
Time is not enough: Timing Leakage Analysis on
Cryptographic Chips via Plaintext-Ciphertext

Correlation in Non-timing Channel
Congming Wei1, Guangze Hong1, An Wang1, Jing Wang1, Shaofei Sun1,

Yaoling Ding1, Liehuang Zhu1 and Wenrui Ma1

Beijing Institute of Technology, Beijing, China
weicm@bit.edu.cn,honggz@bit.edu.cn,wanganl@bit.edu.cn,wangjing9624@163.com,sfsun@

bit.edu.cn,dyl19@bit.edu.cn,liehuangz@bit.edu.cn,mawenrui@zjgsu.edu.cn

Abstract. In side-channel testing, the standard timing analysis works when the ven-
dor can provide a measurement to indicate the execution time of cryptographic algo-
rithms. In this paper, we find that there exists timing leakage in power/electromagnetic
channels, which is often ignored in traditional timing analysis. Hence a new method
of timing analysis is proposed to deal with the case where execution time is not avail-
able. Different execution time leads to different execution intervals, affecting the
locations of plaintext and ciphertext transmission. Our method detects timing leak-
age by studying changes in plaintext-ciphertext correlation when traces are aligned
forward and backward. Experiments are then carried out on different cryptographic
devices. Furthermore, we propose an improved timing analysis framework which
gives appropriate methods for different scenarios.
Keywords: Timing analysis · Side-channel analysis · Timing leakage · Plaintext-
ciphertext correlation

1 Introduction
Side-channel analysis (SCA) has drawn increasing attention in the security community,
which exploits side-channel information such as execution time [1], power consumption [2],
electromagnetic (EM) radiations [3] and cache [4]. Timing analysis is one of the most
common side-channel analysis which only needs to measure time information to attack
cryptographic systems. The idea of timing analysis comes from the fact that changes of in-
puts will lead to differences in running time. By taking advantage of the time that devices
take to run under different inputs, secret keys are successfully recovered with statistical
analysis [1,5–7]. Besides, timing attack can even be carried out remotely, making it more
stealthy and dangerous [8–10].

Since it is simply not feasible to apply all possible attacks to verify the security of
cryptographic devices, testing laboratories need a standard method that performs fast
and reliable side-channel evaluation of a given product. ISO/IEC 17825 (Testing methods
for the mitigation of non-invasive attack classes against cryptographic modules) [11] is the
main publicly available standard that focuses on vulnerabilities for non-invasive attacks
against devices at security level 3 or 4. Therefore, from the perspective of academia and
industry, the design of ISO/IEC 17825 test methods has received close attention [12–14].

ISO/IEC 17825 specifies a testing method for timing analysis (as we describe in Sec-
tion 2.1) to test whether cryptographic modules meet the requirement in the ISO stan-
dard ISO/IEC 19790 [15]. However, there still remain some open problems when applying

mailto:weicm@bit.edu.cn, honggz@bit.edu.cn, wanganl@bit.edu.cn, wangjing 9624@163.com, sfsun@bit.edu.cn, dyl19@bit.edu.cn, liehuangz@bit.edu.cn, mawenrui@zjgsu.edu.cn
mailto:weicm@bit.edu.cn, honggz@bit.edu.cn, wanganl@bit.edu.cn, wangjing 9624@163.com, sfsun@bit.edu.cn, dyl19@bit.edu.cn, liehuangz@bit.edu.cn, mawenrui@zjgsu.edu.cn

2
Time is not enough: Timing Leakage Analysis on Cryptographic Chips via

Plaintext-Ciphertext Correlation in Non-timing Channel

ISO/IEC 17825 to a cryptographic module in practice.

1. How do we collect timing leakage?
The testing method is based on a precondition that testing laboratories are able to
measure execution time when performing timing analysis. In fact, leakage measure-
ment and processing depend on cryptographic modules. Unfortunately, the leakage
measurement part is not mentioned in the standard.

2. Is the testing method reliable?
Even if the execution time has been successfully measured, we have to consider how
accurate the execution time is when it comes to the reliability of timing analysis.
If the measurement is not accurate enough, it seems inappropriate to claim that a
cryptographic module passes the timing analysis test.

3. Is execution time the only timing leakage?
Ideally, the general method could be able to detect whether the device under test is
vulnerable to timing attacks or not. However, when the execution time is imprecise
or simply impossible to measure, it is indeed infeasible. Instead, the introduction of
non-traditional measurement methods is a powerful complement to standard timing
analysis. Although there are several combined attacks which determine execution
time of some particular operations by exploiting power consumption [16–18], timing
leakage from other channels often goes ignored in timing analysis.

Considering the above questions, we aim to put forward a new leakage analysis frame-
work for timing analysis to deal with scenarios where the conventional timing analysis
method works ineffectively. It is worth noting that the new framework should include
timing analysis of both time and other channel information. For cases where the exe-
cution time is difficult to measure, we perform timing analysis with the help of timing
leakage derived from power consumption and electromagnetic radiation information. The
idea originated from trace alignment, a technique commonly used before statistical anal-
ysis when we perform power analysis and electromagnetic analysis. We observed that
in process of trace alignment once traces are aligned at the beginning of the encryption,
the difference in execution time to a great extent leads to the traces being misaligned at
the end, even though the misalignment may not be significant. Naturally, it occurs to
us whether timing analysis could be performed by detecting misalignment of side-channel
traces.

In this paper, we focus on timing leakage in the power/EM channels as a supplement
to timing channel. To this end, we put forward a kind of timing analysis testing method
based on power/EM trace alignment. This approach is based on the observation that the
length of the execution segment in a power/EM trace is determined by the execution time
of encryption. In other words, while traces are well aligned at the beginning (or the end),
whether they are aligned at the end (or the beginning) depends on whether execution times
are consistent or not. In this way, trace alignment can be used to determine whether there
is timing leakage in power/EM traces. We do not claim that our method is superior and
can replace standard methods, but we do believe that the length difference in traces could
help testers to perform timing analysis when leakage in the timing channel is inaccurate
or even unavailable.

For different devices under test, we should choose methods that are general enough to
detect trace alignment. In particular, when there are no significant differences in execution
segments, leakage detection is expected to provide statistical analysis as much as possible
and to be largely independent of visual observation. To this end, our method uses plain-
ciphertext correlation analysis to determine the position of the execution segment, and
then detects the alignment before and after the execution segment. It is obvious that

Congming Wei, Guangze Hong, An Wang, Jing Wang, Shaofei Sun, Yaoling Ding,
Liehuang Zhu and Wenrui Ma 3

Start

Measure execution time with

different CSPs and fixed text

Perform statistical analysis to see

if it shows dependency between

execution time and the CSP used

Execution time is measured

continuously with a fixed

CSP and text. The average

and variance of the time is

calculated. The same

operation is repeatedly

performed with other CSPs

Measure execution time with

different texts and fixed CSP

Perform statistical analysis to see

if it shows dependency between

execution time and the text used

[Shows dependency]

[Does not show

dependency]

Execution time is measured

continuously with a fixed

CSP and text. The average

and variance of the time is

calculated. The same

operation is repeatedly

performed with other texts

Pass
Fail

[Shows dependency]

[Does not show

dependency]

Figure 1: Timing analysis in ISO/IEC 17825

the plain-ciphertext correlation is higher in the trace-aligned case than in the unaligned
case. Thereafter, we give a general measure by using statistical analysis such as Fisher
transform and p-value.

Furthermore, we put forward a timing analysis framework which divides target devices
into three scenarios and presents a testing method for each scenario. For the first scenario
where the cryptographic device is triggered through a GPIO interface or I/O signal, we
first propose an I/O channel-based method that details the time measurement process,
which is omitted by the previous timing analysis. For the second scenario where high
signal-to-noise ratio (SNR) power/EM traces are available, our method via plaintext-
ciphertext correlation analysis is adopted. For other scenarios, we use a method based on
average denoising by detecting communication between computers and devices. The most
prominent contribution of our framework is that testing laboratories have the flexibility
to choose testing methods as needed, which makes timing analysis more complete.

2 Preliminaries

2.1 Timing Analysis in ISO/IEC 17825
ISO/IEC 17825 specifies a side-channel resistance test framework including standard tim-
ing analysis, simple power analysis and differential power analysis (DPA). Here we only
introduce the timing analysis testing method.

As shown in Figure 1, the timing analysis testing method in ISO/IEC 17825 consists
of two stages. In the first stage, execution time is measured with different secret keys
and a fixed plaintext. Using n secret keys we could obtain n respective execution times,
then perform statistical analysis to show if statistical characteristics of n execution times

4
Time is not enough: Timing Leakage Analysis on Cryptographic Chips via

Plaintext-Ciphertext Correlation in Non-timing Channel

P1

P2

Pn

…

C1

C2

Cn

…

Plaintext

…

Ciphertext Trace

Correlation

HW(·)

P1

P2

Pn

…

C1

C2

Cn

…

Plaintext

…

Ciphertext Trace

Correlation

HW(·)

(a) Plaintext correlation analysis (b) Ciphertext correlation analysis

Figure 2: Plaintext-ciphertext correlation analysis

are consistent or not. The testing result is Fail if execution times vary considerably
according to different secret keys. Otherwise, the test proceeds to the next stage. In the
second stage, execution time is measured with different plaintexts and a fixed secret key.
Again, execution times are treated through statistical analysis. If the results do not show
dependency between execution time and plaintexts, the test passes; otherwise, it fails. In
the standard, two execution times T1 and T2 are compared by computing |T1 − T2|. The
difference between T1 and T2 can be tolerant only when |T1 − T2| < ε where ε equals a
clock cycle.

2.2 Plaintext-Ciphertext Correlation Analysis
When detecting similarity in side-channel analysis, correlation is one of the most popular
distinguishers, widely used in both vertical [19] and horizontal attacks [20]. The Pearson
correlation coefficient of two random variables is defined as the covariance of two variables
divided by their standard deviations:

ρX,Y = Cov(X, Y)
σXσY

= E[(X − X̄)(Y − Ȳ)]
σXσY

, (1)

where X̄, Ȳ , σX , σY stand for the average and standard deviation of X and Y .
The plaintext correlation analysis is a vertical side-channel analysis, which exploits

each column of sample points in traces. The Pearson correlation coefficient is applied to
exhibit the relationship between measured leakage and calculated values derived from a
leakage model. Taking the Hamming weight as a model, in the case when N traces are
collected, N Hamming weights H(Mi) are calculated for messages Mi, 0 ≤ i < N . Then
for each column of sample points T∗,j , we have

ρH(M),T∗,j
= Cov(H(M), T∗,j)

σH(M)σT∗,j

. (2)

As shown in Figure 2, performing plaintext correlation analysis on all sample points
produces a correlation coefficient curve. The significant peaks exhibit points that have a
strong correlation with plaintexts.

Similarly, ciphertext correlation analysis applies the Pearson correlation coefficient to
show the relationship between sample points T∗,j and ciphertexts C. The correlation
coefficient is defined as follows:

ρH(C),T∗,j
= Cov(H(C), T∗,j)

σH(C)σT∗,j

. (3)

Congming Wei, Guangze Hong, An Wang, Jing Wang, Shaofei Sun, Yaoling Ding,
Liehuang Zhu and Wenrui Ma 5

The significant peaks in a ciphertext correlation coefficient curve exhibit points that have
a strong correlation with ciphertexts.

3 Timing Analysis Based on Plaintext-Ciphertext Correla-
tion Analysis

3.1 Timing leakage in Power/EM Channels
Traditional timing analysis can measure and analyze execution time to show if time is
dependent on secret information, which is natural and works in most cases where it is
easy to obtain execution time of encryption modules. However, in practice, execution
time can be unavailable or at least inefficient. For example, noise on the communication
interface may be very serious, which in turn affects timing accuracy. Besides, an IO
command can lead to multiple operations, not just encryption, resulting in timing results
with a number of noises. Even in the absence of these noises, side-channel countermeasures
like random delay could affect timing analysis. Once such a situation is encountered, our
best approach is to look for new analysis methods rather than directly declaring that the
device passed the test.

It seems that timing leakage does not only exist in traditional measurement, but there
is much to discover. A straightforward thought coming to our mind is whether we could
exploit timing leakage in other side channels, such as power and EM, in which cases lots
of work focused on power analysis and electromagnetic analysis have been put forward
while timing analysis is hardly considered. Thus, we take time information of traces into
account. Representing an interval from the beginning to the end of an algorithm as an
execution segment, it is obvious that the length of an execution segment depends on the
execution time. If plaintexts and secret keys are fixed, then the same operation should be
performed in a fixed amount of time in each encryption. If the cryptographic module uses
different plaintexts and secret keys, the same operation in the encryption process may
take inconsistent execution time due to different operands, resulting in different execution
segment lengths. The phenomenon that segment length can reflect time changes prompts
us to explore new methods for timing analysis.

The observed results further demonstrate the availability of time information in the
power traces. Figure 3a illustrates a series of power traces collected from a smart card
which performs the AES algorithm with different plaintexts. When we amplify the begin-
ning and the end of execution segments, it appears that traces are aligned at the beginning
of execution but clearly not aligned at the end, as shown in Figure 3b and Figure 3c. Intu-
itively, different plaintexts result in different execution segment lengths, that is, different
execution time. It is proved that there exists timing leakage in the power channel.

The above experiments show that power traces do help timing analysis testing since
timing leakage can be detected by analyzing execution segment lengths. The same ap-
plies to EM channels. Execution segments with different plaintexts have the same length
only when the cryptographic module produces no timing leakage. However, this result is
obtained by the naked eye, which only applies when the execution segment gap is large,
and in the next subsection we will provide a more reliable method to deal with complex
cases.

3.2 Detecting Timing Leakage with Correlation Analysis
Section 3.1 pointed out that timing leakage does not only exists in the timing channel but
can also be detected through power/EM traces. The execution segment length of a trace
could indicate the execution time. However, it is inaccurate to compare execution segment
length by visual observation. Besides, visual observation is too subjective to distinguish

6
Time is not enough: Timing Leakage Analysis on Cryptographic Chips via

Plaintext-Ciphertext Correlation in Non-timing Channel

(a) The whole traces

(b) Amplification at the beginning

(c) Amplification at the end

Figure 3: Three power traces collected from a smart card with different plaintexts. The
boxes indicate the beginning and end of the algorithm execution.

execution segments with similar length. In this section, we aim to find a metric to detect
timing leakage from power/EM traces.

The cryptographic operation generally consists of three parts, i.e., plaintext trans-
mission, encryption and ciphertext transmission. When plaintext correlation analysis is
performed, sample points relative to plaintext transmission and plaintext processing oper-
ations have high correlation with the Hamming weight of plaintext, as shown in Section 2.2.
Similarly, samples relative to ciphertext transmission and ciphertext processing operations
have high correlation with the Hamming weight of ciphertext. Assume that traces are well
aligned at the beginning of the cryptographic operation. If execution segments with differ-
ent plaintexts have the same length, then traces keep aligned in the ciphertext transmission
process, resulting in a high ciphertext correlation. Otherwise, traces are not aligned in
the ciphertext transmission process, which means that the ciphertext correlation will be
somewhat reduced.

Congming Wei, Guangze Hong, An Wang, Jing Wang, Shaofei Sun, Yaoling Ding,
Liehuang Zhu and Wenrui Ma 7

Start

Collect traces with random texts and several

secret keys

Perform horizontal static

alignment according to a segment

before the execution of the

cryptographic algorithm

Perform horizontal static

alignment according to a segment

after the execution of the

cryptographic algorithm

Perform plaintext-ciphertext

correlation analysis and merge the

results

Perform plaintext-ciphertext

correlation analysis and merge the

results

Truncate and perform statistical analysis to see if

it shows difference in correlation coefficients

Pass

[Does not show difference]

Fail

[Shows difference]

Figure 4: Timing analysis based on plaintext-ciphertext correlation analysis

3.3 Testing Process of Timing Analysis via Plaintext-Ciphertext Cor-
relation Analysis

Our trace-based timing analysis is to evaluate the difference in execution time by calculat-
ing changes of plaintext-ciphertext correlation. Large changes indicate that there exists
timing leakage.

We do timing leakage analysis using traces with different plaintexts and keys. Hence
the timing difference consists of three parts, namely, plaintext timing leakage, key timing
leakage and noises. The first two parts are leakages that need to be detected. Since
the execution times under fixed plaintext and fixed key is relatively stable, in our paper,
we assumed that plaintext and key timing leakages account for the majority of timing
difference and noises is negligible.

The testing process consists of four steps, as illustrated in Figure 4.

1) Power/EM trace measurement

Our method is based on high SNR power/EM traces. Here we assume that secret keys
of cryptographic algorithms could be changed. During the trace collecting process, traces
are measured continuously with different plaintexts and a fixed secret key. This operation
is repeated several times with different secret keys so as to obtain a trace set. Note
that traces should cover the whole execution, that is, the measurement is started before
plaintext transmission and stopped after ciphertext transmission.

2) Static alignment

Before performing correlation analysis, traces should be well aligned. High plaintext
correlation requires these traces to be aligned forward while high ciphertext correlation
requires them to be aligned backward. Misalignment will affect the position and shape of
peaks in correlation coefficient curves. Besides, since our purpose is to do timing analysis

8
Time is not enough: Timing Leakage Analysis on Cryptographic Chips via

Plaintext-Ciphertext Correlation in Non-timing Channel

(a) Forward Alignment (b) Backward Alignment

Figure 5: Trace alignment. The traces in blue are the initial traces, and the traces in
black are the ones after alignment.

testing, the static alignment is adopted, which makes traces moved without stretching
and compressing.

Static alignment selects one of traces as the reference trace.
During alignment, only a segment with significant peaks is considered as the reference.

By analyzing traces, for example, finding 10 rounds of AES, the execution interval can
be found. For forward alignment, the reference segments should be chosen before the
execution interval, while a segment after the execution interval is chosen for backward
alignment, which both do not include plaintext and ciphertext transmission. In this
way, the difference mainly comes from execution segments, which significantly reduces
the influence of reference points. Of course, when there are random delays after reference
points, the selection of reference points will affect the offset, so our method is not applicable
to random delays.

For each trace, the correlation between the reference segment and all segments within
the offset range is calculated. If the maximum correlation reaches the threshold, the
relative position with the maximum correlation is the offset value. Otherwise, the trace
is discarded. In order to get better results, a segment with significant peaks is usually
selected as the reference.

Our method needs two separate trace alignments. As shown in Figure 5, the forward
alignment selects a segment before the execution of cryptographic algorithms as the refer-
ence while the backward alignment selects a segment after the execution. The statistical
analysis below applies only to those aligned traces.

3) Plaintext-ciphertext correlation analysis

Plaintext-ciphertext correlation analysis consists of two parts, namely plaintext correla-
tion and ciphertext correlation. Our method performs analysis on forward-aligned and
backward-aligned traces and then merges the results.

As shown in Section 2.2, given the forward-aligned traces and their corresponding
plaintexts and ciphertexts, plaintext-ciphertext correlation analysis produces correlation
coefficient curves by calculating the Pearson correlation coefficients on each column of sam-
ple points. In general, plaintexts can be split, such as by bytes, with each part computed
separately. Thus, if multiple parts are considered, multiple correlation coefficient curves
are generated. The peaks on curves represent the sample points with high correlation. In
plaintext correlation analysis, we mainly focus on the peaks before the execution of al-
gorithms, corresponding to the plaintext transmission. In ciphertext correlation analysis,
ciphertexts can also be divided into some parts so that each of them produces a cipher-

Congming Wei, Guangze Hong, An Wang, Jing Wang, Shaofei Sun, Yaoling Ding,
Liehuang Zhu and Wenrui Ma 9

text correlation coefficient curve. Taking multiple parts will result in multiple curves.
The peaks of ciphertext correlation coefficient curves usually appear in the segments of
ciphertext transmission.

To facilitate the analysis, multiple correlation analysis curves need to be merged to
form a single curve. For each column of sample points, select the sample point with the
largest absolute value among all curves, and take its absolute value as the value of the
merged curve at that point. The new generated curve will contain all the peaks associated
with plaintext and ciphertexts.

Similarly, we perform plaintext-ciphertext correlation analysis on the backward-aligned
traces and obtain correlation coefficient curves. These curves are then merged to create a
new curve.

4) Truncation and comparison

In order to filter noises, merged curves should be truncated. A threshold is set such that
curves only retains the values of sample points greater than the threshold while the values
of sample points smaller than the threshold for both curves are set to zero. In this way,
only the points with high plaintext or ciphertext correlation are retained.

By calculating the difference between the truncated curves of forward-aligned and
backward-aligned traces, we can test whether there exists timing leakage. In order to
compare two truncated curves, we introduce the Fisher transform formula which has been
used in [21].

The Fisher transform is used in statistics to test hypotheses about correlation coeffi-
cients. It can transform variables that follow any probability distribution into Gaussian
normal distribution.

Definition 1. Given N pairs of variables (Xi, Yi), i = 0, 1, · · · , N − 1, the correlation
coefficient ρ is

ρ =
∑N

i=1 (Xi − X̄)(Yi − Ȳ)√∑N
i=1 (Xi − X̄)2

√∑N
i=1 (Yi − Ȳ)2

.

Then through the Fisher transform defined as

z = 1
2

ln
(

1 + ρ

1 − ρ

)
= arctanh(ρ),

the correlation coefficient is approximately transformed into a Gaussian distribution with
the standard deviation σ = 1√

N−3 .

Applying the Fisher transform to the two truncated curves, we obtain new curves with
each sample points approximately subordinate to a Gaussian distribution. This allows us
to compute the following p-value for a null hypothesis assuming the values of sample
points z1

i and z2
i in two curves are the same:

pi = 2 ×
(

1 − CDF

(
|z1

i − z2
i |

σ

))
. (4)

We set the threshold as 0.05, which corresponds to a 95% confidence for the decision
made.

If pi < 0.05, reject the null hypothesis, that is, the correlation coefficients of forward-
aligned and backward-aligned traces at this point are significantly different. Otherwise,
the correlation coefficients are similar. Hence if pi > 0.05 for all sample points (z1

i , z2
i),

then we claim that the timing analysis passes. Otherwise, it fails.

10
Time is not enough: Timing Leakage Analysis on Cryptographic Chips via

Plaintext-Ciphertext Correlation in Non-timing Channel

(a) Contact (b) Contactless

Figure 6: Trace acquisition platforms for contact smart cards and contactless smart cards

3.4 Comparison With TVLA
ISO/IEC 17825 specifies the Test Vector Leakage Assessment (TVLA) as the sole measure
to assess whether a cryptographic device is vulnerable to differential side-channel attacks.
TVLA divides traces into two groups, one for fixed and one for random inputs, and does
statistical analysis by means of the Welchs t-test.

Since each point in time is evaluated independently, TVLA has shortcomings when it
comes to horizontal patterns while our method is designed to exploit horizontal leakage.
Thus, although both make use of traces, the TVLA test in ISO/IEC 17825 cannot replace
our method. On the other hand, in the TVLA rule, cryptographic operations are assumed
to always occur at the same moment in each measurement.

In this way, for a single point with obvious leakage, the TVLA value may even become
smaller due to the error caused by the misalignment.

When there exists timing leakage in traces, that is, the cryptographic operations
take inconsistent execution time, the misalignment caused by different execution segment
length makes it easier for cryptographic devices to pass the TVLA test. As a result,
TVLA is not only difficult to detect timing leakage, but also reduces its effect due to
timing leakage. Section 4.7 will give an example of a cryptographic device that passes the
TVLA test while fails the timing analysis test based on plaintext-ciphertext correlation
analysis.

4 Evaluation Experiments
4.1 Measurement Setup
As shown in Figure 6a, a trace acquisition platform equipped with PicoScope 3403D oscil-
loscope, Mini-Circuits 1.9MHz low-pass filter and contact smart card reader is established.
Next, we built a trace acquisition platform for a contactless IC card, as shown in Figure 6b.

We also built trace acquisition platforms for Microcontroller Units (MCUs). The 8-bit
STC89C52RC Microcontroller Unit has 8k flash, 512-byte RAM and 12MHz crystal, as
shown in Figure 7a.

The STM32F429BIT6 is based on the ARM Cortex-M4 32-bit core operating at a
frequency of up to 180MHz, as shown in Figure 7b.

In order to validate our method, we performed experiments on different platforms
with different algorithms. We use several smart cards in our experiment. According to
the information provided by the manufacturer, smart card MMCrypt-21-002 labeled A
and smart card MMCrypt-21-006 labeled B are contact smart cards equipped with AES
and SM4 respectively, with a clock frequency of 24MHz. Smart card MMCrypt-21-007
labeled C is a contactless smart card configured with the DES algorithm and the clock

Congming Wei, Guangze Hong, An Wang, Jing Wang, Shaofei Sun, Yaoling Ding,
Liehuang Zhu and Wenrui Ma 11

(a) 8-bit (b) 32-bit

Figure 7: Trace acquisition platforms for MCUs

Table 1: Details of the experimental cases
Case 1 Case 2 Case 3 Case 4 Case 5

Platform Contact card Contact card Contactless card MCU MCU
Algorithm AES SM4 DES AES RSA
Protection Unprotected Unprotected Unprotected Masked Unprotected
Frequency 24MHz 24MHz 24MHz 12MHz 168MHz

Sampling Rate 5MHz 12.5MHz 125MHz 2.5MHz 12.5MHz
#Traces 9000 9000 9000 18000 1000
#Points 500000 80000 70000 1500000 5800000

frequency is 24MHz. Table 1 lists the details of experimental cases. For all case studies
we followed the process in Sec 3.3.

4.2 Test on Contact Smart Cards with AES
We set three secret keys as

k1 =0x112233445566778899AABBCCDDEEFF00,

k2 =0x00FFEEDDCCBBAA998877665544332211,

k3 =0x887766554433221100FFEEDDCCBBAA99,

and then collect 3000 traces for each key with random plaintexts, using the trace acquisi-
tion platform in Figure 6a. Totally, there are 9000 traces. A trace after low-pass filtering
is shown in Figure 8. Each trace has 500000 sample points, and the encryption is believed
to be performed in the 25 ∼ 70ms interval.

Select a segment before the encryption as the reference and perform static alignment to
traces. Then the plaintext and ciphertext are divided into 16 groups in bytes respectively.
Plaintext-ciphertext correlation is analyzed between the aligned traces and the Hamming
weights of plaintexts and ciphertexts. Figure 9a and 9b illustrates 32 plaintext-ciphertext
correlation coefficient curves and their merged curve. As shown in Figure 9b, the segments
before and after encryption have obvious correlation with plaintext and ciphertext, hence
we speculate that the transmission of plaintext and ciphertext is carried out in these
segments. We also found that the ciphertext correlation is higher than the plaintext
correlation because, as shown in Figure 8, the segment corresponding to the ciphertext
transmission is more pronounced.

Again, select a segment after the encryption as the reference and perform static align-
ment. Figure 9e illustrates merged correlation coefficient curves for backward-aligned
traces. We found that the ciphertext correlation is significantly improved compared to
the correlation coefficient curve in Figure 9b while the plaintext correlation is reduced.

12
Time is not enough: Timing Leakage Analysis on Cryptographic Chips via

Plaintext-Ciphertext Correlation in Non-timing Channel

Figure 8: Low-pass filtering trace of smart card A with 500000 sample points

(a) 32 curves (b) Merged (c) Truncation

(d) 32 curves (e) Merged (f) Truncation

Figure 9: Correlation after amplification of smart card A. (a), (b) and (c) are correlation
coefficient curves, their merged curve and truncation curve for forward-aligned traces. (d),
(e) and (f) are curves for backward-aligned traces.

The next step is applying Fisher transform to curves and then truncating them. We
are able to select an appropriate truncating threshold by observing the curve features.
Here the threshold is set as 0.08. Figure 9c and 9f gives Fisher transform and truncation
results for merged curves in Figure 9b and 9e. It can be found that the truncated curves
are clearer and features look more obvious.

In order to test whether the execution time is consistent, we first calculate the difference
of two truncated curves, as shown in Figure 10, and then calculate the p-value for each
point according to (4). We have pmin = 2 × (1 − CDF (0.12

σ)) ≪ 0.05 with σ = 1√
N−3 ≈

0.01. It can be determined that the algorithm implemented by smart card A has obvious
timing leakage, and the test fails.

Congming Wei, Guangze Hong, An Wang, Jing Wang, Shaofei Sun, Yaoling Ding,
Liehuang Zhu and Wenrui Ma 13

Figure 10: Difference between forward-aligned and backward-aligned correlation coeffi-
cient curves of smart card A

Figure 11: Low-pass filtering trace of smart card B with 80000 sample points

4.3 Test on Contact Smart Cards with SM4
We set three secret keys as

k1 =0x112233445566778899AABBCCDDEEFF00,

k2 =0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,

k3 =0x0123456789ABCDEFFEDCBA9876543210,

then using the trace acquisition platform in Figure 6a to collect 3000 traces for each key
with random plaintexts. A trace after low-pass filtering is shown in Figure 11. Each trace
has 80000 sample points, and the algorithm is believed to be performed in the 0.7 ∼ 5.4ms
interval.

Select a segment before the encryption as the reference and perform static alignment to
traces. The plaintext and ciphertext are divided into 16 groups in bytes respectively. Then
plaintext-ciphertext correlation is analyzed. Again, select a segment after the encryption
as the reference and perform static alignment and plaintext-ciphertext correlation anal-
ysis. Figure 12 illustrates 32 plaintext-ciphertext correlation coefficient curves and their
merged curves. By comparing Figure 12b and 12e, it is obvious that plaintext-ciphertext
correlation is different under different alignment modes.

14
Time is not enough: Timing Leakage Analysis on Cryptographic Chips via

Plaintext-Ciphertext Correlation in Non-timing Channel

(a) 32 curves (b) Merged (c) Truncation

(d) 32 curves (e) Merged (f) Truncation

Figure 12: Correlation after amplification of smart card B. (a), (b) and (c) are correlation
coefficient curves, their merged curve and truncation curve for forward-aligned traces. (d),
(e) and (f) are curves for backward-aligned traces.

Figure 13: Difference between forward-aligned and backward-aligned correlation coeffi-
cient curves of smart card B

Then we apply Fisher transform to curves and truncate them. Here the threshold is set
as 0.08. Figure 12c and 12f give Fisher transform and truncation results for merged curves.
We calculate the difference of two truncated curves, as shown in Figure 13, and calculate
the p-value for each point according to (4). We have pmin = 2 × (1 − CDF (0.60

σ)) ≪ 0.05
with σ = 1√

N−3 ≈ 0.01. It can be determined that the algorithm implemented by smart
card B has obvious timing leakage, and the test fails.

4.4 Test on Contactless Smart Cards with DES

In this subsection, a smart card labeled C is used to conduct the black-box timing analysis
experiment. Using the trace acquisition platform in Figure 6b, we collect 3000 traces with

Congming Wei, Guangze Hong, An Wang, Jing Wang, Shaofei Sun, Yaoling Ding,
Liehuang Zhu and Wenrui Ma 15

Figure 14: Trace of smart card C with 70000 sample points

(a) 32 curves (b) Merged (c) Truncation

(d) 32 curves (e) Merged (f) Truncation

Figure 15: Correlation after amplification of smart card C. (a), (b) and (c) are correlation
coefficient curves, their merged curve and truncation curve for forward-aligned traces. (d),
(e) and (f) are curves for backward-aligned traces.

random plaintexts for each secret key

k1 =0x1122334455667788,

k2 =0x99AABBCCDDEEFF00,

k3 =0x8877665544332211,

and each trace has 70000 sample points. As illustrated in Figure 14, the trace has a
significant downward spike in the interval from 200us to 330us, which is considered to be
caused by performing encryption.

Select a segment before the spike as the reference and perform static alignment. The
plaintext and ciphertext are divided into 8 groups in bytes respectively. Then plaintext-
ciphertext correlation is analyzed between the aligned traces and the Hamming weights of
8-byte plaintext and ciphertext. Next, select a segment after the spike as the reference and
perform static alignment. Figure 15 illustrates plaintext-ciphertext correlation coefficient
curves for the forward-aligned and backward-aligned traces. Intuitively, the peaks on each
correlation coefficient curve are very obvious, and the two curves look similar.

In order to test whether the execution time is consistent, we apply Fisher transform

16
Time is not enough: Timing Leakage Analysis on Cryptographic Chips via

Plaintext-Ciphertext Correlation in Non-timing Channel

Figure 16: Difference between forward-aligned and backward-aligned correlation coeffi-
cient curves of smart card C

Figure 17: Trace of masked AES on a MCU with 1500000 sample points

to curves and truncate them. By observing curve characteristics, the threshold is selected
as 0.07. Figure 15 gives Fisher transform and truncation results. Then we calculate the
difference of two truncated curves, as shown in Figure 16, and calculate the p-value for
each point according to (4). We have pmin = 2 × (1 − CDF (0.011

σ)) ≈ 0.34 > 0.05 with
σ = 1√

N−3 ≈ 0.01. It can be determined that the algorithm implemented by smart card
C has no obvious timing leakage, and the timing analysis test passes.

4.5 Timing Analysis Test on a MCU with masked AES
In this subsection the trace acquisition platform in Figure 7a is used for the experiment.
We implemented a masked AES on the MCU and set three secret keys as

k1 =0x112233445566778899AABBCCDDEEFF00,

k2 =0x11111111111111111111111111111111,

k3 =0x1234567890abcdeffedcba0987654321.

For each keys, 6000 traces are collected with random plaintexts, each containing 1500000
sample points. A trace after low-pass filtering is shown in Figure 17. While the trace is

Congming Wei, Guangze Hong, An Wang, Jing Wang, Shaofei Sun, Yaoling Ding,
Liehuang Zhu and Wenrui Ma 17

(a) 32 curves (b) Merged (c) Truncation

(d) 32 curves (e) Merged (f) Truncation

Figure 18: Correlation after amplification of the MCU with masked AES. (a), (b) and
(c) are correlation coefficient curves, their merged curve and truncation curve for forward-
aligned traces. (d), (e) and (f) are curves for backward-aligned traces.

Figure 19: Difference between forward-aligned and backward-aligned correlation coeffi-
cient curves of the MCU with masked AES

not ideal, the algorithm encryption is believed to be performed in the interval of 80 ∼ 620
ms.

Select a segment before the encryption as the reference and perform static alignment.
The plaintext and ciphertext are divided into 16 groups in bytes respectively. Then the
plaintext-ciphertext correlation is analyzed. Figure 18a and 18b illustrate 32 plaintext-
ciphertext correlation coefficient curves and their merged curve. After that, we select
a segment after the encryption as the reference and repeat the operation. As shown in
Figure 18, correlation coefficient curves have spikes regardless of whether it is aligned
forward or backward, except that the correlation values change with different alignment.
The difference in values reflects the difference in execution time.

Further, we apply Fisher transformation to the curves and truncated them with a
threshold of 0.05. After calculating the difference of two truncated curves, as shown in
Figure 19, we calculate the p-value for each point according to (4). pmin = 2 × (1 −
CDF (0.047

σ)) ≪ 0.05 when σ = 1√
N−3 ≈ 0.01. It can be determined that the masked AES

implemented on MCU has obvious timing leakage, and the timing analysis test fails.

18
Time is not enough: Timing Leakage Analysis on Cryptographic Chips via

Plaintext-Ciphertext Correlation in Non-timing Channel

Figure 20: Trace of RSA on a MCU with 5800000 sample points

(a) 32 curves (b) Merged (c) Truncation

(d) 32 curves (e) Merged (f) Truncation

Figure 21: Correlation after amplification of the MCU with RSA. (a), (b) and (c) are
correlation coefficient curves, their merged curve and truncation curve for forward-aligned
traces. (d), (e) and (f) are curves for backward-aligned traces.

4.6 Timing Analysis Test on a MCU with RSA
In this subsection the trace acquisition platform in Figure 7b is used for the experiment.
We implemented a RSA on the MCU and collect 1000 traces with random plaintexts, each
containing 5800000 sample points.A trace after low-pass filtering is shown in Figure 20.

Select a segment before the encryption as the reference and perform static alignment.
The plaintext and ciphertext are divided into 8 groups in bytes respectively. Then the
plaintext-ciphertext correlation is analyzed. Figure 21a and 21b illustrate 16 plaintext-
ciphertext correlation coefficient curves and their merged curve. After that, we select
a segment after the encryption as the reference and repeat the operation. As shown in
Figure 21, correlation coefficient curves have spikes regardless of whether it is aligned
forward or backward, except that the correlation values change with different alignment.
The difference in values reflects the difference in execution time.

Further, we apply Fisher transformation to the curves and truncated them with a
threshold of 0.2. After calculating the difference of two truncated curves, as shown in
Figure 19, we calculate the p-value for each point according to (4). pmin = 2 × (1 −

Congming Wei, Guangze Hong, An Wang, Jing Wang, Shaofei Sun, Yaoling Ding,
Liehuang Zhu and Wenrui Ma 19

Figure 22: Difference between forward-aligned and backward-aligned correlation coeffi-
cient curves of the MCU with RSA

CDF (0.047
σ)) ≪ 0.05 when σ = 1√

N−3 ≈ 0.03. It can be determined that the RSA
implemented on MCU has obvious timing leakage, and the timing analysis test fails.

4.7 Discussion
We conducted experiments on different devices to demonstrate the reliability of our
method. In addition, we will discuss several important aspects.

Alignment The core of our approach is to perform forward alignment and backward
alignment, and then detect changes through correlation analysis. During trace alignment,
it may be difficult to find the optimal segment as a reference. In fact, we do not have
to choose the optimal segments. Instead, we can select spike segments, as long as the
plaintext correlation of the forward alignment is not lower than that of the backward
alignment, and the ciphertext correlation of the forward alignment is not higher than that
of the backward alignment.

Peaks In general, there are two significant peaks in correlation coefficient curves repre-
senting points that have a strong correlation with plaintexts and ciphertexts. However, in
some cases, correlation coefficient curves may have only one peak. For this case, if traces
are well aligned, our timing analysis still works.

SNR Our approach works when traces with high SNR are obtained. The SNR level
is judged mainly on the basis of whether it affects the calculation of correlation. A
relationship between SNR and the correlation coefficient is represent as

ρ(Ptotal, H) = ρ(Pleakage, H)√
1 + 1/SNR

,

where the total power/EM value Ptotal is the sum of signal components Pleakage and noise
components Pnoise. ρ(Pleakage, H) could be obtained by simulation, or we can collect
some traces to calculate a pair of ρ∗ and SNR∗ [22], then ρ for an arbitrary SNR can be
calculated by

ρ(Ptotal, H) = ρ∗

√
1 + 1

SNR∗√
1 + 1

SNR

.

20
Time is not enough: Timing Leakage Analysis on Cryptographic Chips via

Plaintext-Ciphertext Correlation in Non-timing Channel

A0 A1 A2 A3

A5 A6 A7 A4

A10 A11 A8 A9

A15 A12 A13 A14

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

Sbox

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

A0 A1 A2 A3 A5 A6 A7 A4 A10 A11 A8 A9 A15 A12 A13 A14

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

Round Key

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Guessing K0

9 Rounds

time

Figure 23: An SCA attack on AES

The number of traces n necessary for determining a significant difference between zero
and ρ is calculated by

n = 3 + 8 ×
z2

1−α

ln2 1+ρ
1−ρ

,

where α is a confidence level and z1−α is a value obtained from a percentage point of
the normal distribution [23]. The high SNR is to ensure that plaintext and ciphertext
correlations can be distinguished within a limited number of traces n.

extract the secret keys After identifying the timing leakage, the next step is to consider
how to conduct an SCA attack. For asymmetric ciphers like RSA, the timing difference
may come from the fact that the subtraction happens or not during the multiplication
and a timing attack is launched based on the leakage [24]. For block ciphers like AES,
the timing difference may come from time-inconsistent algorithm implementations. For
example, an XOR happens only when a carry bit occurs in multiplication of 0x02 in the
MixColumn operation. Here we try to give an SCA attack on AES. Taking the first key
byte k0 as an example, as shown in Figure 23, the attack works as follows:

1. Perform AES with numerous random plaintexts.

2. Guess a value of k0.

3. Construct two sets of plaintexts depending on whether an XOR occurs when multi-
plying 0x02.

4. If the timing leakages of two sets are statistically distinguishable, then the guessing
value is a candidate. Otherwise, it is discarded.

Then the rest of key bytes can be retrieved with this method. We recommend using a
time-consistent implementation to avoid such potential risks.

Congming Wei, Guangze Hong, An Wang, Jing Wang, Shaofei Sun, Yaoling Ding,
Liehuang Zhu and Wenrui Ma 21

Figure 24: TVLA on masked AES on the MCU

Table 2: A new timing analysis framework
Timing analysis method Scenario Typical devices Accuracy

I/O channel GPIO Chip board High
I/O signal Smart card High or Medium

Plaintext-ciphertext correlation power/EM signal Smart card High

Average denoising Communication
with computer HSM Very Low

TVLA Compared with traditional power/EM analysis, we make full use of timing leak-
age, that is, our method is more concerned with leaks on the horizontal time axis than
leaks on the vertical power/EM axis. For example, although Figure 24 illustrates that the
masked AES implemented by MCU passes TVLA, it does have timing leakage as shown in
Sec 4.5. TVLA cannot replace our timing analysis when testing cryptographic modules.

5 Leakage Analysis Framework for Timing Analysis
In this section, we propose a new timing analysis framework which divides target devices
into three scenarios and provides corresponding methods for each scenario, as shown in
Table 2. Figure 25 shows how our framework selects the appropriate method for timing
analysis.

GPIO interface or I/O signal This scenario has the strictest requirements that the
cryptographic devices can be triggered through a GPIO interface or I/O signal. For
this scenario, the detector can obtain the accurate execution time and conduct statistical
analysis. More details are described in Section 5.1.

High SNR power/EM signal When triggering through the I/O channel is not feasible
but high SNR power/EM traces are available, we adopt the timing analysis method based
on plaintext-ciphertext correlation analysis in Section 3.

No trigger, low SNR power/EM signal We provide a timing analysis method based on
average denoising, which can be used as a supplement when the first two methods cannot
be used. More details are described in Section 5.2.

5.1 Timing Analysis Based on I/O Channel
Depending on triggering modes, we choose different methods to calculate the execution
time. For GPIO interfaces, the inspector can ask the manufacturer to pull up the GPIO
level before the algorithm starts and pull down the GPIO level after the algorithm. For

22
Time is not enough: Timing Leakage Analysis on Cryptographic Chips via

Plaintext-Ciphertext Correlation in Non-timing Channel

Start

Is I/O available

Use timing analysis

method based on I/O

channel

Is SNR high

Use timing analysis

method based on

plaintext-ciphertext

correlation analysis

Use timing analysis

method based on

average denoising

Fail

[I/O][No I/O]

[High]

[Low]

Pass

[No]

[Leakage]
[No]

[Leakage]

[Leakage]

[No]

Figure 25: Timing analysis framework

I/O signals, according to the ISO/IEC 7816 protocol [25], the I/O level is high when bit
1 is transmitted and low when bit 0 is transmitted. After data transmission is completed,
I/O returns to a high level. Thus, it is difficult to separate transmission of the last
consecutive bits 1s from the subsequent encryption operation. So we select the total time
of data transmission and algorithm execution. Using the total time is equivalent to using
the execution time since data of the same length take the same transmission time.

Following the testing framework in Section 2.1, the method consists of the following
steps.

1. Given a fixed plaintext and random keys, encrypt m times to collect m signal traces
of I/O channels, with each trace containing k sampling points. Denote the sampling
rate as s.

2. Calculate the execution time for each trace.

- If the device is triggered through the GPIO interface, set the voltage threshold
v0. For each trace, select the interval where the voltage changes from low level
to high level and find the first sample point i(i < k) in the interval with the
sample value above v0. Then find the first sample point j(i < j < k) which has
the value below v0 in the interval where the voltage changes from high level to
low level. The execution time is j−i

s .
- If the device is triggered through the I/O signals, set the voltage threshold v0.

For each trace, select the interval where the voltage changes from high level
to low level after the algorithm starts and find the first sample point j(j < k)
in the interval with the value below v0. Since trigger delay is set as 0, the
execution time is j−1

s .

3. Calculate the average execution time for each key to get n average values T1, T2, · · · , Tn.
Then calculate the difference ∆ between each two time values and compare it with

Congming Wei, Guangze Hong, An Wang, Jing Wang, Shaofei Sun, Yaoling Ding,
Liehuang Zhu and Wenrui Ma 23

a clock cycle ε. If there exists ∆ > ε, the test fails, otherwise continue to the next
step.

4. Given a fixed key and random plaintexts, encrypt m times to collect m signal traces
of I/O channels. Then calculate the execution time following the process in Step 2
and Step 3. If there exists ∆ > ε, the test fails, otherwise the test passes.

5.2 Timing Analysis Based on Computer Average Denoising
The method is based on average denoising and the procedure is as follows:

1. Given a fixed key (resp. plaintext) and several different plaintexts (resp. keys), get
the execution time through communication between the PC and devices, and then
average the time values of each plaintext (resp. key) for denoising.

2. Calculate the difference of time for different plaintexts (resp. keys). If there is a
time difference greater than a clock cycle, there exists timing leakage and the test
fails. Otherwise, it passes.

This method is similar to the I/O channel-based method but has a low signal-to-
noise ratio, resulting in inaccurate results. The standard deviation of noise is one of the
most important factors affecting analysis results. Suppose that the measured time T1, T2,
T3, · · · , Tn are independently and identically distributed with the mean µ and standard
deviation σ. According to the center limit theorem, the standard deviation of the average
T is σ√

n
. Since the test passes only when the difference of execution time is less than

the clock cycle ε, σ√
n

should be less than ε, thus the measurement number should meet
n > σ2

ε2 . Taking a chip with a clock frequency of 10MHz as an example, assuming that σ
is 1ms, n should be greater than 1, 000, 000, 000. Therefore, we do not recommend using
it for timing analysis.

6 Conclusion
Our paper is focused on how to perform timing analysis when the standard time analysis
is not suitable and proposes a new method which takes advantage of timing leakage
in power/EM channels. Based on plaintext-ciphertext correlation analysis, our method
successfully measures the difference in execution segment length and determines whether
timing leakage exists. In addition, a leakage analysis framework of timing analysis is put
forward for different scenarios.

The difficulty of timing analysis comes from the choice of measurement and analysis
methods for different devices. Our paper has shown how this can be done. However,
the method for the last scenario needs to be improved. Besides, apart from the timing
analysis method based on plaintext-ciphertext correlation analysis, our future work is to
find efficient ways to exploit timing leakage in power/EM channels and overcome the
problem of delay noise.

Acknowledgements
This work was supported by the National Key R&D Plan of China (2022YFB3103800), the
Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan
Province (Grant No. SKLACSS-202207) and National Natural Science Foundation of
China (62302036, 62272047). The main corresponding author is An Wang.

24
Time is not enough: Timing Leakage Analysis on Cryptographic Chips via

Plaintext-Ciphertext Correlation in Non-timing Channel

References
[1] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,

dss, and other systems,” in Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 1996, Proceedings, ser. Lecture Notes in Computer Science,
N. Koblitz, Ed., vol. 1109. Springer, 1996, pp. 104–113. [Online]. Available:
https://doi.org/10.1007/3-540-68697-5_9

[2] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings, ser. Lecture Notes in
Computer Science, M. J. Wiener, Ed., vol. 1666. Springer, 1999, pp. 388–397.
[Online]. Available: https://doi.org/10.1007/3-540-48405-1_25

[3] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Concrete results,”
in Cryptographic Hardware and Embedded Systems - CHES 2001, Third International
Workshop, Paris, France, May 14-16, 2001, Proceedings, ser. Lecture Notes in
Computer Science, Ç. K. Koç, D. Naccache, and C. Paar, Eds., vol. 2162. Springer,
2001, pp. 251–261. [Online]. Available: https://doi.org/10.1007/3-540-44709-1_21

[4] D. Page, “Theoretical use of cache memory as a cryptanalytic side-channel,” IACR
Cryptol. ePrint Arch., p. 169, 2002. [Online]. Available: http://eprint.iacr.org/2002/
169

[5] J. Danger, N. Debande, S. Guilley, and Y. Souissi, “High-order timing attacks,”
in Proceedings of the First Workshop on Cryptography and Security in Computing
Systems, CS2@HiPEAC 2014, Vienna, Austria, January 20, 2014, J. Knoop,
V. Salapura, I. Koren, and G. Pelosi, Eds. ACM, 2014, pp. 7–12. [Online]. Available:
https://doi.org/10.1145/2556315.2556316

[6] W. Schindler, “A timing attack against RSA with the chinese remainder theorem,” in
Cryptographic Hardware and Embedded Systems - CHES 2000, Second International
Workshop, Worcester, MA, USA, August 17-18, 2000, Proceedings, ser. Lecture
Notes in Computer Science, Ç. K. Koç and C. Paar, Eds., vol. 1965. Springer,
2000, pp. 109–124. [Online]. Available: https://doi.org/10.1007/3-540-44499-8_8

[7] Q. Guo, C. Hlauschek, T. Johansson, N. Lahr, A. Nilsson, and R. L. Schröder,
“Don’t reject this: Key-recovery timing attacks due to rejection-sampling in HQC
and BIKE,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2022, no. 3, pp.
223–263, 2022. [Online]. Available: https://doi.org/10.46586/tches.v2022.i3.223-263

[8] D. Brumley and D. Boneh, “Remote timing attacks are practical,” in Proceedings
of the 12th USENIX Security Symposium, Washington, D.C., USA, August 4-8,
2003. USENIX Association, 2003. [Online]. Available: https://www.usenix.org/
conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical

[9] B. B. Brumley and N. Tuveri, “Remote timing attacks are still practical,” in Computer
Security - ESORICS 2011 - 16th European Symposium on Research in Computer
Security, Leuven, Belgium, September 12-14, 2011. Proceedings, ser. Lecture Notes
in Computer Science, V. Atluri and C. Díaz, Eds., vol. 6879. Springer, 2011, pp.
355–371. [Online]. Available: https://doi.org/10.1007/978-3-642-23822-2_20

[10] Y. Yarom, D. Genkin, and N. Heninger, “Cachebleed: A timing attack on openssl
constant time RSA,” in Cryptographic Hardware and Embedded Systems - CHES
2016 - 18th International Conference, Santa Barbara, CA, USA, August 17-19,

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-44709-1_21
http://eprint.iacr.org/2002/169
http://eprint.iacr.org/2002/169
https://doi.org/10.1145/2556315.2556316
https://doi.org/10.1007/3-540-44499-8_8
https://doi.org/10.46586/tches.v2022.i3.223-263
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://doi.org/10.1007/978-3-642-23822-2_20

Congming Wei, Guangze Hong, An Wang, Jing Wang, Shaofei Sun, Yaoling Ding,
Liehuang Zhu and Wenrui Ma 25

2016, Proceedings, ser. Lecture Notes in Computer Science, B. Gierlichs and A. Y.
Poschmann, Eds., vol. 9813. Springer, 2016, pp. 346–367. [Online]. Available:
https://doi.org/10.1007/978-3-662-53140-2_17

[11] ISO/IEC 17825:2016 Information technology Security techniques Testing methods
for the mitigation of non-invasive attack classes against cryptographic modules, Inter-
national Organization for Standardization Std., 2016.

[12] A. Moradi, B. Richter, T. Schneider, and F.-X. Standaert, “Leakage detection
with the x2-test,” Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2018, Issue 1, pp. 209–237, 2018. [Online]. Available: https:
//tches.iacr.org/index.php/TCHES/article/view/838

[13] C. Whitnall and E. Oswald, “A critical analysis of ISO 17825 (’testing methods
for the mitigation of non-invasive attack classes against cryptographic modules’),”
in Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on
the Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8-12, 2019, Proceedings, Part III, ser. Lecture Notes in Computer Science,
S. D. Galbraith and S. Moriai, Eds., vol. 11923. Springer, 2019, pp. 256–284.
[Online]. Available: https://doi.org/10.1007/978-3-030-34618-8_9

[14] O. Bronchain, T. Schneider, and F.-X. Standaert, “Multi-tuple leakage detection
and the dependent signal issue,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2019, no. 2, p. 318345, Feb. 2019. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/7394

[15] ISO/IEC 19790:2012 Information technology Security techniques Security require-
ments for cryptographic modules, International Organization for Standardization Std.,
2012.

[16] C. D. Walter and S. Thompson, “Distinguishing exponent digits by observing modular
subtractions,” in Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track
at RSA Conference 2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings,
ser. Lecture Notes in Computer Science, D. Naccache, Ed., vol. 2020. Springer,
2001, pp. 192–207. [Online]. Available: https://doi.org/10.1007/3-540-45353-9_15

[17] W. Schindler, “A combined timing and power attack,” in Public Key Cryptography,
5th International Workshop on Practice and Theory in Public Key Cryptosystems,
PKC 2002, Paris, France, February 12-14, 2002, Proceedings, ser. Lecture Notes in
Computer Science, D. Naccache and P. Paillier, Eds., vol. 2274. Springer, 2002, pp.
263–279. [Online]. Available: https://doi.org/10.1007/3-540-45664-3_19

[18] W. Schindler and C. D. Walter, “More detail for a combined timing and power
attack against implementations of RSA,” in Cryptography and Coding, 9th IMA
International Conference, Cirencester, UK, December 16-18, 2003, Proceedings, ser.
Lecture Notes in Computer Science, K. G. Paterson, Ed., vol. 2898. Springer, 2003,
pp. 245–263. [Online]. Available: https://doi.org/10.1007/978-3-540-40974-8_20

[19] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in Cryptographic Hardware and Embedded Systems - CHES
2004: 6th International Workshop Cambridge, MA, USA, August 11-13,
2004. Proceedings, ser. Lecture Notes in Computer Science, M. Joye and
J. Quisquater, Eds., vol. 3156. Springer, 2004, pp. 16–29. [Online]. Available:
https://doi.org/10.1007/978-3-540-28632-5_2

https://doi.org/10.1007/978-3-662-53140-2_17
https://tches.iacr.org/index.php/TCHES/article/view/838
https://tches.iacr.org/index.php/TCHES/article/view/838
https://doi.org/10.1007/978-3-030-34618-8_9
https://tches.iacr.org/index.php/TCHES/article/view/7394
https://doi.org/10.1007/3-540-45353-9_15
https://doi.org/10.1007/3-540-45664-3_19
https://doi.org/10.1007/978-3-540-40974-8_20
https://doi.org/10.1007/978-3-540-28632-5_2

26
Time is not enough: Timing Leakage Analysis on Cryptographic Chips via

Plaintext-Ciphertext Correlation in Non-timing Channel

[20] C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil, “Horizontal
correlation analysis on exponentiation,” in Information and Communications
Security - 12th International Conference, ICICS 2010, Barcelona, Spain, December
15-17, 2010. Proceedings, ser. Lecture Notes in Computer Science, M. Soriano,
S. Qing, and J. López, Eds., vol. 6476. Springer, 2010, pp. 46–61. [Online].
Available: https://doi.org/10.1007/978-3-642-17650-0_5

[21] F. Durvaux and F. Standaert, “From improved leakage detection to the
detection of points of interests in leakage traces,” in Advances in Cryptology
- EUROCRYPT 2016 - 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part I, ser. Lecture Notes in Computer Science, M. Fischlin and
J. Coron, Eds., vol. 9665. Springer, 2016, pp. 240–262. [Online]. Available:
https://doi.org/10.1007/978-3-662-49890-3_10

[22] Y. Yano, T. Teshima, K. Iokibe, and Y. Toyota, “Experimental identification of
relationship between leakage trace snr and correlation coefficient in differential power
analysis,” in 2019 Joint International Symposium on Electromagnetic Compatibility,
Sapporo and Asia-Pacific International Symposium on Electromagnetic Compatibility
(EMC Sapporo/APEMC), 2019, pp. 1–4.

[23] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks - revealing the secrets
of smart cards. Springer, 2007.

[24] J. Dhem, F. Koeune, P. Leroux, P. Mestré, J. Quisquater, and J. Willems,
“A practical implementation of the timing attack,” in Smart Card Research
and Applications, This International Conference, CARDIS ’98, Louvain-la-Neuve,
Belgium, September 14-16, 1998, Proceedings, ser. Lecture Notes in Computer
Science, J. Quisquater and B. Schneier, Eds., vol. 1820. Springer, 1998, pp.
167–182. [Online]. Available: https://doi.org/10.1007/10721064_15

[25] ISO/IEC 7816-3:2006 Identification cards Integrated circuit cards Part 3: Cards
with contacts Electrical interface and transmission protocols, International Organi-
zation for Standardization Std., 2006.

https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/10721064_15

	Introduction
	Preliminaries
	Timing Analysis in ISO/IEC 17825
	Plaintext-Ciphertext Correlation Analysis

	Timing Analysis Based on Plaintext-Ciphertext Correlation Analysis
	Timing leakage in Power/EM Channels
	Detecting Timing Leakage with Correlation Analysis
	Testing Process of Timing Analysis via Plaintext-Ciphertext Correlation Analysis
	Comparison With TVLA

	Evaluation Experiments
	Measurement Setup
	Test on Contact Smart Cards with AES
	Test on Contact Smart Cards with SM4
	Test on Contactless Smart Cards with DES
	Timing Analysis Test on a MCU with masked AES
	Timing Analysis Test on a MCU with RSA
	Discussion

	Leakage Analysis Framework for Timing Analysis
	Timing Analysis Based on I/O Channel
	Timing Analysis Based on Computer Average Denoising

	Conclusion

