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Abstract. In this short note, we introduce a specific class of rank two lattices over CM fields en-

dowed with additional symmetries, which are involved in the decomposition of algebraic integers

in Hermitian squares. As an application, we show an elementary reduction from the module-LIP

problem in rank 2 over a CM or totally real number field to the finding of a square basis in such

lattices.

1. Introduction

One of the most famous results in elementary number theory is Fermat’s two-square theorem.

Theorem (Fermat, 1640). An odd prime p is a sum of two integral squares if and only if it is

congruent to 1 modulo 4.

While its initial proof is purely arithmetic and relies on the elegant idea of infinite descent, a

more geometric proof relying on Minkowski’s first theorem briefly states as follows:

The direct implication is clear from modular arithmetic, so let choose p to be a prime congruent

to 1 modulo 4, so that −1 is a square modulo p; hence, there exists an integer u such that −1 ≡ u2

mod p. Consider the plane lattice Λu =

(
1 0

u p

)
Z2. It has covolume p, so that by Minkowski’s first

theorem, there exists a non-zero lattice vector x with (squared) norm smaller than 4
3vol(Λu) =

4p
3 .

However, the squared norm of any element in Λu must be divisible by p, implying that ∥x∥2 = p.

By construction, this norm is a sum of squared integers.

From this seemingly simple proof, we can make a few observations:

• The lattice Λu is cocyclic, i.e. of the form {x, y ∈ Z2 | xu ≡ y (mod p)}.
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(u, 1)

(p, 0)

Figure 1. Example of the lattice obtained for p = 5, with u = 2. The hatched

disk is the Minkowski bound. Note that the lattice Λu is a rotation/scaling of Z2
,

the square of minimal vectors being highlighted.

• Since u2 ≡ −1 (mod p), then Λu is stable under the symmetry (x, y) 7→ (−y, x), which

is of order 4, indeed, for ux ≡ y, we find by multiplying by u on both sides−x ≡ uy, i.e.

(−y, x) ∈ Lu.

• Thus, taking (a, b) to be the shortest element of this lattice, which norm is a2 + b2 = p,

the sublattice

(
a −b
b a

)
Z2

has a covolume p by determinant computation, meaning this

matrix is actually a basis of Λu. This means that the lattice Λu is isometric to

√
pZ2

.

See Figure 1 for a small exemple, where we can observe the square structure of the lattice Λu and

the ball of radius being Minkowski’s bound.

In this note, we propose to study some algebraic generalizations of such lattices. They arise

naturally in study of two-squares decomposition over a totally real number field and more im-

portantly in hermitian squares decomposition over the maximal order of a CM field— i.e. decom-

posing an element as αᾱ+ ββ̄ for some algebraic integer α and β.

We introduce lattices playing the same role as the Λu in the proof of Fermat’s theorem. Their

geometry is now more subtle, but we still retrieve some interesting properties. In particular,

these lattices—now modules of rank two in the CM field—exhibit an exceptional symmetry of

order 4, namely (x, y) 7→ (−ȳ, x̄). We discuss further the algorithmic reduction of such lattices,

and, in particular, show that in the totally real case, we can rely on a method of Lenstra and

Silverberg [9] to retrieve the shortest vectors in deterministic polynomial time.
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As an application of this preliminary work, we show a perhaps surprising Cook reduction

between the so-called module-LIP ([11]) problem over CM fields and the problem of finding short

vectors in these highly symmetric lattices coming from decompositions. Informally, this problem

aims at recovering a (secret) basis of a (public) lattice of prescribed (public) Gram-matrix. We can

state this reduction as:

Theorem. There exists a Cook reduction from the (O2
k-)module-LIP over CM field problem to a

shortest vector problem on a rank two lattice with explicit symmetry group, with exactly one call to

the latter oracle.

We extend this result to any free modules over k, at the cost of requiring a mild randomization.

Theorem. There exists a probabilistic polynomial time reduction — in the input data, the log-

discriminant of k and the residue at 1 of the zeta function of k+— from the (free-)module-LIP over

CM field problem to a shortest vector problem on a rank two lattice with explicit symmetry group,

with exactly one call to the latter oracle.

For a totally real field, these results readily give a deterministic polynomial time algorithm

for this problem, simplifying the approach of [11]: there exists a deterministic polynomial time

algorithm for O2
k-module-LIP over totally real fields.

2. On hermitian decomposition lattices

2.0.1. Let us fix a CM-field or a totally real field k of absolute degree d and k+ its maximal totally

real subfield. We will denote by Ok and Ok+ their respective rings of integers—k+ classically

being k itself when totally real. The cone of totally positive element is denoted by k++
. The

complex conjugation of k is denoted by ·̄—being the identity map in the totally real case. We

write kR for the scalar extension k ⊗Q R. We write ∆k for its discriminant.

2.0.2. We say that a kR-bilinear form g : knR × knR → kR is non-degenerate when g(x, x) = 0

if and only if x = 0, and is positive definite if g(x, x) ∈ k++
R for all x ∈ knR \{0}. Mildly abusing

terminology, an hermitian form is a non-degenerate positive definite kR-bilinear form g which

is hermitian with respect to the involution, that is: g(x, y) = g(y, x) for any x, y ∈ kR. We

will focus on the standard form (x, y) 7→ x1ȳ1 +x2ȳ2 and generically denote the corresponding

k-norm ∥(x1, y1)∥2k = x1x̄1 + x2x̄2. In the following, we will always see lattices as projective
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modules embedded in knR for some rank n, so their Hermitian form is—unless explicitly stated

otherwise—the standard form.

For a complete reference on algebraic number theory and its related algorithms, we let the

reader refer to [5, Chapter 4-6] and [1].

2.1. Hermitian decomposition in squares and lattices.

2.1.1. We are interested in the decomposition of a totally real positive element into a sum of

two Hermitian squares, in the following sense.

Definition 2.1. Let g ∈ Ok+ , we say that g admits an Hermitian decomposition in two squares

if there exists (α, β) ∈ O2
k such that g = αα + ββ. This decomposition is primitive if in addition,

αOk + βOk = Ok.

When k is totally real, this corresponds verbatim to a decomposition in two integral squares.

2.1.2. Analogously to the importance of the root of −1 modulo a prime in Fermat’s theorem,

we introduce the following class of integers for studying Hermitian decompositions modulo g.

Definition 2.2. For a totally positive element g ∈ Ok+ , we say that an element u ∈ Ok is an

Hermitian root of −1 modulo g if uū = −1 (mod g).

Further, we will refer to u simply as a root when there is no possible ambiguity; notice that

this is a (square)-root of -1 for totally real fields.

Note that such elements are usually far from being unique in the CM case. Indeed, their

cardinality is controlled by a simple product of curves of degree 2 in residue fields.

Lemma 2.1. Let β ∈ Ok be a totally negative element such that k ∼= k+[x]/(x2 − β). Consider

the decomposition of the ideal gOk into prime factors gOk = p1 · · · ps and assume that pi ̸= pj for

i ̸= j. Then the number of Hermitian roots modulo g is exactly
∏s

i=1 |Cβ2(Ok/pi)|, where for F
being a finite field of characteristic p and an element a ∈ F, we define the following curve:

Ca(F) := {(x, y) ∈ F2|x2 + ay2 = −1}

Proof. By the Chinese Remainder Theorem, we decompose the residue field at g as Ok/g ∼=
Ok/p1...Ok/ps. We see that there is a bijection between the set of Hermitian roots of -1 modulo

g and the elements of form (u1, ..., us) ∈ Ok/p1...Ok/ps such that every ui is an Hermitian

root modulo pi. Consequently, it is enough to find the number of Hermitian roots in the ring
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of the form Ok/p, where p is a prime ideal of Ok. Note that Ok/p is a finite field and that

uu = (x + βy)(x − βy) = x2 + β2y2 = −1 (mod g) defines a bijection between the set of

Hermitian roots modulo p and Cβ(Ok/p).

As a byproduct, this means that we can assert the existence of such root as a product of Hilbert

symbols an Hermitian root of -1 modulo g exists if and only if

∏s
i=1(β

2,−1)Ok/pi .

Exemple. In the case when k = Q(i); Ok = Z[i] and g = p is a prime number, by Gauss

summation technique, the curve C1(Fp) has exactly p−
(−1

p

)
points.

2.1.3. We now introduce our main geometric object of interest.

Definition 2.3. For a totally positive element g ∈ Ok+ and an Hermitian root u modulo g, the

(g-)Hermitian decomposition lattice at root u is the cocyclic lattice consisting of vectors mod g-

orthogonal to u in O2
k, that is to say

Λu :=
{
(α, β) ∈ O2

k |uα ≡ β (mod g)
}

Remark. We can slightly generalize this definition to define the lattice as

Λu,v :=
{
(α, β) ∈ O2

k |uα ≡ vβ (mod g)
}
,

for some u, v such that uū ≡ −vv̄ (mod g)—which is equivalent when u or v is inversible

(mod g), as their quotient is an Hermitian root of -1. In the general case, this does not change

the rest of the following discussion and especially their algorithmic reduction properties, as these

lattices will have exactly the same symmetries as the standard decomposition lattices. As such, we

stick to this definition for the sake of clarity of exposition.

As a cocyclic lattice modulo g, this lattice is of determinant gOk and a simple basis, in Hermite

Normal Form over Ok, is given as the columns of the matrix

(
1 0

u g

)
. Indeed, fix (θ, ρ) ∈ Λu.

As by definition uθ = ρ (mod g), there exists δ ∈ Ok such that ρ = uθ + gδ. Therefore

(θ, ρ) = (θ, uθ + gδ) = δ(0, g) + θ(1, u) and we conclude by equality of determinants.

2.1.4. Note that an Hermitian decomposition lattice possesses a nontrivial automorphism, called

conjugate rotation given by σ :

(
α

β

)
−→

(
−β
α

)
. Indeed, for any (α, β) ∈ Λu, we have uα ≡ β

(mod g), so that ūᾱ ≡ β̄ and so by multiplying by −u on both sides: −β̄u ≡ −uūᾱ ≡ α

(mod g) —the conjugation action being compatible with the projection modulo g as g is totally
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real. Remark that for any x ∈ k2, σ(u) is k-orthogonal to u for the standard Hermitian form

⟨x, y⟩ = xT ȳ.

2.1.5. We say that an Hermitian decomposition lattice admits a square basis if there exists a

vector x = (α, β) ∈ Λu such that (x, σ(x)) is a basis of Λu, that is:

Λu =

(
α

β

)
Ok ⊥

(
−β
α

)
Ok.

These bases link the decomposition lattices and the Hermitian decompositions in the following

sense:

Lemma 2.2. If an Hermitian decomposition lattice Λu admits a square basis given by vector (α, β)

then g admits an Hermitian decomposition g = αα+ ββ.

Proof. As being a basis of the decomposition lattice, we have gOk = det(Λu) = (αα+ ββ)Ok.

Remark that when a decomposition lattice admits a square basis, then the conjugate lattice

Λu = {α, β ∈ Ok | ᾱu ≡ β̄ (mod g)} = {α, β ∈ Ok |αū ≡ β (mod g)} = Λū also admits a

square basis. We conjecture that this result is far more general and that all decomposition lattices

are isometric (this is trivially the case when they admit a square basis):

Conjecture 1. Let k be a CM field, g ∈ Ok+ and u, v two Hermitian roots of -1 modulo g, then

Λu
∼= Λv .

Remark. This conjecture is true when k is totally real and g is a prime. Indeed, in this case, being

a Hermitian root of -1 modulo g is just being a square root in the residue fieldOk/(g), so that there

are only two such elements in the field, say u and −u. Hence, there are only two different latices,

Λ±u, and the isometry between the two is given by the linear transformation (x, y) 7→ (x,−y).

The converse result of Lemma 2.2, i.e. that every decomposition lattice gives rise to a square

basis is a natural but (apparently) complex question. It is the case over the integers and over

the Gaussian integers for instance, but we were unable to (dis)prove it for general CM fields. A

possible obstruction comes from the gap between the length of the second vector of a reduced

basis and the shortest length in the lattice. More precisely, if we take x = (α, β) to be the shortest

vector of Λu, then by action of the conjugate rotation, (x, σ(x)) is a basis of a sublattice X of Λu,

so that its determinant is only a multiple of det(Λu). It is tempting to think that since x is one of
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the shortest vectors of Λu, any basis of the form (x, y) for y having a larger norm should be itself

a sublattice of X . For “small” enough number rings (for instance the Gaussian integers or rings

of integers of cyclotomics of small conductor) we can indeed conclude, thanks to Minkowski’s

first theorem. We quantify this smallness by the following generalized Hermite constant (also

called multiplicative Icaza-Humbert constant, from [8]), defined as:

γ(k, n) := sup
L

min
x∈L

N(∥x∥2k)
1
n

where X varies in the moduli space of Ok-lattices of unit determinant and ∥ · ∥ is the norm of

k+—in this formalism we recover a Z lattice by pushforward as taking the Euclidean norm as

the composition of ∥.∥2k by the absolute trace of k.

Proposition 2.1. Suppose that the generalized Hermite constant γ(k, 2) is strictly smaller than 2,

then any decomposition lattice over k admits a square basis.

Proof. Let k be such a CM field, write d for its degree and take Λu a decomposition lattice for

g ∈ Ok+ . Then, taking x = (α, β) as a shortest vector, and writing X the sublattice spanned by

x and σ(x), we have that det(X) must be a multiple of g. But by orthogonality of x and σ(x),

det(X) = (αᾱ+ ββ̄), so that by taking norms of their generators, we have
N(αᾱ+ββ̄)

N(g) ∈ N. But

by definition of generalized Hermite constant, we find: N(αᾱ+ ββ̄) ⩽ γ(k, 2)N(g), so that the

ratio
N(αᾱ+ββ̄)

N(g) must be equal to 1.

Remark. The proposition’s hypothesis applies for instance to:

• Z: this recovers the geometric proof of Fermat’s two square theorem.

• Z[i]: this is the complex analog of Fermat’s two squares theorem. As a byproduct, it gives

a very intuitive proof of Lagrange’s four-squares theorem (as decomposing each Hermitian

factor xx̄ in a sum of two squares itself).

2.2. Effective Reduction of Decomposition Lattices.

2.2.1. Assume that a given decomposition lattice Λu admits a square basis. To find the corre-

sponding Hermitian decomposition, we need to explicitly determine this basis. This is an instance

of the so-called module-svp problem for a very particular kind of rank 2 lattice overOk, endowed

with the conjugate rotation. Computationally speaking, we always assume that the ring of inte-

gers of k and k+ has been computed and is polynomially represented, so that computations in

the field, ring of integers and with ideals are polynomial time—see for instance [1] for a survey

on standard representation techniques.
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2.2.2. Using Pushforward to Z. We can always forget about the additional structure and look

at the decomposition lattice Lu as a Z-lattice. Thereof, we both forget its symmetry σ and the

algebraic structure coming as Ok-module. Solving the shortest vector problem in such a lattice

would have complexity O(22dPoly(d,B, log∆k)) where d is the absolute degree of k and B is a

bound on the bit representation of the elements g, u and on the ring of integers of k.

In the special case where k is a power-of-two cyclotomic—i.e. such that the Z-lattice cor-

responding to the order Ok for the canonical embedding is hypercubic— a better solution is

possible. Because a square basis of a decomposition lattice is k-orthogonal, the pushforward of

this basis over the integers Z is an orthogonal basis, i.e., the corresponding Z-lattice is hypercu-

bic. From the results of [2]—using basis reduction—and [6]—using Gaussian sampling, we know

that the time complexity of recovering an orthogonal basis in such a lattice is 2
n
2
+o(1)

Poly(n,B),

where n is the rank and B is an absolute bound on the bit representation of the lattice. In our

setting, this amounts to recovering the square basis in time O(2dPoly(d,B, log∆k)) the field we

are working in.

2.2.3. Applying the Lenstra-Silverberg Framework. When k is totally real, we can rely on a much

more powerful technique, introduced by Gentry and Szydlo in [7] and generalized by Lenstra

and Silverberg [10]. However, we will see that this framework fails very shortly to work on all

CM fields.

Recall that a CM-order is a Z-order A such that:

(1) it has no non-zero nilpotent elements;

(2) it is equipped with an automorphism ·̄ commuting with all morphisms from A to C.

The so-called standard A-lattice is the A−module endowed with the Euclidean form TrA(xx̄).

The main theorem of [10] is as follows, where an A-lattice is a Z-module L with an A-module

structure such that the inner product of L satisfies ⟨ax, y⟩ = ⟨x, āy⟩.

Theorem 2.1. There is a deterministic polynomial-time algorithm that, given a CM-order A and

an A-lattice L, decides whether or not L is A-isomorphic with the standard A-lattice, and if so,

computes such an A-isomorphism.

Let us now try to realize Λu as some rank 1 A-lattice for a good ring A. First, note that

the rotation σ is naturally of order 4 as σ ◦ σ = − Id, giving decomposition lattices a complex

structure. This is a complex structure on the module. As such, following [9], it seems natural to
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construct the modified group ring A = Ok[ι]/(ι
2 = −1), and write the square basis

(
α −β̄
β ᾱ

)
as the element α + ιβ. As the complex embeddings of the ring are of the form

1 x + ιy 7→
φ(x) ± φ(y) for φ : Ok 7→ C it is straightforward to check that A is a CM-order for the linear

extension of the conjugation of Ok with ῑ = −ι.

Remark. When k is a totally real field, this corresponds exactly to giving a complex structure on

k2, and the matrix

(
α −β
β α

)
is a linear representation of the complex number α+ iβ in M2,2(k).

We have the following norm compatibility between the norm on Λu and the standard norm

of A.

(1) ∀x = (α, β) ∈ Λu, ∥x∥2Z = Trk(αᾱ+ ββ̄) = TrA

(
(α+ ιβ)(α+ ιβ)

)
.

From this observation, we now want to realize Λu as a rank 1 A-module. Given a generic

element t + σr ∈ A, we have (t + ιr) · (α + ιβ) = (tα − rβ) + ι(rα + tβ), with uα ≡ β

(mod g).

2.2.4. Hence, when k is totally real we have

u(tα− rβ) ≡ t(uα)− r(uβ) ≡ tβ − rα (mod g).

Indeed, we have the additional relation −βu ≡ α (mod g) from multiplying by u the relation

αu ≡ β (mod g). As such Λu is a A lattice of rank 1 and can be seen as an ideal lattice of A. By

definition of A, we have Λu⊗A Λu ≡ Λu ·Λu = g2A, so that
1
gΛu is isometric to the standard A

lattice. In addition a polynomial representation of a Z-basis of the CM order A can be computed

in polynomial time as quadratic extension of the orderOk, which we assumed to be polynomially

represented (for instance, by relying on [3] in the relative quadratic case). Putting all together

with the Lenstra-Silverberg theorem, we find:

Theorem 2.2. For any totally real field k, any totally positive element g and u a root of -1 modulo

g, such that the decomposition lattice Λu of g admits a square basis, there exists a deterministic

polynomial time algorithm—in the input basis representation and log discriminant of k—computing

a square basis of Λu.

1
By classical ring theory, there are exactly 2[k : Q] such morphisms and we exhibit such number of them. It is

indeed clear that each of the (φ± φ)φ are distinct by evaluation.
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2.2.5. However, when k is a CM-field, we do not have this extra relation and we can only write

the following modular equality:

u(tα− rβ) ≡ t(uα)− r(uβ) ≡ tβ − rα (mod g),

forbidding the identification as an A-module. We are very close to being in the setting of a lattice

of a CM-order, described by Lenstra and Silverberg but not quite there. To get a proper A-module

structure, it is tempting to modify the multiplication law of A to be

(2) (t+ ιr) · (α+ ιβ) = (t+ ιr)(α+ ιβ)

but this action is non-commutative, excluding us from the CM-order framework.

The main obstruction in this construction essentially lies in the observation that conjugation

and conjugate rotation do not commute. Writing explicitly the action of these maps in k2 reveals

that the group they span is exactly D8, the dihedral group formed as the semi-direct product

of Z/4Z (spanned by the conjugate rotation) and Z/2Z (the conjugation)
2
. Hence, pushing

forward to the integers, we find that the decomposition lattices are Z[D2d] group rings. To

fall back into the framework of [10] and [9], we would need to find a non-commutative variant

of these algorithms. An alternative insight is that the ring A would lie in the cyclic algebra

(−1,−1)−1 = k[ζ, ι]/(ζ2 = −1, ι2 = −1, ζι = (−1)ιζ), i.e. would correspond to a quaternion

order over k+. In the vein of the Gentry-Szydlo algorithm, this would correspond to finding a

generator of a quaternionic ideal knowing its reduced norm. Finding such a non commutative

Gentry-Szydlo algorithm or a dihedral Lenstra-Silverberg algorithm seems to be the two faces of

the same coin, and we let understanding the interplay between these two approaches as a future

exciting open problem
3
.

3. A reduction of module-LIP

As an application of these objects, we show a reduction from the module-LIP problem in rank

2 to the computation of an Hermitian decomposition in squares with prescribed hermitian root,

or equivalently to the reduction of a given decomposition lattice.

2
A quick geometric consideration reveals that this is no surprise: the conjugate rotation acts as a ”rotation” of

angle π/2 in k2
and the conjugation is a reflection orthogonal to σ2

. This is the textbook geometric definition of the

dihedral group of order 8.

3
It appears that Chevignard et al. reached similar conclusions starting from the Gentry-Szydlo viewpoint [4].
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3.1. On the module-LIP problem. Following the work of [11], we first reproduce the defini-

tion of the so called module-lip.

Definition 3.1 (wcsMLIP). For B a pseudo-basis of a module-lattice M ⊂ kℓR with associated

pseudo-Gram matrixG, the worst-case search module-Lattice Isomorphism Problem with parameter

k and B denoted by wcsMLIPk(B) is, given as input any pseudo-Gram matrix G′ ∼ G, to find a

congruence matrix between G and G′.

We detail how to deal with the free case of this problem, as it carries all the geometric insight

and main ideas of the reduction. Handling the ideals (i.e. pseudo bases) appearing in the projec-

tive case is more of a technicality and does not seem to be of interest in the global understanding

of the problem. It is an arithmetic complication, but not a geometric one. See Section 3.3.3 for a

discussion on this point. In the following, we will refer to the problem as free-module-LIP.

3.2. Exploiting the complex structure and symplecticity: a reduction to the hermitian
decomposition.

3.2.1. We can readily see that when B is the identity matrix, the module-LIP problem boils

down to recovering the integral factorization of a (pseudo) Gram-matrix G into ATA, knowing

the latticeA·O2
k isO2

k itself. Thus in the following, let us denote this (Secret) matrix byA ∈ O2×2
k

and the (public)key Gram matrix by G, with named coefficients as:

A :=

(
α θ

β ρ

)
, G :=

(
g00 g10

g01 g11

)

3.2.2. Our reduction is elementary and geometric. We exploit the fact that thanks to the Gram-

Schmidt orthogonalization process, we can decompose any basis in the decomposition lattice

attached to only its first vector. This is an avatar of the fact that a unimodular rank 2 module

is necessarily symplectic for the determinant form, and as such we can fully describe it using a

single primitive vector
4
.

4
From this perspective it is quite natural to interpret this result from the decomposition theory of hermitian forms.

Recall that given an hermitian form h over a real vector space V with complex structure J gives rise to a symplectic

form ω = −Im(h) and a symmetric bilinear form g = −Re(h), related by ω(x, y) = g(J(x), y). In dimension 2,

there is a unique symplectic structure up to scaling, the determinant form. We can see that for h being the standard

hermitian form and ω being the determinant, J will correspond to the conjugate rotation introduced earlier. Hence it

is no surprise that this symmetry will play a pivotal role thanks to the sympleciticity of rank 2 modules of determinant

1.
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A2

σ(A1)

A1

Figure 2. An example of the reduction for the matrix A =

(
2 5

1 2

)
spanning

Z2
. The corresponding Gram matrix is

(
5 12

12 29

)
and the corresponding de-

composition lattice Λ2 with its square basis (A1, σ(A1))

3.2.3. Let us make this intuition formal. The vectors

(
α

β

)
and

(
−β
α

)
form an orthogonal basis

of the vector space k2 for the standard Hermitian product.

Let us denote by (x, y) the coordinates of the vector

(
θ

ρ

)
in this basis, that is:

(
θ

ρ

)
= x

(
α

β

)
+ y

(
−β
α

)

Taking inner product with the vector

(
α

β

)
on the left-hand side and the right-hand side gives:

θα+ ρβ =

〈(
θ

ρ

)
,

(
α

β

)〉
=

〈
x

(
α

β

)
+ y

(
−β̄
ᾱ

)
,

(
α

β

)〉
= x(αα+ ββ)

By definition, θα + ρβ = g10 and αα + ββ = g00, we must have x = g10
g00

. Moreover, remark

that by bilinearity of the (matrix) determinant, we must have y = 1
g00

, since:

1 = det

(
α θ

β ρ

)
= y det

(
α −β
β α

)
= g00
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As such, we obtained the following matrix decomposition, using the fact that the dual basis

of

(
α −β
β α

)
is exactly

1
g00

(
α −β
β α

)
:

(3)

(
α −β
β α

)(
α θ

β ρ

)
=

(
1 g10

g00

0 g00

)
This now entails the preliminary remark we made: it is enough to find only (α, β) in order to

fully recover the full matrix A as there is a simple linear relation given by public data derived

from g.

Since the lattice spanned byA isOk, transposing Equation (3) and passing to a module equality

over O2
k gives: (

1 0

−g∗10 g00

)
O2

k =

(
α β

−β α

)
O2

k

As such,

(
1 0

−g∗10 g00

)
O2

k is exactly the Hermitian decomposition lattice for the element g00 ∈

Ok+ with Hermitian root modulo g00 beingu := −g∗10. Indeed, as det(G) = det(A) det(A)∗ = 1

one obtains g00g11 − g10g
∗
10 = 1. Taking the equation modulo g00 shows that −g∗10 is indeed

an Hermitian root. Note that as this Hermitian decomposition lattice admits a square basis, by

construction, and falls back to Section 2.2. We illustrate an example over k = Q in Figure 2.

3.2.4. Now that we understand the geometry of the problem and we identify that the full in-

formation is contained in a single Hermitian decomposition problem, we can state our reduction

and prove it in a very elementary way, at the cost of losing all of the geometric insight.

Theorem 3.1. There exists a Cook reduction from the O2
k-module-LIP problem to a shortest vector

problem on an Hermitian decomposition lattice with square basis, with exactly one call to the latter

oracle.

Proof. Let

(
α

β

)
being the first vector for the basis A and write:

−αg01 ≡ −αᾱγ + αβ̄δ (mod g00)

≡ −ββ̄γ + αβ̄δ (mod g00)

≡ −β̄ (αδ − βγ)︸ ︷︷ ︸
=det(A)=1

(mod g00)
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This defines an decomposition lattice Λ, defined by the public elements g00 and g01. We can

explicit its Hermite Normal form and call the oracle on it to recover its square basis. We then

retrieve the remaining column of A by elementary linear algebra, as stated in Equation (3). All

in all, this gives the following reduction:

(1) Parse the input G as

(
g00 g01

g10 g11

)

(2) Construct the basis T =

(
1 0

−g01 g00

)
(3) Call the reduction oracle on the lattice spanned by the column of T and write (α, β) for

the first column of its output.

(4) Set x = g01
g00

and y = g−1
00 .

(5) Return the matrix A =

(
α xα− yβ̄

β xβ + yᾱ

)
.

The reduction being polynomial-time is clear from just using elementary matrix manipulations

before and after calling the oracle.

Remark. A similar reduction, but using quaternions and using an oracle to the principal ideal

problem has been independently discovered by Chevignard et al.[4]. Their main relation (lem 3.4) is

(un)surprisingly similar to our Equation (3), when seeing the matrix

(
ᾱ −β
β̄ α

)
as the left regular

representation of α+ jβ.

3.3. Generalizations.

3.3.1. Dealing with non-unit determinants. From now on, we assume the Gram matrix G to be

primitive, that is to say that its Gram ideal—defined as the ideal spanned by all the different

norms appearing in the module
5
—to be trivial. Dealing with a non trivial ideal is possible but

requires dealing with ideal inversion and thereof pseudo-bases (see Section 3.3.3 for a discussion

on this point).

Remark that in the proof of Theorem 3.1, we end up with the modular equality −αḡ01 ≡
β det(A) (mod g00). This was not an issue as we assumed det(A) to be 1. Now, suppose

we want to treat the general case and let A spans any free lattice. If g01 or det(A) is invert-

ible modulo g00, we can write this equation as −αḡ01 det(A)−1 ≡ β (mod g00) (or equiva-

lently, −βḡ−1
01 det(A) ≡ α (mod g00)). We can see by direct computation that the element

5
See [11, Sec 4.1] for a definition of this ideal, which adapts to the CM case directly.
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u = g01 det(A)−1
satisfies uū ≡ −1 (mod g00), since we have by definition of the determinant

of the Gram matrix G : det(A)det(A) = g00g11 − g01ḡ01. Hence, this modular equation defined

a decomposition lattice and the same reduction applies mutatis mutendis.

However, in this generic case, we might not have invertibility and this argument fails. If this

is the case, the lattice defined by the modular equation−αḡ01 ≡ β det(A) (mod g00) might not

be of determinant g00 in k2 and the short basis of this lattice would not be α, β themselves, as

expected. However, we can randomize the instance so that the coefficients of matrix G behave

nicely. In practice, we only need to ensure that the ideals generated by elements g00 and g01 are

coprime to be able to perform usual quotient arithmetic. Nevertheless, we present a different

version of randomization, which is closer in spirit to the one presented in [11]. The main idea is

to randomize G until g00 and g11 become generators of two different prime ideals. [11] claims

that this happens (heuristically) with sufficiently high probability for totally real number fields,

as per Assumption 1 of [11].

Our approach rely on that if we suppose g00 and g01 to span prime ideals of k, elementary

ideal arithmetic allows to conclude that g01 is invertible modulo g00.

Lemma 3.1. If g00 and g11 are generators of two different prime ideals of Ok, then the ideal gen-

erated by g01 is coprime with the ideal g00. Therefore g01 and det(A) are invertible modulo g00.

Proof. Indeed, assume that the ideal g00 divides the ideal g01. First note that g00 = g00 divides

g01. As we have the relation

g00g11 = g01g01 + det(A)det(A)

it means that g00 divides det(A) or det(A). In turns, this implies that g00 = g00 divides det(A)

or det(A) respectively. Remark that the right-hand side contains the ideal g200 in its prime de-

composition. We conclude that necessarily the ideals g11 and g00 are equal, which contradicts

the assumption.

We explicit the randomization as follows (recall that we assumed the matrixG to be primitive).

(1) Using algorithm GaussianGram from [11, Lem. 3.8] distribution, generate two lin-

early independent sufficiently short vectors (u, v) and (x, y) such that h00 and h11 are

non-equal prime ideals, where we seth00 := (u∗, v∗)TG(u, v) andh11 := (x∗, y∗)TG(x, y)

(2) Define matrix H :=

(
u∗ v∗

x∗ y∗

)
G

(
u x

v y

)
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Note that there is a slight difference between our randomization and the one described in [11]

at step 1. Indeed, in the later paper, it is required for h00 and h11 to be generators of prime ideals

ofOk+ only. In our case, we require h00 and h11 to be generators of prime ideals ofOk, which is a

stronger condition. However k+ ⊂ k is a degree 2 Galois extension, so by Chebotarev’s density

theorem the density of unramified inert ideals is
1
2 . This taken into account, the probabilistic

analysis of [11] applies in this case almost without change. We, therefore, state an identical

assumption to [11, Assumption 1] up to changing the overhead polynomial factor P to take the

conditioning on being inert into account. As we are only dealing with coarse-grained complexity,

we do not care about the precise degree of this polynomial.

Assumption 1 (adapted from [11]). There exists some absolute polynomial P (with non-negative

coefficients) such that the following holds. Let k be a CM field of degree d, M ⊆ O2
k be a free

module of rank 2, and s > 0 be a real number such that s ⩾ η1/2(M), the smoothing parameter.

Assume I = G(M), the Gram ideal of the module M to be trivial. Let (z1, z2)T ← DM,s and

q = z1z
∗
1 + z2z

∗
2 . Then

Pr(q is prime ) ⩾
1

ρk+ · log(s) · P (d)
,

where ρk+ is the residue of the Dedekind zeta function of k+ at 1, the probability being taken on the

random bits used for the subroutine GaussianGram.

Remark. In practice, we strongly believe that the probability of obtaining a matrix such that g00
and g01 generate coprime ideals is actually very high. Indeed, if we assume that these two elements

behave randomly enough, we would expect them to be coprime with probability around ζk(2)
−1, fro

ζk the Dedekind zeta function of the field. However, since the distribution of these two elements is

very peculiar, we have no hope to formally prove such a result and only rely on heuristics.

Proposition 3.1 (under Assumption 1). Let k be a CM field. There exists a randomized Cook

reduction—polynomial in the input matrix G, the logarithm of the discriminant of k and the residue

ρk+ , from the free, primitive, module-LIP problem over k to the shortest vector problem on an Her-

mitian decomposition lattice, with exactly one call to the latter oracle.

Proof. The reduction starts by randomizing the instance G using the technique just introduced.

Call H the resulting Gram-matrix. Now, H satisfies the conditions of Lemma 3.1 by construction.

We can apply the proof of Theorem 3.1 mutatis mutendis by inverting det(A) and setting u =

g01 det(A)−1
modulo g00. Writing the yielded Gram root B of H , a Gram root A of matrix
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G can now be found by the simple multiplication A = B

(
u x

v y

)−1

. The correctness of this

reduction is clear from the previous discussion. Under Assumption 1, the expected number of

randomization is polynomial in the representation of the number field, and the value of the

residue ρk+ , as all ideals appearing will be polynomially representable by construction (see [11,

Sec 4.1, Lem 3.2]). Classically, the primality testing can be done in polynomial time by relying

on prime ideal factorization and polynomial-time integer prime testing (see [5, Sec 6.2.5]). All

linear algebra steps are of course polynomial-time in the input data.

3.3.2. Gram-factorization. If also given a factorization oracle over Z, we can even solve a slightly

harder problem, where the lattice spanned by A is not given. Instead, we look for an integral

factorization of the Gram matrix G into ATA. This is the so-called Gram-decomposition problem

in [11]. Remark in our reduction of Proposition 3.1, we only need to handle the determinant of

A, hence it is sufficient to first reviver it from the determinant of G and finish the reduction.

As such, write det(A) = d and det(G) = g, by construction one has g = dd̄. The first step of

our reduction requires to find such d given g. We rely on a norm-solving algorithm introduced

by Howgrave-Graham and Szydlo for cyclotomic number rings of conductor a power of two. A

detailed description of this algorithm is given as Algorithm 2.1 of [11] for any CM field.

Lemma 3.2 (Howgrave–Graham-Szydlo from [11]). Let k be a CM field. Given access to an integer

factorization oracle, there exists a deterministic polynomial-time algorithm—in the representation

of the field and of input—solving norm equations of the form dd̄ = g for any g ∈ k++.

Assume from now on that we already computed d such that g = dd̄, that is to say that we

already know the determinant of the matrix A, and we can use our previous reduction.

Putting together the reduction of Proposition 3.1, the use of the Howgrave-Graham-Szydlo

algorithm gives the following.

Proposition 3.2 (under Assumption 1). There exists a randomized Cook reduction—polynomial in

the input matrix G, the logarithm of the discriminant of k and the residue ρk+ from the (primitive)

Gram-decomposition problem overO2
k to the shortest vector problem on an Hermitian decomposi-

tion lattice and integer factorization, with exactly one call to these latter oracles.

3.3.3. Projective modules. To deal with the most general version of module-LIP, we shall not

restrain to free modules, but to projective modules. This essentially amounts to restricting the

coefficient space to fractional ideals of Ok, i.e. using so-called pseudo-bases instead of bases in
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the terminology of [5]. In particular, this allows us to avoid assuming that the gram matrix is

primitive by dividing by the Gram-ideal itself. As this is more of an arithmetic technicality and

does not carry any useful geometric insight for the understanding of the problem, we let this

generalization as a possibly interesting research direction.

3.3.4. Thanks to the applicability of the Lenstra-Silverberg algorithm as shown in Section 2.2.4,

we have a deterministic polynomial-time algorithm to instantiate the reduction oracle, as by

construction of the decomposition lattice has a square basis. Since the reduction is itself deter-

ministic, we therefore have a deterministic polynomial time algorithm for the (free)-module-LIP

algorithm in the totally real case. This retrieves the result given in [11], and removes the heuris-

tics and the probabilistic elements that were artifacts of the randomization technique used. As

this is not the main objective of this note, we let the details and formalization to future work and

only indicate this result as a substantiated claim.

Claim 1. There exists a Cook reduction from theO2
k-module-LIP problem to a shortest vector prob-

lem on an Hermitian decomposition lattice, with exactly one call to the latter oracle.
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