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Abstract. Private Stream Aggregation (PSA) allows clients to send
encryptions of their private values to an aggregator that is then able to
learn the sum of these values but nothing else. It has since found many
applications in practice, e.g. for smart metering or federated learning. In
2018, Becker et al. proposed the first lattice-based PSA scheme LaPS
(NDSS 2018), with putative post-quantum security, which has subse-
quently been patented. In this paper, we describe two attacks on LaPS
that break the claimed aggregator obliviousness security notion, where the
second attack even allows to recover the secret keys of the clients, given
enough encryptions. Moreover, we review the PSA literature for other
occurrences of the responsible flawed proof steps. By explicitly tracking
down and discussing these flaws, we clarify and hope to contribute to the
literature on PSA schemes, in order to prevent further insecure schemes
in practice. Finally, we point out that a Real-or-Random variant of the
security notion that is often used as a substitute to make proofs easier, is
not well-defined and potentially weaker than the standard PSA security
notion. We propose a well defined variant and show that it is equivalent
to the standard security notion of PSA under mild assumptions.

Keywords: Security Notions, Private Stream Aggregation, Cryptanaly-
sis, Aggregate Statistics

1 Introduction

The more data-driven our economies become, the more important it is for service
providers to obtain statistics on the use of their services, to better fit them to the
actual needs. However, valid privacy concerns, laws and user preferences constrain
a free use of this data. As one solution to this, Shi et al. [14] devised so-called
Private Stream Aggregation (PSA) schemes, where a server (the “aggregator”)
can obtain aggregate statistics on the clients data, in the sense that the (a priori
fixed set of) clients encrypt their secret values in such a way that the server can
compute the sum of their values, but does not learn anything else.

Since then, these have been proposed for numerous uses, including smart
metering and federated learning [14, 4, 7, 11]. One of the important follow-up
papers to [14], also published at NDSS, is a lattice-based PSA scheme [1], called
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“LaPS”. The authors argue for its security based on the Augmented Learning
with Errors (A-LWE) problem, defined in [6] (which is shown in [6] to be at
least as hard as the original Learning with Errors (LWE) problem [13], with a
reduction that assumes the random oracle model security heuristic), and hence
claim that it is the first post-quantum secure PSA scheme. Subsequently, this
scheme became patented [2] and influenced the discussion in the PSA literature,
as almost all newer schemes are compared to this w.r.t. security and performance.

As PSA schemes have become attractive enough to be adopted in practice, it
is of particular importance to ensure these uses to be actually secure. However,
in this paper, we describe how larger parts of the literature on PSA schemes do
not fare well when it comes to actual security or the correctness of proofs. More
particularly, we describe a flaw in the security proof of LaPS, and corresponding
attacks, which amount to the LaPS scheme being fully broken. This includes
the possibility that an attacker can learn the user secret keys, given enough
encryption queries (relevant due to the claimed encrypt-multiple-times security).
The attack/flaw arises from a proof strategy (replacing certain oracle queries
by others, see below) in [14], which is valid within their reduction, but due to a
different reason than stated there, and hence is not as universally applicable as
it appears. However, this strategy was used in [1] in a different context, where it
is no longer permissible.

Additionally, we point out another flaw that is present in the security proof of
[1]. Importantly, almost five years after its publication at the NDSS conference,
this has remained unknown, and the flaws described within our paper have since
spread to at least four other papers in the area, including one published in Journal
of Cryptology [16]. See Table 1 for an overview of the issues as reported in our
work.

In addition to the aforementioned proof issues, we point out another problem
with a frequently used security definition. Many security proofs of PSA schemes
substitute in their first step the aimed-for security notion with a different version,
called Real-or-Random security (e.g. [14, 1, 10, 15, 16, 9]). However, throughout
the literature, this notion is only vaguely defined in passing, and hence lacks
a proper foundation: We argue in Section 5 that the Real-or-Random notion
of PSA as it is usually described, is in fact not well-defined and potentially
weaker than the standard security notion. We propose a proper definition that,
however, makes use of the additional assumption of having a group structure on
the message space, which might not be applicable in all use-cases. Then, we show
equivalence to the usual aggregator obliviousness security. Note, however, that
our definition does not automatically fix the affected proofs. By clearing up this
situation, we contribute to clarify the proper ways of proving security for PSA
schemes.

Related Work. The only other paper where weaknesses of PSA schemes are
discussed that we are aware of is [17]. In Remark 5.3 of [17], the authors point
out that the security notion claimed to be achieved by the LaPS scheme [1],
can in fact not be achieved. This is due to the (incorrect) formulation of a
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Table 1. Overview of proof flaws and attacks as presented in this paper.

Proof flaw 1 [1, 9, 10]
Proof flaw 2 [1, 9, 10, 15, 16]
Attack 1 & 2 [1]

certain non-triviality condition in [1].1 In contrast, we give two different concrete
attacks on the LaPS scheme, where the first allows the aggregator to compute
the difference of two client plaintexts and the second to compute the secret key,
given enough ciphertexts. These attacks also break the security notion even if the
non-triviality condition is formalized correctly. Also, we are the first to describe
the concrete flaws in the security proof of LaPS.

Furthermore, Waldner et al. [17] point out (in footnote 9) that the security
guarantee provided by a restricted one-time-use variant of the standard PSA
security notion can be achieved by a simple information-theoretic construction.
In Appendix B, we formalize this construction and prove that it does indeed
satisfy the corresponding one-time-use security notion. Additionally, Waldner
et al. [17] devise a stronger notion of PSA security than commonly used, argue
for its usefulness and provide a construction that satisfies this stronger notion.

2 Preliminaries

2.1 Notations

With [n] and [n]0 we denote the sets {1, . . . , n} and {0, . . . , n}, respectively. We
use λ as the security parameter. We write x← X to denote that x is sampled
from distribution X or is the output of a randomized algorithm X. We write
x←$ S when x is sampled uniformly at random from set S. We usually denote
the adversary with A.

2.2 Private Stream Aggregation

In private stream aggregation (PSA) there is one aggregator and many clients. At
each time step, the clients encrypt their current value (e.g. power consumption
or ML model update) and send the resulting ciphertext to the aggregator. When
the aggregator has received one ciphertext from each client for the same time
step, the aggregator can compute the sum of the client’s values, but nothing
more. The protocol is non-interactive insofar that the aggregator does not send
any messages to the clients and the clients only send messages to the aggregator
(and not to each other). In some definitions the clients use random noise in order
to achieve differential privacy (cf. [5] for an introduction). However, we omit the

1 In a setting where multiple encryptions per client and label are allowed, the non-
triviality condition must also take into account the plaintexts of the encryption
queries, as done e.g. in [17, Def. 5.1].
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noise in our definition, as it can simply be added to the plaintext value before
encryption. The following definitions of PSA and aggregator obliviousness were
introduced by [14] and are taken verbatim from [7].

Definition 1 (Private Stream Aggregation (Def. 2 in [7])). A private
stream aggregation scheme PSA over ZR (for R ∈ N) and label space L consists
of the following three PPT algorithms for the setup, the encryption and the
decryption of the aggregate sum:

– Setup(1λ, 1n): Given the security parameter λ and the number of users n, it
outputs public parameters pp and n+ 1 keys (ski)i∈[n]0 . The key sk0 is the
(secret) key of the aggregator, and each ski is a (secret) key of a user i ∈ [n].

– Enc(pp, ski, l, xi): Given the public parameters pp, a key ski of user i ∈ [n],
a label l ∈ L and a value xi ∈ ZR, it outputs an encryption ci of xi under
key ski with label l. This algorithm is supposed to be executed by each user at
every time step, where the time step is used as label. The user then sends ci
to the aggregator.

– AggrDec(pp, sk0, l, {ci}i∈[n]): Given the public parameters pp, the aggregator’s
key sk0, a label l ∈ L, and a set of n ciphertexts {ci}i∈[n] that were encrypted
under the same label l, it outputs

∑
i∈[n] xi (mod R).

We additionally require PSA = (Setup,Enc,AggrDec) to satisfy correctness,
i.e. that for any n, λ ∈ N, x1, . . . , xn ∈ ZR and any label l ∈ L that for
(pp, {ski}i∈[n]0)← Setup(1λ, 1n), and ci ← Enc(pp, ski, l, xi), we have

AggrDec(pp, sk0, l, {ci}i∈[n]) =
∑
i∈[n]

xi mod R.

The general use of PSA is as follows: A trusted third party executes the Setup
algorithm and distributes the public parameters and the secret keys to the clients
and the aggregator. Ernst and Koch [7] describe an approach to get a decentralized
setup. At each time step t each client i calls the Enc(pp, ski, t, xi) algorithm and
sends the resulting ciphertext to the aggregator. When the aggregator has received
a ciphertext from each client, they call the AggrDec algorithm to compute the
sum of the clients’ values.

Next, we define Aggregator Obliviousness (AO), which is the security notion
of PSA. We only define encrypt-once security, which restricts the clients to
send only one message per label. This reduces the potential leakage in practice,
because sending more than one ciphertext per label usually allows the aggregator
to compute the differences of the plaintexts (cf. Section 2.3 for a discussion on
this). Focusing on encrypt-once security is common in the literature [14, 3, 16].

Definition 2 (Aggregator obliviousness (Def. 3 in [7])). The game-based
security notion of aggregator obliviousness (AO) is defined via the following
security experiment AOb(λ, n,A), given in Figure 1. Here, b ∈ {0, 1} indicates
which of the messages are encrypted and returned by QChallenge. First, the
challenger runs Setup and passes the public parameters pp to the adversary A.
Then, A can adaptively ask queries to the following oracles:
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QEnc(i, xi, l): Given a user index i ∈ [n], a value xi ∈ ZR, and a label l, it
answers with c← Enc(pp, ski, l, xi).

QCorrupt(i): Given a user index i ∈ [n]0 (including the aggregator’s index 0),
it returns the secret key ski.

QChallenge(U , {x0
i }i∈U , {x1

i }i∈U , l
∗): The adversary specifies a set of users

U ⊆ [n], a label l∗ and two challenge messages for each user from U . The oracle
answers with encryptions of xb

i , i.e. {ci ← Enc(pp, ski, l
∗, xb

i)}i∈U . This oracle
can only be queried once during the game. (If it is not queried, we set U = ∅ in
the discussion below.)

At the end, A outputs a guess α of whether b = 0 or b = 1.

AOb(λ, n,A)

(pp, {ski}i∈[n]0)← Setup(1λ, 1n)

α← AQCorrupt(·),QEnc(·,·,·),QChallenge(·,·,·,·)(pp)

if condition (∗) is satisfied (see p. 5)

output α

else

output 0

Fig. 1. Aggregator obliviousness experiment for PSA schemes. Depending on the bit b,
the oracle QChallenge answers with encryptions of x0

i or x1
i .

To formally define the condition (∗), we introduce the following sets:

– Let El ⊆ [n] be the set of all users for which A has asked an encryption query
on label l.

– Let CS ⊆ [n] be the set of users for which A has asked a corruption query.
Even if the aggregator is corrupted, we define this set to only contain the
corrupted users and not the aggregator.

– Let Ql∗ := U ∪ El∗ be the set of users for which A asked a challenge or
encryption query on label l∗.

We say that condition (∗) is satisfied (as used in Figure 1), if all of the following
conditions are satisfied:

1. U ∩ CS = ∅. This means that all users for which A receives a challenge
ciphertext must stay uncorrupted during the entire game.

2. A has not queried QEnc(i, xi, l) twice for the same (i, l). Doing so would
violate the encrypt-once restriction.

3. U ∩ El∗ = ∅. This means that A is not allowed to get a challenge ciphertext
from users for which they ask an encryption query on the challenge label l∗.
Doing this would violate the encrypt-once restriction.
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4. If A has corrupted the aggregator and Ql∗ ∪ CS = [n] then we require that∑
i∈U

x0
i =

∑
i∈U

x1
i .

We will call this condition the balance-condition.

We define A’s advantage as

AdvAOA,PSA(λ, n) = |Pr[AO0(λ, n,A) = 1]− Pr[AO1(λ, n,A) = 1]|.

A PSA scheme is aggregator oblivious, if for every PPT adversary A there is a
negligible function negl such that for all sufficiently large λ it holds:

AdvAOA,PSA(λ, n) ≤ negl(λ).

The balance condition applies in the case where the aggregator (or an at-
tacker who has corrupted the aggregator) can use their aggregation capability to
legitimately compute the sum of the clients’ values. Thus, the balance condition
prevents the adversary from trivially winning the game. However, note that the
balance-condition does only apply if A got a ciphertext from every honest user
for the challenge label l∗. If there is a single ciphertext missing, then the balance
condition does not apply, because in the real world the aggregator would also not
be able to compute the sum of the plaintext values. The preconditions for the
balance-condition are sometimes stated incorrectly. Some papers (e.g. [1, 15, 16])
define that the balance-condition already applies if the aggregator is corrupted,
regardless of whether there are enough ciphertexts. This places an unnecessary
restriction on the adversary.

Next we define a modified version of the AO game, which we call corruption-
only aggregator obliviousness (AOco). In this game the challenger treats all
encryption queries as corruption queries. We define this, because several papers
in the literature [1, 9, 10] have made this modification in the security proof.
However, as we point out in Section 3.2, this definition gives much weaker security
guarantees and should not be used.

Definition 3 (Corruption-only aggregator obliviousness). We define the
corruption-only aggregator obliviousness (AOco(λ, n,A)) game identical to the AO
game with the only difference that all encryption queries are treated as corruption
queries. That is, we change the definition of the encryption oracle as follows:

QEnc(i, xi, l): Given a user index i ∈ [n], a value xi ∈ ZR, and a label l,
it answers with QCorrupt(i) = ski (and updates the list CS of corrupted users
accordingly).

Note that treating encryption queries as corruption queries is equivalent to
ignoring the encryption queries, as the adversary would then simply ask corruption
queries instead of encryption queries.
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2.3 On Labels, Encrypt-Once and Inherent Leakage

When the clients are not bound by the encrypt-once restriction, i.e. clients
are allowed to send multiple ciphertexts per label, then the aggregator can
already learn the difference of the same user’s plaintexts. To see this, suppose the
aggregator has one ciphertext from each client {ci := Enc(ski, xi, l)}i∈[n] which
are encryptions of plaintexts xi under label l. Then suppose the aggregator gets
another ciphertext c′1 = Enc(sk1, x

′
1, l) which is an encryption of x′

1 under the
same label l. Now the aggregator can compute AggrDec(sk0, (c1, c2, . . . , cn), l)−
AggrDec(sk0, (c

′
1, c2, . . . , cn), l) = x1+x2+ · · ·+xn−(x′

1+x2+ · · ·+xn) = x1−x′
1.

Because this leakage is inherent to the aggregation capability of the aggregator
it is often called inherent leakage. Note, however, that this is only possible if
the aggregator gets at least one ciphertext from every client, because otherwise
the aggregator cannot use the AggrDec function. This example shows that the
aggregator can already learn information about individual clients’ plaintexts if
they obtain two ciphertexts of the same client and at least one ciphertext of every
other client that were created under the same label. Therefore, it is advisable to
adhere to the encrypt-once restriction and use a new label for each new message.

3 Attack on the LaPS Scheme

We begin by pointing out a flaw in the security proof that reduces the security
guarantee to a setting where only one ciphertext can be encrypted. (Note that
this does not yet show that the scheme is actually insecure, for this we also
need the next step.) We proceed by presenting two attacks on the scheme, which
violate the claimed security property [1, Def. 6] of [1]. In particular, the authors
stress that they do not need to rely on the encrypt-once restriction (cf. [1, p. 3])
and the aggregator obliviousness definition they claim for their scheme allows for
as many encryption queries as the adversary chooses. Our first attack allows the
aggregator to decrypt messages under certain circumstances. The second attack
enables the aggregator to compute the secret keys of the clients, given sufficient
ciphertexts.

The first attack only needs two ciphertexts of the same client, the second
attack needs a lot more ciphertexts. Nevertheless, e.g. in the setting of privacy
preserving smart-metering new ciphertexts are sent regularly over a long period
of time. Thus, also the second attack is of practical concern.

3.1 The LaPS Scheme

Here we give a rough overview of the LaPS PSA scheme, cf. [1] for more details.
Let DZa

q ,σ
be the Gaussian distribution over Za

q with standard deviation σ.
Let G be a gadget matrix and DΛ⊥

vi
(G),σ the Gaussian distribution over the

lattice Λ⊥
vi
(G). For ei ← DΛ⊥

vi
(G),σ an important property is that G · ei =

vi. The vector vi is the encryption of the message xi under an asymmetric
additively homomorphic encryption scheme (Genahom,Encahom,Decahom) that has
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pseudorandom ciphertexts and where the addition of plaintexts corresponds to
the addition of ciphertexts. In [1] it is instantiated with the BGV encryption
scheme which satisfies these properties. Note that LaPS does not have labels.

The scheme with security parameter λ is shown in Figure 2. The public param-
eters are a uniformly random matrix A and the public key of the homomorphic
encryption scheme. The secret keys of the clients are simply random vectors in
Zλ
q . The aggregator’s key is the sum of these vectors and the secret key of the

homomorphic encryption scheme. To encrypt a value, a client first encrypts this
value with the homomorphic encryption scheme and then samples an error term
from a Gaussian distribution that is defined via the ciphertext of the homomor-
phic encryption scheme. The PSA ciphertext then is the LWE sample created
with the client’s secret vector, the matrix A and the error term. To decrypt, the
aggregator adds all ciphertexts and subtracts their secret key multiplied with A.
They then multiply the resulting vector with the gadget matrix G and decrypt
the result with the secret key of the homomorphic encryption scheme.

Setup(1λ, 1n) :

sample A as uniformly random matrix

for i ∈ [n] : si ←$ Zλ
q

(pkahom, skahom)← Genahom(1
λ)

pp := (A, pkahom)

sk0 := (skahom,
∑

i∈[n]si)

return (pp, sk0, {si}i∈[n])

Enc(pp, si, xi) :

vi ← Encahom(pkahom, xi)

ei ← DΛ⊥
vi

(G),σ

ci = s⊤i A+ e⊤
i mod q

return ci

AggrDec(pp, sk0, {ci}i∈[n]) :

parse sk0 = (skahom, s =
∑

i∈[n]si)

e =
∑

i∈[n]ci − s⊤A

return Decahom(skahom,G · e mod q)

Fig. 2. The LaPS scheme.
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3.2 Flaw: Treating Encryption Queries as Corruption Queries

Here we describe a flaw in the security proof of [1, pp. 15 sq.], which comes about,
because encryption queries are treated as corruption queries in the proof. This
makes the adversary much weaker and, therefore, invalidates the proof.

In the proof of AO security of the LaPS scheme, queries of the form Enc(i, xi)
are treated as corruption queries Corrupt(i). We will refer to this modified game
as the corruption-only aggregator obliviousness (AOco, cf. Definition 3) game,
and to the regular aggregator obliviousness game as AO game2. In [1] the authors
claim that using the AOco game instead of AO game is a valid adaption, because
it gives more power to the adversary. However this is not true. It reduces the
choice of the adversary and makes them therefore weaker.

They then show security by a reduction of the augmented learning with errors
(A-LWE) problem from [6] to the AOco game. This means that an adversary
on the AOco game can be turned into an adversary on the A-LWE problem. To
show AO security, it would have been necessary to additionally show that an
adversary on the AO game can be turned into an adversary on the AOco game.
By transitivity this would have meant that an adversary on the AO game could
be turned into an adversary on the A-LWE problem. However, in [1] the authors
claim that an adversary on the AOco game can be turned into an adversary
on the AO game. This is correct, but is exactly the opposite direction of what
would have been necessary to show. Figure 3 shows how the relation between the
attackers is in [1] and how the relation would have had to be for the proof to go
through.

AAOco

AAO AA-LWE

AAO

AAOco

AA-LWE

Necessary for proof Actual

Fig. 3. Graphs showing which kind of adversary can be turned into which kind of
adversary. On the left is the situations that would have been necessary for the proof to
be valid. On the right is the actual situation from the proof.

2 In Appendix B, we show in Proposition 1 that a “trivial” one-time-pad PSA scheme
already satisfies the AOco-security notion, and in Proposition 2 we show that this
OTP construction is not AO-secure.
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So far, we have argued that the proof is lacking a reduction from the AOco

game to the AO game. Next we argue that the reduction is not only missing, but
that there exists no such reduction.

For an intuition of this fact, let us argue as follows: Restricting the adversary
to only ask corruption queries, instead of also allowing encryption queries, is
indeed a restriction, because corruption queries lead to stricter conditions on
what the adversary is allowed to do. If the adversary corrupts a user then they
are not allowed to include this user in the set U of the challenge query (due to the
first item of (∗)). Whereas if the adversary only asks an encryption query, they
are allowed to include this user in the challenge query3. Therefore, restricting an
adversary to only ask corruption queries severely reduces their options.

In more detail, the adversary A can only use honest users in the challenge
query and the only way that A can get ciphertexts from clients is through the
challenge query and through encryption queries. When encryption queries are
treated as corruption queries, the only way to get ciphertexts from honest users
is through the challenge query. However, since the challenge query can only be
asked once, A can get at most one ciphertext per honest user. Only guaranteeing
security as long as A does not see more than one ciphertext per client is a much
weaker security guarantee than allowing arbitrarily many ciphertexts. Hence, by
treating encryption queries as corruption queries the security model is essentially
diminished to a model in which a one-time-pad construction is secure, shown
more verbosely in Appendix B.

The above flaw appears in the security proofs of two other papers on PSA
[9, 10]. In both cases encryption queries are treated as corruption queries, which
highlights the importance of clarifying the situation and showing that this
simplification is not valid.

The origin of the flaw. We note that Shi et al. [14] also treat encryption
queries as corruption queries in one step in their proof of AO security. However,
they do so only for the challenge label, i.e. the label that is specified in the
challenge query. They justify this with the same wrong argument that this step
makes the adversary stronger. However, in their situation this query replacement
is actually legitimate.

This is because their scheme uses labels and requires the encrypt-once restric-
tion, which only allows one encryption or challenge query per user and label. They
treat encryption queries as corruption queries only for the label for which the
challenge query is asked. Because of the encrypt-once restriction, the adversary
is not allowed to ask encryption queries on the challenge-label for users that are
included in the challenge query. Therefore, asking a corruption or encryption
query for the challenge-label results in the same conditions for the adversary.
Hence, this step is valid, albeit for a different reason than given in [14].

3 Although with encrypt-once the challenge query must be for a different label as the
encryption query
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3.3 First Attack: Decrypting Messages

Here, we describe the attack that allows the aggregator to decrypt individual
messages. It also enables an adversary to win the AO game. Waldner et al.
[17] already pointed out a weakness, not of the scheme itself (as it only makes
black-box use of the 3-tuple of PSA algorithms), but of the exact security notion
as formalized in [1] that allows an attacker to win the AO security game. Note,
however, that this is due to the incorrect formulation of the balance condition in
[1]. In contrast our attack also works with respect to the correct formulation of
the AO security game.

With our attack, the aggregator (or, more formally, the adversary corrupting
the aggregator) can compute the difference of two plaintexts of any individual
client. For the attack they only need two ciphertexts of that client. This also
means that when the attacker knows one of the plaintexts they can immediately
compute the other plaintext. Note that getting the aggregation key does not
directly allow an attacker to decrypt individual ciphertexts but only to compute
the sum of the client’s values for epochs in which all clients submit a ciphertext.
Our attack already works if only one client submits two ciphertexts, even if all
other clients do not submit a ciphertext. Thereby, our attack in fact violates the
guarantees provided by the security notion (and is not covered by the inherent
leakage as given in Section 2.3).

Let ci and c′i be the encryptions of xi and x′
i of client i as described in Figure 2.

The aggregator computes

ci − c′i = s⊤i A+ e⊤i − s⊤i A+ ei
′⊤ mod q = e⊤i − e′⊤i mod q.

Then they use the result to compute

G(e⊤i − e′⊤i ) mod q = Ge⊤i −Ge′⊤i mod q = vi − v′
i mod q.

Because the aggregator knows skahom, they can decrypt this value to get

Decahom(skahom,vi − v′
i mod q) = Decahom(skahom,vi)− Decahom(skahom,v

′
i)

= xi − x′
i mod q.

To win the AO game using this attack, the adversary proceeds as follows.
First they corrupt the aggregator. Then they ask an encryption query for an
arbitrary message xi and arbitrary user i, and receive the ciphertext ci as answer.
Then they ask a challenge query for user i and an arbitrary user j, that is with
U = {i, j} and x0

i ̸= x1
i and x0

i + x0
j = x1

i + x1
j and get the ciphertexts ci, cj as

answer. The challenge messages for user j are only there to satisfy the balance
condition. The adversary now uses the attack as described above to decrypt the
challenge message ci.

Discussion. Although this attack seems quite generic, its usefulness is often
limited. The common scenario for PSA is that the aggregator gets ciphertexts
from all clients and is then able to compute the sum of the clients’ values.
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Suppose the aggregator has ciphertexts ci from all clients and additionally a
second ciphertext c′i∗ from user i∗ for a known plaintext x′

i∗ . Then, the aggregator
can decrypt the sum of the ciphertext, once with i∗’s first ciphertext ci∗ and
once with i∗’s second ciphertext c′i∗ . The difference of the sums is xi∗ − x′

i∗ , from
which the aggregator gets xi∗ by adding x′

i∗ . This works for all PSA schemes by
the property of the sum functionality. We have discussed this issue in Section 2.3.
Thus, the only situation in which the aggregator has an advantage through the
described attack is when at least one client does not send a ciphertext. In that
case the aggregator can compute the difference of the client’s plaintexts with our
attack, but not by using their aggregation capability.

3.4 Second Attack: Getting the Secret Key

In this section we show that, given enough ciphertexts, the aggregator can
compute the individual clients’ secret keys. This is possible, because the scheme
uses the product of the LWE secret and matrix s⊤A multiple times with different
error terms. However, the LWE assumption only promises pseudorandomness,
if a fresh a is used for each sample. Therefore, it is not surprising that this
allows for an attack on the scheme. This construction mistake was not caught
because, as illustrated above, the reduction in the proof is missing a tackling of
the encryption queries (as it is only showing AOco security).

When there are enough samples s⊤A+ el and one takes their average, the
errors cancel out with high probability and the aggregator is able to recover s⊤A.
Intuitively, when more and more samples are added to the average, the error
distribution gets narrower and narrower until the error is likely to be zero. From
s⊤A the aggregator can than compute s by Gaussian elimination.

The attack. Remember that a ciphertext for user i is computed as ci = s⊤i A+e⊤i
(the message is encoded in the error term). The attack works as follows: The
adversary A collects all ciphertexts for a certain user i∗. Let {c1i∗ , . . . , cti∗} be the
ciphertexts that A collected. The adversary computes

1

t
·
∑
k∈[t]

cki∗ =
1

t
(t · s⊤i∗A+

∑
k∈[t]

eki∗) = s⊤i∗A+
1

t

∑
k∈[t]

eki∗ .

The adversary then hopes that 1
t

∑
k∈[t] e

k
i∗ = 0 and uses Gaussian elimination

to recover si∗ . Next we provide a rough sketch of an analysis of the success
probability of the attack.

The analysis. Note that this is only a sketch and that we make several simplify-
ing assumptions. In [1], the error vectors ei∗ are drawn from a multidimensional
Gaussian distribution with variance σ2. Let X be a random variable. We write
X ∼ N (µ, σ2) to express that X follows a Gaussian distribution with mean µ
and variance σ2. By Var[X] we denote the variance of X. Let X1, X2 ∼ N (µ, σ2)
be independent and identically distributed, then X1 +X2 ∼ N (2 · µ, 2 · σ2) and
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a ·X1 ∼ N (a · µ, a2 · σ2). This implies that averaging the sum of t independent
Gaussian distributions Xj ∼ N (µ, σ2) is 1

t

∑
j∈[t] Xj ∼ N (µ, 1

t ·σ
2). Chebyshev’s

inequality states for random variables X with finite mean µ and finite non-zero
variance Var[X] that for every ϵ > 0,

Pr[|X− µ| ≥ ϵ] ≤ Var[X]

ϵ2
.

We make a few simplifying assumptions. First, we use the continuous Gaussian
distribution in the analysis, although the LaPS scheme uses a discretized Gaussian
distribution. Second, for X ∼ N (0, σ2) we assume that the probability of the
discretized version of X being 0 is roughly Pr[|X| < 1/2], which is essentially
rounding X to integer values.

For the attack to succeed we need that the error terms vanish, i.e. 1
t

∑
k∈[t] e

k
i∗ =

0. Since this is a vector with λ entries, we first analyze for each entry the proba-
bility to be zero. The entries are drawn from Xj ∼ N (0, σ2), so for the average
of t samples we have 1

t ·
∑

j∈[t] Xj ∼ N (0, 1
t · σ

2). Let Y := 1
t ·

∑
j∈[t] Xj , then

Y ∼ N (µ, 1
t · σ

2) as explained above. We need to analyze the probability that
the discretized version of Y is equal to 0, which we assume to be Pr[|Y | < 1/2].
By Chebyshev’s inequality we get

Pr[|Y | < 1/2] = 1− Pr[|Y | ≥ 1/2] ≥ 1− Var[Y ]

(1/2)2
= 1− 4 ·Var[Y ] = 1− 4 · σ2

t
.

This is the probability that a specific entry of Y is 0. The probability that all λ

entries of Y are zero is (1− 4·σ2

t )λ. When the adversary has t = σ2 ·λ ciphertexts,
then the success probability is (1− 4

λ )
λ, which for large λ approaches e−4 from

below. For λ = 128 the success probability is ≈ 0.017.
For an LWE modulus q the standard deviation σ is strictly smaller than

q, so the variance σ2 is strictly smaller than q2. When the LWE modulus q is
polynomial in the security parameter λ, then σ2 · λ is polynomial in λ. This
implies that polynomially many ciphertext are sufficient for the attack to succeed
with probability roughly e−4.

4 Another Flaw in AO Security Proofs: Answer to the
Challenge Query

In this section we describe another flaw in AO proofs that appears in [16, 15, 1,
10, 9]. Our goal is to clarify the problem and, thereby, help to avoid it in the
future. In all of these papers the authors use a real-or-random version of the
AO game that we denote by AORoR. In the AORoR game the adversary submits
only one set of plaintexts in the challenge query and gets back encryptions either
of these plaintexts or of random plaintexts. The notion AORoR has some issues,
which we discuss in Section 5, but the flaw that we discuss in this section is
independent of these issues. The general proof structure is that the authors want
to use a hypothetical attacker A on the AORoR security of their PSA scheme
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to construct an attacker B that plays with a challenger C and can solve a hard
problem P (such as LWE). The attacker B answers A’s AORoR-game queries
(sometimes by asking queries to C) and at some point embeds C’s challenge in
the answers. At some other point, A will submit a guess b′ of whether they are
in the AORoR

real or the AO
RoR
random game. B simply forwards this guess b′ to their own

challenger C. The argument then is that B has the same advantage in solving
P as A has in the AORoR game. However, this argument does only hold, if B
perfectly simulates (depending on C’s challenge bit) either AORoR

real or AO
RoR
random.

In all the above mentioned papers this is not the case. This makes it possible
that A realizes that they are being used in a security reduction and then behave
in a way so that B cannot use them to break the problem P . This would not
impact A’s advantage on the AORoR game, but render A useless for breaking P ,
which invalidates the proof.

Let us zoom in on the technical details. We will describe the exact problem at
the example [16], which uses the Ring-LWE assumption [12], but the other papers
([1, 15, 10, 9]) have the same issue, although sometimes with different hardness
assumptions. We begin by summarizing the proof and then describe the flaw. The
Ring-LWE challenger C will select a random bit bC and provide B with Ring-LWE
samples (if bC = 0) or with uniform samples (if bC = 1). B tries to guess bC by
using an AORoR attacker A. B starts by randomly selecting two users j, k and
chooses PSA secret keys for all users except of j, k, i.e. for users i ∈ [n] \ {j, k}.
Let us look at the way B answers the (real-or-random) challenge query from A.
Upon receiving a query QChallenge(U , {xi}i∈U , l

∗)4, B encrypts all {xi}i∈U\{j,k}
with the previously chosen secret keys as {ci ← Enc(ski, xi, l

∗)}i∈U\{j,k}. For user
j, B encrypts xj by adding a sample v received from C as cj := v + xj . For user
k, B sets ck to the value that ensures that the aggregator can correctly decrypt
the sum of all plaintexts.

When bC = 0 then the sample v that B uses to encrypt xj is a Ring-LWE
sample, whereby cj is indeed a valid encryption of xj . The ciphertexts of the other

clients are also valid encryptions of xi and, thus, B perfectly simulates AORoR
real .

When bC = 1 then v is a uniform sample and cj := v+ xi is uniformly random as
well. This can also be seen as an encryption of a random value and, thus, cj (and

also ck) is as in AORoR
random. However, the ciphertexts {ci}i∈U\{j,k} are created

as {ci ← Enc(ski, xi, l
∗)}i∈U\{j,k} regardless of bC. Thus, these ciphertexts are

always as in AORoR
real . Therefore, in the case that bC = 1, two ciphertexts are as in

AORoR
random and the others are as in AORoR

real . Hence, B does not properly simulate
AORoR

random. As described above, this can allow A to realize that they are being
used in a security reduction and then behave as described next.

Let us illustrate the above problem by describing an attacker A with advantage
(close to) 1 in the AORoR game, where the above described Ring-LWE attacker B
has advantage 0 in distinguishing Ring-LWE samples from uniform. Let A be an
attacker that always wins the AORoR game, e.g. because they are able to reliably
decrypt the PSA ciphertexts of individual clients. A would choose plaintexts
{xi}i∈[n] and a label l∗ and send a challenge query QChallenge(U = [n], {xi}i∈U , l

∗)

4 We omit the noise ri as it plays no role in the security analysis.
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to B. After receiving back the challenge ciphertexts {ci}i∈[n], A would decrypt all
of them. If the decrypted plaintexts match the {xi}i∈[n], then A outputs b′ = 0

indicating that they think they are in the AORoR
real game. If all but two of the

decrypted plaintexts match the {xi}i∈[n] then A knows that they are neither

in AORoR
real nor in AORoR

random and outputs b′ = 0. Thus, B will always guess that
bC = 0, regardless of the actual value of bC , which gives B an advantage of 0. If
all the challenge ciphertexts turn out to be encryptions of random plaintexts, A
guesses b′ = 1 and, therefore, has advantage close to 1.

In [16, 15], an additional and very similar flaw is present. In these papers
additionally the encryption queries are answered incorrectly. The encryption
queries for all clients except for j, k are answered with proper encryptions of
the plaintext, which is correct. However, the encryption queries for clients j, k
are answered by using the challenge from the Ring-LWE challenger C. When
C did send real Ring-LWE samples, then the ciphertexts of j, k are proper
encryptions as well. The problem arises when C sends random samples, because
then the ciphertexts of clients j, k are essentially random values. However, both
in AORoR

real and in AORoR
random the encryption queries should be answered with proper

encryptions and not with random values. As in the case of the incorrectly answered
challenge queries above, this can allow the adversary to avoid being used in a
security reduction.

However, note that despite of the flaws in the security proofs, we did not find
attacks on [16, 15, 10, 9] (as opposed to the attack on [1]).

5 On Real-or-Random Security Notions for Aggregator
Obliviousness

In [14], the security notion of PSA (aggregator obliviousness) has been defined
as a game where the adversary can submit two sets of challenge plaintexts and
gets the encryptions of the plaintexts from one of the sets. The adversary then
has to guess to which set the ciphertexts belong. However, in many papers,
e.g. [14, 1, 10, 15, 16, 9], a real-or-random version of the game is used in the
security proof, where the adversary submits only one set of plaintexts and the
challenger chooses to either encrypt these plaintexts or random plaintexts. We
will denote this game with AORoR and use AORoR

real and AORoR
random to denote whether

the challenger encrypts the real plaintexts or random plaintexts (this is analogous
to the definition of AO0 and AO1).

In this section we point out that AORoR as used in the literature is not well
defined and that it seems hard to fix the definition without changing at least the
input to the challenge query/oracle. We also strongly recommend not to use the
real-or-random version of aggregator obliviousness without first giving an exact
definition of it that solves the issue that we describe here.

In all the above-mentioned papers, AORoR is only described in a few sentences,
but not formally defined.5 The crucial question is how the balance-condition is

5 E.g. in [1] this is explained with only the following statement: “Secondly, we change
the challenge phase to its real-or-random version i.e. instead of having the adversary
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handled. Remember that in the AO game the balance-condition requires that, if
A can use the aggregator’s capability to compute the sum of the plaintext, then
the sum of both sets of plaintexts submitted by A in the challenge query needs
to be equal. Thus, in the AO game, the adversary is responsible for adhering to
the balance condition.

However, at the time when A asks the challenge query it is not necessarily
clear whether the balance condition needs to be fulfilled. For example A can first
ask a challenge query for all clients, i.e. U = [n] and later corrupt the aggregator.
At the time of the challenge query the balance condition did not need to be
fulfilled, but after A corrupted the aggregator, it does need to be fulfilled. In
this case it was the choice of A whether to submit a challenge query that would
adhere to the balance condition, i.e. satisfying

∑
i∈U x0

i =
∑

i∈U x1
i . However, it is

unclear how the challenger CRoR in the AORoR
random game would answer the challenge

query QChallenge(U , {xi}i∈U , l
∗). One option is that CRoR would encrypt random

{ri}i∈U . But then A could trivially win the game by corrupting the aggregator,
decrypting the sum of the plaintexts and checking if it matches the sum of the
submitted challenge plaintexts {xi}i∈U . The challenger could also choose random
ri with the constraint that

∑
i∈U ri =

∑
i∈U xi, thus, always adhering to the

balance condition. However, this is a restriction compared to the normal AO
game, where A can specify two sets of challenge messages with different sums. In
particular, when A submits a challenge query for a single user i∗, the challenger
in the AORoR

random game would have to choose r∗i = x∗
i making it impossible for

A to distinguish between AORoR
real and AORoR

random. So it is unclear whether such a
version of real-or-random security still implies AO security.

One way to fix the definition is to let A specify a bit bsum in the challenge
query, indicating whether A wants to receive challenge ciphertexts that adhere
to the balance condition. In more detail, in the AORoR

random game, when bsum = 1,
the challenger chooses random plaintexts {ri}i∈U with

∑
i∈U ri =

∑
i∈U xi. In

the AORoR
random game, when bsum = 0, the challenger chooses completely random

plaintexts. In the AORoR
real game, the challenger ignores bsum. Thereby, as in the

AO game, it would be A’s choice whether to adhere to the balance condition or
not. Formally, we have the following definition:

Definition 4 (Real-or-random aggregator obliviousness). Let the message
space of the PSA scheme be a group (G,+). We define the real-or-random
security notion of aggregator obliviousness via the security experiments AORoR

real

and AORoR
random given in Figures 4 and 5. In both games, the challenger runs Setup

and passes the public parameters pp to the adversary A. Then, the adversary
may adaptively query three oracles, where queries to the QEnc and the QCorrupt
oracle are handled exactly as in Definition 2. At the end, A outputs a guess α of
whether b = 0 or b = 1.

specify two sets of plaintext-randomness pairs {di, ri} and {d′i, r′i} and have her
distinguish between encryptions of either one, we let the adversary pick one set
{di, ri} and have her distinguish between a set of valid encryptions and a set of
random values in Zλ

q .”
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Here, instead of the normal balance condition (which is item 4 of condition
(∗)), we require the following condition (∗∗) in order to output α: If A has
corrupted the aggregator and Ql∗ ∪ CS = [n] then we require that bsum = 1.

We define A’s advantage as

AdvAO-RoR
A,PSA (λ, n) = |Pr[AORoR

real = 1]− Pr[AORoR
random = 1]|

A PSA scheme is real-or-random aggregator oblivious, if for every PPT adversary
A there is a negligible function negl such that for all sufficiently large λ it holds:

AdvAO-RoR
A,PSA (λ, n) ≤ negl(λ).

AORoR
real

(pp, {ski}i∈[n]0)← Setup(1λ, 1n)

α← AQCorrupt(·),QEnc(·,·,·),QChallengeRoR(·,·,·,·)(pp)

if items 1 to 3 of condition (∗) are satisfied (see p. 5)

if condition (∗∗) is satisfied (see p. 17)

output α

else

output 0

QChallengeRoR(U = {u1, . . . , um}, {xi}i∈U , bsum, l∗) :

return {Enc(ski, xi, l
∗)}i∈U

Fig. 4. The real part of the real-or-random aggregator obliviousness experiment and
the modified challenge oracle that we propose.

Note that our definition requires that the message space of the PSA scheme
is a group. Let us explain the problem that arises, when this is not the case. For
this paragraph, w.l.o.g. let U = [m] = {1, . . . ,m}. In the case of AORoR

random, when
the challenger C wants to choose random ri ∈ ZR with

∑
i∈U ri =

∑
i∈U xi =: X,

they choose {ri ←$ ZR}i∈[m−1] and set rm := X −
∑

i∈[m−1] ri. This ensures

that the {ri}i∈U are uniformly random with the only constraint that
∑

i∈U ri =
X. The problem arises when the message space is not a group. For example
consider the case where the message space is {0, . . . , 10} and the sum shall not
be computed modulo 10, but over the integers. When X is e.g. 4 and C chooses
{ri ←$ {0, . . . , 10}}i∈[m−1], then it is very likely that

∑
i∈[m−1] ri > 4, whereby

rm would need to be a negative number, which it not in the message space. One
option for the challenger would be to uniformly sample from the set of all tuples
(ri ∈ {0, . . . , 10})i∈U that satisfy

∑
i∈U ri = X. However, it is unclear how to do

this efficiently. Therefore, if one wants to define AORoR in a setting where the
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AORoR
random

(pp, {ski}i∈[n]0)← Setup(1λ, 1n)

α← AQCorrupt(·),QEnc(·,·,·),QChallengeRoR(·,·,·,·)(pp)

if items 1 to 3 of condition (∗) are satisfied (see p. 5)

if condition (∗∗) is satisfied (see p. 17)

output α

else

output 0

QChallengeRoR(U = {u1, . . . , um}, {xi}i∈U , bsum, l∗) :

if bsum = 0

for i ∈ U : ri ←$ G
if bsum = 1

for i ∈ U \ {um} : ri ←$ G

rum :=
∑
i∈U

xi −
∑

i∈U\{um}

ri

return {Enc(ski, ri, l
∗)}i∈U

Fig. 5. The random part of the real-or-random aggregator obliviousness experiment
and the modified challenge oracle that we propose. Here, in the penultimate line of the
challenge query, we require the message space to be a group. Otherwise, it is not clear
how to efficiently sample random elements, such that they sum to the sum of the xi.

message space is not a group one has to specify how the challenger can choose the
ri efficiently in a way that they are properly distributed. All in all, the definition
of AO security seems to be more robust than the definition of AORoR security.

Nevertheless, because our real-or-random definition may be useful in security
proofs, let us show that our version of the real-or-random AO security is equivalent
to AO security. Importantly, this does not automatically fix the affected security
proofs, because our version of AORoR is different in that it requires the attacker to
specify the bit bsum in the challenge query. Exploring how our definition of AORoR

can replace the not-well-defined definition of real-or-random security would be
worthwhile for future work.

Theorem 1. Let PSA = (Setup,Enc,AggrDec) be a private stream aggregation
scheme over a group G. Then, PSA is AO secure if and only if it is Real-or-
Random AO secure.

Proof. First we show that AO =⇒ AORoR, by giving a reduction B that uses an
attacker A on AORoR to win the AO game. First, B forwards the public parameters
pp to A. When A asks a corruption or encryption query, B simply forwards
this query to their AO challenger C. When A asks a query QChallengeRoR(U =
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{u1, . . . , um}, {xi}i∈U , bsum, l
∗), then B chooses {ri}i∈U as in the AORoR

random game.
Concretely, if bsum = 0, then the ri are completely random and if bsum =
1, then the ri are random conditioned on

∑
i∈U ri =

∑
i∈U xi. Next, B asks

a challenge query QChallenge(U = {u1, . . . , um}, {xi}i∈U , {ri}i∈U , l
∗) to C and

simply forwards the answer to A. When A submits a guess b whether they play
AORoR

real or AO
RoR
random, B simply forwards this guess to A. Note that if C’s challenge

bit is 0, then C answers with an encryption of the left messages, i.e. {xi}i∈U and,
thus, B perfectly simulates AORoR

real to A. If C’s challenge bit is 1, then C answers
with an encryption of the right messages, i.e. {ri}i∈U and, thus, B perfectly
simulates AORoR

random to A. Also note that B needs to fulfill the balance condition if
and only if A has to fulfill the balance condition, as they both ask the corruption
encryption and challenge queries for the same users. Finally, observe that B does
indeed fulfill the balance condition if A fulfills condition (∗∗), because if bsum = 1,
B makes sure that

∑
i∈U ri =

∑
i∈U xi. Thus, B has the same advantage as A.

Next, we show that AORoR =⇒ AO, by giving a reduction B that uses an
attacker A on AO to win the AORoR game. As before, B simply forwards the
corruption and encryption queries from A to C and gives the answers back to
A. When A asks a challenge query QChallenge(U , {x0

i }i∈U , {x1
i }i∈U , l

∗), B sets
bsum = 1, if

∑
i∈U x0

i =
∑

i∈U x1
i and bsum = 0, otherwise. Also, B chooses

b′ ←$ {0, 1}. Then B sends a challenge query QChallengeRoR(U , {xb′

i }i∈U , bsum, l
∗)

to C and forwards the answer to A. When A submits a guess b, B sets b∗ = 0
(meaning that B guesses AORoR

real), if b = b′. If b ̸= b′, then B sets b∗ = 1 (meaning
that B guesses AORoR

random). Finally, B sends b∗ to C. Because B sets bsum = 1 iff∑
i∈U x0

i =
∑

i∈U x1
i and B asks the corruption, encryption and challenge query

for the same set of users as A, B fulfills condition (∗∗) if A fulfills the balance
condition. The advantage of B is non-negligible, if A’s advantage is non-negligible.
To see this, observe that in the case that C plays the AORoR

real game, B perfectly
simulates the AOb′ game to A and that C correctly guesses b∗ = 0 iff A correctly
guesses b′. Hence, Pr[AORoR

real(λ, n,A) = 1] equals the probability that A wins the
AO game, which is at least 1

2 + µ(λ) for a non-negligible µ.

In the case that C plays the AORoR
random game, b will be independent from the

randomly chosen b′ and hence b = b′ (i.e. the output b∗) is uniformly random.
Hence, in this case, Pr[AORoR

random(λ, n,A) = 1] = 1
2 and B’s overall advantage is

1
2 + µ(λ)− 1

2 = µ(λ), which is non-negligible. ⊓⊔

To summarize, although the real-or-random version of AO security is widely used
in the literature, it turns out to not be well defined. We recommend to use the
standard AO security definition. However, for the case that a real-or-random
definition is desired and the message space is a group, with Definition 4 we offer
such a definition, which is equivalent to standard AO security.

6 Conclusion

There is an argument to be made that the nearer to actual employment a
published scheme is, the more important it is to make sure that its privacy
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guarantees actually hold true. When a patented scheme that was published at a
top-level security conference is attacked almost five years after its publication,
this might be particularly alarming.

While we are not aware of actual employments of this scheme, it used to be
the natural choice, if one wanted to use a post-quantum-secure private stream
aggregation. More importantly, the proof mistakes have spread to other papers.
We aim to rectify this situation, by not only attacking the original scheme and
tracking down the effects of the proof flaw in the overall PSA literature, but also
by furthering a discussion on the formulation and specification of the security
guarantees, such as on how or whether to use the real-or-random version of the
security game.
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computes the average of the model updates and sends the updated model back
to the clients. This process is usually repeated until the model is considered
good enough. A problem is that the aggregator learns the model updates of
the individual clients. This may allow the server to get information about the
(potentially privacy sensitive) data of the clients via model inversion attacks.
By using a PSA scheme to allow the server to only learn the sum of all clients’
updates, this threat can be alleviated.

In [8] the authors essentially use the PSA scheme of [1] and the same attacks
are possible there. This means that the server (i.e. the aggregator) can learn
the differences of the clients’ model updates. Furthermore, the server can, given
enough ciphertexts, compute the secret keys and, thus, decrypt all ciphertexts.
This makes the additional security guarantees void and again allows the server
to perform model inversion attacks to recover the sensitive training data of the
clients.

This can be quite problematic. Assume for example that the machine learning
model is a neural network that is being trained for use in an biometric authentica-
tion system. The training data would consist of the biometric data of the clients
(e.g. face images or voice data). Keeping this data private is very important, as
it can easily reveal sensitive attributes like age and gender, but may also allow
to infer the client’s health condition. Another, less immediate, danger is that the
server may learn the biometric information, which the clients would later use
for biometric authentication. Thus, the server (or anyone who steals the servers
data) can potentially impersonate many clients.

B AOco security is trivially achievable

In this section, we remark that AOco security is an insufficient, weak security
notion and that a PSA scheme with this level of security can already be achieved
using a very simple one-time pad construction. Importantly, this scheme would
become very insecure in actual practice, where the secret keys (one-time pads) of
the clients are likely to be used multiple times. (This multiple use in the AOco

game will lead to the adversary loosing, and hence they cannot win with such a
move). The scheme has already been described textually in a footnote 9 in [17].
Here we formally write down the scheme and give a security proof.

For illustration, let us give the construction in Figure 6 and the corresponding
simple security proof. At the setup, each client gets a random value, and the
aggregator gets the (additive inverse of the) sum of these (the aggregator key).
For encryption of the clients plaintexts, we just mask them with the respective
key. The decryption of the aggregator proceeds by summing all ciphertexts and
adding their key. Syntactically, we define the scheme with support for labels, but
these are ignored in the encryption step. Hence, even if one were to only encrypt
once per label, the one-time-pad would be used multiple times, which makes the
scheme insecure in actual practice. (As discussed before, the security notion is
not strong enough to capture this.)
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Setup(1λ, 1n) :

for i ∈ [n] : ski ←$ Zq

sk0 := −
∑

i∈[n]ski

pp := q (the modulus)

return (pp, sk0, {ski}i∈[n])

Enc(pp, ski, xi, l) :

return xi + ski

AggrDec(pp, sk0, l, {ci}i∈[n]) :

return
∑

i∈[n] ci + sk0

Fig. 6. A “trivial” PSA construction, where the clients’ ciphertext is encrypted via a
one-time pad.

Proposition 1. The PSA scheme given in Figure 6 is a perfectly AOco-secure
PSA scheme (with labels).

Proof. Correctness holds, as for any security parameter λ, and any number
of clients n, any (pp, sk0, {ski}i∈[n]) in the image of Setup(1λ, 1n), and for any
{ci}i∈[n], where for each i ∈ [n], ci is from the image of Enc(pp, ski, xi, l), where
xi ∈ Zq and l is a label, it holds that

AggrDec(pp, sk0, l, {ci}i∈[n]) =∑
i∈[n]

(xi + ski) + sk0 =
∑
i∈[n]

xi +

∑
i∈[n]

ski + sk0

 =
∑
i∈[n]

xi.

For security, observe that everything is perfectly masked with a one-time
pad and re-use of the keys is prevented due to the balance condition and by
disallowing Enc-queries. More formally, we argue that the games AOco

0 (λ, n,A)
and AOco

1 (λ, n,A) are perfectly indistinguishable for any (unbounded) adversary
A, as follows.

For notation, note that the set Ql∗ of users from the challenge query and the
encryption queries for label l∗ (see Definition 2) simplifies to Ql∗ = U (because
there are no encryption queries), where U ⊆ [n] is the set of clients in the challenge
query. As before, CS ⊆ [n] denotes the set of indices asked in corruption queries.
We distinguish two cases.

Case 1: The balance-condition needs to be fulfilled. In this case, the
adversary A has corrupted the aggregator and U ∪ CS = [n], i.e. A got either the
secret key or a ciphertext from every party. Now, {ski}i∈[n]0 is a perfect additive
(n+ 1)-out-of-(n+ 1)-secret sharing of 0. Therefore, the challenge ciphertexts
together with the other secret keys

S0 := {c0i = x0
i + ski}i∈U ∪ {ski}[n]0\U and

S1 := {c1i = x1
i + ski}i∈U ∪ {ski}[n]0\U

is a perfect secret sharing of
∑

i∈U x0
i and

∑
i∈U x1

i , respectively. Because the
balance-condition requires both sums to be equal, S0 and S1 are both a perfect
secret sharing of the same value and, thus, perfectly indistinguishable.
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Case 2: The balance-condition does not need to be fulfilled. In this case,
the aggregator is not corrupted or U ∪CS ≠ [n]. The intuition for the proof is that
the secret keys are an additive (n+1)-out-of-(n+1)-secret sharing of 0. However,
A is lacking at least one share and, thus, has no information about the secret
keys, whereby the challenge ciphertexts are proper one-time-pad encryptions.

In the AOco game the adversary can only ask corruption queries and one
challenge query and A is not allowed to specify corrupted users in the challenge
query. If the aggregator is not corrupted, the client secret keys ski are independent
and uniformly random values for A. Therefore, before asking the challenge query,
A has no information about the secret keys of the non-corrupted clients. In the
challenge query, A gets exactly one ciphertext per (non-corrupted) user in U .
Because Enc is a one-time-pad, the challenge ciphertexts {c0i = x0

i + ski}i∈U and
{c1i = x1

i + ski}i∈U are identically distributed.
If the aggregator is corrupted, but U ∪ CS ̸= [n], there is at least one client

i∗ that is neither corrupted nor in U . Therefore, {ski}i∈[n]0\{i∗} are independent
and uniformly random values from A’s point of view. Thus, the above argument
applies again that the answers to the challenge query {c0i = x0

i + ski}i∈U and
{c1i = x1

i + ski}i∈U are one-time-pad encryptions where A has no previous
information about the secret keys {ski}iU (due to (∗)) and, thus, are identically
distributed. ⊓⊔

Note that this scheme could even be said to support (arbitrary many) labels
(which are effectively ignored, however), as the labels are only relevant for
encryption and challenge queries, where the former are not allowed in the weak
security game and the latter are allowed exactly once, hence ciphertexts are
learned for exactly one label. In the construction, the secret keys are exactly one
element in Zq (where the client secret keys could be compressed to a string of
length λ using a pseudorandom number generator (PRG), if q is larger that λ,
reducing the security to the computational notion).

However, we remark that the trivial scheme does not feature full AO-security
as follows:

Proposition 2. The PSA scheme given in Figure 6 is not (computationally)
AO-secure (with labels).

Proof. Consider the following attack of a PPT adversary A:

1. A receives the public parameters pp from the challenger and asks an encryp-
tion query for an arbitrary user i∗ on message xi∗ = 0 and an arbitrary label
l. The challenger returns ci∗ = xi∗ + ski∗ = ski∗ , so now A knows ski∗ .

2. A asks a challenge query for U = {xi∗} on a different label l∗ with x0
i∗ ̸= x1

i∗ .
The challenger returns cbi∗ = xb

i∗ + ski∗ .
3. Because A knows ski∗ , they can compute cbi∗ − ski∗ = xb

i∗ , check whether this
is equal to x0

i∗ or x1
i∗ and then submit b to the challenger.

Because A’s queries adhere to condition (∗), A always wins the AO game. ⊓⊔
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