
Anonymous Outsourced Statekeeping with
Reduced Server Storage

Dana Dachman-Soled1, Esha Ghosh2, Mingyu Liang1, Ian Miers1, and
Michael Rosenberg1

1 University of Maryland, College Park
{danadach,mliang,imiers,micro}@umd.edu

2 Microsoft Research
esha.ghosh@microsoft.com

Abstract. Strike-lists are a common technique for rollback and replay
prevention in protocols that require that clients remain anonymous or
that their current position in a state machine remain confidential. Strike-
lists are heavily used in anonymous credentials, e-cash schemes, and
trusted execution environments, and are widely deployed on the web
in the form of Privacy Pass (PoPETS ’18) and Google Private State To-
kens. In such protocols, clients submit pseudorandom tokens associated
with each action (e.g., a page view in Privacy Pass) or state transition,
and the token is added to a server-side list to prevent reuse.

Unfortunately, the size of a strike-list, and hence the storage required
by the server, is proportional to the total number of issued tokens, N · t,
where N is the number of clients and t is the maximum number of tickets
per client. In this work, we ask whether it is possible to realize a strike-
list-like functionality, which we call the anonymous tickets functionality,
with storage requirements proportional to N log(t).

For the anonymous tickets functionality we construct a secure proto-
col from standard assumptions that achieves server storage of O(N) ci-
phertexts, where each ciphertext encrypts a message of length O(log(t)).
We also consider an extension of the strike-list functionality where the
server stores an arbitrary state for each client and clients advance their
state with some function si ← f(si−1, auxinput), which we call the anony-
mous outsourced state-keeping functionality. In this setting, malicious
clients are prevented from rolling back their state, while honest clients
are guaranteed anonymity and confidentiality against a malicious server.
We achieve analogous results in this setting for two different classes of
functions.

Our results rely on a new technique to preserve client anonymity in
the face of selective failure attacks by a malicious server. Specifically,
our protocol guarantees that misbehavior of the server either (1) does
not prevent the honest client from redeeming a ticket or (2) provides the
honest client with an escape hatch that can be used to simulate a redeem
in a way that is indistinguishable to the server.

1 Introduction

Strike-lists are a common technique in e-cash protocols, TEEs3, anonymous cre-
dentials, and larger protocols like stateful access control [18] and proof carry-
ing data systems. [6] As a concrete example, consider privacy-pass [19] and its
derivatives, which are in widespread use on the web [38] for fraud and abuse
prevention. In privacy-pass, clients complete a verification step (e.g., completing
a CAPTCHA or signing into a verified account), and are issued t one time use
tokens. Clients then use these tokens to access resources while remaining anony-
mous. I.e., they do not link their access request together or to token issuance.
Instead, clients reveal only that they hold a token (typically the tokens is the
output of a verifiable oblivious pseudo-random function). To enforce access lim-
its and prevent fraud, clients cannot reuse tokens indefinitely. To prevent this,
a server maintains a strike-list of used tokens. For each authentication attempt,
the server checks that the presented token is not already in the strike-list and
then appends it to the list. More elaborate protocols, such as Google’s trust
tokens [16], extend these techniques to support more sophisticated and multi
step anti fraud systems, but retain the core requirement for a strike-list of used
tokens.

Originally developed for double spend prevention in e-cash schemes [14],
strike-lists form a general technique for rollback prevention that arises from
a need to either (1) hide the details of a client’s particular state in some state
machine or (2) hide the identity of a particular client in a multi client setting
(e.g., anonymous credentials and e-cash).

While conceptually simple, a drawback of strike-lists is their rapid growth.
The size of the strike-list is proportional to the total number of issued tickets,
Ω(N ·t), where N is the number of clients and t is the number of tickets issued per
client. Beyond the storage requirements, servers managing stikelists also incur
the computational overhead of maintaining the data structures to support fast
non-membership checks.4

In this work, we consider the following problem:

Is it possible to achieve the functionality of strike-lists with server storage
of O(N log(t))?

Specifically, can we develop protocols achieving the functionality, privacy, and
anonymity of strike-lists, while (1) requiring the server to store only an O(log t)
size state per client, (2) preserving the star-shaped interaction graph of strike-
lists (each client communicates only with the central node corresponding to the
server), and (3) preserving to the extent possible the minimal round complexity

3 Intel SGX, for example, does not support trusted counters on server class processors
and is no longer supported on consumer processors.

4 At scale, the costs of maintaining index data structures poses challenges, as shown
by experiences with key transparency systems [39].

2

of strike-lists.5 We refer to such protocols as achieving the anonymous tickets
functionality.

The above functionality is not limited to simple strike-lists for one time to-
kens. It can be extended to capture more complex protocols requiring rollback
prevention. The anonymous tickets functionality outsources storage of state to
a server, but the state is limited to a counter. From this perspective, double-
spending corresponds to a client rolling back its state (e.g., resetting its counter),
but we are not limited to such incremental state transition functions.

In the anonymous outsourced state keeping malicious clients are forced
to to apply some state transition function si ← f(s−1, auxinput) to the current
state the server holds (i.e., without rollback), and honest clients are guaranteed
anonymity and privacy against a malicious server. Here we allow the server
storage to be O(N · s), where s is the size of the state stored per client. This
is clearly also a lower bound, since the states of the clients may be random
(or pseudorandom) strings that cannot be compressed. In this setting, the same
questions for optimal storage, communication topology, and round complexity
exist. And, looking ahead, we will see an additional question: which functions
are safe to run given the achievable security guarantees.

The challenge for anonymous state keeping. An immediate solution for removing
the strike-list for single use tickets (which we can extend to arbitrary state) is
for the server to store an encrypted per client counter initially set to the number
of issued tickets, and decremented on each client action until it reaches zero. But
this poses several problems. First, the access pattern of counter updates (and in
the extension the state update itself) must be hidden.

Second, because clients must prove something about the server state (i.e.,
that they are not out of tickets), we are now subject to the server equivocating
and sending different global state (i.e. the state it stores for all clients) to each
client. Forcing consistency of the server’s messages across clients seemingly re-
quires byzantine broadcast or an out of band gossip protocol. But resorting to
those approaches would violate our star-shaped interaction graph requirement
and, in practice, may offer worse tradeoffs than an Ω(N · t)-sized strike-list.

Third, and more perniciously, we must guard against a malicious server who
aborts, rolls back the state of a target client (or all other clients), or selectively
injects faults into the state of specific clients, as such strategies can be used to
deanonymize clients, even if all clients receive the same state. The high level
reason for deanonymization is that only the client whose state was tampered
will detect that tampering occurred and potentially behave differently, while all
other clients will behave as though the tampering did not occur. Thus, the server
can link a party who behaves differently (e.g. aborts) with the tampered account.

As a concrete example, consider a forum operator who accepts anonymous
posts given a ticket. The operator can decide to either rollback that specific
client state dynamically, e.g., based on the post, leading to the next subsequent

5 Here we refer the round complexity of the scheme itself. Many applications, and our
definitions, assume an anonymous communication layer such as a VPN or Tor.

3

post and ticket being linked by a repeated ticket. They could maul the target
client’s state, leading to a perhaps detectable abort by that client in the future.
This is particularly a problem for more complex protocols with extended state.
And it is not one that is stopped by non-equivocation: even if all clients receive
the same state vector, only one clients entry is malformed.

The last challenge is that strike-lists are incredibly simple from a round com-
plexity and interaction graph perspective. There is a single server who maintains
a list and clients send one message to the server. Approaches that solve rollback
and aborts using some gossip protocol, a transparency log, or even interactions
with multiple other parties are far from ideal. We want to keep the single round
of communication, single server model, and the star-shaped interaction graph in
our solution. However looking forward, we seemingly must require one round-trip
of communication between a client and a server. I.e., the client first requests the
server’s state and then sends an update.

1.1 Our Results

We now describe our results for the anonymous tickets and anonymous out-
sourced state-keeping functionalities. For the formal definitions of the ideal func-
tionalities and formal theorem statements, see Fig. 1, Fig. 13, Theorem 3, and
Theorem 4.

We obtain a protocol achieving the anonymous tickets ideal functionality with
our desired properties of (1) server storage of O(N) ciphertexts, each encrypting
a message of length O(log(t)), where N is the number of parties and t is the
maximum number of tickets issued to a single user, (2) preserving the star-
shaped interaction graph where each client communicates only with the server,
and (3) achieving a 3-message redeem protocol in which the client sends a request
to redeem, downloads state from the server, and uploads state back to the server.

Our protocol is constructed in a hybrid model, meaning the protocol has
access to other ideal functionalities. Specifically, it relies on a non-interactive
zero-knowledge proof (NIZK) functionality FRnizk, and an anonymous messaging
functionality Fam (further, instantiations of the former must themselves be in the
common reference string (CRS)-hybrid model). Fam captures our assumption of
an anonymous communication layer, which is implicitly required in most real-
world strike-list schemes to hide the IP address of the ticket redeemer. Finally,
we make an additional setup assumption that the server’s public key is well
known.

Theorem 1 (Informal). Assuming setup of the server’s public key, as well as
the existence of an additively homomorphic encryption scheme, a MAC scheme,
a digital signature scheme, and a commitment scheme, there exists a protocol
that realizes the anonymous tickets ideal functionality in the FRnizk,Fam-hybrid
model with server storage and per-redeem communication of O(N) ciphertexts,
each encrypting a message of length O(log(t)), where N is the number of users,
and t is the number of tickets issued per user.

4

We note that in the strike-list setting, the server storage would consist of
Ntλ tickets, where t is the maximum number of tickets issued per user and each
ticket has length λ. The storage for our scheme is therefore smaller than the
strike-list when t > L/λ, where L is the length of a ciphertext of the additively
homomorphic encryption (AHE) scheme encrypting a MAC of length κ and a
message of length log(t) < κ.

We briefly outline some well known ways to instantiate the assumptions for
the above theorem. NIZKs in the CRS model can be instantiated from various
standard assumptions such as DLIN, quadratic residuosity, and LWE. MACs and
digital signature schemes can be constructed from any one-way function. AHE
schemes can be constructed from DDH, DCRA (decisional composite residuos-
ity), and LWE. We note that when all our underlying primitives are instantiated
from LWE we achieve plausible post-quantum security.

Under somewhat stronger assumptions, we are able to realize the more gen-
eral functionality of anonymous outsourced state keeping. In particular, with
knowledge-of-exponent assumptions or Diffie-Hellman-type assumptions in bilin-
ear groups, we can build recursive succinct non-interactive arguments of knowl-
edge (recursive SNARKs) with constant proof size. [4, 35, 15, 7, 9]

As for the anonymous tickets functionality, our protocol for the anonymous
outsourced state-keeping functionality achieves the desired properties of (1)
server storage of O(N) ciphertexts, each encrypting a message of length O(s),
where s is the size of the client’s state, (2) a star-shaped interaction graph, and
(3) a 3-message redeem protocol.

Theorem 2 (Informal). Assuming setup of the server’s public key, as well as
the existence of an additively homomorphic encryption scheme, a MAC scheme,
a digital signature scheme, a commitment scheme, and a recursive SNARKs
scheme, there exists a protocol that realizes the anonymous outsourced state
keeping functionality in the FRnizk,Fam-hybrid model with server storage and per-
redeem communication of O(N) ciphertexts, each encrypting a message of length
O(s), where N is the number of users, and s is the size of the client’s state.

Our protocols are given in the anonymous messaging Fam-hybrid model. We
choose to present our protocols in this way since our primary objective, like that
of previous work that utilizes blind signatures [19], is to achieve “application
layer” anonymity, in which a malicious server cannot deanonymize the inter-
action with the clients based solely on the communication content. Therefore,
achieving “network layer” anonymity is an orthogonal topic and we do not con-
sider it in our paper. In practice, the threat posed by a network adversary can
be mitigated through the use of anonymous routing such as Tor.

In our protocol, the client sends and receives N ciphertexts during each re-
deem, so the client’s bandwidth is proportional to N . In Section 1.3 we discuss
an approach to reduce the client’s bandwidth to depend polynomially on se-
curity parameter κ. but to be independent of N (we refer to this as constant
bandwidth). To achieve this, we require sophisticated primitives such as authen-
ticated private information retrieval (PIR) [17] and non-interactive anonymous

5

κ Security parameter
N Number of users
t User’s initial quantity of tickets

nidx Number of tickets encoded by ciphertext at index idx
ep Current redemption epoch
T State table held by server
m Message signed by server on successful redemption

Table 1. Notation for this paper

routing [36]. We defer a fully formal treatment of the constant client bandwidth
case to future work.

1.2 Technical Overview

Before moving to formal definitions and proofs, we present an overview of our
ideal construction and its concrete instantiation. We provide intuition for the
decisions and discuss the many difficulties that come with defining and building
such a protocol. As an aide, we include a legend for notation in Table 1.

Ideal functionality One of our main contributions is presenting a formal def-
inition of an ideal functionality for the anonymous tickets. We briefly overview
here key features and design decisions we made in defining the functionality. For
the formal definition, see Fig. 1.

To describe the ideal functionality of our protocol, we first must enumerate
the parties involved. There are the users, or clients, i.e., the individuals who have
counters associated with their actions. There is the server, which obliviously
manages the clients’ state, ensuring the consistency of each counter update.
And there are the service providers, i.e., the web hosts who wish to use user
counters for rate limiting. We now describe the procedures exposed by our ideal
functionality.

Initialize is called by the environment to bring up the functionality. In order to
ensure service providers can be convinced that a user’s counter is nonzero,
we give the server a keypair (skServID, pkServID), and publicize the public key
to all parties. The server will sign redemptions with this key so that service
providers can verify it noninteractively.

Register is called by a user who wishes to sign up with the server. On receiving
a registration request, the functionality extends its table to contain the user’s
counter, which it initializes to a default value t.

EndRegister is called by the server to close registration. Once this is done,
redemptions may start.

Redeem is called by a user who wishes to decrement their counter. They receive
a signature of an arbitrary message of their choosing m under pkServID. This
m may be a challenge value provided by a service provider. For reasons

6

described in the next subsection, redemptions happen in epochs. A user may
only redeem once per epoch.

UpdateEpoch is called by the server to start a new epoch, and thus permit
users to redeem if they’ve already done so in the current epoch.

We describe some properties of our ideal functionality. The functionality is
correct—an honest user who registers may redeem and receive up to t signatures
on messages of their choice. Further, the functionality is robust to malicious
clients—clients are not able to redeem more than t times, nor can they redeem
more than once per epoch.

Clients also remain anonymous in this functionality, once they’ve registered.
We capture this by having the Redeem procedure send only the user’s message
m and perceived epoch ep′ to the adversary (we will see in the next subsection
why sending ep′ is necessary). Importantly, the specific value of ep′ may leak
some information about a user if, for example, different users had different no-
tions of how much time had passed since the last epoch. We intentionally model
this leakage in the ideal functionality, and propose the mitigation in the next
subsection that every honest user have approximately synchronized clocks.

Finally, the functionality is robust to malicious servers. The server can always
refuse to respond to a client or deny their redemption request while continuing
to serve other clients. But, by the client anonymity property, the server cannot
do this (beyond the leakage amount) on the basis of the identity of the client.

We note that these properties are achieved in a setting where the only value
that must be public and consistent between users is pkServID. This is in contrast to
authenticated dictionary systems such as SEEMless or Parakeet [12, 30], where
auditors must continuously query the server and gossip the answers they receive
or rely on a third party ledger.

Building up to our protocol Recall that, in our ideal functionality, a mali-
cious server should learn nothing about the states stored by the clients (privacy)
nor should it learn which client requested a state update in a given interaction
(anonymity). These guarantees should hold for all honest clients, even if a subset
of malicious clients collude with the server.

To achieve such a functionality, it is clear that we would need the outsourced
client state to be encrypted to achieve privacy. Moreover, the clients should be
able to retrieve their state (a simplified state is just a counter) obliviously to
achieve anonymity. Perhaps, the first thought that comes to mind, when we think
of oblivious access at the server, is Oblivious RAM (ORAM). However, in our
model, there are multiple clients. They do not interact with each other and do
not have any shared state. So, an ORAM solution does not immediately work
for us.

To work up to our final solution, let us start with a naive first attempt for
state consisting only of a counter.

Let each client have a counter associated with their account. At the time
of registration, a client generates an encryption key pair (sk, pk) and sends pk

7

to the server. The server then sets the count, denoted as n, to initial value t,
encrypts it ct← Encpk(n), and stores (pk, ct) in its table T of client information.
If a client with index idx∗ wants to redeem a ticket, they download T and send
a fresh table to to the server,

T ′ = [(pk1, ct
′
1), . . . , (pkN , ct

′
N)]

where the client’s own count has been decremented, ct′idx∗ = Encpkidx∗ (n−1), and
the remaining ct′idx = ctidx. The server then updates T to T ′.

Obviously, there are several problems with this proposal.

Adding anonymity. The above scheme reveals which client is updating, since
only the idx∗-th ciphertext differs between T and T ′. We fix this by using a
rerandomizable public-key encryption scheme, such as ElGamal or Pallier, and
letting each ct′idx = Rerandpkidx(ctidx) for idx 6= idx∗.

Adding concurrency. This amended scheme does not permit two users to make
an update concurrently since it is forced to pick which T ′ to accept as the new
table. We note, though, that updates from separate users ought to be commu-
tative: if user A decremented and then user B decremented, this is semantically
the same as if user B decremented and then user A decremented (as long as
we ensure the accounts are distinct). To leverage this observation, we use an
additively homomorphic encryption scheme for Encpk. In the new scheme, to
redeem, a user with index idx∗ computes a vector ∆ = (0, . . . , 0,−1, 0, . . . , 0)
whose −1 appears at index idx∗. The user encrypts ∆, using an additively ho-
momorphic encryption scheme, and gets a list of ciphertexts ĉt = [ĉtidx]idx∈[N]

where ĉtidx ← Encpkidx(∆idx). The user sends ĉt to the server, and the server lets
its new ciphertexts ct′idx = ctidx + ĉtidx. Now multiple users can produce ĉt values
concurrently, and the server can apply them in any order.

Adding security against malicious users. Currently, there is nothing stopping a
user from letting ∆idx∗ = 0 and thus avoiding decrementing its ticket counter.
Similarly, there is nothing stopping a user from picking nonzero plaintexts for
the other users, thus modifying their counters. To prevent this, we force users to
compute a zero-knowledge proof (ZKP) that n > 0 and their ĉt is well-formed,
i.e., that each ĉtidx is an encryption of 0 under pkidx, except for at one index,
where it is the encryption of −1 under pkidx∗ , whose secret key skidx∗ is known.
This forces the user to only decrement its own counter in each redemption.

Adding security against maliciously concurrent users. There remains one attack
against the soundness of the system that a malicious user can perform. Suppose
a user’s count n is 1. They can still redeem twice by performing two valid re-
demptions concurrently, both with respect to the same server state T . Both will
be accepted, and the count will be at −1, a violation of our desired functionality.

We may prevent this by defining epochs, wherein each user can only redeem
once and have the server maintain a strike-list only for that epoch. To bind a

8

redemption request to an epoch, we require every user to include a commitment
to a PRF key nk on registration. To redeem in epoch ep, a user computes a
nullifier nf = PRFnk(ep), and sends it along with a ZKP that the nullifier was
computed honestly from its committed nk. The server can then verify that a
nullifier has only ever been seen once within an epoch. Epochs are short, as we
discuss shortly, in practice limited by how well synced client clocks are. After an
epoch expires, the strike-list can be discarded without further communication
with any client or reissuing credentials.6

Hiding number of redemptions per epoch. An honest-but-curious user can check
whether or not there was a redemption during a span of epochs. They simply
query the server for T at one epoch, and query again at each subsequent epoch. If
the tables remain the same, then no tickets were redeemed. Otherwise, someone
redeemed. We can avoid this leakage by requiring the server to rerandomize
(equivalently, add an encryption of 0 to) the ciphertexts after every epoch.

Preserving anonymity across epochs and setting epoch length. A malicious server
can use different views of the epoch to deanonymize a user. If a server suspects
that an epoch query comes from a user who has made a redemption request in
a previous epoch epold, they can claim the epoch number to be epold. In the case
that this user indeed redeemed in epoch epold, they either generate a duplicated
nullifier or have to abort. Either way, the server can use this information to
associate the current redeeming attempt with a past redemption.

We fix this by introducing a protocol change and a new assumption of our
parties. The new protocol will determine the epoch using a party’s local clock,
and require the user to send its perceived epoch to the server, who will only
proceed if it matches its own epoch (otherwise, a user can redeem with respect
to an old state, and thus overflow its counter). This eliminates the maliciously
chosen ep attack, but it does not remove leakage: a user lagging behind may
send several outdated epochs for multiple redeem requests, potentially allowing
the server to link these requests together. More formally, the size of the user
anonymity set is inversely proportional to the size of the clock drift. We bound
this leakage by introducing a new assumption, namely that every party’s clock
is at least weakly synchronized. This is a reasonable assumption in practice.

Adding anonymity against malicious servers. There are four main attacks that a
malicious server can perform. They can tamper with the suspected user’s cipher-
text, truncate the table to exclude the suspected user, tamper with the ciphertext
of non-suspected users, and roll back the table (or a subset of ciphertexts) to a
previous state. We describe and patch each of these below.

Redeeming when the ciphertext is modified. A malicious server can deanonymize
the user with index idx∗ by taking away all its tickets, i.e., setting ctidx∗ ←
6 In contrast, in the standard-strike list setting, discarding the strike-list requires all

clients be online to be issued fresh tickets under new server keys.

9

Encpkidx∗ (0). Then, when redeeming, user idx∗ will download the table T , see
that it cannot proceed with the protocol and abort. This abort leaks the user’s
index in the table to the server. We can prevent this by adding a way to detect
server tampering, and then adding an escape hatch in the ZKP that allows a
user who detected tampering to do whatever they like with their ciphertext and
nullifier.

We have every user choose a MAC key mk and commit to it. We will also
include all the other user secrets in the commitment, including the source ran-
domness sr used to generate the user keypair, com = Com(mk‖nk‖sr; r), for
some opening randomness r. In addition, when computing the original ct in
registration, the user will MAC the ticket count τ = Macmk(t). To complete
registration, the user sends (pk, com) along with a ZKP that everything was
generated correctly. The server computes ct ← Encpk(t‖τ), and sends back the
signed commitment and position in the table σ ← Signsk′ServID(idx‖com), where

(pk′ServID, sk
′
ServID) is the server’s keypair.7

Redemption is modified slightly to account for the new value in each ct.
Specifically, for the user with index idx∗, each ĉtidx is computed as Encpkidx(0‖0)
for idx 6= idx∗, and ĉtidx∗ ← Encpkidx∗ (−1‖τ̂ − τ) where τ̂ is the MAC of n− 1. All
of this is ensured via a ZKP.

The escape hatch in the redemption ZKP is as follows. If a user observes
a T containing an invalid (ct, τ) pair at index idx∗, under a MAC key whose
commitment com is signed for position idx∗ (as it is in registration), then the
user may pick whatever they want as the new n, and may use any arbitrary nf.

Now if the server tampers with a user’s ticket, it will not be able to update the
MAC correctly, and will thus allow a user to use the escape hatch. In addition, if
the server equivocates and gives different tables to different users, even with the
user’s own ciphertext intact, the users behave identically to the case where the
tables are unmodified. Thus the server gains no advantage in deanonymizing.

Redeeming when the table is truncated. A malicious server can narrow down
which user it is talking to by truncating its table T . For example, it can only
send the first half of the table to the user. If the user’s index is greater than
|T |/2, it will have to abort, revealing to the server a bit of information about
its index. We fix this by inserting another escape hatch in the redemption ZKP
statement: if the signed index idx in σ exceeds the size of the table received,
then the user can use any arbitrary nf as long as it does not maul anyone else’s
ciphertext, i.e., ∆ = (0, . . . , 0).

Redeeming when the table is rolled back. The scheme is now secure against
mauled and truncated tables T , but it gives users no way to reject valid T
that are simply old, i.e., a state rollback. A malicious server can use rollback to
break anonymity of honest clients who do not keep track of their counter locally.

7 This keypair is separate from (pkServID, skServID). This prevents users from picking
their own table T ′, letting m = T ′ in redemption, receiving a signature, and using
the knowledge of the signed T ′ to use the escape hatch indefinitely.

10

Suppose there are just two clients in the system, Alice and Bob. A malicious
server may persistently roll back the counter for Bob, and leave Alice’s counter
intact. After a point, Alice is out of tickets, but Bob can keep redeeming. Thus,
the server can identify Bob.

Fortunately, fixing this requires no additional cryptography. Observe that
rolling back to a previous valid state merely gives the user more tickets. In order
to preserve their anonymity, then, an honest user need only track their own state
and behave as if they are receiving the most up-to-date T . Importantly, the user
should stop redeeming when they should have hit their limit. If every honest
user behaves this way, then the adversary has no way to distinguish between
them via rollbacks. This fix applies equally to all of the escape hatch solutions
discussed so far.

Generalizing past counters to arbitrary state. We note that the above techniques
do not rely on the fact that the data stored in T is an integer. We can easily
prove any state update function sti := f(sti−1, auxinput) by uploading a value
∆ = sti − sti−1. This system is secure up to the leakage of f (and ep′). But
we encounter an interesting subtlety: as described above, our approach allows
rollback to valid states, but prevents any kind of selective failure attack. What
functions f are safe to run in this environment?

In the case of tickets, rollback is acceptable. Server malfeasance only gives the
client the option to perform more actions. An honest client who tracks their own
state locally can simply not take it, thus avoiding deanonymizing themselves.
Other protocols may also have this property.

What if running f on a rolled back state is not safe? So far we have consid-
ered f which are safe to run directly on a past state, i.e., f(st−i). We extend
our protocol to support f which, to make progress, must be iteratively applied
to old states, i.e., f i(st−i), in essence, fast forwarding to the correct state. To
hide whether or not a fast forward occurred, we make use of recursive SNARK
constructions for incremental verifiable computation (IVC). [4, 35, 15, 7, 9]

Thus we support both functions that can safely be run on rolled-back state,
and functions that are unsafe to roll back, but safe for malicious clients to roll
forward arbitrarily. Readers will note, however, that not all functions fall into
these two categories. Consider a single-player game where users play once per
day but compete on wins (e.g., Wordle). The function that describes this game
cannot be safely fast-forwarded, as a player could pad their win count. Nor can we
necessarily safely force the player to play from a rolled-back game state, as their
score would change. But the restrictions here are subtle and what applications
fit this setup is an open question. For example, if we remove the daily play limit
or play a slightly different game where the daily limit stems on signed external
events (e.g., the outcome of sporting events for a gambling game), then this
appears safe.

11

1.3 Extensions and Future Work

As described, our schemes require clients to download and then re-upload O(N)
ciphertexts, each encrypting a message of length O(log(t)) (for anonymous tick-
ets) or O(s) (for outsourced state). Is it possible to do better? Here we consider
avenues for reducing client download and upload.

To reduce download size, the client can utilize single-server Private Infor-
mation Retrieval (PIR) to download their record instead of the full vector of
accounts. This introduces one additional complication: the client needs to now
prove their retrieved ciphertext is authentic without the rest of the account vec-
tor. Our setting is slightly different from that of authenticated PIR [17] because
our outsourced anonymous state scheme already deals with selective failure at-
tacks, we need not design a PIR scheme that prevents them. However, we need
both the client’s queried index and the server’s response to be verifiable in a zero-
knowledge proof. It’s not sufficient for the server to merely sign the PIR result,
as the client could deliberately query the wrong index and then use the signed
response value as an escape hatch. If one constructs a single server PIR scheme
in the style of Kushilevitz and Ostrovsky [27] from additively homomorphic en-
cryption, a plausible protocol materializes: the server’s response shall include a
one-time signature over the PIR result, the client’s query, and the client’s PIR
encryption public key. Assuming the public key commits to a unique secret key,
then both the index the client queried and the result should be verifiable. The
server can verify this proof with respect to the signing key and, because the key
is single use, conclude the data is fresh.

Reducing client upload poses a more challenging problem. We need to avoid
revealing which record on the server we are modifying. Our scheme does this by
giving an encrypted ∆ to be added to every account, enforcing that all but one
of the values is 0. This seemingly requires N ciphertexts.

Non-interactive Anonymous Router [36] offers a surprising solution to this
problem. In this scheme, an untrusted server receives constant-size ciphertexts
and routes them to a a recipient without learning the destination. The authors
give a special case of this for non-interactive anonymous shuffle where the server
and all recipients are the same party but learn only a shuffle of the input mes-
sages. If we set the input message to be the encrypted ∆i and the location of the
ciphertext it should be added to, we achieve something resembling an anony-
mous tickets functionality with constant client upload bandwidth. Note some
important caveats are that current versions of non-interactive anonymous rout-
ing require a trusted setup or all parties to participate in setup. In addition,
every party must submit a message in each epoch. It’s an open question if future
work can remove some of these requirements.

Reissuing tokens or initial states. Our scheme assumes clients are issued a single
set of tokens. What happens when they run out? A simple way to reissue tokens
is for clients to register again under a different (potentially linked) public key.
However, the server would be forced to store state for existing clients as well as
new ones. If we expire tokens and force all clients to re-register periodically, then

12

the server’s state is again optimal. But forcing all clients to synchronize by some
expiry deadline is undesirable in many cases. Is it possible to avoid this cost and
allow clients asynchronously (subject to whatever authorization constraints the
server wishes) either get more tokens or re-register? As the server can always
re-run the registration process for an individual client overwrite their existing
account, this seems plausible. However, careful consideration of the setting is
necessarily, especially how to surface the pre-requisite for any anonymity system
: that other honest users are available.

1.4 Related Work

Typical multiparty computation protocols achieving security in the Ideal/Real
Model paradigm are inherently non-anonymous (protocol design in the Ideal/Real
Model implicitly assumes point-to-point authenticated channels [2]) and require
all parties to be online simultaneously and to exchange messages throughout the
protocol execution (e.g. using authenticated/unauthenticated Byzantine agree-
ment to implement a broadcast channel [29]). Thus, these protocols would not
satisfy our requirements of anonymity and zero communication between clients.

Exceptions to the above paradigm include the works of Halevi et al. [24] and
Halevi et al. [22] who studied collusion-resistant MPC protocols for general func-
tionalities with restricted interaction. Their model, however, does not guarantee
anonymity (specifically, a PKI and authenticated point-to-point channels are as-
sumed), clients interact with the server in a specified order, and each client is
only allowed to interact with the server a single time. More general interaction
patterns as well as protocols based on correlated randomness setup have also
been studied [3, 23].

In the garbled-circuit-based 2PC setting, a similar phenomenon (called the
selective input attack) as the one we encounter in this work occurs: Party P2

may detect that party P1 cheated, but aborting the protocol leaks information
to P1, since it indicates that P1’s misbehavior was, in fact, detected by P2.
This problem was solved by Lindell [28] and Huang et al. [25] using a technique
somewhat reminiscent of ours: If P2 detects misbehavior of P1, then that in and
of itself provides P2 with an escape hatch for a second secure computation in
which it directly receives P1’s input. Despite the similarities in the high-level
idea, we note that our escape hatch approach applies in a completely different
setting.

A closely related line of work is anonymous credentials. There has been a
long line of work on this. Anonymous n-times tokens/authentication focuses
on a specific aspect of anonymous credentials: how to prove that possession of
credentials to a relying party anonymously, a bounded number of times [11].
There has been other blind-signature and MAC-token based approaches to this
problem [1, 37, 32, 26, 13], but all of them take the strike-list approach. Finally, we
note that, most of the formal definitions in anonymous credentials are property
based, in contrast to our idea/real paradigm. The few exception to these are [10,
8, 5].

13

Another interesting line of work considers PIR specifically in the context of
selective failure attacks and malicious servers PIR [17, 40]. Surprisingly, despite
requiring only the retrieval data, not the update of it, this setting appears to
be more challenging than the anonymous outsourced ticket- and state-keeping
setting. In particular, to achieve security against both selective failure attacks
and equivocation attacks, the single server PIR scheme in [17] requires some
gossip mechanism fora digest of the database. In contrast, because we outsource
state-keeping but allow the client to retain a local copy of its state, we can safely
constrain client behavior to be the same regardless of which database a malicious
server provides.

2 Preliminaries

For formal definitions of additively homomorphic encryption (AHE) scheme,
message authentication code, digital signature, commitment scheme, and non-
interactive zero-knowledge proofs (NIZK), see Appendix A.

3 Concurrent Anonymous Tickets

We first present the ideal functionality and then describe our protocol that re-
alizes the functionality.

3.1 Ideal Functionality

We present our ideal functionality (Fig. 1) for the issuance of anonymous tickets.

Input/Output. The functionality takes as input a keypair (pkServID, skServID) be-
longing to the server. We also assume all users know the server’s public key
pkServID beforehand. In practice, this can be achieved through Public Key In-
frastructure (PKI). During the Register phase, a user non-anonymously signs up
and is allocated an initial quota of t tickets. Throughout the Redeem phase, a
user seeking to redeem a ticket receives as output a signature from the server
over a message of the user’s choice, so long as the user has not already redeemed
all t tickets. In more detail, in order to enforce a limit of no more than t ticket
redemptions per user, the functionality maintains an individual counter, denoted
nuid for user uid, which tracks the number of unused tickets.

Anonymous redeem. To preserve the anonymity of redeeming users, the func-
tionality only sends the request contents, not the user identity, to the adversary
S. While the corrupt server is unable to identify a particular redeeming user be-
hind a redeem request, our network model makes no assumption that users have
direct communication with each other. This makes achieving complete robust-
ness in the presence of a corrupt server impossible. To address this limitation in
the ideal functionality, we allow the adversary S controlling the server to reject
any Redeem request. However, we emphasize that the server cannot selectively
target an individual user for rejection, since they are given no user-identifying
information on which to base their decision.

14

Functionality F tcat

Initialize: On message (Initialize, pkServID, skServID) from ServID and
messages (Initialize, pkServID,) from users, set HUsers,CUsers := {},
ep := 0, and T := {}.

Register: On message (Register,ServID) from uid:
1. If ServID is corrupt, send (Register, uid) to S, if S replies

with (uid, abort), send ⊥ to uid. Otherwise, if S replies with
(uid, ok), continue.

2. If uid ∈ HUsers ∪ CUsers or ep 6= 0, send ⊥ to uid skip the
remaining steps.

3. Else if uid is corrupt, add uid to CUsers and send idxuid :=
|HUsers∪CUsers| to S. Else, add uid to HUsers if uid is honest.

4. Initialize nuid to t.
EndRegister: On message (EndRegister) from ServID, set the epoch

ep := 1 and initialize Uep := {} to keep track of redeeming users
in the new epoch. Also, send ep to S.

Redeem: On message (Redeem, ep′,m, uid) from uid′:
1. If uid′ ∈ HUsers, which implies uid := uid′,

(a) If uid /∈ Uep and nuid > 0, add uid to Uep, set nuid :=
nuid − 1. Else, skip the remaining steps.

(b) If ServID is honest and ep′ = ep, set σm ← SignskServID
(m)

and R := 1. Else, set R := 0.
(c) If ServID is corrupt, send (Redeem, ep′,m) to the adver-

sary S. Upon receiving σ′ from S, set σm := σ′ and
R := 1. Upon receiving abort from S, set R := 0.

(d) If R = 1, send σm to uid. Otherwise, send ⊥ to uid.
2. If uid′ ∈ CUsers,

(a) If uid 6= uid′ and uid ∈ HUsers, or ep′ 6= ep, send ⊥ to uid′

and skip the remaining steps.
(b) If uid /∈ Uep and nuid > 0, add uid to Uep, set nuid := nuid−1

and send σm ← SignskServID
(m) to uid′.

(c) Else, send ⊥ to uid′.
UpdateEpoch: On message (UpdateEpoch) from ServID, set ep :=

ep + 1 and initialize Uep := {} to keep track of redeeming users in
the new epoch. Also, send ep to S.

Fig. 1. The ideal functionality for concurrent anonymous ticket

Concurrency. In practice, the server may receive multiple redemption requests
from different users within a short span of time. To enhance efficiency, it would be
beneficial to enable users to concurrently redeem their tickets. In our protocol,
the server maintains state keeping track of the remaining tickets of all users.
Allowing concurrent redemptions would imply that users are permitted to update
with respect to out-of-date states, possibly allowing a malicious user to over-
redeem in a single concurrent burst. To prevent this, we divide the redeem phase
into epochs, denoted ep, and restrict each user to redeemming no more than once
per epoch. Moreover, the server rerandomizes the table at the end of each epoch.

15

The ideal functionality enforces this rate-limiting constraint by maintaining a
record Uep of users who have made a Redeem request within the current epoch,
and rejecting repeats.

Additional leakage on Redeem timing. The constraint mentioned above implies
that the redeeming party must be in the same epoch as the server for successful
redemption. In practical scenarios, there is a possibility of epoch mismatch be-
tween a server and a user due to loose synchronization. In such cases, we contend
that the server is able to learn additional information on the perceived epoch
of the redeeming user. For instance, a lagging redeeming user may attempt to
redeem using outdated epochs, and this potentially allows the server to asso-
ciate these attempts. Consequently, we account for this information leakage in
our ideal functionality by also revealing the perceived epoch of the redeeming
user.

3.2 Protocol

We describe our protocol (Figs. 2 and 3) which realizes the anonymous tickets
functionality (Fig. 1), allowing users to anonymously redeem acquire up to t
signatures from the server.

Initialize. Our protocol starts with the server, denoted ServID, holding a keypair
(pkServID, skServID) and user, denoted by their ID uid, all of whom know pkServID.
This keypair is used by the server to sign a user’s message m during the Redeem
phase.

Additionally, the server samples a second keypair (pk′ServID, sk
′
ServID) and all

users get pk′ServID. Unlike the previous keypair, this keypair is generated and used
solely within the Register phase to endorse a user’s registration. Here we make
an additional setup assumption that this keypair is generated by the server with
the public key transmitted to all clients at the beginning of the protocol.

On startup, each user samples a MAC key mkuid, a nullifier key nkuid and a
keypair (pkuid, skuid) for an additive homomorphic PKE scheme. Jumping ahead,
the counter for the remaining ticket is kept on the server as a ciphertext en-
crypted under pkuid, and the MAC key allows the user to deter the malicious
server from tampering with this ciphertext. The nullifier key produces a unique
string for a user within an epoch, allowing the server to identify a repeated
redeeming request from the same user within a single epoch.

Register. In this phase, each user computes and sends a commitment of its keys
generated in the previous phase to ServID. This commitment effectively binds
the user to these keys throughout the protocol. Also, each user computes a MAC,
denoted as τuid,t, for the initial ticket number t. Subsequently, it sends this MAC
along with its public key pkuid to the server. This allows the server to compute
an encryption of t‖τuid,t and adds the resulting ciphertext to the ServID.T table.
Finally, the server uses sk′ServID to sign the commitment and the location idx of
this ciphertext in ServID.T . It returns both the signature σuid and idx to the user.

16

Protocol Πt
cat[Fam,FRnizk]

Initialize: At this phase, ServID’s has a key pair (pkServID, skServID) as
its input and all users have pkServID as their inputs.
1. ServID initializes ServID.U := {},ServID.T := {}, ep := 0.
2. ServID samples a signing key pair (pk′ServID, sk′ServID) and sends

pk′ServID to all users.
3. Each user uid sample a MAC key mkuid, nullifier key nkuid, and

randomness sruid. It then computes the encryption key pair
(pkuid, skuid)← KeyGen(sruid) and set ρuid := mkuid‖nkuid‖sruid.

Register: uid follows the below steps to register with ServID.
1. uid generates randomness ruid and computes comuid :=

Com(ρuid; ruid). Additionally, it computes τuid,t := Macmkuid(t).
It calls FR0

nizk with message (Prove, x, w) where x :=
(comuid, c, τuid,t, pkuid) and w := (ruid, ρuid), and receives
(Proof, π0,uid) proving correctness of generating comuid, τuid,t
and pkuid. Then uid sends (Register, pkuid, comuid, τuid,t, π0,uid)
to ServID.

2. If ep 6= 0 or there already exists uid ∈ ServID.U , ServID sends
⊥ to uid and skip the remaining steps.

3. ServID sends (Verify, x, π0,uid) with x := (comuid, c, τuid,t, pkuid)
to Fnizk. If Fnizk return False, ServID outputs ⊥ to uid and
skips the remaining steps.

4. Otherwise, ServID adds uid to ServID.U . Also, it computes
ctuid ← Encpkuid(t‖τuid,t) and adds (pkuid, ctuid) to ServID.T .
Finally, it sets idx := |ServID.T | and generates σuid ←
Signsk′

ServID
(idx‖comuid) and outputs (idx, σuid) to uid.

5. If Vrfypk′
ServID

(idx‖comuid,ρ, σuid) returns False, uid aborts. Oth-

erwise, uid initializes a local counter nuid := t to track the
number of its remaining tickets.

EndRegister: ServID sets the epoch ep := 1, initializes a nullifier
set S := {} and a list L := [] that keeps track of the aggregated
updating ciphertexts within this epoch.

UpdateEpoch: First, if L is non-empty, ServID updates ServID.T
by homomorphically adding each ciphertext in L with the corre-
sponding ciphertext in ServID.T . Next, ServID re-randomizes all
ciphertexts in ServID.T . Finally, ServID sets ep := ep+1, S := {},
and L := []].

Fig. 2. Concurrent anonymous tickets protocol. The default number of tickets at reg-
istration is t.

17

Protocol Πt
cat[Fam,FRnizk] (Continued)

Redeem: uid on input (Redeem, ep′,m) does the following to acquire
server’s signature on m.
1. uid ignores the input if either it has already made a redeem

attempt with the same ep′ before, or nuid = 0.
2. uid uniformly picks sid and sends

(Send, sid, (Request, ep′),ServID) to Fam.
3. Upon receiving (sid, (Request, ep′) from Fam, ServID skips

the remaining steps if ep 6= ep′. Otherwise, ServID sends
(Reply, sid,ServID.T) to Fam.

4. Upon receiving (sid,ServID.T) from Fam,
(a) uid tries to retrieve the idxth ciphertext ctidx from

ServID.T . Then, it computes n‖τ := Decskuid(ctidx) and
checks Vrfymkuid

(n, τ) = 1.
i. If the above step fails, uid picks a uniformly random

nullifier nf and computes ĉtidx ← Encpkuid(0).
ii. Otherwise, uid computes nf := PRFnkuid(ep′). Then,

it computes τ̂ ← Macmkuid(n − 1), ∆ := −1‖(τ̂ − τ),
and encrypts ĉtidx ← Encpkuid(∆).

Finally, for every remaining record (pkj , ctj) in ServID.T ,
uid computes ĉtj ← Encpkj (0).

(b) Let ĉt := (ĉt1, . . . , ĉt|ServID.T |). uid calls FR1
nizk with message

(Prove, x, w) where x := (pk′ServID, ServID.T, nf, ep′, ĉt) and
w := (idx, ρuid, ruid, comρuid , σuid). Receive (Proof, π1) from
FR1

nizk.
(c) It sends (Send, sid, (nf, ep′, ĉt, π1,m),ServID) to Fam,

where m is a message that it requires ServID to sign,
and sets nuid := nuid − 1.

5. Upon receiving (sid, (nf, ep′, ĉt, π1,m)) from Fam:
(a) ServID first checks that nf /∈ S, |ĉt| := |ServID.T |,

and ep′ = ep. Then, it sends (Verify, x, π1) with x :=
(pk′ServID, ServID.T, nf, ep′, ĉt) to FR1

nizk to verify the zero
knowledge proof. If either one of the four checks fails,
it sends (Reply, sid,⊥) to Fam and skips the remaining
steps.

(b) ServID adds nf to S. If L is empty, it simply sets L := ĉt.
Else, it computes component-wise homomorphic addition
of L and ĉt. Finally, it generates σm ← SignskServID

(m) and
sends (Reply, sid, σm) to Fam.

6. uid receives (sid, σm) from Fam. If VrfypkServID
(σm,m) 6= 1, it

outputs ⊥. Otherwise, it outputs σm.

Fig. 3. Continuation of the figure for the concurrent anonymous tickets protocol. The
default number of tickets at registration is t.

18

Functionality FRnizk
FRnizk is parameterized by an NP relation R. (The code treats R as a
binary function.)

Proof: On message (Prove, x, w) from party P : Ignore ifR(x,w) 6= 1.
Send (Prove, P, x) to S. Upon receiving (Proof, π) from S, store
(x,w, π) and send (Proof, π) to P .

Verification: On message (Verify, x, π) from a party V : if (x, π)
is stored, then return (Verification, x, π, 1) to V . Else, send
(Verify, x, π) to S. Upon receiving (Witness, w) from S, if
R(x,w) := 1, store (x, π) and return (Verification, x, π, 1) to V .
Else, return (Verification, x, π, 0).

Fig. 4. The ideal functionality for Single-Proof Non-Interactive Zero-Knowledge Func-
tionality

This gives credibility to the user when it needs to prove a malicious server has
tempered or deleted its record during the following redeem phase.

Note that the server does not receive the mkuid in the clear (only the com-
mitment). This creates an issue: a malicious user could potentially create an
incorrect MAC and later shift the blame to the server regarding this incorrect
MAC. To resolve this issue, we rely on Non-Interactive Zero-Knowledge Proofs
(NIZK): a user must prove to the server that the MAC it generates authenti-
cates t using the MAC key committed. In our protocol, we assume an ideal NIZK
functionality Fnizk (Fig. 4). Such functionality could be implemented using any
NIZK proof of knowledge system satisfying simulation-sound extractability. The
formal description of the ZK relation, designated as R0, can be found in section
3.3.

EndRegister. During this transitional phase, the server initializes its epoch num-
ber as ep := 1. To prevent any user from redeeming more than once within this
epoch, the server maintains a set, denoted as S, to record all the nullifiers it will
receive within this epoch. Additionally, the server initializes an empty list, re-
ferred to as L, which is of the same size as ServID.T . This list serves the purpose
of keeping all the intended modifications (in an aggregated form) to ServID.T
that are expected to occur by the end of this epoch.

Functionality Fam

Send: On message (Send, sid,m1, R) from S. Forward message
(sid,m1) to party R and record (S, sid) if it has not been recorded
before.

Reply: On message (Reply, sid,m2) from R, the functionality checks
if there exists some S such that (S, sid) is recorded. If yes, forward
message (sid,m2) to S. Otherwise, it ignores the request.

Fig. 5. The ideal functionality for anonymous messaging

19

Redeem. During the Redeem phase, a user initiates the process of redeeming a
ticket. This involves decrementing its encrypted ticket count stored on the server
and obtaining the server’s signature on a message m to validate this action.

Throughout this phase, we assume the availability of an anonymous messag-
ing ideal functionality Fam (Fig. 5). All communications between the server and
users are passed through Fam. This ensures that the server cannot identify users
solely based on communication patterns. To redeem a ticket, the user first re-
quests ServID.T from the server. Next, the user needs to decrement its encrypted
counter and provide a MAC.

Recall that during an epoch, multiple users may request the same ServID.T
and submit modifications at the same time. To facilitate the server’s aggrega-
tion of these modifications from various parties, the user calculates ∆idx∗ :=
−1||(τ̂ − τ) and produces an updating ciphertext ĉtidx∗ ← Encpk(∆idx∗) for their
own ciphertext at index idx∗ and public key pk. Additionally, the user generates
ciphertexts encrypting the value 0 for all other records, and submits them to-
gether with its own updated ciphertext to hide the exact record that is modified.
The server aggregates the ĉt tables received from multiple users by homomor-
phically summing them into the current ct table, entry by entry. Therefore, at
any time, the server only maintains the aggregated version with the list L.

To convince the server that the above step is executed honestly, a user must
provide a zero-knowledge proof (ZKP) demonstrating the correct generation of
the updating ciphertexts. However, a user may encounter issues in generating
such proof if its record is tampered with or removed. Consequently, the zero-
knowledge proof includes a escape hatch mechanism that enables the user to
prove the server’s malicious action using the server’s signature σuid in the reg-
istered phase as part of the witness. This takes away the server’s ability to
selectively manipulate specific table records in an attempt to deanonymize a
Redeem request upon failure to generate a zero-knowledge proof. Effectively, it
grants the user an infinite number of tickets, as the user can consistently em-
ploy the same escape hatch to produce a valid zero-knowledge proof. The formal
description of the ZK relation, designated as R1, can be found in section 3.3.

We emphasize that we do not implement a mechanism to address server
rollbacks of records. This decision is driven by the fact that, unlike tampering,
a user can still generate a zero-knowledge proof even in the case of a rollback.
Essentially, a rollback can only increase the user’s ticket count. However, the
user bears the risk of being deanonymized when redeeming these extra tickets.
Consider the following attack where the server, in epoch ep, selects a single
ciphertext in ServID.T and rolls it back to the ciphertext in a prior epoch epold,
and observe whether this results in a greater total number of redeem requests
throughout the protocol lifespan. If this occurs, it indicates that extra tickets
have been effectively ”granted” to the user associated with that record, implying
that the user must have redeemed some tickets between epochs epold and ep. To
mitigate this risk, each user maintains a local record of their remaining tickets,
denoted as nuid, to prevent them from over-redeeming.

20

ZK Relation R0

A valid instance of the registration relation R0 contains a statement
including:

– comρ: a commitment of value ρ,
– t: the default number of tickets,
– τ : a MAC of t,
– pk: a public key belonging to the prover,

and a witness including:

– r: the randomness used for generating commitment comρ,
– ρ := (mk‖nk‖sr): a concatenation of a MAC key, a nullifier

key, and source randomness used to generate an encryption pub-
lic/private key pair,

such that the following conditions hold:

Correct Commitment. comρ = Com(ρ; r),
Correct MAC. τ = Macmk(t),
Correct Public Key. pk = pk′,where (pk′, sk′) := KeyGen(sr),

Fig. 6. ZK relation R0 for ticket registration.

UpdateEpoch. During this transitional phase, the server increments its epoch
number as ep := ep + 1 and empties the nullifier set. Further, the server up-
dates ServID.T as mentioned above, by homomorphically summing the current
ciphertext table with all the ciphertexts in L. Afterward, it empties L.

3.3 ZK relations

We give the two ZK relations (Fig. 6 and 7) that appeared in our protocol (Fig.
2).

3.4 Standalone Security Proof

In this section, we prove the security of our scheme in the (Fam,FRnizk)-hybrid
model with static corruptions.

Theorem 3 (Concurrent Anonymous Tickets Standalone Security). Pro-
tocol Πcat[Fam,FRnizk] securely realizes F tcat with abort in the presence of static
malicious adversaries in Fam,FRnizk-hybrid model with server storage and per re-
deem communication of O(N) ciphertexts, each encrypting a message of length
O(log(t)), where N is the number of users, and t is the number of tickets issued
per user.

We defer the proof to appendix B.

21

ZK Relation R1

A valid instance of the redemption relation R1 contains a statement
including:

– pkServID: a signature public key of the server used to endorse a
correct registration,

– {(pkj , ctj)}j∈[N′]: a table of N ′ encryption public key and cipher-
texts (each belonging to a user) stored by the server,

– nf: a nullifier used to uniquely bind to a user within an epoch,
– ep: the current epoch number,
– {ĉtj}j∈[N′]: a list of updating ciphertexts,

and a witness including:

– idx: a user’s position in ServID.T ,
– ρ := (mk‖nk‖sr): a value that is a concatenation of a MAC key,

a nullifier key, and source randomness used to generate a pub-
lic/private key pair,

– r: the randomness used for generating commitment comρ,
– comρ: a commitment of value ρ,
– σ: server’s signature on idx‖comρ, provided in the register phase,

such that the following conditions hold:

Correct Commitment. comρ = Com(ρ; r).
Correct Signature. VerifypkServID

(idx‖comρ, σ) = 1.

Correct Rerandomization. ∀j 6= idx, ĉtj are encryptions of 0 under pkj .

and at least one of the following three conditions hold:

Missing Record. idx > N ′, this suggests the table size is smaller than
the user’s index.

Tampered Record. τ 6= Macmk(n), where (pk, sk) := KeyGen(sr) and
(n‖τ) := Decsk(ctidx).

Correct Redeem. Let (pk, sk) := KeyGen(sr) and (n‖τ) := Decsk(ctidx),
all conditions below hold:

– n > 0, which suggests the user has remaining tickets.
– ĉtidx is an encryption of (−1‖Macmk(n − 1) − τ) under pk,

which shows the user correctly decrement its ticket with a
correct MAC.

– nf = PRFnk(ep), which suggests a correctly generated nullifier.

Fig. 7. ZK relation R1 for ticket redemption.

22

4 Extension to Anonymous Outsourced State-keeping

We extend our techniques to support arbitrary states. In particular, rather than
monotonically decrementing the state, we consider any arbitrary state transition
function that additionally takes an input y and a current st and outputs the next
state st′.

4.1 Summary of Changes

In our scenario, it might be advantageous to disclose a portion of the input to
have the server to sign it, confirming the validity of a state transition that meets
certain conditions or constraints. Consequently, we use y1 to denote the public
input that is revealed to the server, while y2 denotes the private input that must
remain hidden from the server.

Formally, we define the state transition function using the quadruple (Y1, Y2, D, f),
where:

– Y1 is the domain of public input.
– Y2 is the domain of private input.
– D is the domain of states.
– f is the state transition function: f : D × Y1 × Y2 → D.

Specifically, f(st, y1, y2) returns the output of a single state transition on state
st ∈ D with inputs y1 ∈ Y1, y2 ∈ Y2. Notice the counter in the previous section
is a special case where Y1, Y2 = {⊥} and f(st, ·, ·) := st − 1 if st > 0 and ⊥
otherwise.

Handling rollback. Recall that in the previous section, the server may roll back
a user’s record to a previous one. However, as this merely gives the user more
tickets, we handled it by simply letting the user carry out the computation using
the rollback state, subject to the constraint that the total number of user’s
redemption does not exceed the maximum number of tickets t.

On the other hand, when dealing with arbitrary state transition functions,
rollback attacks may pose a greater threat to anonymity, due to the exposure of
y1 to the server and the (potential) dependency between y1 and st. For example,
consider a state transition function where y1 assumes a unique value during
the initial transition, and a malicious server has a high level of confidence that
all users have updated their state at least once after a few epochs. In such a
situation, if the malicious server rollbacks a user’s record, it can deanonymize
the subsequent redemption request made by that user. This is because the user
is now forced to use the unique y1 value again in order to move out of the initial
state.

To resolve this, we essentially allow a user to fast-forward their rollback state.
In more detail, if a user detects their state is outdated, they can simply “fix”
the state to the up-to-date version that they maintain locally. Subsequently, the
user can continue the redemption request based on the up-to-date state. This

23

introduces an additional component in the ZK relation to enable users to prove
they correctly make multiple transitions to the up-to-date state followed by a
correct state transtion. We provide a detailed description of our modified ZK
relation in Section 4.4.

It is worth mentioning that our solution also permits a malicious user to
advance their state an arbitrary number of times. We capture such a behavior
in our ideal functionality (Fig. 13) as FastForward. We note that many func-
tions of interest exhibit a form of monotonicity, where future states tend to
have diminishing value. This naturally discourages the misuse of arbitrary state
advancement. For instance, in the ticket redemption scenario discussed in the
previous section, a user fast-forwarding its state would result in a loss of their
tickets. However, in cases where the function itself does not inherently possess
this kind of monotonicity, alternatives may be possible. For example, we can
limit the total number of state advances a client is allowed to make , but we
cannot constraint when they make them: if a client is allowed to advance its
state ten times over 10 redeems, then it can also advance 10 times in the first
redeem, but advance no further.

4.2 Ideal Functionality

Compared to the anonymous tickets ideal functionality, we substitute all in-
stances of ticket count n with the generic state variable st and introduce the
notations f , y1, and y2 to describe the state transitions. Furthermore, we add a
new method FastForward to allow a malicious user to fast forward its own state.
Due to space limits, we defer the figure to Appendix C.

4.3 Protocol

We describe our protocol in Figs. 8 and 9 with the changes from the anonymous
ticket protocol highlighted in blue. Similar to our modification to the ideal func-
tionality, we substitute all instances of n with the generic state variable st and
introduce the notation f , y1, and y2 to describe the state transitions. Moreover,
in Redeem steps 4.a.ii and 4.a.iii, we show how a user can make a normal state
transition and a fast-forward state transition respectively.

4.4 ZK Relations

We give the ZK relation for redemption (Fig. 10) that appeared in our protocol.
This relation includes the ability to fast forward invocations of f if the server rolls
back. As before, we highlight the changes compared to the anonymous tickets
counterparts in blue color. We use the notation y1 ∈ Y n1 ,y2 ∈ Y n2 and n′, where
fn
′
(st,y1,y2) denote the n′ sequential applications of f using the last n′ inputs

in y1,y2 respectively. The ZK relation for registration is rather similar to its
counterpart for anonymous tickets, therefore we defer it to Appendix C.

24

Protocol Πf,st0
cas [Fam,FRnizk]

Initialize: At this phase, ServID’s has a key pair (pkServID, skServID) as
its input and all users have pkServID as their inputs.
1. ServID initializes ServID.U := {},ServID.T := {}, ep := 0.
2. ServID samples a signing key pair (pk′ServID, sk′ServID) and sends

pk′ServID to all users.
3. Each user uid sample a MAC key mkuid, nullifier key nkuid, and

randomness sruid. It then computes the encryption key pair
(pkuid, skuid)← KeyGen(sruid) and set ρuid := mkuid‖nkuid‖sruid.

Register: uid follows the below steps to register with ServID.
1. uid generates randomness ruid and computes comuid :=

Com(ρuid; ruid). Additionally, it generates randomness r′uid and
compute τuid,0 := Macmkuid(st0). It calls FR0

nizk with mes-
sage (Prove, x, w) where x := (comuid, st0, τuid,0, pkuid) and
w := (ruid, ρuid), and receives (Proof, π0,uid) proving correct-
ness of generating comuid, τuid,0 and pkuid. Then uid sends
(Register, pkuid, comuid, τuid,0, π0,uid) to ServID.

2. If ep 6= 0 or there already exists uid ∈ ServID.U , ServID sends
⊥ to uid and skip the remaining steps.

3. ServID sends (Verify, x, π0,uid) with x :=
(comuid, st0, τuid,0, pkuid) to Fnizk. If Fnizk return False,
ServID outputs ⊥ to uid and skips the remaining steps.

4. Otherwise, ServID adds uid to ServID.U . Also, it computes
ctuid ← Encpkuid(st0‖τuid,0) and adds (pkuid, ctuid) to ServID.T .
Finally, it sets idx := |ServID.T | and generates σuid ←
Signsk′

ServID
(idx‖comuid) and outputs (idx, σuid) to uid.

5. If Verifypk′
ServID

(idx‖comuid,ρ, σuid) returns False, uid aborts.

Otherwise, uid initializes stuid := st0 to track its current state
and lists y1,y2 := [] to keep track of all inputs y1, y2 used in
state transition function.

EndRegister: ServID sets the epoch ep := 1, initializes a nullifier
set S := {} and a list L := [] that keeps track of the aggregated
updating ciphertexts within this epoch.

UpdateEpoch: First, if L is non-empty, ServID updates ServID.T
by homomorphically adding each ciphertext in L with the corre-
sponding ciphertext in ServID.T . Next, ServID re-randomizes all
ciphertexts in ServID.T . Finally, ServID sets ep := ep+1, S := {},
and L := {}.

Fig. 8. Concurrent anonymous outsourced state-keeping protocol parameterized by a
state transition function f , and a default state st0.

25

Protocol Πf,st0
cas [Fam,FRnizk] (Continued)

Redeem: uid on input (Redeem, ep′, y1, y2,m) does the following to
acquire server’s signature on y1‖m.
1. uid ignores the input if one of the following holds: it has al-

ready made a redeem attempt with the same ep′ before, or
f(stuid, y1, y2) :=⊥.

2. uid uniformly picks sid and sends
(Send, sid, (Request, ep′), ServID) to Fam.

3. Upon receiving (sid, (Request, ep′) from Fam, ServID skip
the remaining steps if ep 6= ep′. Otherwise, ServID sends
(Reply, sid, ServID.T) to Fam.

4. Upon receiving (sid, ServID.T) from Fam,
(a) uid tries to retrieve the idxth ciphertext ctidx from

ServID.T . Then, it computes st‖τ := Decskuid(ctidx) and
checks Verifymkuid

(st, τ) = 1.
i. If the above step fails, uid picks a uniformly random

nullifier nf and computes ĉtidx ← Encpkuid(0).
ii. Else if st = stuid, uid computes nf := PRFnkuid(ep′)

and ŝt := f(stuid, y1, y2). Then, it computes τ̂ =
Macmkuid(ŝt), ∆ := (ŝt − st)‖(τ̂ − τ), and ĉtidx ←
Encpkuid(∆).

iii. Else, uid computes nf := PRFnkuid(ep′) and ŝt :=
f(stuid, y1, y2). Next, it sets n′ to be the number of
transitions needed in order to reach stuid from st.
Then, it computes τ̂ ← Macmkuid(ŝt), ∆ := (ŝt −
st)‖(τ̂ − τ), ĉtidx ← Encpkuid(∆).

Finally, for every remaining record (pkj , ctj) in ServID.T ,
uid computes ĉtj ← Encpkj (0).

(b) Let ĉt := (ĉt1, . . . , ĉt|ServID.T |). uid calls FR1
nizk with message

(Prove, x, w) where x := (pk′ServID, ServID.T, nf, ep′, ĉt, y1)
and w := (idx, ρuid, comρuid , σuid, n

′, y2,y1,y2). Receive
(Proof, π1) from FR1

nizk.
(c) uid sends (Send, sid, (nf, ep′, ĉt, π1, y1,m),ServID) to Fam,

sets stuid := ŝt, and adds y1, y2 to y1,y2 respectively..
5. Upon receiving (sid, (nf, ep′, ĉt, π1, y1,m)) from Fam:

(a) ServID first checks that nf /∈ S, |ĉt| := |ServID.T |,
and ep′ = ep. Then, it sends (Verify, x, π1) with x :=
(pk′ServID, ServID.T, nf, ep′, ĉt, y1) to FR1

nizk to verify the zero
knowledge proof. If either one of the four checks fails, it
sends (Reply, sid,⊥) to Fam and skips the remaining steps.

(b) ServID adds nf to S. If L is empty, it simply sets
L := ĉt. Else, it computes component-wise homomor-
phic addition of L and ĉt. Finally, it generates σy1,m ←
SignskServID

(y1‖m) and sends (Reply, sid, σy1,m) to Fam.
6. uid receives (sid, σy1,m) from Fam. If

VerifypkServID
(σy1,m, y1‖m) 6= 1, it outputs ⊥. Otherwise,

it outputs σm.

Fig. 9. Continuation of the figure for the concurrent anonymous outsourced state-
keeping protocol parameterized by a state transition function f , and a default state
st0.

26

ZK Relation R1

A valid instance of the redemption relation R1 contains a statement
including:

– pkServID: a signature public key of the server, which is used to
endorse a correct registration from the user,

– {(pkj , ctj)}j∈[N′]: a table of N ′ encryption public key and cipher-
texts (each belonging to a user) stored by the server,

– nf: a nullifier used to uniquely bind to a user within an epoch,
– ep: the current epoch number,
– {ĉtj}j∈[N′]: a list of updating ciphertexts,
– y1: the public input of the current state transition

and a witness including:

– idx: a user’s position in ServID.T ,
– ρ := (mk‖nk‖sr): a value that is a concatenation of a MAC key,

a nullifier key, and source randomness used to generate a pub-
lic/private key pair,

– r: the randomness used for generating commitment comρ,
– comρ: a commitment of value ρ,
– σ: server’s signature on idx‖comρ, provided in the register phase,
– y2: the private input of the current state transition,
– n′: number of additional state transitions before the current state

transition,
– y1: a list of public inputs used in the previous transitions,
– y2: a list of private inputs used in the previous transitions,

such that the following conditions hold:

Correct Commitment. comρ = Com(ρ; r).
Correct Signature. VrfypkServID(idx‖comρ, σ) = 1.
Correct Rerandomization. ∀j 6= idx, ĉtj are encryptions of 0 under pkj .

and at least one of the following four conditions hold:

Missing Record. idx > N ′, this suggests the table size is smaller than
the user’s index.

Tampered Record. τ 6= Macmk(st), where (pk, sk) := KeyGen(sr) and
(st‖τ) := Decsk(ctidx).

Correct Redeem. Let (pk, sk) := KeyGen(sr) and (st‖τ) :=
Decsk(ctidx), all conditions below hold:

– f(st, y1, y2) 6=⊥, which suggests the transition is valid.
– ĉtidx is an encryption of (f(st, y1, y2) −

st‖Macmk(f(st, y1, y2)) − τ) under pk, which shows the
user correctly applies the transition function with inputs
y1, y2 and generates a correct MAC.

– nf = PRFnk(ep), which suggests a correctly generated nullifier.
Correct Redeem with Fast Forward. Let (pk, sk) := KeyGen(sr) and

(st‖τ) := Decsk(ctidx), all conditions below hold:

– f(fn
′
(st,y1,y2), y1, y2) 6=⊥, which suggests the transitions

are valid.
– Let ŝt := f(fn

′
(st,y1,y2), y1, y2).

ĉtidx is an encryption of (ŝt − st‖Macmk(ŝt) − τ) under pk,
which shows the user correctly applies multiple transitions
function with inputs y1,y2, y1, y2 and generates a correct
MAC.

– nf = PRFnk(ep), which suggests a correctly generated nullifier.

Fig. 10. ZK relation R1 for redemption.

27

4.5 Standalone Security Proof

We prove the security of our scheme in the (Fam,FRnizk)-hybrid model with static
corruptions.

Theorem 4 (Concurrent Anonymous State Transition Standalone Se-
curity). Protocol Πf,st0

cas [Fam,FRnizk] securely realizes Ff,st0cas with abort in the pres-
ence of static malicious adversaries in Fam,FRnizk-hybrid model with server stor-
age and per redeem communication of O(N) ciphertexts, each encrypting a mes-
sage of length O(s), where N is the number of users, and s is the size of the
client’s state.

The proof of this Theorem is given in Appendix D.

5 Conclusion

In this paper, we construct functionalities for anonymous tickets and anonymous
outsourced state-keeping with optimal storage. We achieve the lower bound of
O(N log(t)) storage for the ticket setting under standard cryptographic assump-
tions, and O(N · s) for the outsourced state-keeping setting for restricted classes
of functions. By outsourcing the client state to a server, our protocols ensure
dishonest clients cannot roll back their state or equivocate. At the same time,
honest clients get anonymity and confidentiality against a malicious server who
equivocates or injects selective failures. We achieve these results without requir-
ing byzantine broadcast, gossip, or that clients communicate with any other
party.

The proposed functionalities offer a secure and efficient alternative to tradi-
tional strike-lists, addressing the challenges of rapid storage growth and compu-
tational overhead associated with large strike-lists. Furthermore, our approach
maintains the simplicity and (nearly) the minimal round complexity character-
istic of strike-lists, providing a practical alternative when the number of clients
is small relative to the size of the strike-list. As our schemes require clients to
download and then upload re-upload O(N) ciphertexts, the approach may not
be desirable in all cases.

We leave to future work three questions. First, can the client bandwidth
requirments be reduced, e.g., with non-interactive anonymous shuffles [36], in a
practical setting? Second, how can additional tokens be efficiently issued once
a user has run out? And third, for the outsourced state-keeping setting, what
applications are viable in the fast-forward setting?

28

References

1. Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013: 20th
Conference on Computer and Communications Security, pages 1087–1098, Berlin,
Germany, November 4–8, 2013. ACM Press.

2. Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure
computation without authentication. In Victor Shoup, editor, Advances in Cryp-
tology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages
361–377, Santa Barbara, CA, USA, August 14–18, 2005. Springer, Heidelberg,
Germany.

3. Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard,
and Anat Paskin-Cherniavsky. Non-interactive secure multiparty computation.
In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, Part II, volume 8617 of Lecture Notes in Computer Science, pages
387–404, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg,
Germany.

4. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero
knowledge via cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, Part II, volume 8617 of Lecture
Notes in Computer Science, pages 276–294, Santa Barbara, CA, USA, August 17–
21, 2014. Springer, Heidelberg, Germany.

5. Dmytro Bogatov, Angelo De Caro, Kaoutar Elkhiyaoui, and Björn Tackmann.
Anonymous transactions with revocation and auditing in hyperledger fabric. In
Mauro Conti, Marc Stevens, and Stephan Krenn, editors, CANS 21: 20th Inter-
national Conference on Cryptology and Network Security, volume 13099 of Lecture
Notes in Computer Science, pages 435–459, Vienna, Austria, December 13–15,
2021. Springer, Heidelberg, Germany.

6. Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. ZEXE: Enabling decentralized private computation. In 2020 IEEE
Symposium on Security and Privacy, pages 947–964, San Francisco, CA, USA,
May 18–21, 2020. IEEE Computer Society Press.

7. Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof composition without
a trusted setup. Cryptology ePrint Archive, Paper 2019/1021, 2019. https://

eprint.iacr.org/2019/1021.

8. Joakim Brorsson, Bernardo David, Lorenzo Gentile, Elena Pagnin, and
Paul Stankovski Wagner. Papr: Publicly auditable privacy revocation for anony-
mous credentials. In Mike Rosulek, editor, Topics in Cryptology – CT-RSA 2023,
pages 163–190, Cham, 2023. Springer International Publishing.

9. Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas
Spooner. Proof-carrying data without succinct arguments. In Tal Malkin and Chris
Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part I, volume 12825 of
Lecture Notes in Computer Science, pages 681–710, Virtual Event, August 16–20,
2021. Springer, Heidelberg, Germany.

10. Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. Practical UC-secure
delegatable credentials with attributes and their application to blockchain. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
ACM CCS 2017: 24th Conference on Computer and Communications Security,
pages 683–699, Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

29

11. Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and
Mira Meyerovich. How to win the clonewars: Efficient periodic n-times anony-
mous authentication. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, ACM CCS 2006: 13th Conference on Computer and Com-
munications Security, pages 201–210, Alexandria, Virginia, USA, October 30 –
November 3, 2006. ACM Press.

12. Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Malvai. SEEM-
less: Secure end-to-end encrypted messaging with less trust. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019:
26th Conference on Computer and Communications Security, pages 1639–1656,
London, UK, November 11–15, 2019. ACM Press.

13. Melissa Chase, F. Betül Durak, and Serge Vaudenay. Anonymous tokens with
stronger metadata bit hiding from algebraic macs. In Helena Handschuh and
Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023, pages 418–
449, Cham, 2023. Springer Nature Switzerland.

14. David Chaum. Blind signatures for untraceable payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, Advances in Cryptology –
CRYPTO’82, pages 199–203, Santa Barbara, CA, USA, 1982. Plenum Press, New
York, USA.

15. Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and
transparent recursive proofs from holography. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology – EUROCRYPT 2020, Part I, volume 12105 of
Lecture Notes in Computer Science, pages 769–793, Zagreb, Croatia, May 10–14,
2020. Springer, Heidelberg, Germany.

16. Chrome for Developers. Private State Tokens, May 2021. https://developer.

chrome.com/docs/privacy-sandbox/private-state-tokens/.
17. Simone Colombo, Kirill Nikitin, Henry Corrigan-Gibbs, David J. Wu, and Bryan

Ford. Authenticated private information retrieval. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 3835–3851, Anaheim, CA, August 2023.
USENIX Association.

18. Scott E. Coull, Matthew Green, and Susan Hohenberger. Controlling access to an
oblivious database using stateful anonymous credentials. In Stanislaw Jarecki and
Gene Tsudik, editors, PKC 2009: 12th International Conference on Theory and
Practice of Public Key Cryptography, volume 5443 of Lecture Notes in Computer
Science, pages 501–520, Irvine, CA, USA, March 18–20, 2009. Springer, Heidelberg,
Germany.

19. Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo Val-
sorda. Privacy pass: Bypassing internet challenges anonymously. Proceedings on
Privacy Enhancing Technologies, 2018(3):164–180, July 2018.

20. T. Elgamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

21. Jens Groth. Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In Xuejia Lai and Kefei Chen, editors, Advances in Cryp-
tology – ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer Science,
pages 444–459, Shanghai, China, December 3–7, 2006. Springer, Heidelberg, Ger-
many.

22. Shai Halevi, Yuval Ishai, Abhishek Jain, Ilan Komargodski, Amit Sahai, and Ey-
lon Yogev. Non-interactive multiparty computation without correlated random-
ness. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology –
ASIACRYPT 2017, Part III, volume 10626 of Lecture Notes in Computer Science,

30

pages 181–211, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg,
Germany.

23. Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Rabin. Secure
multiparty computation with general interaction patterns. In Madhu Sudan, editor,
ITCS 2016: 7th Conference on Innovations in Theoretical Computer Science, pages
157–168, Cambridge, MA, USA, January 14–16, 2016. Association for Computing
Machinery.

24. Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web:
Computing without simultaneous interaction. In Phillip Rogaway, editor, Advances
in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Sci-
ence, pages 132–150, Santa Barbara, CA, USA, August 14–18, 2011. Springer,
Heidelberg, Germany.

25. Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computa-
tion using symmetric cut-and-choose. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes
in Computer Science, pages 18–35, Santa Barbara, CA, USA, August 18–22, 2013.
Springer, Heidelberg, Germany.

26. Ben Kreuter, Tancrède Lepoint, Michele Orrù, and Mariana Raykova. Anonymous
tokens with private metadata bit. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology – CRYPTO 2020, Part I, volume 12170 of Lecture
Notes in Computer Science, pages 308–336, Santa Barbara, CA, USA, August 17–
21, 2020. Springer, Heidelberg, Germany.

27. Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE
database, computationally-private information retrieval. In 38th Annual Sympo-
sium on Foundations of Computer Science, pages 364–373, Miami Beach, Florida,
October 19–22, 1997. IEEE Computer Society Press.

28. Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert
adversaries. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology
– CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer Science,
pages 1–17, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg,
Germany.

29. Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition of au-
thenticated byzantine agreement. In 34th Annual ACM Symposium on Theory of
Computing, pages 514–523, Montréal, Québec, Canada, May 19–21, 2002. ACM
Press.

30. Harjasleen Malvai, Lefteris Kokoris-Kogias, Alberto Sonnino, Esha Ghosh, Ercan
Oztürk, Kevin Lewi, and Sean Lawlor. Parakeet: Practical key transparency for
end-to-end encrypted messaging. Cryptology ePrint Archive, Report 2023/081,
2023. https://eprint.iacr.org/2023/081.

31. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99,
volume 1592 of Lecture Notes in Computer Science, pages 223–238, Prague, Czech
Republic, May 2–6, 1999. Springer, Heidelberg, Germany.

32. Christian Paquin and Greg Zaveruch. U-prove cryptographic specification v1.1
(revision 3), 2013.

33. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO’91,
volume 576 of Lecture Notes in Computer Science, pages 129–140, Santa Barbara,
CA, USA, August 11–15, 1992. Springer, Heidelberg, Germany.

34. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, January 1991.

31

35. Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted
setup. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryp-
tology – CRYPTO 2020, Part III, volume 12172 of Lecture Notes in Computer
Science, pages 704–737, Santa Barbara, CA, USA, August 17–21, 2020. Springer,
Heidelberg, Germany.

36. Elaine Shi and Ke Wu. Non-interactive anonymous router. In Anne Canteaut and
François-Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021,
Part III, volume 12698 of Lecture Notes in Computer Science, pages 489–520,
Zagreb, Croatia, October 17–21, 2021. Springer, Heidelberg, Germany.

37. Stefano Tessaro and Chenzhi Zhu. Short pairing-free blind signatures with expo-
nential security. In Orr Dunkelman and Stefan Dziembowski, editors, Advances
in Cryptology – EUROCRYPT 2022, Part II, volume 13276 of Lecture Notes in
Computer Science, pages 782–811, Trondheim, Norway, May 30 – June 3, 2022.
Springer, Heidelberg, Germany.

38. The Cloudflare Blog. Cloudflare is now powering Microsoft Edge
Secure Network, September 2023. https://blog.cloudflare.com/

cloudflare-now-powering-microsoft-edge-secure-network/.

39. The LetsEncrypt Blog. Nurturing Continued Growth of Our Oak CT Log - Let’s
Encrypt. https://letsencrypt.org/2022/05/19/nurturing-ct-log-growth.

html.

40. Xingfeng Wang and Liang Zhao. Verifiable single-server private information re-
trieval. In David Naccache, Shouhuai Xu, Sihan Qing, Pierangela Samarati, Gre-
gory Blanc, Rongxing Lu, Zonghua Zhang, and Ahmed Meddahi, editors, Informa-
tion and Communications Security - 20th International Conference, ICICS 2018,
Lille, France, October 29-31, 2018, Proceedings, volume 11149 of Lecture Notes in
Computer Science, pages 478–493. Springer, 2018.

A Definitions

A.1 Cryptographic Primitives

Definition 1 (Additive Homomorphic Encryption Scheme). An addi-
tively homomorphic encryption (AHE) scheme is a public encryption scheme
(KeyGen,Enc,Dec) that has the following property:

Homomorphic addition There is a homomorphic addition operation
⊕

, such
that for any (pk, sk) ← KeyGen(1n), any m,m′, and any ct ← Encpk(m),
ct′ ← Encpk(m

′), we have Dec(ct
⊕

ct′) = m+m′.

An AHE scheme usually supports rerandomization of the ciphertext ct with pk
to a new ciphertext ct′, which we denote as, ct′ ← Rerandpk(ct). In practise, this
can be achieved by homomorphically adding a fresh ciphertext encrypting 0.

Furthermore, we consider AHE schemes that also satisfy the following prop-
erty, which we term as addition and rerandomization indistinguishable, if for any

32

probabilistic polynomial-time (PPT) adversary A:

AdvA(1κ) = Pr

b = b′ :

(pk, sk)← KeyGen(1n);
b← {0, 1};
ct1 ← Enc(pk,m1);
ct2 ← Enc(pk,m2);
ct3,0 ← Rerandpk(ct1 + ct2)
ct3,1 ← Encpk(m1 +m2)
b′ ← A(pk, ct1, ct2, ct3,b)

− 1

2

is negligible in κ.
It is easy to verify both El Gamal encryption [20] (based on Decisional Diffie-

Hellman Assumption) and Paillier encryption [31] (based on the Decisional Com-
posite Residuosity assumption) satisfy the above property.

Definition 2 (Message Authentication Code). A message authentication
code (MAC) consists of a triplet of algorithms (Gen,Mac,Vrfy) such that:

Validity For every k ← Gen(1n), every m ∈ {0, 1}∗, it holds that

Vrfy(m,Mack(m)) = 1.

Existential Unforgeability For all PPT adversaries A with access to a oracle
Mack(·), there is a negligible function negl such that

Pr[AMack(·) = (m, t) s.t. m wasn’t queried by A and Vrfyk(m, t) = 1] ≤ negl(n).

A MAC scheme can be constructed from one-way function.

Definition 3 (Digital Signature Scheme). A digital signature scheme is a
triplet of algorithms (Gen,Sign,Vrfy) such that

Validity For every pair (sk, vk)← Gen(1n), every m ∈ {0, 1}n, it holds that

Vrfyvk(m, Signsk(m)) = 1.

Existential Unforgeability For every PTT adversary A with access to sign-
ing oracle Signsk(·), there is a negligible function negl such that:

Pr[ASignsk(·)(vk) = (m,σ) s.t. m wasn’t queried by A and Vrfyvk(m,σ) = 1] ≤ negl(1n)

One simple example is Schnorr signature scheme [34], which can be built
under the discrete logarithm (DL) assumption

Definition 4 (Commitment Scheme). A commitment scheme allows one
party to commit to its value, i.e., given a value m, a commitment scheme output
com ← Com(m; r), where r is a random uniform string. Informally, a commit-
ment scheme satisfies the following two properties:

Hiding The commitment reveals nothing about m.
Binding It is infeasible for the committer to generate a commitment that can

“open” as two different messages m,m′.

One common construction is the Pederson commitment scheme [33]. It pro-
vides information-theoretically hiding property and computationally binding un-
der the discrete logarithm (DL) assumption.

33

A.2 Non-interactive Zero-knowledge Proofs (NIZK)

Let R be an efficiently computable binary relation. Let L be the language con-
sisting of statements x such that there exists witness w where (x,w) ∈ R.

A proof system for relation R includes a key generation algorithm K, a prover
P , and a verifier V . K generates a common reference string σ. The prover takes
as input (σ, x, w) and outputs a poof π. The verifier takes as input(σ, x, π) and
outputs 1 if the proof is acceptable and 0 otherwise. (K,P, V) is a proof system
for R if it satisfies the completeness and soundness properties.
Perfect Completeness. For any adversary A, we have

Pr[σ ← K(1k); (x,w)← A(σ);π ← P (σ, x, w) : V (σ, x, π) = 1 if (x,w) ∈ R] = 1.

Perfect Soundness. For any adversary A, we have

Pr[σ ← K(1k); (x, π)← A(σ) : V (σ, x, π) = 0 if x /∈ L] = 1.

Additionally, (K,P, V) is a proof of knowledge forR if it satisfies the following
property
Perfect Knowledge Extraction There exists a knowledge extractor E =
(E1, E2) such that for any adversary A, we have

Pr[σ ← K(1k) : A(σ) = 1] = Pr[(σ, ξ)← E1(1k) : A(σ) = 1],

and for any adversary A, we have

Pr[(σ, ξ)← E1(1k); (x, π)← A(σ);w ← E2(σ, ξ, x, π) : V (σ, x, π) = 0 or (x,w) ∈ R] = 1.

Additionally, (K,P, V) is a NIZK proof system if it additionally satisfies the
following (computational) zero-knowledge property.
Computational Zero-knowledge There exists a polynomial time simulator
S = (S1, S2) such that for any non-uniform polynomial time adversary A, we
have

Pr[σ ← K(1k) : AP (σ,·,·) = 1] ≈ Pr[(σ, τ)← S1(1k) : AS(σ,τ,·,·) = 1],

where S(σ, τ, ·, ·) = S2(σ, τ, x) for (x,w) ∈ R and both oracles output failure if
(x,w) /∈ R. Also, ≈ means that the difference between LHS and RHS is bounded
by a negligible function of k.

[21] shows that NIZK proof with the following simulation-sound extractabil-
ity can securely realize the UC NIZK-functionality.
Simulation-sound Extractability Consider an NIZK proof of knowledge
system (K,P, V,E1, E2, S1, S2). Let SE1 be an algorithm that outputs (σ, τ, ξ)
where (σ, τ) are identical to those output from S1. We say the NIZK proof of
knowledge is simulation sound if for any non-uniform polynomial time adversary
A, we have

Pr[(σ, τ, ξ)← SE1(1k); (x, π)← AS2(σ,τ,·);w ← E2(σ, ξ, x, π) :

(x, π) /∈ Q and V (σ, x, π) = 0 and (x,w) /∈ R] ≈ 0.

where Q is the list of simulation queries and responses (xi, πi).

34

B Proof of Theorem 3

Throughout the proof, we abuse the notations for NP relations, e.g., R0, R̃1,
and treat it as a binary function.

Corrupt server, some corrupt users. We show that for any A corrupting
the server and any subset of corrupt users in the hybrid world, there exists a sim-
ulator SServID,CUserscat (Figure 11) in the ideal world such that E cannot distinguish
whether it is in the hybrid world or the ideal world based on the adversarial view
and honest users’ outputs.

Note that the direct interaction between the corrupt server and any corrupt
user doesn’t require simulation. However, in our specific case, they engage with
each other through several ideal functionalities that are emulated by the sim-
ulator. Consequently, the simulator must simulate this aspect of the protocol.
Nonetheless, the simulator faithfully emulates these functionalities between the
corrupt parties. (This is no required if only the server is corrupt.) As a result,
this part of the simulated adversarial view is perfectly indistinguishable from
the hybrid world, and for the sake of simplicity, we leave it out in the following
discussion and simply use the term “users” to specifically refer to honest users.

Initialize and Register Phases. First, notice that in the initialize phase, SServIDcat

simply relay the server’s signing key to other corrupt users therefore, we simply
couple the two worlds and use notations pk′ServID directly. Also in this phase,
SServIDcat follows exactly the users’ protocols to generate keys. Next, in the reg-
ister phase, it learns a user uid’s register requests from F tcat and follows ex-
actly its protocols. Again, we simply use the notation mkuid, nkuid, sruid, pkuid,
skuid, ruid, τuid,t, π0,uid as used in the real world as they are perfectly indistin-
guishable. Furthermore, we capture the part of “coupled” view of A in these
two phases with the abbreviation ppuid := (pk′ServID, pkuid, τuid,t, π0,uid). As for the

remaining adversarial view, we keep the notations c̃omuid and R̃0(x̃0,uid, w0,uid)
to distinguish them from the hybrid world. (We use notation w0,uid here as its
contents (ruid, ρuid) are coupled in the two worlds.) Finally, if A replies abort
or provides an incorrect signature, the simulator triggers uid’s abort through
F tcat, which matches what uid will do in such a scenario in the hybrid world.
Therefore, the simulated outputs of the users follow exactly their outputs in the
hybrid world, if A acts the same in these two worlds. We argue that this is indeed
true due to the computationally hiding property of the commitment scheme, and
both R̃0(x̃0,uid, w0,uid), R0(x0,uid, w0,uid) equal 1. Finally, let U denote the set of
honest users that successfully register in both worlds.

Redeem Phases. Now, we consider the adversarial view in the redeem phase.
(For clearer presentation, we omit the honest outputs. This is fine as the sim-
ulator simply relays them from the adversary to the honest parties.) Note that
(sid, (Request, ep′) is perfectly indistinguishable from the hybrid world, as F tcat
receives ep′ from the honest user and directly forwards it to the simulator. More-
over, let ` denote the total number of redeem requests. We denote the simulated

35

adversarial view as

Hyb0 := ({(ppuid, c̃omuid, R̃0(x̃0,uid, w0,uid))}uid∈U , {ñfi, epi, c̃ti, π1,i,mi, R̃1(x̃1,i, w̃1,i)}i∈[`]]).

We argue that it is computationally indistinguishable from its counterpart in the
hybrid world using a sequence of hybrid settings, with the first hybrid setting
being

Hyb1 := ({(ppuid, c̃omuid, R̃0(x̃0,uid, w0,uid))}uid∈U , {n̂fi, epi, c̃ti, π1,i,mi, R̃1(x̃1,i, w̃1,i)}i∈[`]]),

where ñfi is replaced with n̂fi. Specifically, for each uid, sample a uniform random
function fuid. Then, for every ith redeem in the hybrid world made by uid, replace
random string ñfi with n̂fi := fuid(ep

′
i) (Note that x̃1,i should also be changed as

it contains the nullifier, but we abuse the notations here, as the binary function
R̃1 always outputs 1.) It is straightforward to see that this hybrid is perfectly
indistinguishable from Hyb0. As an honest user never redeems more than once
in an epoch, fuid never evaluates on the same input.

Hyb2,1, . . . ,Hyb2,|U | where each subsequent Hyb2,j modifies the nullifiers gen-

erated by a user uid: for each n̂fi generated by fuid, replace it with nfi :=
PRFnkuid(ep

′
i). Finally,

Hyb2,|U | := ({(ppuid, c̃omuid, R̃0(x̃0,uid, w0,uid))}uid∈U , {nfi, epi, c̃ti, π1,i,mi, R̃1(x̃′1,i, w̃1,i)}i∈[`]]).

Each adjacent pair of hybrid settings in Hyb1,Hyb2,1, . . . ,Hyb2,|U | are computa-
tionally indistinguishable. Otherwise, given any distinguishable pair of adjacent
hybrid settings, we can build an adversary Aprf to break the pseudorandom
property of PRF. In particular, let uid be the user whose nullifiers are modified
between this pair.

1. Aprf interacts with an oracle that either runs an instance of PRF or a truly
random function.

2. For every ith redeem request belonging to uid, it queries epi on the corre-
sponding oracle to generate a nullifer. Additionally, it follows the remaining
steps of the simulator to generate the remaining entries in the view and sends
the view to E .

3. If E outputs the first hybrid setting of the pair,Aprf outputs random function,
otherwise, it outputs PRF.

Hyb3,1, . . . ,Hyb3,|U | where each subsequent Hyb3,j changes a user’s simulated

ciphertexts c̃ti with the hybrid world ciphertexts ĉti. Finally,

Hyb3,|U | := ({(ppuid, c̃omuid, R̃0(x̃0,uid, w0,uid))}uid∈U , {nfi, epi, ĉti, π1,i,mi, R̃1(x1,i, w̃1,i)}i∈[`]]).

Also notice that we now replace x̃1,uid with its hybrid world counterpart x1,uid
as all the entries in each statement are now the same. We argue that each pair
of adjacent hybrid settings in Hyb2,|U |,Hyb3,1, . . . ,Hyb3,|U | are computationally
indistinguishable. Otherwise, given any pair of adjacent hybrid settings that is
distinguishable, we can build the following adversary Acpa that given E can break
the multi-challenge IND-CPA security of the PKE scheme. Again, let uid be the
user whose ciphertexts we modify between this pair.

36

1. For each cti corresponding to uid’s redeem request in the hybrid world, Acpa

sends two messages m0 := 0 or m1 := −1‖∆ (Recall that ∆ is the difference
of the MAC value between the previous count and the current count.). The
challenger always replies with either the encryptions of the first message or
the encryptions of the second message

2. It generates the remaining entries in the views and sends the views to E .
3. If E outputs the first hybrid setting, Acpa outputs 0, otherwise, it outputs 1.

Hyb4,1, . . . ,Hyb4,|U | where each subsequent Hyb4,j changes replaces the NP

relation (Treated as a binary function)R̃1 with R̂1 for all redeem requests of
a user. Specifically, R̂1 is defined as follows: Let uid be the user making the
ith redeem request in the hybrid world and let cti,uid be its ciphertext in x1,i
and ni‖τi := Decskuid(cti,uid). If ni ≤ 0 and τi := Mac(ni), R̂1 outputs 0, else it
outputs 1. Finally,

Hyb4,|U | := ({(ppuid, c̃omuid, R̃0(x̃0,uid, w0,uid))}uid∈U , {nfi, epi, ĉti, π1,i,mi, R̂1(x1,i, w̃1,i)}i∈[`]]).

Still, we argue for each pair of adjacent hybrid settings in Hyb3,|U |,Hyb4,1, . . . ,Hyb4,|U |,
there is a negligible probability that ni ≤ 0 and τi := Mac(ni), thus an over-

whelming probability that R̂1 outputs 1, which is what R̃1 always outputs.
(Therefore, each pair of hybrid settings is computationally indistinguishable.)
Recall that an honest party will never make more than t redeem requests. There-
fore the only time R̂1 can output 0 is when A successfully decrements its counter
and forges a MAC. In such case, we can build an adversary Amac that given A
can break the existential unforgeability of the MAC scheme.

1. Amac plays the simulator and interacts with A with the following exception:
to generate the updating ciphertext ĉti,uid corresponding to a uid’s redeem
request, Amac query a MAC oracle that generates the MAC of the new count.

2. Upon receiving ServID.T from A on behalf of the corrupt server, if there
exists a record that decrements uid’s count, send the MAC of that count to
MAC oracle.

3. Clearly, if A can forge a MAC for a decremented count (not query before)
with non-negligible probability, Amac can win the game with the same non-
negligible probability.

The next hybrid setting we consider is

Hyb5 := ({(ppuid, comuid, R̃0(x0,uid, w0,uid))}uid∈U , {nfi, epi, ĉti, π1,i,mi, R̂1(x1,i, w1,i)}i∈[`]])

where each user’s simulated commitment c̃omuid is replaced with the real com-
mitment comuid. (Hence, x̃0,uid → x0,uid and w̃1,i → w1,i as both include the
commitment). We argue that Hyb5 and Hyb4,|U | are statistically indistinguish-
able, as the statically hiding property of the commitment schemes.

Hyb6 := ({(ppuid, comuid, R0(x0,uid, w0,uid))}uid∈U , {nfi, epi, ĉti, π1,i,mi, R1(x1,i, w1,i)}i∈[`]])

37

. This hybrid replaces the NP relations (treated as binary functions) R̃0, R̂1 with

R0, R1 in the hybrid world. It is straightforward to see that R̃0(x0,uid, w0,uid) =
R0(x0,uid, w0,uid)) as honest users always prove correctly. Thus, it suffices to argue

that R̂1(x1,i, w1,i) = R1(x1,i, w1,i) when n > 0. This follows from our definition
of R1, intuitively, it prevents the adversary from disrupting an honest user’s
zero-knowledge proof.

Finally, SServIDcat faithfully reflect A’s response of either σ or ⊥ to ideal func-
tionality. And the output of an honest party is exactly the same between the
ideal world and the hybrid world. This concludes our proof.

Some corrupt users, honest server. We show that for any adversary A
corrupting some users in the hybrid world, there exists a simulator SCUserscat (Figure
12) in the ideal world such that E cannot distinguish whether it is interacting
with A in the hybrid world or SCUserscat in the ideal world based on the corrupt
server’s view and honest users’ outputs.

In the initialize phase, SCUserscat samples the signing key pair for the server
and sends the public key to the corrupt users. We simply use the same nota-
tion pk′ServID, sk

′
ServID as in the hybrid world as they follow the same distribu-

tion in both worlds. In the register phase, we simply use idxuid‖σuid instead of

ĩdxuid‖σ̃uid as they are perfectly indistinguishable with the hybrid world. (The
index is directly relayed from F tcat, and the signature is signed with the coupled

sk′ServID.) Next, we partition ˜ServID.T into ˜ServID.TH := {(pkuid, c̃tuid)}uid∈HUsers
and ˜ServID.TC := {(pkuid, c̃tuid)}uid∈CUsers. Note that we use pkuid instead of p̃kuid
as both are perfectly indistinguishable from their counterparts in the hybrid
world. Finally, let ` denote the total number of redeem requests from the cor-
rupt users.

Let Hyb0 := ({π0,uid, idxuid‖σuid}uid∈CUsers, { ˜ServID.TH,j , ˜ServID.TC,j , π̃j , σ̃j}j∈[`])
denote the view of corrupt users. We slightly abuse the notations to allow
π0,uid, idxuid‖σuid, π̃j , σ̃j to take values of ⊥, representing the cases that some
adversarial behavior is caught by the simulator and abort is sent instead.

To show indistinguishability from the hybrid world, we consider using the
following hybrid settings:

We define Hyb1,1, . . . ,Hyb1,|HUsers| where each Hyb1,i replaces the ith user’s
ciphertext within each epoch with freshly generated ciphertext encrypting the
same value as the ciphertext in the hybrid world. Finally, we denote:

Hyb1,|HUsers| := ({π0,uid, idxuid‖σuid}uid∈CUsers, {ServID.TH,j , ˜ServID.TC,j , π̃j , σ̃j}j∈[`])

We argue that each pair of adjacent settings in Hyb0,Hyb1,1, . . . ,Hyb1,|HUsers| are
computationally indistinguishable. Otherwise, given any pair that is computa-
tionally distinguishable, we can build the following adversary Acpa that given E
can break the multi-challenge IND-CPA security of the PKE scheme. Let uid be
the user whose ciphertexts we modify between this pair.

1. For each epoch ep, to generate uid’s ciphertext, Acpa sends two messages
m0 := 0 and m1 := vep, where vep is the value encrypted in the hybrid

38

Simulator SServID,CUsers
cat

Initialize: Upon receiving (Initialize, pkServID, skServID) and
(Initialize, pkServID) from E :
1. Run A as a black box and send (Initialize, pkServID, skServID) and

(Initialize, pkServID) to it. Also, send (Initialize, pkServID, skServID)
on behalf of corrupt ServID to F tcat.

2. Upon receiving p̃k
′
ServID from the corrupt ServID, relay it to

corrupt users.
3. For every honest uid, follow their initialize protocol to gener-

ate m̃kuid, ñkuid, s̃ruid, p̃kuid, s̃kuid, set ρ̃uid := m̃kuid‖ñkuid‖s̃ruid.
Register: Throughout this phase, the simulator truthfully emulates
FR0

nizk to generate proof for a corrupt user and later verify this
proof to the corrupt server. On the other hand, to simulate the
view related to the honest users, the simulator instead does the
following:
1. Upon receiving (Register, uid) from F tcat, sample uniform ran-

dom strings ρ̃′uid, r̃uid and set c̃omuid := Com(ρ̃′uid, r̃uid).
2. Follow uid’s protocol to generate τ̃uid,0.

3. Emulate F R̃0
nizk where R̃0(x̃0,uid, w̃0,uid) := 1 for any x̃0,uid, w̃0,uid

used by uid. Specifically, generate π̃0,uid with x̃0,uid :=

(c̃omuid, c, τ̃uid,0, p̃kuid), w̃0,uid := (r̃uid, ρ̃uid)) for uid and send

(Register, p̃kuid, c̃omuid,ρ, τ̃uid,0, π̃0,uid) to A.
4. Upon receiving (Verify, x̃0,uid, π̃0,uid) from A, return

R̃0(x̃0,uid, w̃0,uid).
5. Upon receiving ⊥ from A, send (uid, abort) to F tcat. Upon

receiving (idx, σ̃uid) from A, if Vrfy
p̃k
′
ServID

(idx‖c̃omuid,ρ, σ̃uid) re-

turns false, reply (uid, abort) to F tcat. Else, record (uid, idx, σ̃uid)
and reply (uid, ok) to F tcat.

EndRegister: Upon receiving (EndRegister) from E , send
(EndRegister) to A and (EndRegister) to F tcat.

UpdateEpoch: Upon receiving (UpdateEpoch) from E , send
(UpdateEpoch) to A and (UpdateEpoch) to F tcat.

Redeem: Throughout this phase, the simulator truthfully emulates
Fam to handle communications between the server and (poten-
tially corrupt) users. It also truthfully emulates FR1

nizk to generate
proof for a corrupt user and later verify this proof to the cor-
rupt server. For generating the view related to honest users, the
simulator does the following instead:
1. Upon receiving (Redeem, ep′,m) from F tcat, uniformly sample

sid and send (sid, (Request, ep′) to A through Fam.
2. Upon receiving (sid,ServID.T) from A through Fam, Pick a

uniformly random string ñf and computes c̃tj ← Encp̃kj (0)

for every record in ServID.T . Let c̃t := (c̃t1, . . . , c̃t|ServID.T |).

3. Emulate F R̃1
nizk where R̃1(x̃1,uid, w̃1,uid) := 1 for

any x̃1,uid, w̃1,uid used by uid. Specifically, gener-

ate π̃1,uid with x̃1,uid := (p̃k
′
ServID, ServID.T, ñf, ep′, c̃t)

and w̃1,uid := (idx, ρ̃uid, c̃omρuid , σ̃uid) and send

(Send, sid, (ñf, ep′, c̃t, π̃1,uid,m), ServID) to A through
Fam. Upon receiving (Verify, x̃1,uid, π̃1,uid), return

(Verification, x̃1,uid, π̃1,uid, R̃1(x̃1,uid, w̃1,uid)) to A.
4. If receiving (sid, σm) from Fam and VrfypkServID

(σm,m) = 1,

send (Signature, σm) to F tcat. Otherwise, send (abort) to F tcat.

Fig. 11. Simulator for adversary corrupting the server and some corrupt users.

39

world. The challenger always replies with either the encryptions of the first
message or the encryptions of the second message for every epoch.

2. It generates the remaining entries in the views and sends the views to E .

3. If E outputs the first hybrid setting, Acpa outputs 0, otherwise, it outputs
vep.

Next, let Hyb2 := ({π0,uid, idxuid‖σuid}uid∈CUsers, {ServID.TH,j , ˜ServID.TC,j , π̃j , σ̃j}j∈[`])
be the hybrid setting where all honest ciphertexts are replaced with the ci-
phertexts in the hybrid world. In particular, the corresponding ciphertexts in
Hyb1,|HUsers| and Hyb2 encrypted the same values, while the former are freshly
generated and the latter are homomorphically computed and re-randomized.
Therefore, due to the perfectly/statistically homomorphic re-randomization in-
distinguishability of the PKE scheme, these two views are also perfectly/statistically
indistinguishable.

Then, let Hyb3 := ({π0,uid, idxuid‖σuid}uid∈CUsers, {ServID.TH,j , ˜ServID.TC,j , π̂j , σ̂j}j∈[`]),
where we run FR1

nizk instead of FR
′
1

nizk to generate π̂j and acquires σ̂j afterward. It
suffices to argue that π̃j and π̂j are computationally indistinguishable.

Per our definition of FR
′
1

nizk, it only deviates from FR1

nizk when the witness w :=
(idx, ρ, com, σ) does not match a record in the register phase. More specifically,

FR
′
1

nizk sends an abort in this scenario. Therefore, we argue that FR1

nizk also sends
an abort with overwhelming probability. To see this, we further divide into the
following two cases:

1. There does not exist a record in the register phase containing both idx, com,
and therefore, a signature of idx‖com is not returned earlier. In this case,
FR1

nizk output abort unless the signature σ provided in the witness is a valid
signature of idx‖com. If there is a non-negligible probability that this is
a valid signature, then, we can build an adversary using A to break the
existential unforgeability of the signature scheme.

2. Else, there exists a record in the register phase containing both idx, com,
but not the same ρ. In this case, FR1

nizk output abort unless com is also a
commitment of this different ρ. If there is a non-negligible probability that
this is a valid commitment, then, we can build an adversary using A to break
the computational binding property of the commitment scheme.

Hyb4 := ({π0,uid, idxuid‖σuid}uid∈CUsers, {ServID.TH,j ,ServID.TC,j , πj , σj}j∈[`]),
this hybrid setting simply replaces the ciphertexts, proofs, and signatures from
the corrupt users with those in the hybrid world. Notice that the indistinguisha-
bility in previous hybrid settings suggests that the A’s actions in the setting and
the hybrid world are also indistinguishable, allowing us to make the switch.

It is trivial to add the honest users’ outputs to this joint view, as corrupt
users do not directly impact honest users, and the honest server rejects any
attempts that modify the underlying plaintext of the honest ciphertexts.

Complexity. Throughout the protocol, the server maintains a table consist-
ing of N ciphertexts. Also, during any epoch, it keeps a list of N ciphertexts,

40

Simulator SCUsers
cat

Initialize: Upon receiving (Initialize, pkServID) from E :
1. Run the A as a black box and send (Initialize, pkServID) to it.

Also, send (Initialize, pkServID) on behalf of corrupt users to
F tcat.

2. Sample (p̃k
′
ServID, s̃k

′
ServID), send p̃k

′
ServID to corrupt users.

Register: Throughout this phase, emulate FR0
nizk faithfully to interact

with corrupt users.
1. Upon receiving (Register, p̃kuid, c̃omuid,ρ, τ̃uid,0, π̃0,uid) from

some uid ∈ CUsers, if the content is verified in an earlier
interaction through FR0

nizk and there does not already exist a

record in ˜ServID.U for uid, send (Register, ServID) on behalf of
uid to F tcat. Else, send ⊥ to A and skip the remaining steps.

2. Upon receiving ĩdxuid from F tcat, compute σ̃uid ←
SignskServID

(ĩdxuid‖ ˜comuid) and send ĩdxuid‖σ̃uid to A.

3. Finally, if | ˜ServID| < ĩdxuid − 1, pack the table with random

public keys p̃k and ciphertexts c̃t← Encp̃k(0) to simulate the
part of the table corresponding to the honest users. Next,
add p̃kuid, c̃tuid ← Encp̃kuid(t‖τ̃uid,0) to ˜ServID.T . Also, add uid

to ˜ServID.U .
EndRegister: Follow ServID’s protocol.
UpdateEpoch: Upon receiving the new epoch ep from the ideal

functionality, for all records corresponding to a corrupt user, fol-
low ServID’s protocol to update and re-randomize the ciphertexts.
For all remaining records corresponding to honest users, replace
their records’ ciphertexts with fresh ciphertexts encrypting 0 un-
der the same keys.

Redeem: During this phase, emulate Fam truthfully to handle re-
quests from corrupt users.
1. Upon receiving (sid, (Request, ep′) from uid′ through Fam, fol-

low ServID’s protocol to send back (sid, ˜ServID.T).
2. Upon receiving a corrupt user’s call on FR1

nizk with message

(Prove, x̃, w̃) where w̃ := (ĩdx, ρ̃, c̃om, σ̃), emulates FR
′
1

nizk in-
stead with the following twist: if during register phase, there
exists uid that successfully registers using ρ̃, c̃om and receives
ĩdx as its index, then simply emulating the FR1

nizk functionality.
Else, send ⊥ to the corrupt user and skip the remaining steps.

3. Upon receiving (sid, (nf, ep′, ĉt, π,m)) from uid′ through Fam,
check |ĉt| := |ServID.T |, and ep′ = ep. Then, verify that π
with a consistent statement is previously recorded in FR1

nizk. If
either check fails, send (Reply, sid,⊥) to uid′ though Fam and
skips the remaining steps.

4. Use the extracted uid from FR1
nizk in Step 2, and make a request

(Redeem, ep′,m, uid) to F tcat. If F tcat replies with σm, compute
L := L

⊕
ĉt and send (uid, σm) to A. Otherwise, it sends ⊥

to A.

Fig. 12. Simulator for adversary corrupting users.

41

aggregated from the updating ciphertexts sent from the redeeming users. Fur-
thermore, the server maintains a set of nullifiers within the current epoch, which
could contain up to N pseudorandom strings. Clearly, the server storage is dom-
inated by O(N) ciphertexts.

Moving on to the communication cost, during the register phase, each register
request incurs a constant communication cost. In particular, a user transmits a
commitment comuid, a public key pkuid, a MAC τuid,t, and a zero-knowledge proof
π0,uid, and the server responds with an index idx and a signature σuid.

The communication cost per redeem is dominated by the server sending
ServID.T and the user replying with O(N) updating ciphertexts. Consequently,
the communication cost is also dominated by O(N) ciphertexts. This concludes
our proof. ut

C Addtional Figures in Section 4

We present our ideal functionality (Fig. 13) for arbitrary state transition func-
tions. For clarity, we highlight the change with regard to our anonymous ticket
ideal functionality in blue. Specifically, we use the notation fn

′
(st,y1,y2) to de-

note the n′ sequential applications of f starting from state st, using the last n′

public/private inputs from y1,y2.
Also, we give the ZK relation for registration (Fig. 14) here. The only change

is generalizing a counter to state, and it is highlighted in blue.

42

Functionality Ff,st0cas

Initialize: On message (Initialize, pkServID, skServID) from ServID and
messages (Initialize, pkServID) from users, set HUsers,CUsers := {},
ep := 0, and T := {}.

Register: On message (Register, ServID) from uid:
1. If ServID is corrupt, send (Register, uid) to S, if S replies

with (uid, abort), send ⊥ to uid. Otherwise, if S replies with
(uid, ok), continue.

2. If uid ∈ HUsers∪CUsers or ep 6= 0, send ⊥ to uid and skip the
remaining steps.

3. Else if uid is corrupt, add uid to CUsers and send idxuid :=
|HUsers∪CUsers| to S. Else, add uid to HUsers if uid is honest.

4. Initialize stuid to st0.
EndRegister: On message (EndRegister) from ServID, set the epoch

ep := 1 and initialize Uep = {} to keep track of redeeming users
in the new epoch. Also, send ep to S.

Redeem: On message (Redeem, ep′, y1, y2,m, uid) from uid′:
1. If uid′ ∈ HUsers, which implies uid := uid′,

(a) If uid /∈ Uep, and f(stuid, y1, y2) 6=⊥, add uid to Uep, set
stuid := f(stuid, y1, y2). Else, skip the remaining steps.

(b) If ServID is honest and ep′ = ep, set σy1,m ←
SignskServID

(y1‖m) and R := 1. Else, set R := 0.
(c) If ServID is corrupt, send (Redeem, ep′, y1,m) to the ad-

versary S. Upon receiving (Signature, σ′) from S, set
σy1,m := σ′ and R := 1. Upon receiving (abort) from
S, set R := 0. Otherwise, do nothing.

(d) If R = 1, send σy1,m to uid. Otherwise, send ⊥ to uid.
2. If uid′ ∈ CUsers,

(a) If uid 6= uid′ and uid ∈ HUsers, or ep′ 6= ep, send ⊥ to uid′

and skip the remaining steps.
(b) If uid /∈ Uep and f(stuid, y1, y2) 6=⊥, update stuid :=

f(stuid, y1, y2), and send σy1,m ← SignskServID
(y1,m) to

uid′.
(c) Else, send ⊥ to uid′.

FastForward: On message (FastForward, n′,y1,y2, uid) from adver-

sary S, if uid ∈ CUsers and fn
′
(stuid,y1,y2) 6=⊥, update stuid :=

fn
′
(stuid,y1,y2), else, return ⊥ to S.

UpdateEpoch: On message (UpdateEpoch) from ServID, set ep :=
ep + 1 and initializes a set Uep := {} to keep track of redeeming
users in the new epoch. Also, send ep to S.

Fig. 13. The ideal functionality for concurrent anonymous outsourced state-keeping
functionality parameterized by a state transition function f , and a default state st0.

43

ZK Relation R0

A valid instance of the registration relation R0 contains a statement
including:

– comρ: a commitment of value ρ,
– st0: the default state of the transitional function,
– τ : a MAC of st0,
– pk: a public key belonging to the prover,

and a witness including:

– r: the randomness used for generating commitment comρ,
– ρ := (mk‖nk‖sr): a concatenation of a MAC key, a nullifier key,

and source randomness used to generate an AHE key pair,

such that the following conditions hold:

Correct Commitment. comρ = Com(ρ; r),
Correct MAC. τ = Macmk(st0),
Correct Public Key. pk = pk′,where (pk′, sk′) := KeyGen(sr),

Fig. 14. ZK relation R0 for registration.

44

D Proof of Theorem 4

Since the proof is largely similar to the proof of Theorem 3. we mainly highlight
the differences here.

Corrupt server, some corrupt users. We present a modified simulator
SServID,CUserscas in Figure 15, with the difference highlighted in blue. In particular,
the counter n is replaced with the generic state st and the simulator additionally
relays to the server the pubic input y1 for each redemption request, which they
receive from the ideal functionality.

As for our hybrid argument, the Hyb1, Hyb2,1, . . . ,Hyb2,|U | as they are merely
dealing with the nullifers. Hyb3,1, . . . ,Hyb3,|U | remain the same and rely on the
same multi-challenge IND-CPA of PKE, except for the updating ciphertexts are
encrypting changes to states than counters.

We spell out the next hybrid settings as the change is slightly more complex:
Let Hyb4,1, . . . ,Hyb4,|U | be the hybrid settings, where each subsequent Hyb4,j
changes replaces the NP relation (treated as a binary function) R̃1 with R̂1 for
all redeem requests of one user. Specifically, R̂1 is defined as follows: Let uid be
the user making the ith redeem request in the hybrid world and let cti,uid be
its ciphertext in x1,i and sti‖τi := Decskuid(cti,uid). If sti is not a state that has

been used by uid before and τi := Mac(ni), then R̂1 outputs 0, else it outputs 1.

Similar to our previous proof, R̃1’s outputs (which is always 1) and R̂1’s output
are computationally indistinguishable, cause otherwise, it will suggest that a
PPT adversary can forge a MAC with a non-negligible probability.

Hyb5 is again the same as before, which just replaces the commitment of the
user keys.

Finally, Hyb6 replaces the NP relations (treated as binary functions) R̃0, R̂1

with R0, R1 in the hybrid world. R̃0(x0,uid, w0,uid) = R0(x0,uid, w0,uid)) follows
from the same argument: honest users always prove correctly in the register
phase. Thus, it suffices to argue that R̂1(x1,i, w1,i) = R1(x1,i, w1,i) under the case
no states encrypted under the ciphertexts are tampered. (In the other case both
will output 0.) Therefore, R1(x1,i, w1,i) always outputs 1 as it includes a trapdoor
allowing a successful proof, even in the case that the state is rollback. This
concludes the proof for security when the server and some users are malicious.

Corrupt users, honest server. We present a modified simulator SServID,CUserscas

(Figure 16), with the difference highlighted in blue. Our hybrid argument remains
largely the same as the adversarial view remains the same as before except for
the adversary’s output, which can potentially be a signature on a fast-forwarded
state. However, as the simulator can extract such a fast-forward attempt from
the witness of FR1

nizk, the simulator ensures the state stored at the ideal function-
ality is also fast-forwarded by calling the backdoor FastForward. Therefore, the
simulator can acquire a correct signature σy1,m on y1‖m as the one in the hybrid
world.

Complexity. Similar to the claim and proof of Theorem 3, both the server
storage and per redeem communication are dominated by O(N) ciphertexts cost,
with the difference being the ciphertext now encrypted a state of size s. Also in

45

Simulator SServID,CUsers
cas

Initialize: Upon receiving (Initialize, pkServID, skServID) and
(Initialize, pkServID) from E :
1. Run A as a black box and send (Initialize, pkServID, skServID) and

(Initialize, pkServID) to it. Also, send (Initialize, pkServID, skServID)
on behalf of corrupt ServID to Ff,st0cas .

2. Upon receiving p̃k
′
ServID from the corrupt ServID, relay it to

corrupt users.
3. For every honest uid, follow their initialize protocol to gener-

ate m̃kuid, ñkuid, s̃ruid, p̃kuid, s̃kuid, set ρ̃uid := m̃kuid‖ñkuid‖s̃ruid.
Register: Throughout this phase, the simulator truthfully emulates
FR0

nizk to generate proof for a corrupt user and later verify this
proof to the corrupt server. On the other hand, to simulate the
view related to the honest users, the simulator instead does the
following:
1. Upon receiving (Register, uid) from Ff,st0cas , sample uniform

random strings ρ̃′uid, r̃uid and set c̃omuid := Com(ρ̃′uid, r̃uid).
2. Follow uid’s protocol to generate τ̃uid,c.

3. Emulate F R̃0
nizk where R̃0(x̃0,uid, w̃0,uid) := 1 for any x̃0,uid, w̃0,uid

used by uid. Specifically, generate π̃0,uid with x̃0,uid :=

(c̃omuid, c, τ̃uid,c, p̃kuid), w̃0,uid := (r̃uid, ρ̃uid)) for uid and send

(Register, p̃kuid, c̃omuid,ρ, τ̃uid,c, π̃0,uid) to A.
4. Upon receiving (Verify, x̃0,uid, π̃0,uid) from A, return

R̃0(x̃0,uid, w̃0,uid).
5. Upon receiving ⊥ from A, send (uid, abort) to Ff,st0cas . Upon

receiving (i, σ̃uid) from A, if Vrfy
p̃k
′
ServID

(i‖c̃omuid,ρ, σ̃uid) returns

false, reply (uid, abort) to Ff,st0cas . Else, record (uid, i, σ̃uid) and
reply (uid, ok) to Ff,st0cas .

EndRegister: Upon receiving (EndRegister) from E , send
(EndRegister) to A and (EndRegister) to Ff,st0cas .

UpdateEpoch: Upon receiving (UpdateEpoch) from E , send
(UpdateEpoch) to A and (UpdateEpoch) to Ff,st0cas .

Redeem: Throughout this phase, the simulator truthfully emulates
Fam to handle communications between the server and (poten-
tially corrupt) users. It also truthfully emulates FR1

nizk to generate
proof for a corrupt user and later verify this proof to the cor-
rupt server. For generating the view related to honest users, the
simulator does the following instead:
1. Upon receiving (Redeem, ep′, y1,m) from Ff,st0cas , uniformly

sample sid and send (sid, (Request, ep′) to A through Fam.
2. Upon receiving (sid,ServID.T) from A through Fam, Pick a

uniformly random string ñf and computes c̃tj ← Encp̃kj (0)

for every record in ServID.T . Let c̃t := (c̃t1, . . . , c̃t|ServID.T |).

3. Emulate F R̃1
nizk where R̃1(x̃1,uid, w̃1,uid) := 1 for any x̃1,uid, w̃1,uid

used by uid. Specifically, generate π̃1,uid with

x̃1,uid := (p̃k
′
ServID, ServID.T, ñf, ep′, c̃t, y1) and w̃1,uid :=

(idx, ρ̃uid, c̃omρuid , σ̃uid, n
′ := 0, y2 :=⊥,y1 := {},y2 := {})

and send (Send, sid, (ñf, ep′, c̃t, π̃1,uid, y1,m),ServID) to A
through Fam. Upon receiving (Verify, x̃1,uid, π̃1,uid), return

(Verification, x̃1,uid, π̃1,uid, R̃1(x̃1,uid, w̃1,uid)) to A.
4. If receiving (sid, σy1,m) from Fam and

VrfypkServID
(σy1,m, y1‖m) = 1, send (Signature, σy1,m) to

Ff,st0cas . Otherwise, send (abort) to Ff,st0cas .

Fig. 15. Simulator for adversary corrupting the server and some users.

46

Simulator SCUsers
cas

Initialize: Upon receiving (Initialize, pkServID) from E :
1. Run the A as a black box and send (Initialize, pkServID) to it.

Also, send (Initialize, pkServID) on behalf of corrupt users to
Ff,st0cas .

2. Sample (p̃k
′
ServID, s̃k

′
ServID), send p̃k

′
ServID to corrupt users.

Register: Throughout this phase, emulate FR0
nizk faithfully to interact

with corrupt users.
1. Upon receiving (Register, p̃kuid, c̃omuid,ρ, τ̃uid,0, π̃0,uid) from

some uid ∈ CUsers, if the content is verified in an earlier
interaction through FR0

nizk and there does not already exist a

record in ˜ServID.U for uid, send (Register, ServID) on behalf of
uid to Ff,st0cas . Else, send ⊥ to A and skip the remaining steps.

2. Upon receiving ĩdxuid from Ff,st0cas , compute σ̃uid ←
SignskServID

(ĩdxuid‖ ˜comuid) and send ĩdxuid‖σ̃uid to A.

3. Finally, if | ˜ServID| < ĩdxuid − 1, pack the table with random

public keys p̃k and ciphertexts c̃t← Encp̃k(0) to simulate the
part of the table corresponding to the honest users. Next,
add p̃kuid, c̃tuid ← Encp̃kuid(c‖τ̃uid,c) to ˜ServID.T . Also, add uid

to ˜ServID.U .
EndRegister: Follow ServID’s protocol.
UpdateEpoch: Upon receiving the new epoch ep from the ideal

functionality, for all records corresponding to a corrupt user, fol-
low ServID’s protocol to update and re-randomize the ciphertexts.
For all remaining records corresponding to honest users, replace
their records’ ciphertexts with fresh ciphertexts encrypting 0 un-
der the same keys.

Redeem: During this phase, emulate Fam truthfully to handle re-
quests from corrupt users.
1. Upon receiving (sid, (Request, ep′) from uid′ through Fam, fol-

low ServID’s protocol to send back (sid, ˜ServID.T).
2. Upon receiving a corrupt user’s call on FR1

nizk with message

(Prove, x̃, w̃), where w̃ := (ĩdx, ρ̃, c̃om, σ̃, σuid, n
′, y2,y1,y2),

emulates FR
′
1

nizk instead with the following twist: if during reg-
ister phase, there exists uid that successfully registers using
ρ̃, c̃om and receives ĩdx as its index, then simply emulating
the FR1

nizk functionality. Else, send ⊥ to the corrupt user and
skip the remaining steps.

3. Upon receiving (sid, (nf, ep′, ĉt, π, y1,m)) from uid′ through
Fam, check |ĉt| := |ServID.T |, and ep′ = ep. Then, verify that
π with a consistent statement is previously recorded in FR1

nizk.
If either check fails, send (Reply, sid,⊥) to uid′ though Fam

and skips the remaining steps.
4. Use the extracted uid from FR1

nizk in Redeem step 2. If n′ > 0,
send (FastForward, n′,y1,y2, uid) to Ff,st0cas , skip the remaining
steps if receiving ⊥. Finally, send (Redeem, ep′, y1, y2,m, uid)
to Ff,st0cas . If Ff,st0cas replies with σy1,m, compute L := L

⊕
ĉt

and send (uid, σy1,m) to A. Otherwise, it sends ⊥ to A.

Fig. 16. Simulator for adversary corrupting users.47

practice, NIZK can be implemented with recursive SNARKs with constant proof
size[4], so it does not affect our asymptotic cost. This concludes our proof. ut

48

