
Cryptiny: Compacting Cryptography for
Space-Restricted Channels and

its Use-case for IoT-E2EE
Liron David

Department of Computer Science
Weizmann Institute of Science

and Google

Omer Berkman
Department of Computer Science
The Academic College Tel-Aviv

and Google

Avinatan Hassidim
Department of Computer Science

Bar Ilan University
and Google

David Lazarov
Google

Yossi Matias
Department of Computer Science

Tel-Aviv University
and Google

Moti Yung
Department of Computer Science

Columbia University
and Google

Abstract—We present a novel cryptographic paradigm denoted
“cryptiny:” Employing a single cryptographic value for several
security goals, thus “compacting” the communication sent over
a space-restricted (narrow) channel, while still proving security.
Cryptiny is contrary to the classical cryptographic convention of
using a separate cryptographic element for each security goal.

Demonstrating the importance of cryptiny, we employ it for
securing a critical IoT configuration in which a broadcasting
“thing” (called beacon) operates within stringent bandwidth
constraints. In this setting, a compact BLE-broadcasting bea-
con lacking Internet connectivity efficiently directs brief (non
fragmented) messages to its remotely pre-paired owner in real-
time. Communication transpires through BLE-to-IP gateway
devices denoted observers, (typically smartphones in the beacon’s
vicinity), and subsequently via a cloud app server. The gateway
device as well, piggybacks on the transmission a secure and
private message to the owner. This configuration is a generic
setting for the current and future IoT real-time ecosystems, where
billion of owners, beacons, and observers operate.

The configuration instances (analogous to TLS instances over
the Internet) imposes high security and privacy demands. We
prove that our cryptiny-based protocol for securing the above
configuration achieves CCA-secrecy for the beacon’s and the
observer’s messages with backward and forward security for
the observer’s message, as well simultaneously achieving mutual
privacy for beacons and for observers. Achieving backward and
forward security is important since beacon devices may be far
from their owners for a long duration and may be passively
tampered with. In addition, for the backward security proof
we develop a new encryption scheme we call “shifted-DHIES”
(“SDHIES” for short), which generalizes DHIES. An interesting
feature of SDHIES is that encryption is performed with a function
of the public key rather than the public key itself.

I. INTRODUCTION

As new communication configurations arise, novel cryp-
tographic solutions are imperative to address their unique
security requirements effectively. For example, SSL/TLS were
developed for securing the Internet or more precisely the
HTTP protocol, WPA/WPA2 were developed to secure WiFi,

and end-to-end encryptions such as the Signal protocol were
developed to secure mobile instant messaging.

In this paper we develop a new cryptographic paradigm
we denote “cryptiny” which is motivated by and is especially
useful in the area of Internet Of Things (IoT) in which the
“things” (beacons) are extremely limited in their broadcast
bandwidth. The idea of the cryptiny paradigm is to pack
multiple security mechanisms in a single short cryptographic
value.

Obviously, the cryptiny paradigm is contrary to the classical
cryptographic convention of using a separate cryptographic
element for each security goal. We note that there are works
such as [6], [10] which re-use cryptographic keys in order
to limit the number of keys. However, cryptiny is different
since its goal is to decrease the cryptographic footprint in
terms of its length (in our case, the beacon’s broadcast length),
and not in terms of the number of keys employed. Cryptiny
may be a crucial primitive in applications where the length
of cryptographic messages must be limited and retrofitted into
already defined fields.

Specifically, we employ cryptiny for securing the following
configuration type in the IoT which we denote the IoT-
E2EE configuration (see Figure 1) which may be executed
extensively among billion of players (driven by potentially
every mobile phone owner and its beacons): The first player,
a Bluetooth Low Energy (BLE) beacon broadcasts over BLE
its identity and a short message we denote “signal.” The
second player is a BLE-to-IP gateway device denoted observer
(usually a smartphone), which happens to be in the beacon’s
vicinity for a short time period. This observer forwards over IP
the beacon’s broadcasts along with its own message (e.g., the
observer’s location) to the third player, a cloud server. The
cloud server forwards the beacon’s signal and the observer’s
message to the fourth player, the beacon’s owner.

This configuration is used, for example, in asset-tracking

Fig. 1: The IoT-E2EE configuration in IoT

applications to enable users to find their lost “things,” where
in general the things have no internet connection. In such a
scenario, the BLE beacon is attached to the “would be lost”
thing, the beacon’s short signal (2-3 bits) may be the beacon’s
battery status (e.g., low, medium, high) and the observer’s
message is its GPS location. Since the observer is close to the
beacon and thing, the observer’s location is also the thing’s
location.

It is noteworthy that this configuration bears resemblance
to a single TLS session. Just as numerous concurrent sessions
exist among internet entities, our IoT setup also encompasses
multiple simultaneous sessions between numerous owners and
their respective beacons where these sessions rely on multiple
observers serving as gateways.

Crucial constraints in the above configuration, are that a
beacon’s broadcast needs to be short (as defined by the BLE
standards) and unfragmented: A short broadcast is required in
order to preserve the beacons’ battery, and an unfragmented
broadcast is needed to allow even a single observer which
is briefly present in the beacon’s vicinity to receive the
entire message reliably. These two constraints are fundamental
for maintaining the operational efficacy and reliability of
our configuration given its resource-constrained environment
(characteristic of IoT broadcasting deployments).

Our aim is to develop a basic real-time protocol, founda-
tional to IoT, that maintains the essential constraints of short
and unfragmented beacon’s broadcast while supporting the
following security, privacy and integrity requirements tailored
to the IoT-E2EE configuration within the large scale beacons
ecosystem:

1) Security:
• Beacon’s signal end-to-end CCA-security.
• Observer’s message end-to-end CCA-security with

backward and forward security with respect to the
beacon’s secrets. Backward and forward security
protects future and past observer’s messages (re-
spectively) in case beacon secrets are exposed.
This is important in our scenario since beacons
may be far from their owners for extended time
periods and are thus susceptible to physical pen-
etration and exposure of beacons’ secret keys. It is

worth mentioning that while forward security can
be readily achieved by applying one-way function
on the beacons’ secret keys, achieving backward
security has traditionally relied on frequent key
updates through re-pairing between beacons and
their owners. Since a beacon could be isolated in
the field for an extended duration, a frequent re-
pairing is not feasible in our scenario and therefore
a novel method is required.

2) Privacy:
• Beacon’s broadcast indistinguishability. Although

we specify beacon’s broadcast indistinguishabil-
ity as a privacy requirement, it actually implies
two more basic privacy requirements: (i) (Owner
Anonymity), preventing the identification of an
owner through their beacon’s broadcast. Indeed,
an observer is just an arbitrary smartphone which
happens to be in the owner’s beacon vicinity and
therefore an owner and observer should remain
anonymous to one another; and (ii) (Non-tracking),
ensuring that different beacons cannot be distin-
guished based on their broadcasts.

3) Integrity:
• Public key certification. Under a strong adversary

one has to have assurance that a public key pre-
sented to it is the one decided upon in system key
management initiation.

4) Autonomous Key Management: As we discuss below,
we require that the existing infrastructure for communi-
cation allows for key management with no addition (of
Certification Authorities, etc.). Hence, we require the
pairing phase of the beacon and its owner to span a
reliable key management layer.

We call this highly constrained problem, the IoT-E2EE
problem. Notice that the above requirements should hold for
the entire ecosystem, namely, for, say, billions of beacons,
owners and observers and one cloud server (or server farm).

As required, an owner and its beacon can exchange initial
keys during pairing. Owners can also exchange information
with the cloud server during initialization (registration to
the beacon app) to enable the cloud server correctly route
incoming beacons’ broadcasts. In contrast, the privacy require-
ment forbids observers from identifying or tracking owners
(hence regular PKI keys are not allowed, and further owner
to observer keys are not possible due to scale primarily and
privacy constraints as well).

The beacon’s broadcast in our IoT-E2EE configuration
which is the starting point of the protocol is the only infor-
mation available to the observer. The challenge is to achieve
all the above security, privacy, integrity and key management
requirements while maintaining a short and unfragmented
beacon’s broadcast. Thus, our IoT-E2EE problem exemplifies
the critical role of the cryptiny paradigm utilized by the
beacon. Indeed, the novel protocol we introduce, denoted
“The Cryptiny IoT-E2EE Protocol,” compacts all requisite

2

cryptographic functions from the beacon’s broadcast into a
singular succinct “cryptiny value.” We then prove that despite
the beacon broadcasting solely a single cryptiny value and
given the key management restrictions as well, the protocol
fulfills all privacy and security requirements effectively and
achieves correctness in support of real-time communication.

An independent contribution of this paper is a new en-
cryption scheme, we denote “shifted-DHIES” or “SDHIES”
in short, which is a generalization of the very useful DHIES
system [2]. An interesting feature of our scheme is that
encryption is performed with a function of the public key
rather than the public key itself. We use the SDHIES scheme
to prove CCA-security with backward and forward security
of the observer’s message. SDHIES is needed since in our
protocol, the private key is a function of a DHIES private key
and a value that can be controlled by the attacker. We strongly
believe that SDHIES can be useful in other applications with
similar constraints.

A. Our Contributions

In this paper, we:
1) Suggest “Cryptiny” as described above.
2) Present a real-world application in which cryptiny is

important and necessary. Specifically, we specify and
present the “IoT-E2EE problem,” for the beacon ecosys-
tem, under its key management and operational con-
straints.

3) Develop, in turn, the “Cryptiny IoT-E2EE Protocol.”
4) Prove the security, privacy, and integrity properties of

the Cryptiny IoT-E2EE Protocol.
5) Develop SDHIES, a generalization of the DHIES cryp-

tographic scheme for our and for general use.
Finally, we note that the protocol presented here is part of a
system under development in industry; it motivated the “Find
My Device” functionality of Google, and will support its
coming beacons’ infrastructure.

II. INFORMAL DESCRIPTION OF THE CONSTRAINS, OUR
PROTOCOL AND ITS SECURITY GUARANTEES

A. The Short and unfragmented Beacon’s Broadcast Con-
straints

Given that the beacon is a small battery-powered device
which may be in the field far from its owner for long
time durations, frequent battery replacement is not practical.
Therefore, to preserve beacons’ battery, it is important to
reduce the beacon’s broadcast length. In fact, short broadcast
is required by the beacon’s standard. For example in Bluetooth
Low Energy (BLE) the broadcast is length-limited (broadcast
in BLE-4 and BLE-5 are limited to 37 and 256 bytes,
respectively).

Furthermore, the beacon’s message should be transmitted
over a single broadcast and should not be fragmented into
multiple broadcasts. This is since an observer may be moving
along, and such a moving observer may not stay long enough
in close proximity to the beacon to be able to read multiple

broadcasts. We therefore insist that the beacon’s broadcast be
short and unfragmented.

These constraints on the one hand and the multiple security,
privacy and integrity requirements on the other hand are the
main reason for using the cryptiny paradigm. Indeed, to fulfill
the aforementioned requirements, the short beacon’s broadcast
should encompass the following functional components: (1)
CCA-secure encryption of the beacon’s signal; (2) Certified
cryptographic information that enables an observer to encrypt
its message with backward and forward security; (3) serving
also as an owner identifier. In addition, the beacon’s broadcast
must be ephemeral and pseudo-random.

Combining the above components into one short and un-
fragmented ephemeral pseudorandom broadcast was the main
challenge of our protocol. To address this challenge, we
leverage the cryptiny paradigm, compressing the cryptographic
footprint of the beacon’s broadcast into a single “cryptiny
value” which is a point on an elliptic curve. The cryptiny
value fulfills all the objectives outlined above.

B. High Level Description of our Protocol

Below we give a high level description of our protocol. In
Section IV we provide a detailed description and motivations
for the protocol and in Section V we present a formal
cryptographic description.

1) A beacon broadcasts over the air a cryptiny value.
2) A nearby observer receives the cryptiny value, interprets

the cryptiny as a public key and uses it to encrypt the
observer’s message (e.g. its location). The observer then
forwards a (cryptographic) hash of the cryptiny value
together with the observer’s encrypted message to the
cloud server over IP.

3) The cloud server maintains a mapping table which
associates any received cryptiny-value hash with the
corresponding beacon’s owner. Given a cryptiny value
and an observer’s encrypted message the cloud server
uses the cryptiny value as a key to the mapping table in
order to determine the corresponding owner identifier. It
then routes the hash of the cryptiny value together with
the observer’s encrypted message to that owner.

4) The beacon’s owner receives the hash of the cryptiny
value together with the observer’s encrypted message. It
uses the hash of the cryptiny value to find out the signal
encrypted by its beacon and the private key required
for decrypting the observer’s message and decrypts the
observer’s message.

Note: Since using the cryptiny value as a public key is central
to our protocol, we sometimes refer to the cryptiny value as
the beacon’s public key.

C. Key Management

The owner and its beacon exchange cryptographic keys in
the initialization step during pairing. In addition, the owner
assists the cloud server generate its mapping table by providing
the cloud server with the relevant entries corresponding to that
owner’s beacon. In addition to its use by the cloud server to

3

determine the respective owner given a beacon’s cryptiny value
as described above, the mapping table is used for certifying
public keys as we now explain. Recall that the cryptiny value
is interpreted by the observer as a public key and is used
by the observer for encrypting its message. This immediately
raises the issue of public key integrity. As discussed above,
this cannot be achieved using PKI mechanisms. Instead, we
use the following autonomous key certification: Before using
a received cryptiny value as a public key, an observer verifies
with the cloud server that the hash of the public key is in the
server’s mapping table. This guarantees that the public key is
genuine (that it, it could have been generated by a beacon of
one of the owners).

D. Security Model

1) The players:
• Beacon: clearly for the security of the beacon’s signal

and for the beacon’s indistinguishability, the beacon is
assumed to follow the protocol. However, we do not limit
the beacon’s behavior for the security of the observer’s
message.

• Observer: again, for the security of the observer’s mes-
sage, the observer is assumed to follow the protocol.
However, we do not limit the observer’s behavior for
the security of the beacon’s signal and for the beacon’s
indistinguishability.

• Cloud server: the cloud server is part of the service
provider, and therefore has economic intensive to play
faithfully. Hence it is assumed to be honest but curious.
Nevertheless, we allow the adversary to use its knowledge
of the cloud server’s data to attack the protocol outside
the cloud server (that is, without interfering with the
cloud server protocol or modifying cloud server data). For
example, such an adversary may generate manipulated
data based on the cloud server’s data, and send the
manipulated data to the cloud server as if it were an
observer. We refer to such an adversary as a server-state
reading adversary.

• Owner: We require that all owners follow the protocol
and that all owners’ secrets keys are not compromised.
The requirement that none of the owners’ secrets keys are
compromised stems from the fact that every owner in the
protocol serves a role similar to a certification authority
(CAs) where in our case, the hash of a cryptiny value
provided by an owner to the cloud server serves as a
certificate for that cryptiny value when it is interpreted
as a public key by an observer.

2) The player’s communication channels: As mentioned
above, the owner and beacon communicate and exchange
keys before the protocol starts. This communication is per-
formed using cryptographic keys exchanged between the
owner and beacon during the pairing stage which is assumed
to take place in an isolated environment. We therefore assume
that the beacon-owner channel is secure and authenticated.
The observer-to-cloud-server channel and the cloud-server-to-
owner channel are both over IP and are therefore assumed to

be secure and authenticated as well (using a secure internet
protocol such as TLS). However, we do not make any security
assumptions with respect to the beacon-observer channel.

E. Security, Privacy, and Integrity guarantees
Security
• Beacon’s signal CCA-security: The beacon’s signal is

CCA-secure (i.e., secure against chosen ciphertext at-
tack). The adversary here is composed of the “normal”
CCA adversary with the additional capabilities of a
server-state-reading adversary.

• Observer’s message CCA-security with backward and
forward security: The observer’s message is CCA-secure
even if beacons’ secrets are compromised and/or beacons
do not follow their protocol. As before, the adversary
here is composed of the standard CCA adversary with the
additional capabilities of a server-state-reading adversary.
Additionally we provide the adversary with all beacons’
secrets and the ability to modify beacons’ behaviour.

Privacy
• Beacon’s indistinguishability: Beacons’ broadcasts can-

not be distinguished from random values. Here we as-
sume that the adversary has no access to the cloud
server’s data.

Integrity
• Public key certification: Observers encrypt their messages

only with certified public keys (as described in II-C).

F. What the Protocol does not Guarantee
In our system, the owner expects to receive an observer’s

message that was generated by an observer in the beacon’s
vicinity and where that observer follows the protocol. However
since beacons broadcast over the air, a beacon’s broadcasts can
be forwarded to an observer in a different location (we refer
to such an attack as a replay attack). Additionally, observers
may deviate from the protocol and send fake messages. Such
attacks can be handled using incentives and anti-abuse layers
outside the cryptographic protocol.

For example, to deal with replay attacks, the owner can
decide to accept an observer’s message only if the same
message is received from several observers. To prevent an
observer which is a smartphone from faking its message, the
observer’s operating system may be put under the control of a
MANET (Mobile Ad hoc NETwork) system which is outside
of the user’s control. The system should be designed in a way
that breaking into the physical security of the phone will be
detected by the OS provider as part of anti-abuse measures.
Clearly these mechanisms (and others) can be defeated by a
determined adversary. However, given the anti abuse layers,
the cost of such attacks would in general be higher than their
gains.

III. FORMAL CRYPTOGRAPHIC MODEL OF THE IOT-E2EE
PROBLEM

We formally model the IoT-E2EE problem and its correct-
ness, security and privacy requirements which are derived from
the discussion in the previous section.

4

Let the IoT-E2EE Problem

QURT = (Init, {Bcni}wi=1,Obs,Svr, {Owni}wi=1)

be a set of probabilistic polynomial-time algorithms where w
is an input to the Init function. Specifically,
• The initialization algorithm Init takes as in-

put a security parameter 1n and 1w, and outputs cryp-
tographic and other parameters: For each i ∈ [1, w] it
generates cryptographic parameters Ki,K′i and a table
Tbli. In addition it generates a table M (M is the
mapping table). For each i ∈ [1, w], Ki is intended
for beacon i, and from now on we denote Bcni by
BcnKi . Similarly, for i ∈ [1, w], K′i and Tbli are intended
for owner i, and from now on we denote Owneri by
OwnerK′

i
. Finally, M is intended for the cloud server.

We assume for simplicity that the tables M and Tbli for
any owner i, are initialized once and for all. In practice,
these tables will be generated piecewise on the fly (see
Section IV-D).

• The beacon’s algorithm BcnKi
for i ∈ [1, w],

takes as input a time t and a signal s, and outputs its
broadcast BcnKi

(t, s) (this is the cryptiny value).
• The observer’s algorithm Obs takes as an input

x (expected to be a beacon’s output BcnKi(t, s) in
the observer’s vicinity) and a message m, and outputs
Obs(x,m).

• The cloud server algorithm Svr takes as an in-
put y (expected to be an observer’s output Obs(x,m)),
and outputs Svr(y).

• The owner’s algorithm OwnK′
i

for i ∈ [1, w], takes
as an input z (expected to be a server’s output intended
for owner i), and outputs OwnK′

i
(z).

Definition 1: [QURT correctness] It is required that for
every i ∈ [1, w], time t, and signal s,

(s,m) = OwnK′
i
(Svr(Obs(BcnKi

(t, s),m))).

In particular, correctness requires that
Svr(Obs(BcnKi

(t, s),m)) is intended for owner i.
In Definition 2 and Definition 3 below, although not explic-

itly mentioned, adversary A includes all necessary accesses
to be able to act also as a server-state reading adversary. The
reason for that is that the table M and other information in
the cloud server do not change and the protocol of the cloud
server and owner are fixed.

In Definition 2 below, we implicitly assume that the public
key with which the adversary encrypts its message is authentic
(that is, it could have been generated by one of the legitimate
beacons). This assumption is justified by II-C.

Definition 2: [Observer’s message CCA-secure with back-
ward and forward security] Let i ∈ [1, w] be a beacon, and let
A be an adversary in the following game ExpCCA

ObsMsg,A(i, n):
• Adversary A receives access to:

– The beacon’s keys Kj for each j ∈ [1, w] (the com-
promised beacon’s secrets for backward and forward
security).

– The cloud server’s mapping table oracle M.
– The owner’s oracle OwnK′

j
() for all j ∈ [1, w]

(serves as a decryption oracle for CCA).
– The adversary doesn’t need access to the observers’

oracles (equivalent to encryption oracle) since having
all beacons’ keys it can imitate both beacons’ and
observers’ behavior.

• Adversary A chooses a desired time tc, a signal s, and
two distinct messages m0 6= m1. It then sends them to
the challenger. The time tc chosen by the adversary can
be any time in the past, present or future to guarantee
forward and backward security.

• The challenger chooses a random bit b ∈ {0, 1} and
returns

y = Obs(BcnKi(tc, s),mb)

to adversary A. As we see in Section V-B, the value y in
our protocol is actually a triple y = (y1, y2, y3) where y1
is the beacon’s public key, y2 is the observer’s ephemeral
public key, and y3 is the symmetric encryption.

• Adversary A continues to have access to all oracles
and keys as above, but cannot query the i’th owner’s
oracle OwnK′

i
() with Svr(yv1 , y

(1/v)
2 , y3) for any v. The

requirement with respect to the first two parameters
makes sense even though the adversary has some control
on the value of the first parameter by its knowledge of
the beacons’ keys (recall that we are proving backward
security). This is due to the fact that in the actual protocol,
the second parameter is the observer’s ephemeral public
key which is random and is thus independent of the first
parameter.

• Adversary A returns b′ and wins if b′ = b.
We say that QURT achieves observer’s message CCA-security
with backward and forward security if for any PPT adversary
A there exists a negligible function negl such that for any
beacon i ∈ [1, w]

Pr[ExpCCA
ObsMsg,A(i, n) = 1] ≤ 1

2
+ negl(n).

Definition 3: [Beacon’s signal CCA-secure] Let i ∈ [1, w]
be a beacon, and let A be an adversary in the following game
ExpCCA

BcnSgn,A(i, n):
• Adversary A receives access to:

– The cloud server’s mapping table oracle M.
– Beacons’ oracles BcnKj

() for all j ∈ [1, w] (serve
as encryption oracle in CCA).

– Owners’ oracles OwnK′
j
() for all j ∈ [1, w] (serve

as decryption oracle in CCA).
• Adversary A chooses two signals s0, s1 and tc for which
btc/T c 6= bt/T c for all time t in the queries BcnKi()
and OwnK′

i
() adversary A already made. It then sends

tc, s0, s1 to the challenger.
• The challenger chooses a random bit b ∈ {0, 1} and

returns x = BcnKi
(tc, sb) to adversary A.

• Adversary A continues to have access to its three ora-
cles as before, where: (1) the parameter t for the i’th

5

beacon’s oracle must obey bt/T c 6= btc/T c; and (2)
the i’th owner’s oracle OwnK′

i
() cannot be queried with

Svr(Obs(x,m)) for any m (that is, we do not allow to
decrypt the challenge x).

• Adversary A returns b′ and wins if b′ = b.
We say that QURT achieves beacon’s signal CCA-security if
for any PPT adversary A there exists a negligible function
negl such that for any beacon i ∈ [1, w]

Pr[ExpCCA
BcnSgn,A(i, n) = 1] ≤ 1

2
+ negl(n).

Definition 4: [Beacon’s Indistinguishability] Let i ∈ [1, w]
be a beacon, and let A be an adversary as follows:
• Adversary A receives access to oracle O() which is either

BcnKi
() or a random oracle GRand() which returns a

random value in the range of BcnKi
. 1

• In addition, adversary A receives access to all beacons’
oracles but the i’th beacon. Namely, it receives BcnKj ()
for all j ∈ [1, w] s.t. j 6= i.

Let ABcn be an adversary as above where O = BcnKi
and let

ARnd be an adversary as above where O = GRand.
We say that QURT achieves beacon’s indistinguishability

if for any PPT adversary as above there exists a negligible
function negl such that for any beacon i ∈ [1, w]∣∣Pr[ABcn(i, 1n) = 1]− Pr[ARnd(i, 1n) = 1]

∣∣ ≤ negl(n).

IV. THE CRYPTINY VALUE AND ITS USAGE IN OUR
PROTOCOL

Below, we delineate the methodology for generating the
cryptiny value.

A. Our Starting Point

Our starting point for the beacon’s broadcast is a pseudoran-
dom version of the Diffie-Hellman (DH) key-exchange where
the beacon’s broadcast is a single point on an elliptic curve.
This point represents an ephemeral DH public key for a near-
by observer to encrypt its message. In order to synchronise
the pseudorandom broadcast between the owner and its bea-
con, we use time as a parameter in the pseudorandomness
computation. In order to save beacon’s battery, the beacon
changes its broadcast every fixed time period of T seconds
(e.g., T = 1024). Thus, the broadcast of beacon i at time t is

gPRFki
(bt/Tc)

where PRF is a pseudo-random function, g is a base-point
generator in the elliptic curve group, and ki is a shared key
between beacon i and owner i (these parameters are defined
in detail in section V).

Below, we incorporate additional security and privacy func-
tionalities, while maintaining the size of the beacon’s broadcast
and preserving its pseudorandomness.

1The range of GRand and BcnKi
will be a group. The “G” in “GRand”

stands for that.

B. Adding Beacon’s Signal Encryption

To add an encryption of the beacon’s signal without ex-
tending the beacon’s broadcast, we “fold” the encryption of
the signal s into the existing beacon’s broadcast by adding the
signal s as another parameter of the PRF. Hence, so far, the
broadcast of beacon i at time t is:

gPRFki
(bt/Tc,s).

As we shall see in Section IV-D, decryption of a beacon’s
signal utilizes the fact that the number of different signals s
and different time periods bt/T c is relatively small.

C. Adding Backward (and Forward) Security for the Ob-
server’s Message

The problem with the beacon’s broadcast described so far
in Section IV-B is that an adversary which compromises
the secret key ki of beacon i, can reveal the DH private
key PRFki(bt/T c, s) associated with the beacon’s broadcast
gPRFki

(bt/Tc,s) at time t. Since a beacon’s broadcast is used
by an observer in order to encrypt its message, given beacon
i’s secret key ki, the adversary can decrypt all past and future
observers’ messages that were encrypted using the beacon’s
broadcast.

Our solution adds backward security (and forward security)
and is inspired by the security principle of “separation of
duties,” specifically as in key-insulated cryptography [9], [8]
where a server “helps” an entity which may be susceptible to
key extraction to periodically refresh its secret key. In our case
the owner plays the role of the helping entity. Specifically, we
provide owner i with a random value ri ∈ Zq and give gri

to beacon i. The beacon uses gri as its base-point generator
instead of g and applies the exact same operations as before
(namely this modification is transparent to the beacon). Hence,
the final broadcast of beacon i is

gri·PRFki
(bt/Tc,s).

This is the cryptiny value.
This separation of duties between the owner and beacon

neutralizes the risk of compromising the beacon’s secret keys
since the beacon is no longer the “holder of all secrets.”
Indeed, since ri is known to the owner only, an adversary
having the beacon’s secret key ki (and the non-secret value
gri) would be unable to compute the DH private key ri ·
PRFki(bt/T c, s). Specifically, we will show that an observer’s
message encrypted with such a beacon’s broadcast is backward
and forward CCA-secure.

D. Beacon-to-Owner Mapping Table

To achieve real-time association of beacons’ broadcasts
with their owners, we are inspired by Eddystone-EID [7].
Specifically, we provide the cloud server with a table M
associating the hash of any expected cryptiny value with
the beacon’s respective owner. We refer to this table as the
“beacon-to-owner mapping table.” (In practice the table M
is generated piecewise as we mentioned in Section III and

6

as will be discussed in more details towards the end of the
current section). The mapping table stores hash of cryptiny
values rather than the cryptiny values themselves to prevent
a server-state reading adversary from maliciously generating
fake observers’ messages as if it were an observer next to a
beacon.

An additional and important role of the mapping table is
that it enables an autonomous public key certification in our
protocol.

Let tb be the system’s starting time and let te be an upper
bound on the system ending time so that te − tb is larger
than the lifetime of the system (we can choose any value te
such that te − tb is polynomial in the security parameter). In
addition, let S be the set of all possible signals.

The mapping table is the following: Recall that each beacon
i maintains a secret key ki and a non-secret value gri . Let H
be a cryptographic hash function. Then, for each beacon i, for
each distinct time bt/T c where t ∈ [tb, te], and for each s ∈ S,
the hash of the respective cryptiny value gri·PRFki

(bt/Tc,s) is
associated with owner i. Namely,

H(gri·PRFki
(bt/Tc,s))→ i.

Since, generating a cryptiny value requires knowledge of
the respective beacon’s secret key ki, the cloud server cannot
generate the mapping table M by itself. Instead, each owner
generates the expected cryptiny values of its beacon and sends
them to the server. The server then unifies the received cryptiny
values from all owners into the complete mapping table M.

In addition to sending the cryptiny values to the cloud
server, owner i also keeps a local table Tbli whose entries
are hash of cryptiny values mapped to the corresponding time
and signal, namely

H(gri·PRFki
(bt/Tc,s))→ (bt/T c, s)

for all distinct time bt/T c where t ∈ [tb, te] and for all s ∈ S.
As we will see below, table Tbli is utilized by owner i to
decrypt its beacon’s signal.

Obviously, it is not practical to have a single mapping
table for all (hash of) cryptiny values in the system’s lifetime.
In practice, we divide the time axis into consecutive non-
overlapping time periods of, say, 24 hours, and provide the
cloud server only with an mapping table corresponding to
the current time period.2 In Section VIII we discuss the
typical sizes of the mapping table for real-world time-period
parameters of different applications. Similarly, the table Tbli
of owner i is not initialized once in advance but generated on
the fly, in correspondence with the mapping table M.

E. Encryption/Decryption of the Beacon’s Signal and Ob-
server’s Message

1) Encryption: As we’ve seen above, the cryptiny value
is the encryption of the beacon’s signal. Encryption of the
observer’s message is performed by using the cryptiny value
as a DH ephemeral public key.

2The server may maintain mapping tables for several consecutive time
periods. One reason this may be needed is that the table entries are supplied
to the server by owners, and owners may be offline some of the time.

2) Decryption: Decryption of the hash value of a cryptiny
value gri·PRFki

(bt/Tc,s) by owner i to get signal s, cannot be
achieved by applying an inverse function, since this would
require inverting the hash function, solving a discrete log
problem and inverting the PRF. Instead, owner i uses its own
local table Tbli to find the (bt/T c, s) values corresponding to
the hash of the cryptiny value.

To decrypt the observer’s message, owner i uses (bt/T c, s)
to generate the exponent of the cryptiny value, namely the
respective DH private key ri · PRFki

(bt/T c, s). 3

According to the protocol, the owner accepts as valid any
legitimate beacon’s broadcast. We leave to the application the
decision whether to accept or reject cryptiny values with old
time t. For example, the decision could depend on (the dif-
ference between) the current time and the time corresponding
with the cryptiny value.

V. THE CRYPTINY IOT-E2EE PROTOCOL

A. Definitions and Preliminaries

In this protocol, we use a Diffie-Hellman-based encryption,
in particular, DHIES [2]. Let us start with describing DHIES.

Definition 5: (Group Generator) Let GroupGen be a prob-
abilistic polynomial-time (PPT) algorithm that, on a security
parameter input 1n, outputs a description of a cyclic group G,
its prime order q, and a generator g ∈ G. Run GroupGen(1n)
to obtain the public parameters (G, q, g).

Definition 6: (DHIES [2]) Let SYM = (E ,D) be a private-
key authenticated-encryption scheme. We run GroupGen(1n)
to obtain (G, q, g). Let KDF be a key derivation function
KDF : G → {0, 1}n. DHIES = (E ,D,K) is the following
three-tuple of algorithms defining public-key encryption:

• K: Chooses a uniform x ∈ Zq , sets the public key pk =
gx, sets the private key sk = x, and returns (pk, sk).

• Epk(m): Chooses a uniform z ∈ Zq , computes gz and
sets k = KDF((pk)z). Computes c = Ek(m) and outputs
(gz, c).

• Dsk(ĉ, c): Returns ⊥ if ĉ /∈ G. Else sets k = KDF((ĉ)sk).
Returns m = Dk(c) (note that m can be ⊥).

Definition 7: (negligible) A function f from the natural
numbers to the non-negative real numbers is negligible if for
every positive polynomial p there exists an N0 such that for
all integers n > N0 it holds that f(n) < 1/p(n).
Throughout the paper, we chose a security parameter n which
will determine the suitable space of keys and will be suitable
for the desired security definition of all cryptographic func-
tions.

Definition 8: (Oracle Diffie-Hellman Assumption ODH [2])
Run GroupGen(1n) to obtain (G, q, g), let KDF : G →
{0, 1}n, and for w ∈ Zq let KDFw(X) := KDF(Xw). The

3It is also possible to extend Tbli by storing in each entry the corresponding
DH private key. This would save the DH private key generation at decryption
time. Alternatively, it is possible to rid of Tbli altogether. In this case, owner
i would compute for all s ∈ S the hash of the corresponding cryptiny value
of the current time t until a match is found.

7

ODH assumption is the following: For any PPT adversary A,
there exists a negligible function negl such that

Pr[u
R←− Zq; v

R←− Zq;AKDFv(·)(gu, gv,KDF(guv)) = 1]−

Pr[u
R←− Zq; v

R←− Zq;AKDFv(·)(gu, gv, {0, 1}n) = 1]

≤ negl(n).

Definition 9: [ExpCCA
DHIES,A(n)] Let A be an adversary in the

following game ExpCCA
DHIES,A(n):

• The challenger randomly chooses a private key sk = r ∈
Zq and sends the public key pk = gr to adversary A.

• Adversary A has access to the decryption oracle Dsk(·, ·).
• Adversary A sends to the challenger two distinct mes-

sages m0 6= m1.
• The challenger chooses a random bit b ∈ {0, 1} and sends

y = Epk(mb) to adversary A.
• Adversary A continues to have access to the decryption

oracle as before, but it cannot apply the decryption oracle
on y.

• Adversary A returns b′ and wins if b′ = b.

Theorem 1: [2] If the Oracle Diffie-Hellman (ODH) as-
sumption holds and the private-key authenticated-encryption
scheme SYM used in DHIES is CCA-secure, then DHIES is
CCA-secure. Namely, for any PPT adversary A there exists a
negligible function negl such that

Pr[ExpCCA
DHIES,A = 1] ≤ 1

2
+ negl(n).

Proof 1: In [2].
Definition 10: (Pseudorandom Function (PRF)) Let PRF

be a keyed function PRF : {0, 1}n × {0, 1}∗ → Z∗q where
the first parameter is the key and q is a parameter. For
a key k, we denote PRF(k, t) by PRFk(t). We say that
PRF is a pseudorandom function if for all polynomial time
distinguishers D there exists a negligible function negl such
that∣∣Pr[DPRFk(·)(1n) = 1]− Pr[DRand(·)(1n) = 1]

∣∣ ≤ negl(n)

where Rand is a random function of the same domain and
range as PRF.

B. The Cryptiny IoT-E2EE Protocol In Detail

Let DHIES = (E ,D,K) be a public-key DHIES encryption
scheme with group parameters (G, q, g). Let KDF be a key
derivation function KDF : G → {0, 1}n, let H be a crypto-
graphic hash function H : G → {0, 1}n, and let PRF be a
pseudorandom function PRF : {0, 1}n × {0, 1}∗ → Z∗q .

In Section III we defined the interface of the five-tuple of
algorithms

QURT = (Init, {BcnKi}wi=1,Obs,Svr, {OwnK′
i
}wi=1).

Below we complete the definition of these five algorithms by
providing the algorithmic details.

Defining the Algorithmic Details of QURT:

• Init(1n, 1w):
1) Beacon and Owner keys initialization: For each i ∈

[1, w]: chooses random ri ∈ Zq , ki ∈ {0, 1}n, and
sets

Ki = (gri , ki),K′i = (ri, ki),

where Ki is the i’th beacon keys and K′i is the i’th
owner keys.

2) Owner’s table initialization: For each i ∈ [1, w], t ∈
[tb, te], and s ∈ S, generates the table

Tbli[H(gri·PRFki
(bt/Tc,s))] := (bt/T c, s),

where Tbli is the table of the i’th owner.
3) Cloud server mapping table initialization: For all

i ∈ [1, w], t ∈ [tb, te], and s ∈ S, generates the
beacon-to-owner mapping table:

M[H(gri·PRFki
(bt/Tc,s))] := i.

• BcnKi
(t, s): On input time t and signal s returns

BcnKi(t, s) = gri·PRFki
(bt/Tc,s).

• Obs(pk,m): On input pk and a message m, if H(pk) /∈
M returns ⊥, otherwise returns:

Obs(pk,m) = (H(pk), Epk(m)).

• Svr(h, ĉ, c): On input (h, ĉ, c) where (ĉ, c) is expected
to be Epk(m) for some message m and public key pk,
returns

Svr(h, ĉ, c) = (M[h], h, ĉ, c)

if h ∈ M. Otherwise returns ⊥. Note that in practice,
the first parameter M[h] is only used by the server to
find out the right owner and is not actually needed in the
server output.

• OwnK′
i
(i, h, ĉ, c): If h not in Tbli then returns ⊥. Other-

wise, sets

(bt/T c, s)← Tbli[h] and sk = ri · PRFki
(bt/T c, s).

Returns

OwnK′
i
(i, h, ĉ, c) = Dsk(ĉ, c)

which is m if authentication succeeds, and ⊥ otherwise.
We assumed above that the first parameter of OwnK′

i
is

i since otherwise OwnK′
i

would not have been called.

VI. SECURITY AND PRIVACY PROOFS

In this section we prove that our Cryptiny IoT-E2EE Pro-
tocol achieves all the security and privacy requirements.

8

A. New Primitive: Shifted-DHIES (SDHIES)

We define a generalized version of DHIES we call shifted-
DHIES or in short SDHIES which will be useful in the security
proof of the observer’s message (Section VI-B). In this version
the public key is a function of ` ∈ [1, q−1] where the party that
encrypts can control this ` parameter. Namely, the public key
is not fixed, and it may be changed at every call by the party
that encrypts with it. Next, we formally define SDHIES and
prove that SDHIES is CCA-secure under the ODH assumption
by reduction to DHIES.

Definition 11 (SDHIES): Let DHIES = (E ,D,K) be
the DHIES scheme with group parameters (G, q, g). Let
SDHIES = (E ′,D′,K′) be the following three-tuple of al-
gorithms defining a public-key scheme:
• K′: Chooses a uniform private key sk ∈ Zq , sets the

corresponding public key pk = gsk, and returns (pk, sk).
• E ′pk(m, `): Calculates (ĉ, c) = Epk`(m) and returns

(ĉ, c, `).
• D′sk(ĉ, c, `): Returns Dsk·`(ĉ, c) which is either ⊥ or the

corresponding message m.
Definition 12: [ExpCCA

SDHIES,A(n)] Let A be an adversary in
the following game ExpCCA

SDHIES,A(n):
• The challenger randomly chooses a private key sk ∈ Zq ,

sets the public key pk = gsk, and gives pk to adversary
A.

• Adversary A has access to the decryption oracle
D′sk(·, ·, ·).

• Adversary A sends to the challenger two distinct mes-
sages m0 6= m1 and ` ∈ [1, q − 1].

• The challenger chooses a random bit b ∈ {0, 1} and sends
(ŷ, y, `) = E ′pk(mb, `) to adversary A.

• Adversary A continues to have access to the decryption
oracle as before, but it cannot apply the decryption oracle
on (ŷ1/v, y, ` ·v) for any v. In other words, the adversary
cannot apply a decryption oracle query (a, b, c) where
both ac = ŷ` and b = y hold.

• Adversary A returns b′ and wins if b′ = b.
Theorem 2: If DHIES is CCA-secure, then SDHIES is

CCA-secure. Namely, for any PPT adversary A there exists
a negligible function negl such that

Pr[ExpCCA
SDHIES,A = 1] ≤ 1

2
+ negl(n).

Proof 2: To prove the above, let A be an adversary against
the CCA-security of SDHIES = (E ′,D′,K′). We build an
adversary A′ against the CCA-security of DHIES = (E ,D,K):
• The DHIES challenger randomly chooses a private key

sk ∈ Zq and sends the public key pk = gsk to adversary
A′.

• Adversary A′ sends pk to adversary A and runs ad-
versary A. To simulate an SDHIES decryption oracle
call D′sk(ĉ, c, `), adversary A′ returns Dsk(ĉ

`, c). Indeed,
both decryptions result with the same message since the
shared key of Dsk(ĉ

`, c) and of D′sk(ĉ, c, `) is the same:

(ĉ`)sk = ĉsk·`.

• Adversary A sends its challenge m0,m1 and ` to ad-
versary A′. Adversary A′ sends m0,m1 to its DHIES
challenger.

• The DHIES challenger chooses a random bit b ∈ {0, 1}
and returns

(ŷ, y) = Epk(mb).

• Adversary A′ sends to adversary A the challenge

(ŷ1/`, y, `).

The triple (ŷ1/`, y, `) is indeed a correct challenge for
adversary A since ŷ1/` is a random group element
(because ŷ is), and since both challenges represent the
same encrypted message, that is, they use the same shared
key:

(ŷ)
sk

= (ŷ1/`)
sk·`

.

• Adversary A′ continues to answer decryption queries as
before. From definition ExpCCA

SDHIES,A(n), and given that
the challenge is (ŷ1/`, y, `), adversary A is forbidden
from querying (ŷ1/(`·v), y, ` · v) for any v. This implies
that adversary A′ would not query its decryption DHIES
oracle with its challenge

((ŷ1/(`·v))`·v, y) = (ŷ, y).

• Eventually, adversary A returns its guess b′, and adver-
sary A′ returns this guess b′ to its challenger.

Since the view of adversary A in ExpCCA
SDHIES,A is identical

to the view of adversary A when its experiment is simulated
by adversary A′, it holds that:

Pr[ExpCCA
DHIES,A′(n) = 1] = Pr[ExpCCA

SDHIES,A(n) = 1].

The assumed CCA-security of DHIES, thus implies Theo-
rem 2.

B. Observer’s Message CCA-Secure

Theorem 3: The observer’s message is CCA-secure with
backward and forward security according to Definition 2
where oracles are defined according to the protocol in Sec-
tion V-B.

Proof 3: Below we prove a somewhat stronger claim by
providing the adversary with more information. Specifically,
instead of providing the adversary with a mapping table that
maps hash of cryptiny values to the corresponding owners’
IDs, we provide the adversary with a mapping table that maps
the cryptiny value themselves to the corresponding owners’
IDs.

Let i ∈ [1, w]. We aim at proving that for any PPT adversary
A there exists a negligible function negl such that

Pr[ExpCCA
ObsMsg,A(i, n) = 1] ≤ 1

2
+ negl(n).

To this end, we build an adversaryA′ against the CCA-security
of SDHIES = (E ′,D′,K′):
• The SDHIES challenger randomly chooses a private key

sk ∈ Zq and sends the public key pk = gsk to adversary
A′.

9

• Adversary A′ runs adversary A. To this end, for all j 6=
i, adversary A′ generates random rj and kj , and sends
Kj = (grj , kj) to A. For j = i, adversary A′ generates
random ki, sets gri := pk (note that ri = sk is not known
to the adversary A′), and sends Ki = (gri , ki) to A. To
simulate the mapping table M and prepare for owner
queries, adversary A′ generates for all j ∈ [1, w], for any
t ∈ [tb, te], and for any s ∈ S:

M[grj ·PRFkj
(bt/Tc,s)] := j,

Tblj [g
rj ·PRFkj

(bt/Tc,s)] := (bt/T c, s).

To simulate OwnK′
j
(j, pk, ĉ, c) for any j, adversary

A′ does the following: first it extracts (bt/T c, s) ←
Tblj [pk] and then calculates ` = PRFkj (bt/T c, s). If
j = i adversary A′ applies its SDHIES decryption
oracle D′sk(ĉ, c, `). This is valid since D′sk(ĉ, c, `) =
Dsk(ĉ

`, c). Otherwise, if j 6= i, it calculates D′rj (ĉ, c, `).
• Adversary A sends tc, s,m0,m1 to adversary A′. Ad-

versary A′ calculates ` = PRFki
(btc/T c, s) and sends

m0,m1, ` to the SDHIES challenger.
• The SDHIES challenger chooses a random bit b and

returns
(ŷ, y, `) = E ′pk(mb, `)

to adversary A′. Adversary A′ then sends the challenge

(pk`, ŷ, y)

to adversary A.
• Adversary A continues to access the owners’ oracles

simulated by adversary A′, but cannot query the i’th
owner oracle with Svr(pk`·v, ŷ(1/v), y) for any v.
Notice that adversary A′ can simulate any permitted
owner oracle query of adversary A since the restriction
on an owner oracle query of adversary A translates to the
same restriction on a decryption oracle query of adversary
A′.

• Finally, adversary A returns a bit b′. Adversary A′ returns
this bit b′.

Since the view of adversary A in the experiment
ExpCCA

ObsMsg,A is identical to the view of adversary A when its
experiment is simulated by adversary A′, it holds that:

Pr[ExpCCA
ObsMsg,A(i, n) = 1] = Pr[ExpCCA

SDHIES,A′(n) = 1].

From Theorem 2 we get

Pr[ExpCCA
ObsMsg,A(i, n) = 1] ≤ 1

2
+ negl(n).

C. Beacon’s Signal CCA-Secure

Theorem 4: The beacon’s signal is CCA-secure according
to Definition 3 where oracles are defined according to the
protocol in Section V-B.

Proof 4: As in Section VI-B, we prove a stronger claim by
providing the adversary with a mapping table that maps the
cryptiny value themselves to the corresponding owners’ IDs.

Let i ∈ [1, w]. We aim at proving that for any PPT adversary
A there exists a negligible function negl such that:

Pr[ExpCCA
BcnSgn,A(i, n) = 1] ≤ 1

2
+ negl(n). (1)

To this end we define a new game ExpCCA
RandSgn,A(i, n), similar to

ExpCCA
BcnSgn,A(i, n) with the following modifications: in the ora-

clesM,BcnKi
,OwnK′

i
the pseudorandom function PRFki

(·, ·)
is replaced with Rand(·, ·), where Rand(·, ·) is a random
function returning a random value in Z∗q .

Next, we prove that for any PPT adversary A, there exists
a negligible function negl such that

Pr[ExpCCA
BcnSgn,A(i, n) = 1]− Pr[ExpCCA

RandSgn,A(i, n) = 1]

≤ negl(n).
(2)

To prove Equation (2), let A be an adversary in the
experiment ExpCCA

BcnSgn,A. We build an adversary A′ attacking
the pseudo randomness of PRFki

:
• Denote the oracle of A′ by O(·, ·). That is, O(·, ·) may

be either PRFki
(·, ·) or the random oracle Rand(·, ·).

• Adversary A′ runs adversary A. To this end, adversary
A′ chooses a random rj ∈ Zq for all j ∈ [1, w], and
kj ∈ {0, 1}n for all j ∈ [1, w] s.t. j 6= i. Adversary A′
simulates M and prepares for owner queries as follows.
For all t ∈ [tb, te] and all s ∈ S it generates

M[gri·O(bt/Tc,s)] := i

and
Tbli[g

ri·O(bt/Tc,s)] := (bt/T c, s).

For all j s.t. j 6= i, for all t ∈ [tb, te], and for all s ∈ S
it generates

M[grj ·PRFkj
(bt/Tc,s)] := j

and
Tblj [g

rj ·PRFkj
(bt/Tc,s)] := (bt/T c, s).

Adversary A′ simulates BcnKj
and OwnK′

j
for any j 6= i

trivially since it holds all the secret keys for these oracles.
For j = i adversary A′ simulates BcnKi and OwnK′

i

using the key ri and using O(·, ·) instead of PRFki(·, ·).
• Adversary A chooses s0, s1 and tc for which btc/T c 6=
bt/T c for all time t in the queries BcnKi

() and OwnK′
i
()

adversary A already made. Adversary A then sends
tc, s0, s1 to adversary A′. Adversary A′ chooses a ran-
dom bit b and returns the challenge

x = gri·O(tc,sb).

• Adversary A continues to have access to all oracles as
before but is not allowed to query the i’th beacon’s oracle
BcnKi

() with time t such that bt/T c = btc/T c and is not
allowed to query the i’th owner’s oracle OwnK′

i
() with

Svr(Obs(x,m)) for any m.
• Finally, adversary A returns a bit b′. If b′ = b then

adversary A′ returns 1, otherwise, A′ returns 0.

10

When O(·, ·) = PRFki
(·, ·), the view of A is as in

ExpCCA
BcnSgn,A and when O(·, ·) = Rand(·, ·), the view of A

is as in ExpCCA
RandSgn,A. Therefore

Pr[A′PRFki
(·,·)

= 1] = Pr[ExpCCA
BcnSgn,A(i, n) = 1]

Pr[A′Rand(·,·) = 1] = Pr[ExpCCA
RandSgn,A(i, n) = 1].

Since PRFki
is pseudorandom function, there exists a negli-

gible function negl such that∣∣Pr[ExpCCA
BcnSgn,A(i, n) = 1]− Pr[ExpCCA

RandSgn,A(i, n) = 1]
∣∣

≤ negl(n).

Namely Equation (2) holds. Since the value btc/T c is only
used once in the challenge, it follows that

Pr[ExpCCA
RandSgn,A(i, n) = 1] =

1

2
.

Equation (1) thus follows from Equation (2).

D. Beacon’s Indistinguishability

Theorem 5: The beacon achieves indistinguishability ac-
cording to Definition 4 where oracles are defined according
to the protocol in Section V-B.

Proof 5: Let i ∈ [1, w]. We prove that for any PPT adversary
A there exists a negligible function negl such that∣∣Pr[ABcn(i, 1n) = 1]−Pr[ARnd(i, 1n) = 1]

∣∣ ≤ negl(n). (3)

To this end, we build an adversary A′ attacking the pseudo
randomness of PRFki :
• Denote the oracle of A′ by O(·, ·). That is, O(·, ·) is either

PRFki
(·, ·) or the random oracle Rand(·, ·).

• Adversary A′ runs adversary A. To this end, adversary
A′ randomly chooses kj for all j ∈ [1, w] s.t. j 6= i and
rj for all j ∈ [1, w] (including i). For a query BcnKj (·, ·)
adversary A′ answers grj ·PRFkj

(bt/Tc,s) if j 6= i and
gri·O(bt/Tc,s) if j = i.

• Finally adversary A′ outputs the output of A.
When O(·, ·) = PRFki

(·, ·), adversary A′ runs ABcn and
when O(·, ·) = Rand(·, ·), adversary A′ runs A with an oracle
gri·Rand(·,·) and all oracles BcnKj

(·, ·) for j 6= i. Since ri ∈
Zq and Rand(·, ·) returns a random element in Z∗q , the oracle
gri·Rand(·,·) is in fact GRand(·, ·), a random function from the
domain of BcnKj

(·, ·) to its range G. Thus when O(·, ·) =
Rand(·, ·), adversary A′ runs ARnd. To summarize

Pr[A′PRFki
(·,·)

(1n) = 1] = Pr[ABcn(i, 1n) = 1]

Pr[A′Rand(·,·)(1n) = 1] = Pr[ARnd(i, 1n) = 1].

Since PRFki
is pseudorandom function, there exists a negli-

gible function negl such that∣∣Pr[ABcn(i, 1n) = 1]− Pr[ARnd(i, 1n) = 1]
∣∣ ≤ negl(n).

This proves Equation (3).

VII. CORRECTNESS

Having shown security and privacy of the protocol, we will
briefly claim correctness of our protocol.

Theorem 6: Our Cryptiny IoT-E2EE Protocol is correct
according to Definition 1.

Proof 6: We need to show that

(s,m) = OwnK′
i
(Svr(Obs(BcnKi(t, s),m))).

Recall that BcnKi
(t, s) = pk where pk =

gri·PRFki
(bt/Tc,s). Thus Obs(BcnKi(t, s),m) =

(H(pk), Epk(m)), and Svr(Obs(H(pk), Epk(m))) =
(M[H(pk)], H(pk), Epk(m)) = (i,H(pk), Epk(m)).
Therefore, owner i finds (bt/T c, s) from Tbli[H(pk)],
computes sk = ri · PRFki

(bt/T c, s) and uses it to decrypt
m = Dsk(Epk(m)).

VIII. COST OF THE PROTOCOL

We next consider the cost of each component in the Cryptiny
IoT-E2EE Protocol (an analysis which has been presented with
the design to the implementation team):

Beacon: Beacon i computes cryptiny values, where a
cryptiny value is computed by a single group exponentiation
(or more precisely a single elliptic curve multiplication) using
the base gri . This exponentiation can be performed very
efficiently (following pre-computation) since the base is fixed
(see [4]). The beacon broadcasts (the x-coordinate of) a single
curve point. NIST recommends using 224-bit elliptic curves
through year 2030 and 256-bit elliptic curves through and
beyond year 2030.4 Using these recommendations implies that
the curve point broadcast by the beacon is of length 224 bit or
256 bit, respectively which is extremely small. The cryptiny
value computation time is in milliseconds and its power
consumption is negligible relative to the power consumption
of the beacon’s communication. In fact, the beacon can operate
on a small battery for at least a full year.

Observer: The observer (which is a smartphone with much
larger computation and power resources than those of the
beacon) applies two group exponentiations per beacon in its
vicinity: One exponentiation uses a fixed base (g) and the other
uses a random base (gr·PRFk(t,s)) which the observer gets from
a near by beacon. Again, the fixed-base exponentiation can
benefit significantly from [4], but in any case computing two
group exponentiations is reasonable and has negligible affect
on the observer’s battery (which is the primary concern with
respect to observers).

Cloud server: The main complexity measure for the cloud
server is the size of the mapping table. With 256-bit hash
function and three different signal values, each entry in the
table is composed of 128-bit for the hash of the cryptiny value
(by using, e.g., only 128 out of 256 bits of the hash value)
and a 64-bit owner ID. Therefore, the size of each table entry
is 192 bits. Consider for example a period of 24 hours and
a new beacon broadcast every 20 minutes, namely 72 daily

4https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
57pt1r5.pdf

11

cryptiny values. Then, the number of entries per beacon per
24 hours is 72×3 = 216 (the ’3’ represents the three possible
battery values). Therefore the mapping table per beacon is of
size 216×192 bits=41.5 KB. We consider two (very) different
application scenarios below. The first application is a small
city’s sensory data collection with 1000 beacons. The size of
the mapping table in this case is 41.5 MB - very small indeed.
The second application is asset tracking. Here we assume 108

beacons. The size of the mapping table in this case is therefore
4.15 TB. This is certainly reasonable for a company with 108

users (or to its cloud provider).
The mapping table is implemented as a hash table, and

therefore the lookup operation is very fast, taking a few
milliseconds.

Owner: For each beacon, the owner needs to generate
its Tbl table entries periodically. The owner then keeps the
table to enable decryption and sends only the table’s cryptiny
values to the server. Using the above parameters, each en-
try of Tbl requires 128 bits, 32 bits and 2 bits for the
cryptiny value, time and signal, respectively. For 24 hours
and cryptiny value change every 20 minutes, the table is of
size 72× 162 bits=12 KB. Computing Tbl entails 72× 3=216
exponentiations for computing the required cryptiny values.
Each group exponentiation is with a fixed base and can
therefore be computed using the efficient algorithm of [4].
Due to the multiple exponentiations, the process of generating
the Tbl table takes a few seconds but can nevertheless be done
without affecting user experience by either (1) pre-computing
the exponentiations during the phone’s idle times; or (2)
computing the entries in small batches during the day instead
of all at once (and similarly sending the table’s computed
cryptiny values to the cloud server in batches during the day).
Therefore, the Cryptiny IoT-E2EE Protocol is efficient and
can be easily integrated in real-world applications (and, in
fact, parts of it have already been adopted to and implemented
within a concrete setting).

IX. EXTENSIONS

The versatility of our protocol leads to the following possi-
bilities:

A. Observer’s Complete Indistinguishability

Our protocol ensures that observers remain anonymous.
This is assured by the fact that observers do not posses any
unique string - all observers act in exactly the same way. The
system must make sure that observers remain anonymous even
given low-layer communication details such as the IP. This
can be achieved by removing these low-layer communication
details before they reach the cloud server or by using, for
example, the TOR network. We note that anonymity of the
observer is important since the observer willingness to help
should not cost the observer its privacy.

B. Anonymous Two-Way Communication

Our Cryptiny IoT-E2EE Protocol can be extended to pro-
vide efficient anonymous two-way real-time communication

between the owner and the observer. Such anonymous two-
way communication enables new applications (see an example
below).

As discussed above, having beacon-to-owner mapping en-
ables anonymous efficient one-way communication. This com-
munication is indeed anonymous - the owner and the observer
cannot identify each other. Two-way communication can be
achieved by having at the cloud server open sessions with both
the owner and the observer and forwarding their respective
messages to each other. Anonymity is thus preserved also in
the case of two-way real-time communication (section IX-A
discusses how to hide the identity of the observer also from
the cloud server).

As described in the protocol, the observer encrypts infor-
mation intended for the owner using a symmetric shared key
based on Diffie-Hellman key exchange, where the owner’s
public key comes from the beacon. This symmetric key can be
utilized in the rest of the two-way communication session to
enable the owner and the observer to exchange authenticated
and encrypted messages with each other. Notice that the
beacon is used only for the initial key-exchange process; in the
rest of the session, the observer and the owner communicate
through the server without the beacon’s help (so that the
observer is free to leave the beacon’s vicinity). Nevertheless,
if required, the owner may force the observer to stay in
the vicinity of its beacon for the duration of the session
by requiring frequent key exchanges based on the beacon’s
broadcasts.

The observer’s confidence in communicating with the cor-
rect party relies on its trust in the near-by beacon. Conversely,
the owner’s assurance stems from the belief that it is commu-
nicating with a party that is (or was) in close proximity to its
beacon.

An interesting application that can leverage anonymous two-
way communication is an anonymous auction for an item
associated with the beacon. In this scenario, only observers
located near the beacon are allowed to place bids. The auction
protocol may involve multiple communication rounds between
the anonymous bidder (observer) and the anonymous owner of
the item (beacon’s owner), and this can be achieved by two-
way communication.

C. Further issues

We highlighted the new paradigm, the protocol, its setting,
and its development, and the protocol’s security as a stand
alone one. We note that arguing UC-security and similar
composition properties is an interesting question for future
research.

X. RELATED WORK

In this paper we suggest cryptiny as a new cryptographic
paradigm. To motivate it and demonstrate its utility we consid-
ered an important problem in the IoT, the IoT-E2EE problem.
Below we consider related work with respect to both the
cryptiny paradigm and the IoT-E2EE problem.

12

A. The Cryptiny paradigm

There are works such as [6], [10] which re-use crypto-
graphic keys in order to limit the number of keys. However,
cryptiny is different, since its goal is to decrease the cryp-
tographic footprint in terms of its length (in our case, the
beacon’s broadcast length), and not in terms of the number
of keys employed.

B. The IoT-E2EE Problem and Protocol

We are not aware to any work with respect to the IoT-
E2EE problem as defined in this paper so we consider below
protocols for different versions of the IoT-E2EE problem.
These protocols are only concerned with finding the location
of assets and thus require less security guarantees.

Specifically, in Apple’s FindMy [11], Samsung’s Smart-
Tag [12] and Tile [1] the beacon does not send a signal so
obviously no beacon’s signal security is provided. SmartTag
and Tile also do not provide end-to-end security with respect
to the observer’s message (i.e., location). FindMy, on the
other hand, provides end-to-end security with respect to the
observer’s message but without backward security. Since
FindMy also does not support a beacon’s signal, the beacon in
FindMy is only required to broadcast one pseudorandom DH
public key for the observer to encrypt its location without the
need to “fold” into it additional functions. Therefore Apple’s
protocol does not need to use the cryptiny paradigm.

It is also worth noting that Apple’s FindMy does not achieve
efficient real-time communication nor public key certification
as a result of not supporting beacon-to-owner mapping table.
This lack of the beacon-to-owner association at the cloud
server in FindMy provides strong anonymity to the owner
with respect to the cloud server, but opens the door to two
types of attacks. (i) attacks [5], [3] which use the FindMy
network as a public database; and (ii) attacks where a beacon
sends a weak key to an observer with the intention to reveal
the observer’s message (which is the location in the case of
Apple’s FindMy). Such an attack would succeed since the
observer lacks the ability to validate the received public key.
Furthermore, we note that Apple hasn’t published neither a
detailed description of the FindMy protocol nor cryptographic
proofs of its security.

XI. CONCLUSIONS

This paper presents cryptiny, a novel cryptographic
paradigm designed to compact communication transmitted
over narrow channels by consolidating multiple cryptographic
objectives into a single cryptographic value. Cryptiny proves
invaluable in applications constrained by limited cryptographic
data size. This includes systems utilizing BLE devices since
broadcast size of such devices is severely limited.

We developed cryptiny as part of a the development of IoT-
E2EE problem, a real-world problem in the IoT domain, which
aims at protecting IoT beacons communicating with their own-
ers via BLE-IP gateways. This demonstrates the necessity of
cryptiny in certain bandwidth limited scenarios. Our Cryptiny
IoT-E2EE Protocol enables a beacon to broadcast a short

unfragmented broadcast message while achieving efficient
real-time beacon-to-owner CCA-secure communication, effi-
cient real-time observer-to-owner CCA-secure communication
with backward and forward security, mutual privacy (i.e.,
indistinguishability) for the beacons and for the observers, and
autonomous public key certification suitable to pairing based
initiations.

Finally and looking forward, we believe that our IoT-E2EE
Protocol can potentially become a standard/IETF-contribution
and contribute to IETF discussions, given its unique and com-
prehensive security features, and its versatility and suitability
for real-world IoT applications.

REFERENCES

[1] Tile. https://www.theverge.com/2022/1/28/22906392/
life360-tile-location-data-precise-aggregated-privacy.

[2] ABDALLA, M., BELLARE, M., AND ROGAWAY, P. Dhaes: An encryp-
tion scheme based on the diffie-hellman problem. IACR Cryptol. ePrint
Arch. 1999 (1999), 7.

[3] BELLON, A., YEN, A., AND PANNUTO, P. Demo abstract: Tagalong: A
free, wide-area data-muling service built on the airtag protocol. In 20th
ACM Conference on Embedded Networked Sensor Systems (2022).

[4] BRICKELL, E.F., G. D. M. K. W. D. Fast exponentiation with
precomputation. In Advances in Cryptology — EUROCRYPT’ 92 (1993).

[5] BRÄUNLEIN, F. Send my: Arbitrary data transmission via apple’s find
my network, 2021. https://positive.security/blog/send-my (last visited
2022-12-13).

[6] CORON, J.-S., JOYE, M., NACCACHE, D., AND PAILLIER, P. Uni-
versal padding schemes for rsa. In Advances in Cryptology—CRYPTO
2002: 22nd Annual International Cryptology Conference Santa Barbara,
California, USA, August 18–22, 2002 Proceedings 22 (2002), Springer,
pp. 226–241.

[7] DAVID, L., HASSIDIM, A., MATIAS, Y., YUNG, M., AND ZIV, A.
Eddystone-eid: Secure and private infrastructural protocol for ble bea-
cons. IEEE Transactions on Information Forensics and Security (2022).

[8] DODIS, Y., KATZ, J., XU, S., AND YUNG, M. Strong key-insulated sig-
nature schemes. In International Workshop on Public Key Cryptography
(2003), Springer, pp. 130–144.

[9] DODIS, Y., LUO, W., XU, S., AND YUNG, M. Key-insulated symmetric
key cryptography and mitigating attacks against cryptographic cloud
software. In Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security (2012), pp. 57–58.

[10] HABER, S., AND PINKAS, B. Securely combining public-key cryp-
tosystems. In Proceedings of the 8th ACM Conference on Computer
and Communications Security (2001), pp. 215–224.

[11] HEINRICH, A., STUTE, M., KORNHUBER, T., AND HOLLICK, M. Who
can find my devices? security and privacy of apple’s crowd-sourced
bluetooth location tracking system. arXiv preprint arXiv:2103.02282
(2021).

[12] YU, T., HENDERSON, J., TIU, A., AND HAINES, T. Privacy analysis
of samsung’s crowd-sourced bluetooth location tracking system. arXiv
preprint arXiv:2210.14702 (2022).

13

https://www.theverge.com/2022/1/28/22906392/life360-tile-location-data-precise-aggregated-privacy
https://www.theverge.com/2022/1/28/22906392/life360-tile-location-data-precise-aggregated-privacy
https://positive.security/blog/send-my

	Introduction
	Our Contributions

	Informal Description of the Constrains, our Protocol and its Security Guarantees
	The Short and unfragmented Beacon's Broadcast Constraints
	High Level Description of our Protocol
	Key Management
	Security Model
	The players
	The player's communication channels

	Security, Privacy, and Integrity guarantees
	What the Protocol does not Guarantee

	Formal Cryptographic Model Of the IoT-E2EE Problem
	The Cryptiny Value and its Usage in our Protocol
	Our Starting Point
	Adding Beacon's Signal Encryption
	Adding Backward (and Forward) Security for the Observer's Message
	Beacon-to-Owner Mapping Table
	Encryption/Decryption of the Beacon's Signal and Observer's Message
	Encryption
	Decryption

	The Cryptiny IoT-E2EE Protocol
	Definitions and Preliminaries
	The Cryptiny IoT-E2EE Protocol In Detail

	Security and Privacy Proofs
	New Primitive: Shifted-DHIES (SDHIES)
	Observer's Message CCA-Secure
	Beacon's Signal CCA-Secure
	Beacon's Indistinguishability

	Correctness
	Cost of the Protocol
	Extensions
	Observer's Complete Indistinguishability
	Anonymous Two-Way Communication
	Further issues

	Related Work
	The Cryptiny paradigm
	The IoT-E2EE Problem and Protocol

	Conclusions
	References

