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Abstract

Lattice cryptography is currently a major research focus in public-key encryption, renowned for

its ability to resist quantum attacks. The introduction of ideal lattices (ring lattices) has elevated

the theoretical framework of lattice cryptography. Ideal lattice cryptography, compared to classical

lattice cryptography, achieves more acceptable operational efficiency through fast Fourier transforms.

However, to date, issues of impracticality or insecurity persist in ideal lattice problems. In order

to provide a reasonable and secure trapdoor algorithm, this paper introduces the concept of ”Inner

Product Ring LWE” and establishes its quantum resistance and indistinguishability using knowledge

of time complexity, fixed-point theory, and statistical distances. Inner product Ring LWE is easier

to construct trapdoor algorithms compared to Ring LWE. Additionally, leveraging the properties of

NTRU, we propose a more secure Ring SIS trapdoor algorithm.

Keywords: Ring LWE; Ring SIS; Trapdoor algorithm.

1 Introduction

Trapdoor algorithms are a key focus of current research in public-key cryptography. Whether a

difficult problem can be used to construct public-key encryption depends on whether it can be embedded

in a trapdoor algorithm to generate a private key. Take the knapsack problem for example: because the

knapsack problem cannot be embedded into a trapdoor, the subset sum problem was introduced. This

facilitates the construction of a trapdoor, thereby enabling the generation of a private key.

Before 1997, the Diffie-Hellman problem and the RSA problem were the fundamental hard problems

relied upon by public-key encryption algorithms. In 1997, Peter W. Shor demonstrated that both the

Diffie-Hellman problem and the RSA problem can be broken in polynomial time on a quantum computer

[Sho97]. If the underlying problem of an encryption algorithm can be broken in polynomial time by

an algorithm, then that algorithm is no longer secure. Therefore, cryptographers shifted their focus to

lattice problems, which offer cryptographic schemes resistant to quantum attacks.

In 2002, Oded Regev published a paper in Stoc where he primarily reduced the Shortest Vector

Problem (SVP) to the Hidden Subgroup Problem (HSP) in the asymmetric setting [Reg02]. This re-

duction implies that if there exists an efficient algorithm to solve SVP in polynomial time, then there

also exists an efficient algorithm to solve HSP in polynomial time. HSP is a classic problem in quantum
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computing for which no efficient algorithm is currently known, hence SVP inherits resistance to quantum

attacks. However, embedding SVP into trapdoor algorithms is non-trivial. In 2005, Oded Regev further

reduced the Learning With Errors (LWE) problem to SVP [Reg05], where LWE is susceptible to trapdoor

embedding. In 2003, Dinur et al. introduced another lattice problem suitable for trapdoor embedding,

namely the Shortest Integer Solution (SIS) problem [DKRS03]. In 2013, Micciancio and Peikert reduced

SIS to the LWE problem [MP13].

In 2008, Gentry, Peikert, and Vaikuntanathan provided a comprehensive overview of lattice-based

cryptography and introduced the Learning With Errors (LWE) trapdoor algorithm [GPV08]. In 2012,

Micciancio and Peikert extended this work by presenting both LWE and Short Integer Solution (SIS)

trapdoor algorithms [MP12]. LWE trapdoor algorithms are commonly used in constructing public-key

encryption schemes such as Attribute-Based Encryption (ABE) [ARYY23], while SIS trapdoor algorithms

are typically applied in signature schemes [PTDH23]. In 2020, Micciancio et al. further refined LWE and

SIS trapdoor algorithms [GMPW20].

Although lattice cryptography offers resistance against quantum attacks, the time complexity of en-

cryption algorithms based on the Learning With Errors (LWE) and Short Integer Solution (SIS) problems

reaches O(n2), due to their fundamental matrix-vector operations. Particularly for LWE, each encryption

typically handles only 1 bit at a time. To overcome this challenge, Lyubashevsky, Peikert, and Regev

introduced the Ring LWE problem in 2010, which represents an ideal lattice variant. In their work, they

established an isomorphism between a specific lattice space (ideal lattice space) and the space of polyno-

mials over a ring, thereby defining Ring LWE as an ideal lattice problem. Encryption algorithms based

on Ring LWE, coupled with the fast Fourier transform technique from NTRU, achieve a reduced time

complexity of O(n log n) ([HPS98], p. 269). In 2018, Stephens-Davidowitz introduced the corresponding

Ring-SIS problem [SD18].

In the same year, Genise and Micciancio respectively proposed Ring-SIS trapdoor algorithms using

Ring LWE and the knapsack problem [GM18], thus filling a gap in trapdoor constructions for ideal lattice

problems. However, a trapdoor algorithm for Ring LWE has yet to be constructed. Currently, Ring LWE

trapdoor algorithms in use mostly fall into two categories: one directly transitions from Micciancio and

Peikert’s LWE trapdoor algorithm to Ring LWE, and the other applies Genise and Micciancio’s Ring

SIS trapdoor algorithm to Ring LWE. Nevertheless, neither category provides a satisfactory trapdoor

algorithm for Ring LWE. Therefore, there is a need for a proper Ring LWE trapdoor algorithm to

support ideal lattice-based public-key cryptographic schemes.

The main contribution of this paper is to address the aforementioned issues as much as possible. In

order to easily embed trapdoor algorithms while preserving the advantages of ideal lattice problems, we

propose a new ideal lattice problem called the Inner Product Ring LWE problem. We demonstrate the

hardness and indistinguishability of the new Ring LWE problem and provide a trapdoor algorithm for

the Inner Product Ring LWE problem. Additionally, we present a more reasonable and secure trapdoor

algorithm for Ring-SIS.

1.1 Detailed Analysis

The current Ring LWE trapdoors resemble those of [MP12], but they are not suitable for Ring LWE.

Additionally, there are many adaptations borrowing from Nicholas Genise and Daniele Micciancio’s Ring

SIS signature trapdoors.

Let Rq denote a power of 2 cyclotomic ring, with parameters set as m = 2, k = dlog qe, m = m+ k.

There exists an algorithm GenTrap that produces a vector A ∈ R1×m and a trapdoor R ∈ Rm×kq with

tag h ∈ Rq satisfying the following:
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1. A = [A|AR + hG], where G is the trapdoor matrix, G = [1, 2, . . . , 2k−1], and A = [a|1] ∈
R1×2
q , with a← Rq.

2. R is distributed as a Gaussian D2×k for some s = αq, where α > 0 is a RLWE error term,

αq > ω(
√

log n).

3. h is an invertible element in Rq.

4. A is computationally pseudorandom (excluding the component set to 1) under (decisional)

RLWED where D = DR,s.

Figure 1: LWE trapdoor algorithm [MP12]

Furthermore, there’s an alternative approach resembling the Ring SIS signature trapdoors:

1. Select k = blogb(q) + 1c, σ, q, and n, where b ≥ 2 is a base for the G-lattice.

2. Choose a← Rq.

3. Generate r = (r1, . . . , rk), where i ∈ [k], ri ← DR,σ.

4. Generate e = (e1, . . . , ek), where i ∈ [k], ei ← DR,σ.

5. Calculate g = (1, a, g1 − (ar1 + e1), . . . , gk − (ark + ek)), where i ∈ [k], gi ← bi−1.

Figure 2: Ring SIS trapdoor algorithm(Output g)[GM18]

Return (g, Tg = (r, e)), and Perturb(·) to generate a perturbation p, enabling y obeying spherical

Gaussian distribution with the parameter σs. Finally, the algorithm produces a preimage y that satisfies

the condition gT y = u, where y ← DL,σs , z ∈ Rkq , u ∈ Rq and p ∈ Rmq for m = k + 2.

1. p← Perturb((r, e)(b+ 1)σ, σs, q, n).

2. z ← SampleG(σ, q, u− gp).

3. Compute y = [p1 + ez, p2 + rz, p3 + z1, . . . , pm + zk].

Figure 3: Ring SIS trapdoor algorithm(Output y)[GM18]

These trapdoors aim to address the challenges specific to Ring LWE scenarios, offering tailored

solutions for improved security and efficiency.

Fact 1. The G matrix from [MP12] cannot be directly applied to Ring LWE trapdoors because, for Ring

LWE, solving b = as + e, where a, s ∈ Rq, involves elements from a univariate polynomial ring, making

direct adaptation infeasible.

Fact 2. Similarly, Ring SIS trapdoors cannot be directly applied to Ring LWE trapdoors. This is because

in the trapdoor algorithm from [GM18], the resulting g and y satisfy gT y = gz = u, where Ring SIS

essentially consists of vectors composed of multiple sets of elements from univariate polynomial rings,

whereas Ring LWE only has one set.
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1.2 Overview

Firstly, we define the Inner Product Ring LWE as follows: for any f1, f2, b ∈ Rq, find (g1, g2)

such that b = f1g1 + f2g2 + e. To prove the pseudo-randomness and quantum resistance of Inner

Product Ring LWE, we define PSq as the probability set for any i ∈ Zq. Now, calculate the value

when Pr(i) ∈ PSq2
:= PSq × PSq . Define its maximum value as Pr(A), with the corresponding element

A ∈ Zq2 . At this point, we are calculating the probability of a1s1 = b1 → Zq2 , then we calculate

Pr(i) ∈ (PSq2
] PSq2

) mod q2, which is the probability of a1s1 + a2s2 = b2 → Zq2 , and so on. We find

that this relationship is consistent with the relationship in+1 = Tinin, where

Tin =


i
(0)
n i

(q2−1)
n · · · i

(1)
n

i
(1)
n i

(0)
n · · · i

(2)
n

...
...

. . .
...

i
(q2−1)
n i

(q2−2)
n · · · i

(0)
n

 ,

i
(j)
n = Pr(j). So the idea arose whether we could leverage the theory of fixed points to prove the

convergence of this sequence, and perhaps even establish the hardness of Inner Product Ring LWE?

Indeed, it is affirmative, because {Tinin}n=1 satisfies the conditions of the fixed-point theorem, namely,

{Tinin} is a Cauchy sequence, and it converges to

v :=

q2︷ ︸︸ ︷(
1

q2
,

1

q2
, . . . ,

1

q2

)
.

However, it is worth noting that Tin has more than one fixed point. So why does it only converge

to v? This is because the other fixed points take the form i(k) = 1, i(l) = 0, where l 6= k, k ∈ Zq2 .

However, the previous analysis on probabilities indicates that i
(j)
n < 1. Therefore, it will only converge

to v. Furthermore, we can obtain

‖in+1 − in‖ ≤ κ‖in − in−1‖ ≤ · · · ≤ κn−1‖i2 − i1‖.

Therefore, as long as κn−1 meets the requirement.

To make Inner Product Ring LWE resistant to quantum attacks, reduce the difficulty of breaking

Inner Product Ring LWE to the Dihedral Coset Problem. Cite the conclusion from [BKSW18], which

states that the Extrapolated Dihedral Coset Problem can be reduced to the Dihedral Coset Problem. It

is hoped that the Inner Product Ring LWE is also difficult. Therefore, we assume there exists an efficient

algorithm W that can solve the Inner Product Ring LWE in polynomial time. Using this algorithm, we

solve the Extrapolated Dihedral Coset Problem, leading to

mO(W) ≥ O(Λ, β) ≥ O((2n)!) or O(e2n).

Let m = ploy(n), it known that

O(W) ≥ O(Λ, β)

ploy(n)
≥ O((2n)!)

ploy(n)
or

O(e2n)

ploy(n)
.

This contradicts the assumption that there exists an efficient algorithm W that can solve the Inner

Product Ring LWE problem in polynomial time, therefore proving the theorem.

2 Preliminary

Lattice. Each element of a lattice in Rn can be expressed linearly by n linearly independent vector

integer coefficients. This set of linearly independent vectors is called a lattice basis, and we know that the
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lattice basis is not unique. Given a set of lattice bases (v1, . . . , vn) in the lattice L, then the fundamental

parallelelepiped is

P(v1, . . . , vn) =

{
n∑
i=1

kivi

∣∣∣∣ki ∈ [0, 1)

}
.

If the lattice base (v1, . . . , vn) is determined, use the symbol P(L) to replace P(v1, . . . , vn). ∀x ∈ Rn,

project it onto P(L). According to the properties of projection, there is a unique y ∈ P(L) makes

y − x ∈ L. Use the symbol det(L) to represent the volume of the fundamental parallelelepiped of the

lattice L. In other words, the symbol det(L) represents the determinant of a matrix composed of a set

of lattice bases (v1, . . . , vn). For a given n dimensional lattice, the det(L) size of any set of lattice bases

of the lattice is constant.

Given n lattice L, (v1, . . . , vn) and (u1, . . . , un) are two arbitrary groups of lattice L respectively

lattice bases. Therefore, there is vi =
∑n
j=1mijuj and ui =

∑n
j=1m

′
ijvj , i ∈ {1, . . . , n}, therefore there

are two integer matrices M and M ′ such that
v1
...

vn

 = M


u1
...

un

 and


u1
...

un

 = M ′


v1
...

vn

 .

It is easy to prove that M and M ′ are inverse to each other, and M and M ′ are both integer matrices,

so there are det(M) det(M ′) = 1 and det(M) = det(M ′) = ±1, so

det(v1, . . . , vn) = ±det(u1, . . . , un).

Isomorphic mapping of polynomial Z[x]/<xn + 1> to ideal lattice I.

Definition 1. An ideal lattice is a subset of rings or domains that satisfies the following two properties:

1. Additive closure: If any two elements in the ideal are added, the result is still in the ideal. In other

words, for any elements a and b in the ideal, a+ b also belongs to that ideal.

2. Multiplicative absorptivity: If an element in the ideal is multiplied by any element in the ring (or

field), the result is still in the ideal. In other words, for any element a in the ideal and any element

r in the ring (or field), ar and ra belong to that ideal.

For a commutative ring, further require that the ideal be closed for both addition and multiplication. Such

an ideal is called a true ideal.

Definition 2. Referring to the definition of ideal, the ideal lattice I is a subset of the lattice L that

satisfies the following two properties:

1. Additive closure: If any two elements in an ideal lattice are added, the result is still in the ideal

lattice. In other words, for any elements a and b in an ideal lattice, a+ b also belongs to that ideal

lattice.

2. Multiplicative absorptivity: If an element in an ideal lattice is multiplied by an element in any other

ideal lattice, the result remains in the ideal lattice. In other words, for any element a in the ideal

and any element r in another ideal lattice, both ar and ra belong to that ideal lattice.

Corollary 1. The ideal lattice I is a true idea of the lattice L.

For f(x) = a0 + a1x+ · · ·+ an−1x
n−1 is mapped to

Rot(f) = a0I + a1X + · · ·+ an−1X
n−1 ∈ R̃.
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Among them, R̃ is the mapping of all Z[x]/<xn + 1> to the elements in the ideal lattice I collection,

and

X =



0 0 · · · 0 −1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


.

So there is

Rot(f) =


a0 −an−1 · · · −a1
a1 a0 · · · −a2
...

...
. . .

...

an−1 an−2 · · · a0

 ,

it is easy to prove that this mapping relationship is isomorphic.

SIS problem [Ajt96, dZ20]. Given the integers n, m, q and the positive number β. The shortest

integer solution problem is to randomly select vector αi ∈ Zn×1q , i ∈ {1, . . . ,m}. The matrix A ∈ Zn×mq ,

find the non-zero integer coefficient vector z ∈ Zm×1q , ‖z‖ ≤ β, such that

fA(z) := Az =

m∑
i

αizi = 0 ∈ Znq .

Given the lattice L, the representation of the SIS problem on the lattice is

L⊥(A) = {z ∈ Zm : Az = 0 ∈ Znq }.

A variant of the SIS problem

L⊥u (A) = {z ∈ Zm : Az = u ∈ Znq } = c+ L⊥(A).

Among them, c is the solution of any non-homogeneous SIS, that is, Ac = u. The variant of the SIS

problem are usually used to construct the one-way trapdoor function of encryption schemes.

Ring-SIS problem [Yue20, LPR10, SD18]. Given f1, . . ., fm ∈ Rq, where Rq is a polynomial

ring with modulus q, find m polynomials g1, . . ., gm whose coefficients are not all 0, gi ∈ R{0,±1}, i ∈
{1, . . . ,m}, such that

f1g1 + · · ·+ fmgm = 0 mod qR.

In Z[x]/<xn − 1>, the Ring-SIS problem is not difficult. The reason is that xn − 1 is reducible, that is

xn − 1 = (1− x)(1 + x+ x2 + · · ·+ xn−1).

Let g̃(x) := 1 + x+ x2 + · · ·+ xn−1 ∈ Z[x]/<xn − 1> , so there is

(1− x)g̃(x) = xn − 1 = 0. (2.1)

On the other hand, for the Ring-SIS problem F(x) = (f1(x), f2(x), . . . , fm(x)). That is, find G(x) =

(g1(x), g2(x), . . . , gm(x)), such that

F(x)G(x) =

m∑
i=1

figi = 0, let G(x) = (g̃(x),

m−1︷ ︸︸ ︷
0, . . . , 0).

If for the solution of F(x) is G(x), only f1(x)g̃(x) = 0 mod qR. So what kind of g̃(x) can satisfy this

condition? In fact, assume that f1(x) is a multiple of the polynomial x− 1, that is, f1(x) = f ′(x)(x− 1)

then there is

f1(x)g̃(x) = f ′(x)(x− 1)g̃(x) = 0 mod qR.

In other words, as long as f1(x) = f ′(x)(x − 1) is satisfied, it is the solution of F(x). So what is the

probability of this happening?
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Lemma 1. If f(x) = a0 + a1x+ · · ·+ an−1x
n−1 is a multiple of (x− 1), then

∑n−1
i=0 ai = 0.

Proof. When n = 1, if f(x) = f ′(x)(x− 1), then f ′(x) = λ ∈ Zq. At this time, there is

f(x) = λ− λx = a0 + a1x,

so there is a0 + a1 = 0. Assume that it is true when n = k. When n = k + 1, assume that f ′(x) =

b0 + b1x+ · · ·+ bkx
k and

f(x) = f ′(x)(x− 1) = (b0 + b1x+ · · ·+ bkx
k)(x− 1)

= (b0 + b1x+ · · ·+ bk−1x
k−1)(x− 1) + bkx

k(x− 1)

= a0 + a1x+ · · ·+ akx
k︸ ︷︷ ︸

(a)

+ bkx
k(x− 1)︸ ︷︷ ︸
(b)

.

Because it is true when k = n, then the sum of the coefficients of the (a) equation is 0, and it is easy to

prove that the sum of the coefficients of the (b) equation is also 0. Therefore, the proposition is true.

Lemma 2 ([Yue20]). If f(x) = a0 + a1x+ · · ·+ an−1x
n−1 ∈ Zq[x], then the probability of

∑n−1
i=0 ai = 0

occurring is 1/q.

Since the first n− 1 coefficients are all random numbers in the integer ring Zq, so
∑n−2
i=0 ai is also in

the integer ring Zq random number. Randomly select an−1, then the probability of satisfying
∑n−1
i=0 ai = 0

is 1/q. The cracking probability of 1/q is very large for password security, so the Ring-SIS problem of

polynomial Z[x]/<xn − 1> is not difficult for the security of the password scheme.

Lemma 3 ([Nor66]). For q ∈ Z, the prime distribution over the set Sq = {1, . . . , q} satisfies the following

relationship:

lim
q→∞

π(q)∫ q
2

1
ln(t)dt

= 1,

where π(q) denotes the number of primes.

Definition 3 ([GSM18], page 32, Section 4.1.6). We say that ε(n) is negligible associated with n if ε(n)

can be expressed as

ε(n) =
1

O(en)
,

and the notation O(n) represents a quantity that grows at most as fast as n approaches infinity.

3 Definition and Reduction of Inner Product Ring-LWE

Definition 4 (Inner Product Ring-LWE Problem). For any a1, a2, b ∈ Rq, find (s1, s2) such that b =

a1s1 + a2s2 + e.

3.1 Inner product Ring LWE resistance to quantum attacks

Definition 5 (Dihedral Coset Problem). Given a security parameter κ, an instance from DCP `q, where

N denotes the modulus and ` represents the number of states. Each state is expressed as

|0〉|xi〉+ |1〉|(xi + s) mod q〉, for i ≤ `,

and stores 1 + dlog2 qe bits, where x ∈R Zq, s ∈ Zq. If s can be recovered with probability poly(1/ log q) in

poly(log q) time, then the DCP `q problem is considered broken.
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Definition 6 (Extrapolated Dihedral Coset Problem). Given a security parameter κ, an instance from

EDCP `n, q, ρ, where q denotes the modulus, ρ is a probability density function, and ` represents the

number of states. Each state is expressed as∑
j ∈ supp(ρ)ρ(j)|j〉|(xi + js) mod q〉, for i ≤ `,

and stores 1+dlog2 qe bits, where xi ∈R Znq , s ∈ Znq . If s can be recovered with probability poly(1/(n log q))

in poly(n log q) time, then the EDCP`n,q,ρ problem is considered broken.

Lemma 4. If there exists an algorithm that solves the EDCP `n,q,ρ problem, then there also exists an

algorithm that solves the DCP `q problem.

Proof. Let

|b〉 =
1√
2
|0〉|xi〉+

1√
2
|1〉|(xi + s) mod q〉.

Thus, ρ(0)|0〉 = 1√
2
|0〉 and ρ(1)|1〉 = 1√

2
|1〉. Therefore, DCP `q is a special case of EDCP `n,q,ρ. Hence,

if there exists an algorithm that solves EDCP `n,q,ρ, then there also exists an algorithm that solves

DCP `q.

Lemma 5. Let (n, q, r = Ω(
√
κ)) be an instance of G-EDCP, and (n, q, α) an instance of LWE. If there

exists an algorithm to solve LWEn,q,α, then there exists an algorithm to solve G-EDCP `n,q,ρr .

Theorem 1. Let (n, q, α) be an instance of inner product Ring LWE. Assuming G-EDCP is hard, there

is no efficient algorithm that can solve inner product Ring LWE in polynomial time.

Proof. For an instance of inner product Ring LWE,(
a1 a2

)( s1

s2

)
+ e = b.

Let a = a0 + a1x+ · · ·+ an−1x
n−1, which can be transformed into a circulant matrix form as

A :=


a0 −an−1 · · · −a1
a1 a0 · · · −a2
...

...
. . .

...

an−1 an−2 · · · a0

 .

Thus, (
a1 a2

)( s1

s2

)
+ e = b⇒

(
A1 A2

)( s1

s2

)
+ e = b.

Here, a = (a0, a1, . . . , an−1)← a = a0 + a1x+ · · ·+ an−1x
n−1. By contradiction, assume there exists an

efficient algorithm W that solves Inner Product Ring LWE in polynomial time. From
(
A1 A2

)
, take

the first row as α1, where α1s+ e1 = b1, with e1 and b1 being the first components of e and b. Similarly,

derive α2, . . . , αm from m− 1 inner product Ring LWE, let

Λ = (α1, α2, . . . , αm), β = (b1, b2, . . . , bm), ε = (e1, e2, . . . , em).

Thus,

β = Λs+ ε. (3.1)

Assume the time complexity to find s from Equation (3.1) is O(Λ, β). According to Lemma 5, we

have

mO(W) ≥ O(Λ, β) ≥ O((2n)!) or O(e2n).

Let m = poly(n), then

O(W) ≥ O(Λ, β)

poly(n)
≥ O((2n)!)

poly(n)
or

O(e2n)

poly(n)
.

This contradicts the assumption “there exists an efficient algorithm W that can solve inner product

Ring-LWE in polynomial time”, hence the theorem holds.
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3.2 Inner product Ring LWE pseudorandomness

Claim 1. Let π(q) denote the number of prime numbers in the set Sq, and let Pq := {p1, . . . , pπ(q)} be

the set of all prime numbers. Then, the number of prime numbers in the set Sq ×Sq is still π(q), and we

have

Sq2 := Sq × Sq = Sq2 \
{
Sq × (Pq2 \ Pq)

}
.

Claim 2. For the set Sq, for an element a ∈ Sq2 with prime factorization pα1
1 · · · p

α`

` , the probability of

a occurring in the set Sq2 is

Pr(a) :=
CNq(a)

q2
=

∑
P1,P2∈Sq

2

q2
,

where P1 = p
α′1
1 · · · p

α′`
` , P2 = p

α′′1
1 · · · p

α′′`
` , α′i + α′′i = αi, i ∈ S.

Claim 3. For the set Sq, where each event occurs with probability q−1, then for the set Sq × Sq, the

probability of each event a occurring is

Pr(a) =



1

q2
, a = 1,

2

q2
, a is prime,

CNq(a)

q2
, a is composite.

Claim 4. For A ∈ Sq2 , and assuming

Pr(A) = max
a∈Sq2

Pr(a) =
CNq(A)

q2
,

then for any k ∈ (Sq2 + Sq2) mod q2 → Sq2 , we have

0 ≤ Pr(A) =
CNq(A)

q2
.

Proof.

Pr(k) =

k∑
i=1

Pr(i) Pr(k + i− 1) +

q+k−1∑
i=k+1

Pr(i) Pr(q + k + 1− i)

=

k∑
i=1

ai
q2
ak+i−1
q2

+

q+k−1∑
i=k+1

ai
q2
aq+k+1−i

q2

≤ CNq(A)

q2

q2∑
i=1

ai
q2

=
CNq(A)

q2
,

and

Pr(k) =

k∑
i=1

Pr(i) Pr(k + i− 1) +

q+k−1∑
i=k+1

Pr(i) Pr(q + k + 1− i) ≥ 0.

Definition 7 ([Ceg12], Definition 2.1.6). Let H be a Hilbert space, and let T : H → H be an operator. If

T (·) satisfies

‖Tx− Ty‖ < ‖x− y‖, ∀x, y ∈ H,

then T (·) is called a contraction operator.

Lemma 6 ([Ceg12], Proposition 2.1.11). If H is a closed set (every Cauchy sequence in H converges to a

point within H), and T (·) is a contraction operator, and Fix(T ) is a closed convex set, then the algorithm

xn+1 = Txn converges to some x ∈ Fix(T ), where Fix(T ) denotes the set of fixed points of the operator

T (·).
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Remark 1. The convergence mentioned in Lemma 6 should be considered as strong convergence. How-

ever, this paper does not discuss the difference between strong and weak convergence, because in finite

dimensions strong and weak convergence are equivalent.

Fact 3. Suppose that PSq := {Pr(0), . . . ,Pr(q − 1)}, then PSq2
.

Fact 4. Suppose that PSq2
= {Pr(0), . . . ,Pr(q2 − 1)}, then

PSq2 := {
′

Pr(0), . . . ,
′

Pr(q2)} := PSq2
] PSq2

mod q2. Here,

′
Pr(0) = Pr(0) Pr(0) +

q2∑
j=1

Pr(j) Pr(q2 − j),

′
Pr(1) =

2∑
i=1

Pr(i− 1) Pr(2− i) +

q2∑
j=2

Pr(j) Pr(q2 + 1− j),

...

′
Pr(q2 − 1) =

q2∑
i=1

Pr(i− 1) Pr(n− i).

Furthermore, there is also

P′Sq2 := {
′′

Pr(0), . . . ,
′′

Pr(q2 − 1)} := PSq2 ] PSq2 mod q2. Here,

′′
Pr(0) =

′
Pr(0)

′
Pr(0) +

q2∑
j=1

′
Pr(j)

′
Pr(q2 − j),

′′
Pr(1) =

2∑
i=1

′
Pr(i− 1)

′
Pr(2− i) +

q2∑
j=2

′
Pr(j)

′
Pr(q2 + 1− j),

...

′′
Pr(q2 − 1) =

q2∑
i=1

′
Pr(i− 1)

′
Pr(n− i).

(3.2)

The equation (3.2) can be rewritten as

P′Sq2 =


Pr′(0) Pr′(q2 − 1) · · · Pr′(1)

Pr′(1) Pr′(0) · · · Pr′(2)
...

...
. . .

...

Pr′(q2 − 1) Pr′(q2 − 2) · · · Pr′(0)




Pr′(0)

Pr′(1)
...

Pr′(q2 − 1)

 = MPS
q2
PSq2 .

Fact 5. For the sequence P(n)
Sq2

= MP(n−1)
S
q2

P(n−1)
Sq2

, define

P(n)
Sq2

= (a(0)n , a(1)n , . . . , a(q
2−1)

n ) =

(
1

q2
+ ∆(0)

n ,
1

q2
+ ∆(1)

n , . . . ,
1

q2
+ ∆(q2−1)

n

)
.

Claim 5. The sequence P(n)
Sq2

= MP(n−1)
S
q2

P(n−1)
Sq2

is a Cauchy sequence.

Proof. To prove that P(n)
Sq2

= MP(n−1)
S
q2

P(n−1)
Sq2

forms a Cauchy sequence, it suffices to show that for any

δ > 0, there exists an N > 0 such that for any n > N ,∥∥∥P(n)
Sq2
− P(n−1)

Sq2

∥∥∥ ≤ δ.
10



Because

P(n)
Sq2
− P(n−1)

Sq2
=


∆

(n−1)
0 ∆

(n−1)
q2−1 · · · ∆

(n−1)
1

∆
(n−1)
1 ∆

(n−1)
0 · · · ∆

(n−1)
2

...
...

. . .
...

∆
(n−1)
q2−1 ∆

(n−1)
q2−2 · · · ∆

(n−1)
0




∆
(n−1)
0

∆
(n−1)
1

...

∆
(n−1)
q2−1

 .

And ∥∥∥∥∥∥∥∥∥∥


Pr′(0) Pr′(q2 − 1) · · · Pr′(1)

Pr′(1) Pr′(0) · · · Pr′(2)
...

...
. . .

...

Pr′(q2 − 1) Pr′(q2 − 2) · · · Pr′(0)


∥∥∥∥∥∥∥∥∥∥

=

√√√√√q4

(
k∑
i=1

(
ai
q2
− 1

q2
)(
ak+i−1
q2

− 1

q2
) +

q+k−1∑
i=k+1

(
ai
q2
− 1

q2
)(
aq+k+1−i

q2
− 1

q2
)

)2

≤

√√√√(
CNq(A)

q2
− 1

q2
)

q2∑
i=1

(
ai
q2
− 1

q2
) =

√
CNq(A)− 1

q

So, it is obtained that

∥∥∥P(n)
{0,1,2} − P(n−1)

{0,1,2}

∥∥∥ ≤ (√CNq(A)− 1

q

)n−1 ∥∥∥P(1)
{0,1,2} − P(0)

{0,1,2}

∥∥∥ ≤√CNq(A)− 1

(√
CNq(A)− 1

q

)n
.

Lemma 7. For any initial vector a0 = (a
(0)
0 , a

(1)
0 , . . . , a

(q2−1)
0 ), where a

(i)
0 ∈ [0,

CNq(A)
q2 ] and

∑2
i=0 a

(i)
0 = 1,

the matrix Ma0 is generated as follows:

Ma0 =


a
(0)
0 a

(q2−1)
0 · · · a

(1)
0

a
(1)
0 a

(0)
0 · · · a

(2)
0

...
...

. . .
...

a
(q2−1)
0 a

(q2−2)
0 · · · a

(0)
0

 .

Then, let an+1 := Manan := Tan, then {an}∞n=0 is a Cauchy sequence and converges to v = (

q2︷ ︸︸ ︷
1

q2
,

1

q2
, . . . ,

1

q2
).

Proof. According to Claim 5, we know that


∆

(n−1)
0 ∆

(n−1)
q2−1 · · · ∆

(n−1)
1

∆
(n−1)
1 ∆

(n−1)
0 · · · ∆

(n−1)
2

...
...

. . .
...

∆
(n−1)
q2−1 ∆

(n−1)
q2−2 · · · ∆

(n−1)
0

 is a contraction opera-

tor, and ∥∥∥∥∥∥∥∥∥∥∥


∆

(n−1)
0 ∆

(n−1)
q2−1 · · · ∆

(n−1)
1

∆
(n−1)
1 ∆

(n−1)
0 · · · ∆

(n−1)
2

...
...

. . .
...

∆
(n−1)
q2−1 ∆

(n−1)
q2−2 · · · ∆

(n−1)
0



∥∥∥∥∥∥∥∥∥∥∥
≤
√
CNq(A)− 1

q
.

Therefore, the matrix


∆

(n−1)
0 ∆

(n−1)
q2−1 · · · ∆

(n−1)
1

∆
(n−1)
1 ∆

(n−1)
0 · · · ∆

(n−1)
2

...
...

. . .
...

∆
(n−1)
q2−1 ∆

(n−1)
q2−2 · · · ∆

(n−1)
0

 is contractive, with (

q2︷ ︸︸ ︷
0, 0, . . . , 0) being both a

convergent point and a fixed point of this matrix sequence. Moreover, since an+1 := Manan has been
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proven to be a Cauchy sequence, the sequence {an}∞n=0 converges, and it converges to the fixed point of

T (·).

Theorem 2. Given {aj}2j=0 and {sj}2j=1 such that aj ∈R Zq, s ∈ Zq. Then for any i = 0, 1, . . . , q2 − 1,

we have

max
i=0,1,...,q2−1

∣∣∣∣∣∣Pr

 2∑
j=0

(ajsj) = i

− Pr(u = i)

∣∣∣∣∣∣ ≤
√
CNq(A)− 1

(√
CNq(A)− 1

q

)n
.

Corollary 2. For any a ∈ Rq, s ∈ Rq, and u ∈R Rq, then the indistinguishability probability between as

and u is bounded by
√
CNq(A)− 1

(√
CNq(A)−1

q

)n
.

Corollary 3. For any a1, a2, s1, s2, e ∈ Rq, and u ∈R Rq, then the indistinguishability probability between

a1s1 + a2s2 + e and u is bounded by O

(√
CNq(A)− 1

(√
CNq(A)−1

q

)n)
.

Proof.

a1s1 + a2s2 + e ≈C u1 + a2s2 + e

≈C u2 + e

≈C u3.

4 Trapdoor Function Construction

4.1 Inner Product Ring LWE Trapdoor

Let g = 2n−1, gz + e = b⇒ 2n−1z + e = b. Thus,

gz + e = gz0 + gz1x+ · · ·+ gzn−1x
n−1 + e

= b0 + b1x+ · · ·+ bn−1x
n−1 + e.

Therefore,

zi =

1, bi ≥ 3q
4 ,

0, bi <
q
4 .

Let a = (c, g − ct), where c, t ∈R Rq. Thus,

a

(
t

1

)
z + e = (c, g − ct)

(
t

1

)
z + e = gz + e = b.

Therefore,

x =

(
tz

z

)
.

However, this causes a distributional shift in x, with covariance

COV = r2

(
T

I

)(
T I

)
of Gaussian distribution. Here, T = Rot(t). We need to compensate with another Gaussian distribution

σ2I −COV, i.e., draw a vector p from the Gaussian distribution σ2I −COV, to compute

12



2n−1z + e = b− ap = b−
(
c 2n−1 − ct

)( p1

p2

)
.

0. Input a1, a2, b ∈ Rq, let g = 2n−1.

1. Randomly choose c, t ∈ Rq, and select a vector

(
p1

p2

)
from the Gaussian distribution of

σ2I −COV.

2. Compute z such that b− (c, g − ct)(p1, p2)T = gz + e.

zi =

1, |b− (c, g − ct)(p1, p2)T |i ≥ 3q
4 ,

0, |b− (c, g − ct)(p1, p2)T |i < q
4 .

3. Output a = (c, g − ct), s =

(
tz

z

)
.

Figure 4: Trapdoor algorithm for Inner Product Ring LWE

Theorem 3. For a1, a2, c, t, u1, u2 ∈R Rq, where g = 2n−1, it holds that (c, g − ct) ≈C (u1, u2).

Proof. Since g − ct is an affine transformation of ct, and c itself is a random element in Rq, it suffices

that ct ≈C u2. According to Corollary 2, for any a ∈ Rq, s ∈ Rq, and u ∈R Rq, the indistinguishability

probability between as and u is bounded by
√
CNq(A)− 1

(√
CNq(A)−1

q

)n
, completing the proof.

4.2 Ring SIS New Trapdoor

Claim 6. Let q = 2n, k ≤ q, z = (z0, z1, . . . , zk−1)T ∈ Zk{0,±1}, G
T = (G0 = 1, G1 = 2, . . . , Gk−1 =

2k−1). Then, by iterating over all z, it is possible to ensure that for any u ∈ Zq, GT z = u.

Claim 7. Let q = 2n, k ≤ q, Z = (Z0,Z1, . . . ,Zk−1)T ∈ Rk{0,±1}, G
T = (G0 = 1, G1 = 2, . . . , Gk−1 =

2k−1). Then, by iterating over all Z, it is possible to ensure that for any u ∈ Rq, GTZ = u.

Proof. Let

FT =
(
h = gf−1, a,G1 − (as1 + ge1), . . . , Gk − (ask + gek)

)
,

ZT =

(
f

k∑
i=1

eixi,

k∑
i=1

sixi, x1, . . . , xk

)
.

Verify that

FTZ = hf(

k∑
i=1

eixi) + a(

k∑
i=1

sixi) +

k∑
i=1

(Gi − (asi + gei))

= gf−1f(

k∑
i=1

eixi) + a(

k∑
i=1

sixi) +

k∑
i=1

(Gi − (asi + gei))xi

=

k∑
i=1

Gixi = u.

For ZT = (f
∑k
i=1 eixi,

∑k
i=1 sixi, x1, . . . , xk), its covariance is

COV = r2

 R1

R2

I

( R1 R2 I
)
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where R1 = [fRot(e1), . . . , fRot(ek)], R2 = [Rot(s1), . . . ,Rot(sk)]. Thus, we need compensation

vectors from the Gaussian distribution of σ2I − r2COV.

0. Input u ∈ Rq, let GT = (1, 2, . . . , 2k−1).

1. Randomly select h, a, {s}k−1n=0, {e}
k−1
n=0 ∈ Rq, and select vector pT = (p1, . . . , pk) from the Gaus-

sian distribution σ2I − r2COV. Here, h = gf−1 is an instance of the NTRU problem.

2. Let FT = (h, a,G1 − (as1 + ge1), . . . , Gk − (ask + gek)), find Z such that u− FT p = GTZ.

3. Output FT , ZT = (f
∑k
i=1 eixi,

∑k
i=1 sixi, x1, . . . , xk) + p.

Figure 5: Trapdoor algorithm for Ring SIS

Definition 8 ([ABD16], note this may not be the first definition of the NTRU problem in the article).

Given h ∈ Rq, find (g, f) ∈ R2
q such that gh− f = 0 (mod q), or h = g−1f (mod q).

Lemma 8 ([FPMSW23]). If there exists an efficient algorithm W to solve the NTRU problem in poly-

nomial time, then there also exists an efficient algorithm W ′ to solve the id-HSVP problem in polynomial

time.

Theorem 4. Let h = gf−1 be an instance of the NTRU problem, G0 = 1, G1 = 2, . . . , Gk−1 = 2k−1, and

a, {si}ki=1, {ei}ki=1, {ui}k+2
i=1 ∈ Rq. Then,

FT = (h, a,G1 − (as1 + ge1), . . . , Gk − (ask + gek)) ≈C (uk+1, uk+2, u1, . . . , uk).

Proof. Since h = gf−1 is an instance of the NTRU problem, by Lemma 8 and a ∈ Rq, we have (h, a) ≈C
(uk+1, uk+2). Because Gi − (asi + gei) is affine, it suffices to consider the randomness of asi + gei.

According to Corollary 3, asi + gei ≈C ui. Therefore, the theorem is proved.

5 Conclusion

This paper analyzes the issues with current ideal lattice trapdoor algorithms and provides a rea-

sonable ideal lattice trapdoor algorithm. Since Ring LWE is not suitable for trapdoor construction, we

propose a new problem based on Ring LWE, specifically Inner Product Ring LWE. We reduce inner

product Ring LWE to hidden subgroup problems to ensure its quantum resistance, and demonstrate its

indistinguishability from randomly selected elements.
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