
ends, a message that has fanout is published on the ledger, allowing each party
to redeem their funds from the Hydra head.
State Thread Token. The EUTxO model was extended [8] with multi-asset
support, i.e., the possibility to store token bundles, in the EUTxOma ledger
model. These token bundles not only store a ledger’s native currency, but also
fungible and non-fungible tokens within a UTxOs θ. A relevant application of
this are state thread tokens which are non-fungible tokens stored within a state
machine’s θ. A token ts is minted in a CEMs initial state. Whenever a CEM
performs a state transition, ts is moved along to be present in the UTxO that
represents the CEMs new state. Lastly, ts is burned when the CEM terminates.
Moreover, we note that as ts is a unique non-fungible token, therefore it uniquely
identifies the CEM which it exists in.

Security Events

Here we review the original Hydra protocol security events, regarding the original
construction in [10].

Consider the following random variables:

26

• Ŝi: the set of all transactions tx for which the Pi, while uncorrupted, output
(seen, sid, tx);

• C̄i: the set of all transactions tx for which party Pi, while uncorrupted
(conf, sid, tx);

• H: the set of parties that remained uncorrupted.
• Consistency (Head): For all, i, j, O0◦(C̄i∪C̄j) 6= ⊥, i.e., no two uncorrupted
parties see conflicting transactions confirmed;

• Liveness (Head): For any transaction tx input via (new, sid, tx), the follow-
ing eventually holds: tx ∈ ∩i∈[n]C̄i ∨ ∀i : O0 ◦ (C̄i ∪ {tx}) = ⊥, i.e., every
party will observe the transaction confirmed or every party will observe the
transaction in conflict with his confirmed transaction;

• Soundness (Chain): ∃S̃ ⊆ ∩i∈HŜi : Ofinal = O0 ◦ S̃, i.e., the final UTxO set
results from a set of seen transactions;

• Completeness (Chain): For S̃ as above, ∪Pi∈HcontC̄i ⊆ S̃, i.e., all transac-
tions seen as confirmed by an honest party at the end of the protocol are
considered.

B Nearly Zero Knowledge Sets (ZKS)

Our protocol (cf. Section 4) makes use of the KZG nearly ZKS scheme based
on polynomial commitments [29], which supports updatable commitments [38].
Therefore, let us first revisit polynomial commitments (Figure 2) and then we
include the nearly ZKS scheme, which is based on the PolyCommitPed implemen-
tation of the KZG polynomial commitments (Figure 3).

The polynomial commitment implementation PolyCommitPed [29] was shown
to be a secure polynomial commitment under the t-SDH assumption holds in
G, i.e., it satisfies the following properties:
• Correctness. Let PK ← Setup(1λ) and C ← Commit(PK, φ(x)). For a com-
mitment C output by Commit(PK, φ(x)), and all φ(x) ∈ Zp[x],
− the output of Open(PK, C, φ(x)) is successfully verified by VerifyPoly(PK, C, φ(x)),

and,
− any 〈i, φ(i), wi〉 output by CreateWitness(PK, φ(x), i) is successfully ver-

ified by verifyEval(PK, C, i, φ(i), wi).
• Polynomial Binding. For all adversaries A:

Pr(PK← Setup(1λ), (C, 〈φ(x), φ′(x)〉)← A(PK) :
VerifyPoly(PK, C, φ(x)) = 1∧

VerifyPoly(PK, C, φ′(x)) = 1∧
φ(x) 6= φ′(x))

= ε(λ).

27

Setup(1λ, t) generates an appropriate algebraic structure G and a commitment
public-private key pair 〈PK, SK〉 to commit to a polynomial of degree ≤ t.
For simplicity, we add G to the public key PK. Setup is run by a trusted
or distributed authority. Note that SK is not required in the rest of the scheme.

Commit(PK, φ(x)) outputs a commitment C to a polynomial φ(x) for the
public key PK, and some associated decommitment information d. (In some
constructions, d is null.)

Open(PK, C, φ(x), d) outputs the polynomial φ(x) used while creating the
commitment, with decommitment information d.

VerifyPoly(PK, C, φ(x), d) verifies that C is a commitment to φ(x), created
with decommitment information d. If so it outputs 1, otherwise it outputs 0.

CreateWitness(PK, φ(x), i, d) outputs 〈i, φ(i), wi〉, where wi is a witness for the
evaluation φ(i) of φ(x) at the index i and d is the decommitment information.

VerifyEval(PK, C, i, φ(i), wi) verifies that φ(i) is indeed the evaluation at the
index i of the polynomial committed in C. If so it outputs 1, otherwise it
outputs 0.

KZG Polynomial Commitments

Fig. 2. KZG Polynomial commitments [29] commits to a polynomial φ(x) of degree
≤ t.

28

• Evaluation Binding. For all adversaries A:

Pr(PK← Setup(1λ), (C, 〈i, φ(i), wi〉), 〈i, φ(i)′, w′i〉)← A(PK) :
VerifyEval(PK, C, i, φ(i), wi) = 1∧

VerifyEval(PK, C, i, φ(i)′, w′i) = 1∧
φ(i) 6= φ(i)′)

= ε(λ).

• Hiding. Given 〈PK, C〉 and {〈i, φ(ij), wφij
〉 : j ∈ [1, deg(φ)]} for a polynomial

φ(x) ∈ Zp[x] such that VerifyEval(PK, C, ij , φ(ij), wφij
) = 1 for each j:

− no adversary A can determine φ(̄i) with non-negligible probability for
any unqueried ī (computational hiding) or

− no computationally unbounded adversary Ā has any information about
φ(̄i) for any unqueried index ī (unconditional hiding).

SetupZKS(1λ, t) outputs PK = Setup(1λ, t). t is an upper bound on the size of
the set that may be committed.

CommitZKS(PK, S) requires |S| ≤ t. Define φ(x) =
∏
kj∈S

(x − kj) ∈ Zp[x].
Output C = Commit(PK, φ(x)). Let φ̄(x) ∈ Zp[x] be the random degree t
polynomial chosen in PolyCommitPed.

QueryZKS(PK, C, kj) allows the committer to create a proof that
either kj ∈ S or kj 6∈ S. Compute 〈kj , φ(kj), φ̄(kj), wj〉 =
CreateWitness(PK, φ(kj), φ̄(kj), kj).
(i) If kj ∈ S, output πSj = (kj , wj , φ(kj),⊥).
(ii) If kj 6∈ S, create zj = gφ(kj)hφ̄(kj) and a ZK proof of knowledge of
φ(kj) and φ̄(kj) in zj = gφ(kj)hφ̄(kj). Let γj = 〈zj ,ZK proof〉. Output
πSj = (kj , wj ,⊥, γj).

VerifyZKS(PK, C, πSj) parses πSj as (kj , wj , φ̄(kj), γj).
(i) If φ̄(kj) 6= ⊥, then kj ∈ S. Output 1 if VerifyEval(PK, C, kj , 0, φ̄(kj), wj) = 1.
(ii) If γj 6= ⊥, then kj 6∈ S. Parse γj as 〈zj ,ZK proof〉. If e(C, g) =
e(wj , gα−kj)e(zj , g) and the ZK proof of knowledge of zj is valid, output 1.
Output 0 if either check fails.

Nearly ZKS scheme

Fig. 3. The KZG nearly ZKS scheme based on polynomial commitments [29].

29

	Scalable and Lightweight State-Channel Audits
	Introduction
	Preliminaries
	Hydra: Isomorphic State Channels
	Decentralized Identifiers and vLEIs

	Auditable State Channels
	Auditable Hydra Isomorphic State Channels
	Auditable Hydra
	Security Experiment
	Snapshots and Audit Protocol
	Security Analysis
	Implementation Considerations

	Enhancements
	Privacy-Preserving Audit-Commits
	Consistency in Case of Full Corruption

	Conclusion
	Hydra Details
	Nearly Zero Knowledge Sets (ZKS)

