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Abstract. We present a new distinguisher for alternant and Goppa
codes, whose complexity is subexponential in the error-correcting capa-
bility, hence better than that of generic decoding algorithms. Moreover it
does not suffer from the strong regime limitations of the previous distin-
guishers or structure recovery algorithms: in particular, it applies to the
codes used in the Classic McEliece candidate for postquantum cryp-
tography standardization. The invariants that allow us to distinguish are
graded Betti numbers of the homogeneous coordinate ring of a shortening
of the dual code.
Since its introduction in 1978, this is the first time an analysis of the
McEliece cryptosystem breaks the exponential barrier.

1 Introduction

In the McEliece cryptosystem [20], a private message is encoded as a codeword
in a public binary Goppa code [13], with some noise added. Knowing the secret
algebraic data that served to construct the public code, the legitimate recipient
has an efficient decoding algorithm and can recover the message. However, to
an attacker, the public code looks like a random code, and removing the noise
is untractable.

Slightly more formally, a security proof for the system relies on two assump-
tions:

1. Goppa codes are computationally indistinguishable from generic linear codes
(say, when described by generator matrices in reduced row echelon form).

2. Decoding a generic linear code is difficult.

Cryptanalytic attempts can be classified depending on whether they target
assumption 1 or 2.

First, those aiming at assumption 1 themselves come in two flavours:

– Distinguishers address the decisional version of the problem: given a gener-
ator matrix, decide whether it is that of a Goppa code or a generic code.

– Key recovery attacks address the computational version: recover the Goppa
structure of the code, or at least an equivalent one [12], if it exists.

Although certain arguments, such as the fact that the class of Goppa codes is
very large, make assumption 1 plausible, it remains quite ad hoc from a theoreti-
cal point of view. Its sole virtue is that it passed the test of time. There seems to



be something special with Goppa codes happening there: indeed, variants of the
McEliece system were proposed, with Goppa codes replaced with other types of
codes allowing more manageable parameters; however, most of these propositions
were eventually broken, as the hidden structure of the codes could be recovered.
Also, although the McEliece cryptosystem marked the birth of code-based cryp-
tography, the idea of having an object (such as a Goppa code) constructed from
data defined over an extension field and then masked by considering it over a
small subfield, was then found in other branches of cryptography: for instance it
is at the basis of the HFE cryptosystem [23] in multivariate cryptography. Such
systems can often be attacked by algebraic methods (including, but not limited
to, the use of Gröbner basis algorithms). This suggests that if a weakness in
assumption 1 were to be uncovered one day, then algebraic methods should be
a tool of choice. However, up to now, the best distinguishers and key recovery
algorithms such as those in [11][7][6][1] only apply to alternant or Goppa codes
with very degraded parameters. Against McEliece with cryptographically rele-
vant parameters, either they have exponential complexity with large constants,
which makes them useless, or worse: they simply cease to work.

Assumption 2, on the other hand, stands on a firm theoretical ground: the
decoding problem for generic linear codes is known to be NP-hard [2]. As such, it
is believed to resist the advent of quantum computers, which made the McEliece
system a good candidate for postquantum cryptography. However, starting with
Prange’s information set decoding algorithm [24], generic decoding methods
saw continuous incremental improvements over time. Joint with technological
progress in computational power, this eventually led to practical message recov-
ery attacks against the McEliece system with its initially proposed parameter
set. However, it appears that this weakness was only the result of a too optimistic
choice of parameters. With the need for new standards for postquantum cryptog-
raphy, an updated version named Classic McEliece was proposed, still relying
on binary Goppa codes, but with more conservative parameter sets adapted to
resist the best generic decoding attacks with some margin of safety. In the design
rationale of this new system [4] one can find an impressive list of several dozens
of papers on generic decoding algorithms, ranging over the last five decades.
It is then observed that all these algorithms have complexity exponential in the
error-correcting capability of the code. Better, the constant in this exponential is
still the same as in Prange’s original result: all improvements remain confined in
terms of lesser order! This gives a quite convincing feeling that we could possibly
have reached the intrinsic complexity of cryptanalysis of this system.

This belief is false, and there is nothing special with Goppa codes. In this
work, we present a new distinguisher for alternant and Goppa codes, i.e. a basic
structural analysis of the McEliece cryptosystem, whose complexity is subex-
ponential in the error-correcting capability, hence better than that of generic
decoding algorithms. Moreover it does not suffer from the strong regime limi-
tations of the previous distinguishers or key recovery methods: in particular, it
applies to the codes used in Classic McEliece.
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Principles and organization

A natural strategy to build a distinguisher is to design code invariants — quan-
tities that intrinsically depend only on the code, not on the choice of a generator
matrix — that behave differently for the classes of codes we want to distinguish.
The invariants we use here are graded Betti numbers of the homogeneous co-
ordinate ring of a shortening of the dual code. Generators of the dual of an
alternant or Goppa code, after extension of scalars, satisfy quadratic relations
of a special form: they can be expressed as 2×2 minors of a matrix. As such, we
can find relations between these quadratic relations, called syzygies. Then these
syzygies also satisfy relations, and iterating this process we get higher syzygies
up to some order that we can estimate. However, for generic codes, we do not
expect this to happen in the same magnitude. This directly gives a distinguisher,
at least in theory. In practice, computing these spaces of syzygies only involves
basic linear algebra: they can be constructed iteratively, as the kernel of some
generalized Macaulay matrices. This can be done efficiently, except for the fact
that the dimension of the spaces involved grows exponentially. Our last ingredi-
ent is then shortening, which allows us to work with syzygies of a lesser order,
and keep these dimensions more under control.

Let us quickly illustrate our result with two basic examples.
First, our distinguisher can be seen as a generalization of the so-called square

code distinguisher, first presented in [11], reinterpreted in [19], and fully analyzed
in [21]. Let C be a [n, k]-code, and S2 the space of quadratic forms in k indeter-
minates. Let

ev2 : S2 −→ Fn (1)

be the evaluation map at the columns of a given generator matrix of C. Then
the image of ev2 is the square code C⟨2⟩, and its kernel is the space of quadratic
relations I2(C). The dimensions of these spaces are related, and can be expressed
as a Betti number:

β1,2(C) = dim(I2(C)) =

(
k + 1

2

)
− dim(C⟨2⟩). (2)

Now [11] gives a lower bound on this β1,2(C) when C is an alternant or (binary)

Goppa code. On the other hand, [3] shows β1,2(C) =
((
k+1
2

)
− n

)+
with high

probability when C is random. If this quantity is smaller than the said lower
bound, we can distinguish.

Likewise we claim that Theorem 2.8 of [9] provides a β2,3-based distinguisher
for GRS codes among [7, 4]-codes, where we restrict to codes whose square is the
whole space — otherwise we can use the square distinguisher. For such a code
we always have dim(I2(C)) =

(
4+1
2

)
− 7 = 3. Let Q1, Q2, Q3 be a basis of I2(C).

By definition, Q1, Q2, Q3 do not satisfy linear relations with coefficients in F,
however they can satisfy relations whose coefficients are forms of degree 1. Such
relations are also called degree 3 syzygies. They live in the kernel of the degree 3
Macaulay matrix

M3 : I2(C)⊗ S1 −→ S3 (3)
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where S1 (resp. S3) is the space of homogeneous linear (resp. cubic) forms in k =
4 variables. Now Theorem 2.8 of [9] shows that for a non-GRS code the map M3

is injective. On the other hand, if C is GRS with standard basis y,yx,yx2,yx3

then we can take

Q1 = X1X3 −X2
2 , Q2 = X1X4 −X2X3, Q3 = X2X4 −X2

3 (4)

and these satisfy the syzygies

X1Q3 −X2Q2 +X3Q1 = X2Q3 −X3Q2 +X4Q1 = 0. (5)

Thus we can distinguish by computing β2,3(C) = dimker(M3), which will yield 2
for GRS and 0 for non-GRS [7, 4]-codes.

We generalize these examples to higher Betti numbers, following the exact
same pattern:

– On one hand, we give lower bounds on the Betti numbers of algebraic codes
(dual alternant, dual Goppa, and their shortened subcodes). This is done
in section 3, using the Eagon-Northcott complex, a tool precisely crafted to
detect long conjugate GRS subcodes.

– On the other hand, we estimate the Betti numbers of random codes in terms
of raw code parameters (length, dimension, distance). This is done in sec-
tion 4, partially relying on heuristics for which we do not have full proofs, but
still providing experimental evidence, and sometimes also partial theoretical
arguments.

Prior to that, section 2 explains how these invariants can be effectively computed.
Last, section 5 combines everything and chooses parameters in order to optimize
asymptotic complexity.

Related (and unrelated) works

As already noted, our distinguisher can be seen as a generalization of the square
distinguisher of [11]. Using an approach similar to ours, the work [6] also extends
this square distinguisher by exploiting special properties of the space of quadratic
relations, but in a different direction. Last, the key recovery attack in [1] combines
shortening of the dual code with ideas from the square distinguisher, and a
careful algebraic modeling in order to apply tools from Gröbner basis theory. All
these results have limited range of applicability, but they introduced numerous
techniques that influenced the present work.

From a geometric point of view, the Betti numbers and the syzygies we
consider are those of a set of points in projective space (namely, defined by the
columns of a parity check matrix of the code). As such, they have been already
extensively studied. Of notable importance to us are the works [14][18][16][10], in
relation with the so-called minimal resolution conjecture — regardless of it being
false in general: we just request it being “true enough”. Initially, syzygies of sets
of points were considered as a mere tool in the study of syzygies of curves. They

4



were then studied for themselves, but the focus was mostly on points in generic
position, over an algebraically closed field. Keeping applications to coding theory
and cryptography in mind, we will have more interest in finite field effects.

Syzygies sometimes appear as a tool in cryptanalytic works, or in the study
of Gröbner basis algorithms; however in general only the first module of syzygies
is considered, not those of higher order. Likewise, a few works in coding theory
(such as [26] or [15]) use homological properties of finite sets of points; but the
applications differ from ours.

Last, note that our approach is apparently unrelated to the series of works
initiated with [17]: while these authors also define Betti numbers for codes,
these are constructed from the Stanley-Reisner ring of the code matroid, not the
homogeneous coordinate ring. This leads to different theories, although seeking
links between the two could be an interesting project.
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Notation and conventions

We use row vector convention. We try to consistently use lowercase bold font for
codewords and vectors: c, x, y; uppercase bold for matrices: G, H, M; sans-serif
for codes: C, GRS, Alt, Gop.

The book [9] will be our main source on syzygies. For codes, especially the
link between powers of codes and the geometric view on coding theory, we will
follow [25].

Given a field F, we see Fn as the standard product algebra of dimension n.
Thus Fn is not a mere vector space, it comes canonically equipped with compo-
nentwise multiplication: for x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn,

xy = (x1y1, . . . , xnyn). (6)

(Some authors call this the Schur product of x and y; how the name of this great
mathematician ended associated with this trivial operation is quite convoluted.)

In any algebra, we can define a trace bilinear form. In the case of Fn, this
trace bilinear form is the standard scalar product:

⟨x,y⟩ = x1y1 + · · ·+ xnyn. (7)
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A k-dimensional subspace C ⊆ Fn is called a [n, k]-code (and a [n, k]q-code
in case F = Fq). The orthogonal space C⊥ is called the dual code of C.

Componentwise multiplication extends to codes, taking the linear span: for
C,C′ ⊆ Fn,

CC′ = ⟨cc′ : c ∈ C, c′ ∈ C′⟩F. (8)

Powers C⟨r⟩ of a code are defined inductively: C⟨0⟩ = F · 1 is the 1-dimensional
repetition code, and C⟨r+1⟩ = C⟨r⟩C.

If C is a [n, k]-code, a generator matrix for C is a k×n matrix G whose rows
c1, . . . , ck form a basis of C. A parity check matrix H for C is a generator matrix
for C⊥.

Thanks to the algebra structure, polynomials in one or several variables can
be evaluated in Fn. In particular, let

S = F[X1, . . . , Xk] (9)

be the algebra of polynomials in k variables over F, graded by total degree.
Evaluation at the rows c1, . . . , ck of G then gives linear map

evG : S −→ Fn. (10)

Observe that if p1, . . . ,pn are the columns of G, then for f(X1, . . . , Xk) ∈ S we
have

evG(f) = f(c1, . . . , ck)

= (f(p1), . . . , f(pn))
(11)

where in the first line we have one evaluation of f at a k-tuple of vectors, while
in the second line we have a vector of evaluations of f at k-tuples of scalars.

A code is projective if it has dual minimum distance dmin(C
⊥) ≥ 3, or equiv-

alently if no two of the pi are proportional. Any code can be “projectivized”
by discarding (puncturing) coordinates, keeping only one pi in each nonzero
proportionality class.

Restricting to homogeneous polynomials of degree r, we have a surjective
map Sr −→ C⟨r⟩, whose kernel we denote Ir(C). We then define the homogeneous
coordinate ring of C:

C⟨·⟩ =
⊕
r≥0

C⟨r⟩ (12)

and its homogeneous ideal:

I(C) =
⊕
r≥0

Ir(C). (13)

It turns out these are also the homogeneous coordinate ring and the homogeneous
ideal of the finite set of points

{p1, . . . ,pn} ⊆ Pk−1. (14)
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The short exact sequence

0 −→ I(C) −→ S −→ C⟨·⟩ −→ 0 (15)

makes C⟨·⟩ a homogeneous quotient ring of S. In this work we will use coordi-
nates, but identifying S with the symmetric algebra of C would allow to make
all this coordinatefree.

Given x,y ∈ Fn, all entries of x distinct, all entries of y nonzero, the gen-
eralized Reed-Solomon code of order k with support vector x and multiplier y
is

GRSk(x,y) = ⟨y,yx, . . . ,yxk−1⟩F = {yf(x) : f(X) ∈ F[X]<k} ⊆ Fn. (16)

It is a [n, k]-code if k ≤ n.
Now let Fq ⊆ Fqm be an extension of finite fields. Given x,y ∈ (Fqm)n satis-

fying the same conditions as above, the alternant code of order t and extension
degree m over Fq, with support x and multiplier y, is

Altt(x,y) = GRSt(x,y)
⊥ ∩ (Fq)n

= {c ∈ (Fq)n : c1y1x
j
1 + · · ·+ cnynx

j
n = 0 (0 ≤ j < t)},

(17)

with parameters [n, (≥)n−mt]q.
Last, given a polynomial g(X) ∈ Fqm [X] that does not vanish on any entry

of x, the q-ary Goppa code with support x and Goppa polynomial g is

Gop(x, g) = Altdeg(g)(x, g(x)
−1). (18)

We will work mostly in the class

Alt⊥q,m,n,t (19)

of dual q-ary alternant codes of extension degree m, length n, and order t. If q
is unspecified we take q = 2. If n is unspecified we take n = qm. We say a code
C ∈ Alt⊥q,m,n,t is proper if it has dimension

k = mt. (20)

In this case, after extension of scalars, we have

CFqm
= GRSt(x,y)⊕ GRSt(x

q,yq)⊕ · · · ⊕ GRSt(x
qm−1

,yq
m−1

). (21)

Likewise we define the corresponding class

Gop⊥q,m,n,t (22)

of dual Goppa codes, and C ∈ Gop⊥q,m,n,t is said proper if it is when seen in

Alt⊥q,m,n,t. Also we define subclasses Gopirr,⊥q,m,n,t ⊆ Gopsqfr,⊥q,m,n,t ⊆ Gop⊥q,m,n,t, in
which the Goppa polynomial is irreducible or squarefree, respectively.
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2 Minimal resolutions and graded Betti numbers

Generalities

We freely borrow results and terminology from [9], and then elaborate on the
parts of the theory that we will need.

Let S = F[X1, . . . , Xk] be the k-dimensional polynomial ring over F, graded
by total degree. IfM0 is a finitely generated graded S-module, and F0 is the free
module on a minimal system of homogeneous generators of M0, then the (first)
syzygy module of M0 is M1 = ker( F0 −→M0 ). Iterating this construction, we
obtain a minimal resolution

· · · −→ F2 −→ F1 −→ F0 (23)

of M0, where the graded free modules Fi, together with the iterated syzygy
modules Mi, are constructed inductively:

– Fi is the free module on a minimal system of homogeneous generators of Mi

– Mi+1 = ker( Fi −→Mi ).

Thus the Fi are of the form

Fi =
⊕
j≥0

S(−j)βi,j (24)

where S(−j) is the free S-module of rank 1 generated in degree j, so S(−j)d =
Sd−j ; and βi,j , the (i, j)-th graded Betti number ofM0, is the number of elements
of degree j in a minimal system of generators of Mi.

From now on let C be a [n, k]-code, andM0 = C⟨·⟩ its homogeneous coordinate
ring. Then M0 is a dimension 1 Cohen-Macaulay quotient of S, and by the
Auslander-Buchsbaum formula its minimal resolution has length k − 1. So we
have an exact sequence

0 −→ Fk−1 −→ · · · −→ F2 −→ F1 −→ F0 = S −→ C⟨·⟩ −→ 0 (25)

with M0 = C⟨·⟩, F0 = S, M1 = I(C), hence β0,0(C) = 1, β0,j(C) = 0 for j ̸= 0,
and β1,j(C) is the number of homogeneous polynomials of degree j in a minimal
system of generators of I(C).

It is customary to display the graded Betti numbers in the form of a Betti
diagram, as follows:

0 1 . . . i . . . k − 1
...

...
...

...
...

r β0,r β1,r+1 . . . βi,r+i . . . βk−1,r+k−1

r + 1 β0,r+1 β1,r+2 . . . βi,r+i+1 . . . βk−1,r+k

...
...

...
...

...

with null entries marked as “−” for readability. In our situation, as F0 = S, the
0-th column of the Betti diagram is always (1,−,−, . . . )⊤.
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By the minimality property of the resolution, if for some i and D we have
βi,j = 0 for all j ≤ D, then also βi+1,j = 0 for all j ≤ D+1. Applied recursively,
this means all the upper-right quadrant of the Betti diagram defined by βi,D
vanishes. In particular, as the evaluation map S1 −→ C is an isomorphism, we
see that I(C) is generated in degrees ≥ 2, which implies:

Lemma 1. For any i ≥ 1, the i-th syzygy moduleMi of C is generated in degrees
≥ i+ 1. Thus we have Fi,j =Mi,j = 0 for j ≤ i, and

Fi,i+1 =Mi,i+1 = Fβi,i+1 . (26)

Hence the 0-th row of the Betti diagram is (1,−,−, . . . ).
Figures 1-3 offer a few such diagrams for contemplation.

0 1 2 3

0 1 − − −
1 − 3 − −
2 − 1 6 3

Fig. 1. the [7, 4]2 Hamming code

0 1 2 3 4 5

0 1 − − − − −
1 − 10 16 − − −
2 − 1 5 26 20 5

Fig. 2. the [11, 6]3 Golay code

0 1 2 3 4 5 6 7 8 9 10 11

0 1 − − − − − − − − − − −
1 − 55 320 891 1408 1210 320 55 − − − −
2 − 1 11 55 220 650 1672 1870 1221 485 110 11

Fig. 3. the [23, 12]2 Golay code (d = 7, d⊥ = 8)

Effective computation

There are several algorithms to compute minimal resolutions and graded Betti
numbers in general. Many of them rely first on a Gröbner basis computation.
However in this work we will only be interested in computing the first (nontrivial)
row of the Betti diagram, or equivalently, the so-called linear strand of the
resolution. This easier computation can be described in elementary terms. First,
for any r ≥ 3, consider the natural multiplication map

φr :Mr−2,r−1 ⊗ S1 −→Mr−2,r. (27)

Lemma 2. We have:

ker(φr) =Mr−1,r ≃ Fβr−1,r (28)

coker(φr) ≃ Fβr−2,r . (29)

Proof. We prove (29) first. Let G be a minimal system of homogeneous generators
ofMr−2, and for each j let Br−2,j ⊆Mr−2,j be the linear subspace generated by
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the degree j elements of G. Then, asMr−2 is generated in degrees ≥ r−1, we have
Br−2,r−1 =Mr−2,r−1, and Br−2,r is a supplementary subspace to S1 ·Br−2,r−1 =
im(φr) in Mr−2,r. This proves (29).

Now let Fr−2 be the free graded module on G. ThenMr−1,r is the kernel of the
natural map Fr−2,r −→ Mr−2,r. However, under the decompositions Fr−2,r =
(Br−2,r−1 ⊗ S1) ⊕ Br−2,r and Mr−2,r = im(φr) ⊕ Br−2,r, this natural map
decomposes as φr ⊕ idBr−2,r

. This proves (28).

This readily gives a coarse upper bound on the βr−1,r:

Lemma 3. We have β1,2 ≤ k(k−1)
2 , and βr−1,r ≤ (k − 1)βr−2,r−1 for r ≥ 3.

Hence βr−1,r(C) ≤ k
2 (k − 1)r−1 for any r ≥ 2.

Proof. We have dim(C⟨2⟩) ≥ dim(C) = k hence β1,2 =
(
k+1
2

)
− dim(C⟨2⟩) ≤

k(k−1)
2 . Now let r ≥ 3. As Mr−2 is a submodule of the free module Fr−3, multi-

plication by X1 is injective on Mr−2. Hence Mr−2,r−1 ≃ X1Mr−2,r−1 ⊆ im(φr)
from which it follows βr−1,r = kβr−2,r−1 − dim im(φr) ≤ (k − 1)βr−2,r−1.

Proposition 1. The Mr−1,r can be computed iteratively as follows. For r = 3:

M2,3 = ker( I2(C)⊗ S1 −→ S3 ) (30)

where I2(C)⊗ S1 −→ S3 is the natural multiplication map. Then for r ≥ 4:

Mr−1,r = ker(Mr−2,r−1 ⊗ S1 −→Mr−3,r−2 ⊗ S2 ) (31)

where the map ψr :Mr−2,r−1⊗S1 −→Mr−3,r−2⊗S2 is obtained first by tensoring
the inclusion Mr−2,r−1 ⊆ Mr−3,r−2 ⊗ S1 by S1, and then composing with the
multiplication map S1 ⊗ S1 −→ S2.

Proof. First, (30) is just the case r = 3 of (28), composed with the inclusion
I3(C) ⊆ S3. Likewise to prove (31) we must show ker(φr) = ker(ψr) for r ≥ 4.
For this we just observe that the diagram

Mr−2,r

Mr−2,r−1 ⊗ S1 Fr−3,r

Mr−3,r−2 ⊗ S2 = Fr−3,r−2 ⊗ S2

φr

ψr

(32)

commutes, with the two arrows on the right injective.

Thus we have two descriptions of Mr−1,r. The description Mr−1,r = ker(φr)
is closer to the abstract definition, and will be used later to estimate the value
of the Betti numbers. The description Mr−1,r = ker(ψr) is more amenable to
effective computation.

Corollary 1. The Mr−1,r(C) only depend on I2(C).
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To make things even more explicit we introduce the following matrices.
Assume C is given by a generator matrix G ∈ Fk×n, with rows c1, . . . , ck.
Choose monomial bases M1 = (Xa)1≤a≤k, M2 = (XaXb)1≤a≤b≤k, and M3 =
(XaXbXc)1≤a≤b≤c≤k of S1, S2, S3, ordered with respect to some monomial order.

Definition 1. The squared matrix of G is the matrix

G2 ∈ F (
k+1
2 )×n (33)

with rows indexed by M2: the row corresponding to XaXb is cacb.

Then I2(C) is the left kernel of G2, and we choose a basis B2 of this space. Thus
B2 consists of β1,2 vectors, each of which has its entries indexed by M2.

Definition 2. The degree 3 Macaulay matrix of B2 is the matrix

M3 ∈ F kβ1,2 × (k+2
3 ) (34)

with rows indexed by M1×B2 and columns indexed by M3: the row correspond-
ing to (Xa,q) ∈ M1 × B2, where q = (qM )M∈M2 , has entry qM at position
corresponding to XaM ∈ M3, and 0 elsewhere.

Then by (30), M2,3 is the left kernel of M3, and we choose a basis B3 of this
space. Thus B3 consists of β2,3 vectors, each of which has its entries indexed by
M1 × B2.

Now let r ≥ 4, and assume inductively for all 3 ≤ i ≤ r − 1 we have con-
structed a basis Bi of Mi−1,i, consisting of βi−1,i vectors, each of which has its
entries indexed by M1 × Bi−1.

Definition 3. The degree r blockwise Macaulay matrix of Br−1,Br−2 is the ma-
trix

Mr ∈ F kβr−2,r−1 × (k+1
2 )βr−3,r−2 (35)

with rows indexed by M1 × Br−1 and columns indexed by M2 × Br−2: the row
corresponding to (Xa, s) ∈ M1×Br−1, where s = (sXb,t)Xb∈M1,t∈Br−2

, has entry
sXb,t at position corresponding to (XaXb, t) ∈ M2 × Br−2, and 0 elsewhere.

Then by (31), Mr−1,r is the left kernel of Mr, and we proceed.
All this is summarized in Algorithm 1.
Observe that our computation only relies on mere linear algebra, and does

not make use of any Gröbner basis theory. However, the two topics are clearly
related. In particular, the many linear algebra optimizations used in Gröbner
basis algorithms could certainly apply in our context.

Further properties

We will have a particular interest in the length of the linear strand, or equiva-
lently, in the following quantity:
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Algorithm 1 Compute bases Br of Mr−1,r(C) up to some degree D

Input: – a generator matrix G of the [n, k]-code C
– a target degree D ≤ k

1: construct the matrix G2 according to Definition 1
2: compute a left kernel basis B2 of G2

3: construct the matrix M3(B2) according to Definition 2
4: compute a left kernel basis B3 of M3

5: for r = 4 . . . D do
6: construct the matrix Mr(Br−1,Br−2) according to Definition 3
7: compute a left kernel basis Br of Mr

8: end for

Definition 4. For a linear code C, we set

rmax(C) = max{r : βr−1,r(C) > 0}. (36)

As the minimal resolution of a [n, k]-code C has length k − 1, we always have
rmax(C) ≤ k.

Sometimes we only control the syzygies of certain subideals of I(C), and
from these we want to deduce information on the syzygies of the whole ideal.
Intuitively, we expect syzygies between elements of the subideals could be seen
as syzygies between elements of the ideal. Of course this fails in general, but it
remains true if we restrict to the linear strand:

Proposition 2. Let M be a finite S-module generated in degrees ≥ d0, and
suppose its degree d0 part Md0 decomposes as a direct sum

Md0 = Ad0 ⊕Bd0 . (37)

Let A = ⟨Ad0⟩S and B = ⟨Bd0⟩S be the sub-S-modules of M generated by Ad0
and Bd0 . Let M̂ be the (first) syzygy module of M , and Â and B̂ those of A and
B. Then we have a natural inclusion

Âd0+1 ⊕ B̂d0+1 ⊆ M̂d0+1 (38)

the cokernel of which identifies with Ad0+1 ∩ Bd0+1, hence a (non-canonical)
isomorphism

M̂d0+1 ≃ Âd0+1 ⊕ B̂d0+1 ⊕ (Ad0+1 ∩Bd0+1). (39)

Proof. We have surjective maps

(Ad0 ⊕Bd0)⊗ S1 ↠ Ad0+1 ⊕Bd0+1 ↠ Ad0+1 +Bd0+1 (40)

with Âd0+1 ⊕ B̂d0+1 the kernel of the leftmost map, Ad0+1 ∩Bd0+1 the kernel of

the rightmost map, and M̂d0+1 the kernel of the composite map. We conclude
with the associated kernel-cokernel exact sequence.

12



Corollary 2. Suppose I2(C) contains a certain direct sum of l subspaces:

I2(C) ⊇ V (1) ⊕ · · · ⊕ V (l). (41)

Then the the minimal resolution of C⟨·⟩ canonically admits the direct sum of the
linear strands of the minimal resolutions of S/⟨V (1)⟩, ..., S/⟨V (l)⟩ as a subcom-
plex. In particular for all r ≥ 2 we have

βr−1,r(C) ≥ βr−1,r(S/⟨V (1)⟩) + · · ·+ βr−1,r(S/⟨V (l)⟩). (42)

Proof. Apply Proposition 2 repeatedly.

Recall that πC is a punctured code of C if it is obtained from C by discard-
ing some given set of coordinates (equivalently, discarding some subset of the
associated set of points in projective space).

Corollary 3. Let πC be a punctured code of C. Assume dim(πC) = dim(C).
Then for all r ≥ 2 we have

βr−1,r(πC) ≥ βr−1,r(C) (43)

hence
rmax(πC) ≥ rmax(C). (44)

Proof. Let S = F[X1, . . . , Xk] where k = dim(πC) = dim(C). Then the surjective
map S −→ (πC)⟨·⟩ factors through C⟨·⟩, so that I2(πC) ⊇ I2(C).

Last, the following easy result is also useful:

Lemma 4. Minimal resolutions are preserved under extension of scalars. In
particular if a code C is defined over F, and if F ⊆ K is a field extension, then
βi,j(C) = βi,j(CK) for all i, j.

3 Lower bounds from the Eagon-Northcott complex

Generalities

Let R be a ring, and for integers f ≥ g, temporarily switching to column vector
convention, let Φ ∈ Rg×f define a linear map

Φ : F = Rf −→ G = Rg. (45)

The Eagon-Northcott complex [8] of Φ is the following complex of R-modules,
defined in terms of the exterior and (dual of) symmetric powers of F and G:

0 → (Symf−g G)∨ ⊗
f∧
F → · · · → G∨ ⊗

g+1∧
F →

g∧
F

∧g Φ−→
g∧
G ≃ R. (46)

Under mild hypotheses, this complex is exact [9, Th. A.2.60 & Th. 6.4], so it
defines a resolution of the quotient R/ im(

∧g
Φ) defined by the ideal generated

by the maximal minors of Φ.
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In this work we will only need the case g = 2. In this case the complex has
length f − 1, and for 2 ≤ r ≤ f its (r − 1)-th module is free of rank

rk

(
(Symr−2G)∨ ⊗

r∧
F

)
= (r − 1)

(
f

r

)
. (47)

All this can be made explicit, in coordinates. Let

Φ =

(
x1 x2 . . . xf
x′1 x

′
2 . . . x

′
f

)
(48)

for xi, x
′
i ∈ R. Then:

– im(
∧2

Φ) is generated by the
(
f
2

)
minors

qi,j = xix
′
j − xjx

′
i (49)

for 1 ≤ i < j ≤ f ,
– these qij are annihilated by the 2

(
f
3

)
relations

rijk = xiqjk − xjqik + xkqij

r′ijk = x′iqjk − x′jqik + x′kqij
(50)

for 1 ≤ i < j < k ≤ f ,
– these rijk and r′ijk are annihilated by the 3

(
f
4

)
relations

sijkl = xirjkl − xjrikl + xkrijl − xlrijk

s′ijkl = xir
′
jkl − xjr

′
ikl + xkr

′
ijl − xlr

′
ijk+

+ x′irjkl − x′jrikl + x′krijl − x′lrijk

s′′ijkl = x′ir
′
jkl − x′jr

′
ikl + xkr

′
ijl − xlr

′
ijk

(51)

for 1 ≤ i < j < k < l ≤ f ,

and so on. These are just the cases r = 2, 3, 4 of the more general:

Proposition 3. In the multivariate polynomial ring

R[Z
(j)
r;i1,...,ir

] (52)

where, for each 2 ≤ r ≤ f , indices range over the (r−1)
(
f
r

)
values 1 ≤ j ≤ r−1

and 1 ≤ i1 < · · · < ir ≤ f , construct polynomials s
(j)
r;i1,...,ir

as follows. First for
r = 2 we define the constant polynomials

s
(1)
2;i1,i2

= xi1x
′
i2 − x′i1xi2 (53)

given by the minors of Φ; and for r ≥ 3 we define linear polynomials

s
(j)
r;i1,...,ir

=

r∑
u=1

(−1)u−1(xiuZ
(j)

r−1;i1,...,îu,...,ir
+ x′iuZ

(j−1)

r−1;i1,...,îu,...,ir
) (54)
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where we replace Z
(j)
r;i1,...,ir

with zero if j ≤ 0 or j ≥ r. Then, for all r ≥ 3, we
have

sr(sr−1) = 0. (55)

Proof. Either express (46) in the standard bases of F = Rf andG = R2. Or more
directly, consider the Zr and sr as (r− 1)-tuples of (exterior) r-vectors, observe

that (53) means s
(1)
2 = x ∧ x′, that (54) means s

(j)
r = x ∧Z

(j)
r−1 + x′ ∧Z

(j−1)
r−1 , so

the alternating property gives s
(1)
3 (s2) = x∧x∧x′ = 0, s

(2)
3 (s2) = x′∧x∧x′ = 0,

and for r ≥ 4:

s(j)r (sr−1) = x ∧ x ∧ Z
(j)
r−2 + x ∧ x′ ∧ Z

(j−1)
r−2 +

+ x′ ∧ x ∧ Z
(j−1)
r−2 + x′ ∧ x′ ∧ Z

(j−2)
r−2 = 0.

(56)

Shortening (or projection from a point)

We have interest in how this Eagon-Northcott complex interacts with reduc-
tion to a subcode, and in particular with shortening. By induction it suffices to
consider the case of a codimension 1 subcode, or a 1-shortening respectively.

So let C be a [n, k]-code over F, and CH a codimension 1 subcode. We will
assume C projective, but then CH need not be so. Choose a basis c1, . . . , ck−1

of CH, and complete it to a basis c1, . . . , ck of C. Let GH and G be the corre-
sponding generating matrices of CH and C. Let also S = F[X1, . . . , Xk] be the
polynomial ring in k indeterminates, and SH = F[X1, . . . , Xk−1] its subring in
the first k − 1 indeterminates. We have a commutative diagram

SH −−−−→ C
⟨·⟩
Hy y

S −−−−→ C⟨·⟩

(57)

where horizontal maps denote evaluation, and vertical maps inclusion. Also set

H = SH,1 = ⟨X1, . . . , Xk−1⟩F ⊆ S1 (58)

and let pH = (0 : · · · : 0 : 1)⊤ ∈ Pk−1 be the associated point. Last, let
{p1, . . . ,pn} ⊆ Pk−1 be the set of points defined by the columns of G. Then we
have two possibilities:

– Either c1, . . . , ck−1 all vanish at some common position i, or equivalently,
pH = pi. Puncturing this position, we can identify CH with the 1-shortened
subcode of C at i. Then the set of points in Pk−2 defined by the columns of
GH is the image of {p1, . . . , p̂i, . . . ,pn} under the projection from pi.

– Otherwise, if there is no such i, then CH is a “general” codimension 1 sub-
code, and the set of points in Pk−2 defined by the columns of GH is the
image of {p1, . . . ,pn} under the projection from pH.
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(As already observed, CH need not be projective, so these image points need not
be distinct.)

Let f ≥ g ≥ d ≥ 2 be integers, and let Φ ∈ Sg×f1 be a matrix whose entries
are homogeneous linear forms, i.e. elements of S1. Recall from [9, §6B] that such
a matrix is said to be 1-generic if for any nonzero a ∈ Fg and b ∈ Ff , aΦb⊤ is
nonzero. Let VΦ ⊆ Sg1 be the column span of Φ, so dim(VΦ) ≤ f , and set

VΦ,H = VΦ ∩Hg. (59)

Set fH = dim(VΦ,H) ≥ dim(VΦ) − g, and then let ΦH ∈ Hg×fH be a matrix
whose columns form a basis of VΦ,H.

Proposition 4. Under these hypotheses:

1. If Id(C) contains the d × d minors of Φ, then Id(CH) contains the d × d
minors of ΦH.

2. If Φ is 1-generic, then ΦH is 1-generic, and fH ≥ f − g.

3. If Id(C) contains the d × d minors of Φ, if Φ is 1-generic, and if CH is a
1-shortened subcode of C, then fH ≥ f − d+ 1.

Proof. By (57) we have Id(CH) = Id(C) ∩ SH. Columns of ΦH belong to the
column span of Φ, so d×d minors of ΦH are linear combinations of d×d minors
of Φ. On the other hand, ΦH has coefficients in H, so its d × d minors belong
to SH. This proves 1.

Assume Φ is 1-generic. As columns of ΦH are linearly independent and be-
long to the column space of Φ, we can write ΦH = ΦM where M ∈ Ff×fH

has rk(M) = fH. Then for a ∈ Fg and b ∈ FfH nonzero we have aΦHb⊤ =
aΦMb⊤ ̸= 0 because Mb⊤ is nonzero. This proves that ΦH is 1-generic. Then
it is easily seen that a 1-generic matrix has linearly independent columns, so
dim(VΦ) = f , hence fH ≥ f − g. This finishes the proof of 2.

Now we prove 3. Assume CH is the 1-shortened subcode of C at position i,
hence pi = pH = (0 : · · · : 0 : 1)⊤. As Φ is 1-generic, we have dim(VΦ) = f .
Let evpH : S −→ F denote evaluation at pH. Applied coordinatewise, we also
have evaluation maps evpH : Sg −→ Fg and evpH : Sg×f −→ Fg×f . Also we can
restrict evpH to subspaces, so for instance H = ker(evpH : S1 −→ F). It then
follows

VΦ,H = VΦ ∩Hg = ker( evpH : VΦ −→ Fg ), (60)

while the image evpH(VΦ) ⊆ Fg is the column span of evpH(Φ) ∈ Fg×f . As
the d × d minors of Φ belong to Id(C), they vanish at each column of G, in
particular they vanish at pH = pi. But this means precisely that the d × d
minors of evpH(Φ) all vanish, or equivalently,

dim(evpH(VΦ)) ≤ d− 1. (61)

Joint with (60) this gives fH = dim(VΦ,H) ≥ dim(VΦ)− (d− 1) = f − d+ 1.
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Application to alternant and Goppa codes

Consider a code C ∈ Alt⊥q,m,n,t, assumed to be proper. By (21), after extension

of scalars, CFqm
admits as a basis the k = mt vectors (yxa)q

u

for 0 ≤ a ≤ t− 1
and 0 ≤ u ≤ m − 1. Rename the k = mt variables in our polynomial ring S
accordingly, so that our evaluation map now is

S = Fqm [X(u)
a ] −→ C

⟨·⟩
Fqm

(62)

where X
(u)
a evaluates as (yxa)q

u

.

If M is a matrix (or more generally an expression) in the X
(u)
a , we denote

by M(v) the same matrix (or expression) with each X
(u)
a replaced by X

(u+v)
a ,

where u+ v is considered mod m. We also write M′ = M(1), M′′ = M(2), etc.
Set

e = ⌊logq(t− 1)⌋, (63)

and for any 0 ≤ u ≤ e define a 2× (t− qu) matrix

Bu =

(
X

(0)
0 X

(0)
1 . . . X

(0)
t−1−qu

X
(0)
qu X

(0)
qu+1 . . . X

(0)
t−1

)
. (64)

We then define the block matrix

Φ =
(
B

(e)
0 B

(e−1)
1 · · · B(0)

e

)
(65)

of total size 2 × f where f = (e + 1)t − qe+1−1
q−1 . Observe that this matrix only

depends on q and t, debatably on m, but certainly not on n nor on the specific
choice of C.

Lemma 5. The 2× 2 minors of Φ belong to I2(CFqm
).

Proof. The 2×2 minor defined by the columns

[
X

(e−u)
a

X
(e−u)
qu+a

]
ofB

(e−u)
u and

[
X

(e−v)
b

X
(e−v)
qv+b

]
of B

(e−v)
v is

X(e−u)
a X

(e−v)
qv+b −X

(e−u)
qu+a X

(e−v)
b (66)

which evaluates under (62) to

(yxa)q
e−u

(yxq
v+b)q

e−v

− (yxq
u+a)q

e−u

(yxb)q
e−v

= 0. (67)

Lemma 6. The matrix Φ is 1-generic.

Proof. Let a ∈ F2q and b ∈ Ffq be nonzero. Let ai be the rightmost nonzero

entry of a and bj the rightmost nonzero entry of b. Then the X
(u)
c variable that

multiplies aibj in aΦb⊤ does not appear elsewhere in aΦb⊤, so aΦb⊤ ̸= 0.
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Theorem 1. Let C ∈ Alt⊥q,m,n,t be proper, e = ⌊logq(t−1)⌋, f = (e+1)t− qe+1−1
q−1 .

For any s ≥ 0, let Cs be a s-shortened subcode of C. Then for all r ≥ 2 we have
βr−1,r(Cs) ≥ (r − 1)

(
f−s
r

)
, hence

rmax(Cs) ≥ f − s. (68)

Proof. By Lemma 4 we can extend scalars to Fqm . By Lemma 5, I2(C) then
contains the 2× 2 minors of the 2× f matrix Φ, and this matrix Φ is 1-generic
by Lemma 6. By Proposition 4 applied s times (with g = d = 2), I2(Cs) then
contains the 2 × 2 minors of a 2 × fs matrix Φs, where fs ≥ f − s, and this
matrix Φs is 1-generic also. Then by [9, §6B], the 2×2 minors of Φs are linearly
independent, and its Eagon-Northcott complex is exact with only nonzero Betti
numbers β0,0 = 1 and βr−1,r = (r − 1)

(
fs
r

)
for 2 ≤ r ≤ fs. We then conclude

with Corollary 2 (with l = 1 and V (1) = im(
∧2

Φs)).

Remark 1. It is possible to improve the lower bound on βr−1,r(Cs), using not
only Φ = Φ(0), but also its conjugates Φ(1), . . . ,Φ(m−1). See the corresponding
discussion in the Supplementary material.

Examples show the bound (68) on rmax is tight in general for alternant codes.
However one can improve it in the Goppa case. Let us focus on q = 2 for
simplicity. Let φ : a 7→ a2 be the Frobenius map, acting on any F2-algebra. For
any polynomial g ∈ F2m [X], set Lg = g(X)−1F2m [X]<deg(g) ⊆ F2m(X).

Lemma 7. Let g(X) ∈ F2m [X] be squarefree (i.e. separable). Then

Lg + φ(Lg) = Lg2 , (69)

the sum being direct

Proof. Set t = deg(g). Then Lg and φ(Lg) both are t-dimensional subspaces of
the 2t-dimensional space Lg2 . To conclude we only have to prove Lg∩φ(Lg) = 0.

However we have F (X) ∈ Lg ∩ φ(Lg) if and only if F (X) = A(X)
g(X) = B(X)2

g(X)2 for

some A,B of degree < t. But then this implies g(X)|B(X)2 with g squarefree of
degree t, which is impossible unless B = 0.

From this we readily deduce:

Lemma 8. Let x ∈ (F2m)n be a support, and g(X) ∈ F2m [X] squarefree of
degree t ≤ n/2, not vanishing on any entry of x. Then

GRSt(x, g(x)
−1) + GRSt(x

2, g(x)−2) = GRS2t(x, g(x)
−2), (70)

the sum being direct.

Proposition 5. Let C = Gop(x, g)⊥ ∈ Gopsqfr,⊥2,m,n,t be proper, with g squarefree.

Set y = g(x)−1. Then

CFqm
=

m/2−1⊕
i=0

GRS2t(x
4i ,y4i), or (71)
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CFqm
=

(m−1)/2−1⊕
i=0

GRS2t(x
4i ,y4i)

⊕ GRSt(x
2m−1

,y2m−1

) (72)

depending on whether m is even or odd.

Corollary 4. Let C = Gop(x, g)⊥ ∈ Gopsqfr,⊥2,m,n,t be proper, with g squarefree. Set

ê = ⌊log4(2t − 1)⌋ and f̂ = (2ê + 2)t − 4ê+1−1
3 . For any s ≥ 0, let Cs be a

s-shortened subcode of C. Then for all r ≥ 2 we have βr−1,r(Cs) ≥ (r− 1)
(
f̂−s
r

)
,

hence

rmax(Cs) ≥ f̂ − s. (73)

Proof. Same as Theorem 1, with Φ adapted to fit Proposition 5.

4 Regularity 2 and the small defect heuristic

Regularity 2 and consequences

If C is a [n, k]-code, we let

Bj =
∑
i≥0

(−1)iβi,j (74)

be the alternating sum of its Betti numbers degree j, and B(z) =
∑
j≥0Bjz

j

their generating polynomial (it is indeed a finite sum).
Let also HC(z) =

∑
r≥0 z

r dimC⟨r⟩ be the Hilbert series of C.

Proposition 6. We have

B(z) = (1− z)kHC(z). (75)

Proof. Generating series reformulation of [9, Cor. 1.10].

Definition 5 ([25, Def. 1.5 & Th. 2.35]). The Castelnuovo-Mumford regu-
larity of a projective [n, k]-code C is the smallest integer r such that C⟨r⟩ = Fn.

Definition 6 (cf. [9, §4A], after [22, Lect. 14]). The Castelnuovo-Mumford
regularity of C⟨·⟩ is max{r : ∃i, βi,i+r(C) > 0}.

Proposition 7 ([9, Th. 4.2]). These two definitions coincide.

The square code distinguisher, and the filtration attack from [1] that extends
it, work for codes C with C⟨2⟩ ⊊ Fn, i.e. of regularity > 2. This means that codes
of regularity 2 are hard to deal with under this approach. On the opposite, for
us, codes of regularity 2 are nice because Definition 6 means their Betti diagram
is simple: it has only two nontrivial rows. Observe that most codes of interest
have regularity 2 (with the notable exception of self-dual codes).
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Definition 7. If f : U −→ V is a linear map between finite dimensional F-
vector spaces, we define its index

ind(f) = dim(U)− dim(V )

= dimker(f)− dim coker(f)
(76)

and its defect

def(f) = min(dim(U),dim(V ))− rk(f)

= min(dimker(f),dim coker(f)).
(77)

For any real x we set x+ = max(x, 0) and x− = (−x)+, so x = x+ − x−. Then
we always have

dimker(f) ≥ ind(f)+ (78)

dim coker(f) ≥ ind(f)− (79)

and then

def(f) = dimker(f)− ind(f)+ = dim coker(f)− ind(f)− (80)

measures the distance to equality in these two inequalities.
For r ≥ 3, recall the linear map φr :Mr−2,r−1 ⊗S1 −→Mr−2,r from (27). It

will also be handy to let φ2 = evG,2 : S2 −→ C⟨2⟩ be the evaluation map.

Theorem 2. For all r ≥ 2 we have

dimker(φr) = βr−1,r (81)

dim coker(φr) = βr−2,r (82)

and moreover, if C⟨2⟩ = Fn, then

ind(φr) =

(
k(k + 1)

r
− n

)(
k − 1

r − 2

)
. (83)

Proof. For r = 2 this is proved directly. Now assume r ≥ 3. Then the first two
equalities are reformulations of Lemma 2. Now assume moreover C⟨2⟩ = Fn. Then
HC(z) = 1+kz+n z2

1−z , so B(z) = (1+kz)(1−z)k+nz2(1−z)k−1 by Proposition 6,

thus Br = (−1)r−1(r−1)
(
k+1
r

)
+(−1)rn

(
k−1
r−2

)
= (−1)r−1

(
k(k+1)

r − n
) (

k−1
r−2

)
. On

the other hand, C⟨2⟩ = Fn also means C has regularity 2 in the sense of Defini-
tion 6, so (74) reduces to Br = (−1)r−1βr−1,r+(−1)r−2βr−2,r = (−1)r−1 ind(φr)
and we conclude.

Corollary 5. If C⟨2⟩ = Fn, then the bottom right entry of its Betti diagram is

βk−1,k+1 = n− k. (84)

20



Proof. The minimal resolution of C has length k − 1, so βi,j = 0 for i > k − 1,
hence βk−1,k+1 = − ind(φk+1) = n− k.

Regularity 2 helps in computing the full Betti diagram. We already gave
examples in Figures 1-3. In order to provide a few more, let us first recall that
a [n, k] code C is MDS if it has dual minimum distance dmin(C

⊥) = k + 1.

Lemma 9 ([14, Th. 1], reformulated). Let C be a [n, k]-code with n ≤ 2k−1.
Assume C is MDS. Then for all r ≤ 2k + 1− n we have βr−2,r(C) = 0.

Proposition 8. Let C be a [k+ 1, k] MDS code, for instance a parity code or a
[k+1, k] GRS code. Then the nonzero Betti numbers of C are β0,0 = βk−1,k+1 = 1,
and

βr−1,r =
(r − 1)(k − r)

k

(
k + 1

r

)
(85)

for 2 ≤ r ≤ k − 1. In particular they satisfy the symmetry βi,j = βk−1−i,k+1−j.

Proof. The parameters imply that C has regularity 2. By Lemma 9 we have

βr−2,r = 0 for r ≤ k. Then βr−1,r = ind(φr) =
(
k(k+1)

r − (k + 1)
) (

k−1
r−2

)
and we

conclude with a straightforward calculation.

Proposition 9. Let C be a [2k−1, k] GRS code. Then the nonzero Betti numbers
of C are:

– β0,0 = 1

– βr−1,r = (r − 1)
(
k−1
r

)
for 2 ≤ r ≤ k − 1

– βr−2,r = (r − 2)
(
k−1
r−2

)
for 3 ≤ r ≤ k + 1 (so βr−2,r = βk+2−r,k+4−r).

In particular the ideal I(C) is generated by β1,2 = (k−1)(k−2)
2 quadratic forms

and β1,3 = k − 1 cubic forms.

Proof. Using the basis y,yx, . . . ,yxk−1 of C, we see I2(C) contains the 2 × 2

minors of Φ =

(
X0 X1 . . . Xk−2

X1 X2 . . . Xk−1

)
, i.e. I2(C) ⊇ im(

∧2
Φ) of dimension

(
k−1
2

)
.

Now set n = 2k − 1.
Because n ≥ 2k − 1, we have dimC⟨2⟩ = 2k − 1, hence dim I2(C) =

(
k−1
2

)
,

so I2(C) = im(
∧2

Φ). Corollary 1 and the Eagon-Northcott complex of Φ then
give βr−1,r = (r − 1)

(
k−1
r

)
.

Because n ≤ 2k − 1, we have C⟨2⟩ = Fn. Then βr−2,r = βr−1,r − ind(φr) =

(r−1)
(
k−1
r

)
−
(
k(k+1)

r − (2k − 1)
) (

k−1
r−2

)
, and a straightforward calculation allows

to conclude.

Figures 4 and 5 illustrate Propositions 8 and 9.

Exercise 1. Compute the Betti diagram of [n, k] GRS codes for k+1 < n < 2k−1.
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0 1 2 3 4 5 6 7

0 1 − − − − − − −
1 − 27 105 189 189 105 27 −
2 − − − − − − − 1

Fig. 4. a [9, 8] parity or GRS code

0 1 2 3 4 5 6 7

0 1 − − − − − − −
1 − 21 70 105 84 35 6 −
2 − 7 42 105 140 105 42 7

Fig. 5. a [15, 8] GRS code

The small defect heuristic

A direct application of Definition 7 and Theorem 2 gives:

Proposition 10. If C is a [n, k]-code with C⟨2⟩ = Fn, then for all r ≥ 2 we have

βr−1,r(C) =

(
k(k + 1)

r
− n

)+(
k − 1

r − 2

)
+ def(φr) (86)

βr−2,r(C) =

(
k(k + 1)

r
− n

)−(
k − 1

r − 2

)
+ def(φr). (87)

It is tempting to see this result as an estimate for the Betti numbers of ran-
dom codes, with a leading term given by ind(φr)

± (compare with the bound
in Lemma 3), and a secondary term given by def(φr). Indeed, it is well known
that under a reasonable probability model, a random linear map tends to have
a small defect. Unfortunately, if C is a random code (say, uniform among codes
of given [n, k]), it is not easy to control the distribution of the maps φr.

Still, in the special case r = 2, [3] manages to give lower bounds, exponentially
close to 1, on the probability that def(φ2) = 0. One might wonder how this
generalizes. Let us review some arguments that support such a generalization,
but also impose some limitations on its validity.

Reformulated in our setting, the minimal resolution conjecture of [18] pos-
tulates that, over an infinite field, a Zariski-generic code has def(φr) = 0 for all

r ≥ 2, or equivalently, that βr−1,r(C) = 0 for r ≥ k(k+1)
n and βr−2,r(C) = 0 for

r ≤ k(k+1)
n . However, two points require our attention:

1. This conjecture is known to be false in general [10].
2. We work over a finite field, not an infinite one.

Concerning point 1, we will argue that the conjecture is still “true enough”
for us. First, a nonzero defect might not be a problem in our Betti number
estimates, as long as it remains small. Moreover, as noted in the introduction of
[10], the conjecture has been proved for a large range of values of n and k. In
fact, although [10] provides an infinity of counterexamples, these remain limited
to specific parameters, namely of the form n = k+O(

√
k). And indeed, perhaps

the most valuable result for us is [16], which proves that the conjecture is true
when n is large enough with respect to k.

Concerning point 2, it is true that codes behave quite differently over a finite
field and over an infinite field. For instance, generic codes over an infinite field

22



are MDS for any parameter set, while over a finite field they clearly are not.
This makes it desirable to investigate links between Betti numbers and distance
properties of a code.

0 1 2 3 4 5 6 7 8 9 10 11

0 1 − − − − − − − − − − −
1 − 55 319 880 1353 990 − − − − − −
2 − − − − − 330 1617 1870 1221 485 110 11

Fig. 6. an idealized [23, 12]-code according to the minimal resolution conjecture

0 1 2 3 4 5 6 7 8 9 10 11

0 1 − − − − − − − − − − −
1 − 55 319 881 1371 1122 315 63 6 − − −
2 − − 1 18 132 645 1680 1876 1221 485 110 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 − − − − − − − − − − −
1 − 55 319 884 1392 1181 300 49 4 − − −
2 − − 4 39 191 630 1666 1874 1221 485 110 11

Fig. 7. some actual [23, 12]2-codes with d = 4, d⊥ = 4 (compare also with Figure 3)

For any code C, let us denote by Ai(C) the number of codewords of Hamming
weight i in C.

Experimental fact 1. Let C be a [n, k]q-code of regularity 2, with minimum
distance d = dmin(C) and dual minimum distance d⊥ = dmin(C

⊥).

1. For all r ≥ d⊥ we have βr−2,r(C) > 0. Moreover, quite often (but not always)
we have βd⊥−2,d⊥(C) = Ad⊥(C

⊥).
2. Dually, for all r ≤ k + 1 − d we have βr−1,r(C) > 0. Moreover, quite often

(but not always) we have βk−d,k+1−d(C) = Ad(C).

It follows that def(φr) > 0 for d⊥ ≤ r ≤ k(k+1)
n and for k(k+1)

n ≤ r ≤ k+1− d,
when applicable (i.e. when these intervals are nonempty).

Conversely, for a random C among codes of given parameters [n, k, d, d⊥]q,

the probability that def(φr) = 0 tends quickly to 1 as r ≪ min
(
d⊥, k(k+1)

n

)
and

as r ≫ max
(
k(k+1)
n , k + 1− d

)
. In particular rmax(C) = max

(⌊
k(k+1)
n

⌋
, k + 1− d

)
,

or is very close to this value, with high probability.

As an illustration, Figure 13 in the Supplementary material presents statistics
on def(φr) for random [56, 16]2-codes.

Consequently, we postulate:

Heuristic 1. Fix a field cardinality q, assume n is not too close to k in order
to stay away from the counterexamples to the minimal resolution conjecture, and
n <

(
k+1
2

)
in order to ensure regularity 2. Then for random [n, k]q-codes, with

high probability:
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1. if d⊥ > k(k+1)
n we expect βr−1,r =

(
k(k+1)

r − n
) (

k−1
r−2

)
for r < k(k+1)

n

2. if d > k + 1− k(k+1)
n we expect βr−1,r = 0 for r > k(k+1)

n .

Remark 2. Consider this Heuristic in the asymptotic regime. Setting R = k/n,
we can take d = dGV (q, n, k) ≈ H−1

q (1 − R)n and d⊥ = dGV (q, n, n − k) ≈
H−1
q (R)n the corresponding Gilbert-Varshamov distance. Then the condition

in 1. translates as H−1
q (R) > R2, and the condition in 2. translates as H−1

q (1−
R) > R(1−R), both of which are satisfied when R is small enough. In particular
for q = 2, we find that 1. is satisfied for R < 0.141 and 2. is satisfied for
R < 0.277.

5 The distinguisher, with and without shortening

General principles

Distinguishers for alternant or Goppa codes tend to work better when t is small
and n is large. When benchmarking, it is thus common to:

– first fix q,m, and then for n = qm, find the largest distinguishable t
– once such a t is found, fix q,m, t, and find the smallest distinguishable n.

Also, distinguishers typically work by computing certain code invariants. We
might have theoretical bounds on the values of these invariants, that are essential
for an asymptotic analysis. However these bounds need not be tight. Hence for
a given set of finite parameters, we can also adopt a more empirical approach:
sample a certain number of codes, compute their invariants, and observe when
the distinguisher “just works”.

So for given q,m, t and a type of codes (alternant or Goppa), we set n = qm

and we compute the Betti numbers of a certain number of dual codes. Most of
the time, it turns out that these numbers are the same for all samples. We will
denote by β∗

r−1,r these common values. By Corollary 3, these β∗
r−1,r still provide

lower bounds on βr−1,r for smaller n.
On the other hand, for random codes of dimension k = mt, if Heuristic 1 ap-

plies, (86) gives that βr−1,r should be equal, or very close, to
(
k(k+1)

r − n
)+ (

k−1
r−2

)
.

Thus we expect to distinguish when this value is smaller than β∗
r−1,r, or equiv-

alently when

n ≥

⌈
k(k + 1)

r
−
β∗
r−1,r − 1(
k−1
r−2

) ⌉
(88)

(provided β∗
r−1,r > 0).

When r = 2, this gives the distinguishability threshold of the square code
distinguisher of [11]. Using syzygies of higher degree r allows to make the term
k(k+1)

r smaller and reach a broader range of parameters.
As for shortening, we do not expect it to improve the distinguishability

threshold. This technique is used only, but crucially, to reduce the overall com-
plexity when parameters grow larger.
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Now let us see how our syzygy distinguisher fares, first on the examples
proposed in [6], and then on the Classic McEliece system.

Goppa codes with q = 4, m = 4, t = 4, irreducible Goppa polynomial

For these parameters, the square code distinguisher works down to nsquare = 97,
while the distinguisher of [6] works down to nCMT = 80.

We experimentally find that dual Goppa codes C with these parameters, with
n = qm = 256, consistently have rmax = 4, which is better than the lower bound
in Theorem 1 (e = 0, rmax ≥ t− 1 = 3). Moreover, their Betti numbers are:

β∗
1,2 = 40, β∗

2,3 = 80, β∗
3,4 = 12. (89)

We then observe that the β2,3-distinguisher works down to nβ2,3 = 86, and the
β3,4-distinguisher works down to nβ3,4 = 68, both of which coincide with (88).
More precisely, computing the Betti numbers of dual Goppa and random codes
around these values of n consistently yields:

n · · · 88 87 86 85 84 · · · 70 69 68 67 66 · · ·
βGopirr,⊥

2,3 80 80 80 85 100 310 325 340 355 370

βrandom
2,3 40 55 70 85 100 310 325 340 355 370

βGopirr,⊥

3,4 12 12 12 12 12 12 12 12 105 210

βrandom
3,4 0 0 0 0 0 0 0 0 105 210

We see that they stick to their “predicted” values: βr−1,r = max(β∗
r−1,r, ind(φr)

+)
for dual Goppa, and βr−1,r = ind(φr)

+ for random codes.

Goppa codes with q = 2, m = 6, t = 3, irreducible Goppa polynomial

For these parameters, the square code distinguisher works down to nsquare = 62,
while the distinguisher of [6] works down to nCMT = 59.

We experimentally find that dual Goppa codes C with these parameters, with
n = qm = 64, consistently have rmax = 8, which is better than the lower bound
in Corollary 4 (ê = 1, rmax ≥ 7). Moreover, their top Betti numbers are:

β∗
5,6 = 1020, β∗

6,7 = 288, β∗
7,8 = 42. (90)

From (88) we expect to distinguish at β5,6 for n ≥ 57, at β6,7 for n ≥ 49, and at
β7,8 for n ≥ 43.

And indeed at nβ5,6
= 57 we consistently find β5,6 ≥ 1020 for dual Goppa

codes, while β5,6 < 500 for random codes with quite high probability.
For smaller n we have to pass to β6,7. The β6,7-distinguisher works well

for n = 56, but the quality gradually falls (distinguishing errors occur more
frequently) as n becomes smaller. It is difficult to point a precise threshold where
the distinguisher ceases to work. Arguably we still have a positive advantage at
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nβ6,7
= 50, but not anymore at n = 49. We could then try with β7,8, but this

fails too.
What happens? It turns out the conditions in Heuristic 1 are not satisfied

anymore to ensure def(φr) = 0, or even def(φr) small, for these values of r and
n. From Experimental fact 1, in order to have βr−1,r = 0, we need r > k+1−d,
where d = dmin(C). For r = 7 and k = mt = 18 this gives d ≥ 13. For smaller
d we expect a loose link between βr−1,r and the weight distribution of C. The
distinguisher still works as long as random codes satisfy βr−1,r < β∗

r−1,r w.h.p.,
and experimentally, for r = 7, we find this inequality is satisfied for random
codes of minimum distance d ≥ 10, while d = 9 is a borderline case, and d ≤ 8
fails invariably. Now, as n decreases from 56 to 50, the proportion of random
codes with d ≥ 10 also decreases, and they become minority for n = 49.

The Classic McEliece 348864 system

We consider a dual code C ∈ Gopirr,⊥2,12,3488,64 proper of dimension k = mt = 768.
Theorem 1 gives e = 5, rmax(C) ≥ 321, which Corollary 4 improves to ê = 3,
rmax(C) ≥ 427.

For n = 3488 and k = 768 we have
⌊
k(k+1)
n

⌋
= 169. Moreover, d = dGV (2, n, k) =

810, so k + 1 − d < 0. By Heuristic 1 we expect to distinguish at βr−1,r with
r = 170, with a large margin of safety. For this, Algorithm 1 computes the left
kernel of the matrices Mi for i ≤ r, where Mi has size kβi−2,i−1×

(
k+1
2

)
βi−3,i−2.

Using ind(φi) =
(
k(k+1)

i − n
) (

k−1
i−2

)
as a lower bound for these βi−1,i, we find

that the maximal dimension of these matrices is at least 2596. Using ω ≈ 2.372
for the exponent of linear algebra gives a complexity at least 21414.

However we have plenty of space in the interval 170 ≤ r ≤ 427 to apply
shortening. Set s = 377, ns = n − s = 3111, ks = k − s = 391. If Cs is a
s-shortened Gopirr,⊥2,12,3488,64, Corollary 4 ensures rmax(Cs) ≥ 427− s = 50. On the

other hand, we have
⌊
ks(ks+1)

ns

⌋
= 49, and ds = dGV (2, ns, ks) = 921, so ks+1−

ds ≪ 0. Thus we expect to distinguish at βrs−1,rs with rs = 50. Now, for i ≤ rs,

the matrixMi has size ksβi−2,i−1×
(
ks+1

2

)
βi−3,i−2. As d⊥s = dGV (2, ns, ns−ks) =

55 > rs, these βi−1,i can be estimated as ind(φi) =
(
ks(ks+1)

i − ns

) (
ks−1
i−2

)
. We

then find that the maximal dimension of these matrices is around 2223, and the
complexity around 2529.

Asymptotics

Fix a base field cardinality q, for instance q = 2, and a (dual) rate R. In [4] it is
suggested to work with a primal code of rate between 0.7 and 0.8, so passing to
the dual gives 0.2 ≤ R ≤ 0.3. For n→ ∞ we set:

– m = ⌈logq(n)⌉ = logq(n) +O(1)
– k ≈ Rn such that:
– t = k

m is an integer.
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Theorem 3. Let T = Alt⊥, Gop⊥, Gopsqfr,⊥, or Gopirr,⊥ be a type of codes.
Assume we have a lower bound of the form

rmax(Cs) ≥ k − s∗ − s (91)

with s∗ = s∗(Tq,m,n,t) = o(n), valid for all C ∈ Tq,m,n,t and all s-shortened

subcodes Cs of C. Let then r = o(n) be an integer such that (s∗+r)(s∗+r+1)
n−k+s∗+r < r.

Now let C be a [n, k]q-code. Then computing

βr−1,r(Ck−s∗−r), (92)

where Ck−s∗−r is a (k − s∗ − r)-shortening of C, allows to distinguish with high
probability whether C is a random code (βr−1,r = 0) or an element of Tq,m,n,t
(βr−1,r > 0), by doing at most r kernel computations of linear maps between

vector spaces whose maximal dimension can be estimated as (s∗ + r)3
(
s∗+r
r−3

)
.

In fact it is possible to take s∗ ≈ R
logq logq(n)

logq(n)
n and r ≈ R2

1−R

(
logq logq(n)

logq(n)

)2
n,

which gives for the total complexity of the process an estimated upper bound of

κ = q

(
ω R2

1−R+o(1)
)

(logq logq(n))3

(logq(n))2
n
. (93)

Observe [5, §3.4] that the security parameter in the Classic McEliece system,
based on the complexity of generic decoding algorithms, is linear in t ∝ n/ log(n).

Then in (93) we have log(κ)
n/ log(n) ∝ (log log(n))3

log(n) → 0, which means that our com-

plexity is subexponential in the security parameter.

Proof. The shortened code Ck−s∗−r has dimension s∗+r and length n−k+s∗+r.
As s∗ and r are o(n) we have s∗ + r ≪ n − k + s∗ + r, and dGV is close to the

length. Moreover (s∗+r)(s∗+r+1)
n−k+s∗+r < r by hypothesis. Thus Heuristic 1 applies, and

we expect βr−1,r(Ck−s∗−r) = 0 with high probabilty when C is random. On the
other hand, (91) gives βr−1,r(Ck−s∗−r) > 0 for C ∈ Tq,m,n,t. Using Algorithm 1
we obtain βr−1,r(Ck−s∗−r) after computing the left kernel of the matrices Mi for

i ≤ r, where Mi has size (s
∗+r)βi−2,i−1(Ck−s∗−r)×

(
s∗+r+1

2

)
βi−3,i−2(Ck−s∗−r).

As the rate s∗+r
n−k+s∗+r goes to zero, by Heuristic 1 again we can estimate the

largest dimension of this matrix as
(
s∗+r+1

2

)
ind(φi−2,Ck−s∗−r

) ≤ (s∗+ r)3
(
s∗+r
r−3

)
,

for random codes — and we can assume this holds also for codes in T , otherwise
computing this dimension readily provides a distinguisher with lower complexity.

Now for a concrete choice of s∗ and r, set

– e = ⌊logq(t− 1)⌋ = logq(n)− logq logq(n) +O(1)

– f = (e+ 1)t− qe+1−1
q−1 = et+O(t)

so

f =

(
1−

logq logq(n)

logq(n)
+O

(
1

logq(n)

))
k. (94)

By Theorem 1, for all s and all C ∈ Tq,m,n,t we have rmax(Cs) ≥ f − s, so we can

take s∗ = k− f ≈ R
logq logq(n)

logq(n)
n as claimed. (In the binary Goppa case we could
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use Corollary 4 instead of Theorem 1, but this leads to the same estimate on f ,

hence on s∗.) Then for ε > 0, setting r =

⌈
(1 + ε) R2

1−R

(
logq logq(n)

logq(n)

)2
n

⌉
≪ s∗,

we have (s∗+r)(s∗+r+1)
n−k+s∗+r ≈ (s∗)2

n−k ≈ R2

1−R

(
logq logq(n)

logq(n)

)2
n≪ r, and then we can let

ε→ 0.
Last, for the complexity estimate (93), using r ≪ s∗ again and Stirling’s

formula, we get logq

(
(s∗ + r)3

(
s∗+r
r−3

))
≈ r logq

(
s∗

r

)
, and we conclude.

We observe it is possible to slightly relax the condition m = ⌈logq(n)⌉: com-
plexity remains subexponential as long as m

logq(n)
→ 1 fast enough.

6 Conclusion and open problems

We presented the first structural analysis of the McEliece cryptosystem whose
asymptotic complexity is better than that of generic decoding algorithms, more
precisely, subexponential in the error-correcting capability of the code. However
this is only an asymptotic result. For concrete, finite parameters, such as those
proposed in the Classic McEliece specification, a naive implementation of our
distinguisher still falls beyond the security parameter by a non-negligible factor.

Problem 1. To what extent can the implementation of the distinguisher be im-
proved? For instance, if we choose a monomial order in Algorithm 1, and have
a reduced basis for one syzygy space, then the generalized Macaulay matrix
constructed from it will be:

– somewhat sparse
– already partially reduced.

This could be exploited to make the computation of (a reduced basis of) the
next syzygy space faster. More generally, optimizations used in related domains,
for instance in Gröbner basis algorithms, could probably be imported.

(Interestingly, the author was led to introduce the shortening technique in this
distinguisher by serendipity, after witnessing a strange phenomenon while par-
tially implementing the optimization alluded in Problem 1.)

Problem 2. Can our distinguisher, and in particular the Betti number computa-
tion, benefit from a quantum speedup?

Problem 3. Our lower bounds on the Betti numbers, and in particular the rmax,
of dual alternant or Goppa codes, are not tight in general. Can they be improved?
Better, can one give a complete, explicit description of the minimal resolution
of these codes? (See the Supplementary material for elements in this direction.)
How would this impact the complexity of the distinguisher?

We initiated the study of syzygies of codes (or equivalently, of finite sets of
points in projective space) from a genuinely coding theoretical perspective.
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Problem 4. Pursue this study in a systematic way. This should cover basic opera-
tions on codes that have a standard geometric interpretation, such as puncturing
(discarding one subset from a set of points), shortening (projection from one or
several of the points), duality of codes (“Gale duality”), tensor product of codes
(Segre embedding), and powers of codes (Veronese embedding), but also other
operations such as the (u|u + v), subfield subcode, or trace code constructions;
and crucially, make links with various metric properties of the code such as its
weight distribution, generalized weight hierarchy, etc.

Problem 5. Can syzygies serve in decoding algorithms?

Problem 6. Can our syzygy distinguisher be turned into a key recovery attack,
or more properly, can some of the ideas beneath be used to build a key recovery
attack? For instance, one would like to combine syzygies with:

– filtration arguments
– extraction of short relations, e.g. via MinRank techniques.

(Observe that some of the explicit syzygies described in Proposition 3 are short.)

It is very common that new mathematical tools (Euclidean lattices, elliptic
curves, pairings, isogenies...) are introduced in the cryptographic realm first for
cryptanalytic purposes, i.e. to break systems. Once digested by the community,
they are then used in a more constructive way, to build new cryptosystems.

Problem 7. Can one devise syzygy-based cryptography?
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26. Renteŕıa, C., Tapia-Recillas, H.: Linear codes associated to the ideal of points in
Pd and its canonical module. Comm. Algebra 24(3), 1083–1090 (1996)

30



Supplementary material

More on syzygies of shortened dual alternant and Goppa codes

It is possible to improve the lower bound on βr−1,r(Cs) in Theorem 1, using not
only Φ = Φ(0), but also its conjugates Φ(1), . . . ,Φ(m−1).

Let us first consider the simpler case s = 0.
The Eagon-Northcott complex of each such conjugate gives a subcomplex of

the minimal resolution of C, however one should take care of the fact that in
general these subcomplexes are not in direct sum. Proposition 3 gives a basis

s
(j)
r;i1,...,ir

(Φ(u)) for each syzygy space Mr−1,r(Φ
(u)). The indices i1, . . . , ir cor-

respond to columns of Φ(u) =
(
B

(u+e)
0 B

(u+e−1)
1 · · · B(u)

e

)
. It is then easily

seen:

Proposition 11. The s
(j)
r;i1,...,ir

(Φ(u)) with column i1 not in B
(e+u)
0 also belong

to Mr−1,r(Φ
(u−1)). Conversely, for e < m/2, those with i1 in B

(e+u)
0 are linearly

independent, hence form a basis of the subspace Vr = Mr−1,r(Φ
(0)) + · · · +

Mr−1,r(Φ
(r)) of Mr−1,r(C).

This gives the improved lower bound:

Corollary 6. Set e = ⌊logq(t − 1)⌋ and f = (e + 1)t − qe+1−1
q−1 . Then for any

r ≥ 2 we have

βr−1,r(C) ≥ dim(Vr) = m(r − 1)

((
f

r

)
−
(
f − (t− 1)

r

))
. (95)

For r = 2 this specializes to

β1,2(C) ≥ dim(V2) =
m(t− 1)

2

(
(2e+ 1)t− 2

qe+1 − 1

q − 1

)
, (96)

a result already proved in [11] by (essentially) the same method. It is observed
moreover than in many cases the lower bound (96) is an equality, so we actually
have

I2(C) = V2. (97)

Likewise for r > f − (t− 1) this gives

βr−1,r(C) ≥ dim(Vf ) = m(r − 1)

(
f

r

)
(98)

and we will see examples where this is an equality.
However for arbitrary r, the improved lower bound (95) still isn’t tight, be-

cause the inclusion Vr ⊆ Mr−1,r(C) is strict in general. For instance, one can
show that M2,3(C) contains syzygies of the form

Xa(X
(u)
b+1X

(u+v)
c+1 −X

(u)
b+qv+1X

(u+v)
c )−Xa+qu(X

(u)
b X

(u+v)
c+1 −X

(u)
b+qvX

(u+v)
c )+

+X(u+v)
c (XaX

(u)
b+qv+1 −Xa+quX

(u)
b+qv )−X

(u+v)
c+1 (XaX

(u)
b+1 −Xa+quX

(u)
b ) = 0

(99)
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that do not belong to V3 in general.
In principle, under (97) it should be possible to use the explicit description

of V2 together with Proposition 2 to compute (the linear strand of) the minimal
resolution of C. However the combinatorics appears quite complicated.

Now for general s, (68) and (73) can be extended to:

Experimental fact 2. Let C be a dual alternant code. Then for all s we have

rmax(Cs) ≥ rmax(C)− s. (100)

It would be tempting to conjecture that (100) holds for all codes, but it
turns out that one can find counterexamples. However, these counterexamples
are quite rare. So maybe an interesting problem instead should be to give criteria
for (100) to hold.

Observe that shortening is dual to puncturing. As the behaviour of minimal
resolutions of codes under puncturing is quite well understood (Corollary 3),
maybe the study of shortening should go hand-in-hand with that of code duality.
Experiments suggest a loose link between βr−2,r(C

⊥) and βk−r,k+1−r(C), at least
for some regimes of parameters.

Back to dual alternant or Goppa codes, we actually observe a strong regular
pattern (for Goppa codes the author only tested the irreducible case, but the
result is likely to generalize):

Experimental fact 3. Let T = Alt⊥ or Gopirr,⊥ be a type of codes, namely,
either dual alternant codes, or dual Goppa codes with irreducible Goppa polyno-
mial. Let q be a field cardinality, and t ≥ 3 an integer.

1. For all m large enough,

rmax(C) = r∗T ,q,t (101)

is the same for generic proper C ∈ Tq,m,qm,t, i.e. it generically does not
depend on m nor on the choice of C, but only on T , q, t.

Now T , q, t being fixed, we set r∗ = r∗T ,q,t. Also, given m, t, we set k = mt.

2. For all m, for all n ≤ qm, for generic proper C ∈ Tq,m,n,t, and for all

s ≤ r∗ − 2, if r∗ − s > max
(

(k−s)(k−s+1)
n−s , k − s+ 1− dmin(Cs)

)
, then

rmax(Cs) = r∗ − s. (102)

3. For 0 ≤ i ≤ r∗ − 2 there are functions bi(r) (actually depending on T , q, t,
so bi(r) = bi,T ,q,t(r)) such that, for all m, for all n ≤ qm, for generic proper
C ∈ Tq,m,n,t, for all s ≤ r∗ − 2, and for all r in the interval 2 ≤ r ≤ r∗ − s,

if r > max
(

(k−s)(k−s+1)
n−s , k − s+ 1− dmin(Cs)

)
, then

βr−1,r(Cs) = mbr∗−s−r(r). (103)
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4. We have b0(r) = r − 1 independently of T , q, t, so (103) reduces to

βr∗−s−1,r∗−s(Cs) = m (r∗ − s− 1). (104)

More generally for i ≥ 1 we have bi(r) = (r − 1)
(
r+i
i

)
for a certain number

of (but now, not for all) values of T , q, t, so then (103) reduces to

βr−1,r(Cs) = m (r − 1)

(
r∗ − s

r

)
. (105)

We observe that (68) gives a lower bound on r∗. For alternant codes, experi-
mentally, this lower bound is an equality. However for Goppa codes this lower
bound seems to be always a strict inequality. And even for binary Goppa codes,
the improved lower bound (73) still is a strict inequality.

s β1,2 β2,3 β3,4 β4,5 β5,6 β6,7 β7,8

0 251 1400 3230 2480 1400 480 70
1 202 880 1170 840 350 60 −
2 154 440 450 240 50 − −
3 107 200 150 40 − − −
4 66 80 30 − − − −
5 31 20 − − − − −
6 10 − − − − − −
7 − − − − − − −

Fig. 8. s-shortened Alt⊥2,10,5 (r∗ = 8)

s β1,2 β2,3 β3,4 β4,5 β5,6 β6,7 β7,8

0 222 1943 1725 1120 700 240 35
1 193 1344 525 420 175 30 −
2 165 801 225 120 25 − −
3 138 312 75 20 − − −
4 112 40 15 − − − −
5 87 10 − − − − −
6 63 − − − − − −
7 40 − − − − − −
8 18 − − − − − −

Fig. 9. s-shortened Alt⊥3,5,6 (r∗ = 8)

s β1,2 β2,3 β3,4 β4,5 β5,6 β6,7 β7,8 β8,9

...
...

...
...

...
...

...
...

...
8 280 3224 7464 4272 3360 1728 504 64
9 249 2510 1800 1792 1120 384 56 −
10 219 1856 840 672 280 48 − −
11 190 1260 360 192 40 − − −
12 162 720 120 32 − − − −
13 135 234 24 − − − − −
14 109 16 − − − − − −

Fig. 10. s-shortened Gop⊥2,8,5 (r∗ = 17)

s β1,2 β2,3 β3,4 β4,5 β5,6 β6,7

0 180 1293 3090 3144 960 36
1 151 810 1350 732 30 −
2 123 450 450 24 − −
3 96 210 24 − − −
4 70 30 − − − −
5 45 − − − − −
6 21 − − − − −
7 − − − − − −

Fig. 11. s-shortened Gop⊥3,6,5 (r∗ = 7)

s β1,2 β2,3 β3,4 β4,5 β5,6 β6,7

...
...

...
...

...
...

...
32 719 8474 450 240 50 −
33 662 6216 150 40 − −
34 606 4070 30 − − −
35 551 2034 − − − −

Fig. 12. s-shortened Gop⊥2,10,9 (r∗ = 38)

These Figures illustrate the last Experimental fact. Boldface values match (105).
This strongly suggests that the minimal resolution of the codes contains m con-
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jugate Eagon-Northcott complexes of length r∗, whose top degree components
are in direct sum.

Experimental data on defects for random codes

Figure 13 presents statistics on def(φr) (2 ≤ r ≤ 8) for random [56, 16]2-codes.
For each pair (d, d⊥), a few thousands of codes with these parameters were sam-
pled uniformly (using rejection sampling). The average value of def(φr) among
these samples is displayed, and also its 99% distribution interval (which means
at most 0.5% fall below and at most 0.5% above).

Here we have k(k+1)
n ≈ 4.86. Then, in accordance with Experimental fact 1,

we can check def(φr) > 0 for d⊥ ≤ r ≤ 4 and for 5 ≤ r ≤ 17 − d (when
applicable), while def(φr) = 0 with high probability as we move away from
these intervals.

d = 11 d = 12 d = 13 d = 14

d⊥=3

r mean 99%

2 0.000 [0, 0]
3 1.269 [1, 3]
4 23.821 [15, 55]
5 6.927 [5, 21]
6 1.341 [1, 7]
7 0.042 [0, 1]
8 0.000 [0, 0]

r mean 99%

2 0.000 [0, 0]
3 1.245 [1, 3]
4 23.171 [15, 52]
5 1.948 [1, 8]
6 0.086 [0, 1]
7 0.001 [0, 0]
8 0.000 [0, 0]

r mean 99%

2 0.000 [0, 0]
3 1.201 [1, 3]
4 21.975 [15, 48]
5 0.345 [0, 5]
6 0.006 [0, 1]
7 0.000 [0, 0]
8 0.000 [0, 0]

r mean 99%

2 0.000 [0, 0]
3 1.164 [1, 3]
4 20.902 [14, 47]
5 0.067 [0, 1]
6 0.000 [0, 0]
7 0.000 [0, 0]
8 0.000 [0, 0]

d⊥=4

r mean 99%

2 0.000 [0, 0]
3 0.000 [0, 0]
4 6.178 [1, 14]
5 6.514 [5, 20]
6 1.263 [1, 7]
7 0.035 [0, 1]
8 0.000 [0, 0]

r mean 99%

2 0.000 [0, 0]
3 0.000 [0, 0]
4 5.963 [1, 14]
5 1.882 [1, 8]
6 0.090 [0, 1]
7 0.000 [0, 0]
8 0.000 [0, 0]

r mean 99%

2 0.000 [0, 0]
3 0.000 [0, 0]
4 5.525 [1, 12]
5 0.357 [0, 5]
6 0.010 [0, 1]
7 0.001 [0, 0]
8 0.000 [0, 0]

r mean 99%

2 0.000 [0, 0]
3 0.000 [0, 0]
4 4.885 [1, 11]
5 0.053 [0, 1]
6 0.000 [0, 0]
7 0.000 [0, 0]
8 0.000 [0, 0]

d⊥=5

r mean 99%

2 0.000 [0, 0]
3 0.000 [0, 0]
4 0.000 [0, 0]
5 5.847 [5, 15]
6 1.153 [1, 6]
7 0.020 [0, 1]
8 0.000 [0, 0]

r mean 99%

2 0.000 [0, 0]
3 0.000 [0, 0]
4 0.000 [0, 0]
5 1.485 [1, 6]
6 0.055 [0, 1]
7 0.001 [0, 0]
8 0.000 [0, 0]

r mean 99%

2 0.000 [0, 0]
3 0.000 [0, 0]
4 0.000 [0, 0]
5 0.197 [0, 2]
6 0.002 [0, 0]
7 0.000 [0, 0]
8 0.000 [0, 0]

r mean 99%

2 0.000 [0, 0]
3 0.000 [0, 0]
4 0.000 [0, 0]
5 0.033 [0, 1]
6 0.000 [0, 0]
7 0.000 [0, 0]
8 0.000 [0, 0]

Fig. 13. some experimental data on def(φr) for random [56, 16]2-codes

34


