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Abstract. In this paper, we formulate a special class of systems of linear
equations over finite fields and derive lower bounds on the number of
solutions adhering to some predefined restrictions. We then demonstrate
the applications of these lower bounds to derive tight PRF security (up
to 23n/4 queries) for single-keyed variants of the Double-block Hash-then-
Sum (DBHtS) paradigm, specifically PMAC+ and LightMAC+. Additionally,
we show that the sum of r independent copies of the Even-Mansour
cipher is a secure PRF up to 2

r
r+1n queries.
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1 Introduction

For some k ≥ 2, let Π1, . . . ,Πk denote k mutually independent and uniform
random permutations of {0,1}n, and consider the function F ∶ {0,1}n → {0,1}n
defined by the mapping

F(x) ∶= Π1(x)⊕Π2(x)⊕ . . .⊕Πk(x)

It is well-known [19,21] that F — the well-known sum of k permutations — is
statistically indistinguishable from a length-preserving uniform random function,
provided the permutations are secret and the number of queried points q ≤ 2n−1.
Over the years several proof techniques [4,29,21,17,20,16,19] have been employed
to prove this result, with varied degree of success. In particular, Patarin’s mirror
theory [33,34], has been the main tool to study the underlying combinatorial
problem.

Suppose k = 2 and the adversary makes q queries to the oracle at hand. Let
Y i
1 ∶= Π1(xi), Y i

2 ∶= Π2(xi), and λi denote the oracle output, for any 1 ≤ i ≤ q. A
typical mirror theory based proof studies the system of equations {Y i

1 ⊕Y i
2 = λi}

and aims to count all solutions (yi1, yi2 ∶ i ∈ [q]), such that yib ≠ y
j
b for all i ≠ j. In
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a more general setting, one can study a system of bivariate equations, endowed
with a partition of the set of variables, such that any two variables in the same
partition must be assigned distinct values. We call this structure, a constrained
system. It is not difficult to see that for random outputs, the expected number of
solutions is (2n)q×(2n)q/2nq, where (2n)q. Dutta et al. and Cogliati and Patarin
studied [20,16] the problem specific to the sum of permutations and showed a
lower bound close to the expectation while q ≤ 2n/24 and the solution space is
{0,1}2n, and as a result a good bound on the advantage. While this approach
works when the permutations are secret, it does not apply directly when the
adversary has oracle access to the permutations.

This is, for instance, the case with the sum of Even-Mansour or SOEM con-
struction [14] defined by the mapping

F(x) ∶= Π1(x⊕K1)⊕Π2(x⊕K2),

where (K1,K2) denotes the key. Since the adversary can now make primitive
queries, certain solutions are forbidden for fresh permutation inputs for any
construction query. More specifically, if P1 and P2 denote the set of primitive
query outputs, then the solution space is restricted to {0,1}2n ∖ P1 ×P2. As it
turns out, the existing mirror theory approaches cannot be extended directly in
this general setting. In fact, the best lower bounds [18,14,26] show that number
of solutions are just (1−O(q3/22n))-close to the expectation, provided q ≤ 22n/3.

A similar situation also arises in the secret permutations regime. For in-
stance, all single-keyed attempts at DbHtS-based MACs: 1k-PMAC+, 1kf9, 1k-
LightMAC+ and n1kf9 are shown to be secure up to 22n/3 queries. The main
bottleneck: a (possibly) sub-optimal lower bound for the number of solutions for
the underlying constrained system. This motivates us to study the aforemen-
tioned combinatorial problem in its full generality.

1.1 Related Works

Single-keyed DbHtS MAC. Most common constructions of MAC are either based
on block ciphers, e.g., CBC-MAC [5], PMAC [10], OMAC [24], LightMAC [30], etc., or
based on a cryptographic hash functions, e.g., HMAC [3]. At a high level these
constructions come under the umbrella of UHF-then-PRF designs, where first
a message is compressed to a short string by a universal hash function (UHF)
and then a PRF is applied on this string to generate the tag. However, due to
the detectable collision property, that any collision among the outputs of the
UHF results in a tag collision, this design paradigm cannot overcome the birth-
day bound. This becomes a problem when many MAC constructions have been
proposed with lightweight block ciphers, e.g., PRESENT [13], LED [22], GIFT [2].

To go beyond birthday bound, one possible way to improve upon the UHF-
then-PRF design, is to replace the UHF by a hash function with double block-
output, such that each block behaves like the output of a UHF and then apply
the sum-of-permutations PRF on the blocks, i.e., passing each block through a
block cipher, and the resulting pair of outputs being xored to get the tag. Such
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a design idea is bolstered by the fact that the XOR constructions are optimally
secure. Dutta et al. [18] formalized this, naming the design diblock hash-then-
sum (DBHtS). In this paper they proved that several constructions falling under
the DBHtS design paradigm, e.g., PolyMAC [11,9,36], SUM-ECBC [37], PMAC+ [38],
LightMAC+ [32] achieve 2n/3-bit security. In [28], Leurent et al. presented a 3n/4-
bit attack against DBHtS schemes. Finally, Kim et al. [27] proved the 3n/4-bit
security of the above constructions, closing the gap.

Sum of Even-Mansour. All the PRF designs discussed till now are block cipher-
based. Since we are designing functions, only the forward direction matters, and
that is why using block ciphers for PRF constructions, seems superfluous to a
degree, because block ciphers have the extraneous property of being efficient in
the backward direction too. Instead we could instantiate PRFs based on public
random permutations, e.g., Keccac [8], Gimli [6], SPONGENT [12], etc., which are
designed to be very fast in the forward direction, but not necessarily in the
backward direction. Public random permutation based constructions like keyed
sponge [1,31], Farfalle [7], are variable length constructions. There is a scope
of a more efficient/secure design for short fixed-length messages.

In [14] Chen et al. proposed the public random permutation-based PRF con-
struction, called the sum of Even-Mansour (SOEM2), where the idea is to instan-
tiate the block ciphers in the sum of permutations PRF construction, with the
public-permutation based block cipher EMΠ(K,m) = Π(K ⊕m) ⊕ K. Chen et al.
showed that the sum of two Even Mansour constructions, SOEM2

Π1,Π2
(K1,K2,m) =

EMΠ1(K1,m) ⊕ EMΠ2(K2,m) is a 2n/3-bit secure PRF only if Π1 is independent
of Π2 and K1 is independent of K2. Any weaker assumption would restrict the
security to birthday-bound. In [35], Sibleyras et al. showed that post-adding
the keys as in Even-Mansour is redundant, achieving the same security with
a more efficient design, keyed sum of permutations, KSoPΠ1,Π2(K1,K2,m) =
Π1(K1 ⊕ m) ⊕ Π2(K2 ⊕ m). The authors point out that the independence re-
quirements between Π1,Π2 and K1,K2, remain same, in order to achieve said
security.

m

⊕⊕⊕ Π1

K1

⊕⊕⊕

K2

Π2

⊕⊕⊕ t

1.2 Our Contributions

Our Contributions are threefold:
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• In section 3, we formalize and study the general constrained systems problem
over an arbitrary finite field. In section 4, we derive a lower bound on the
number of solutions for a large class of constrained systems that encompasses
all the known instances in literature.

• As an application we prove tight security bounds for several class of con-
structions:

Tight bounds for single-keyed DbHtS: There remains one aspect where
the DBHtS schemes can be made yet more efficient. In the general imple-
mentations of DBHtS, three keys are used, one for all the block cipher-calls
corresponding to hash value evaluations, and one for each of the block
ciphers constituting the sum-of-permutations PRF. Since rekeying is an
expensive process, the obvious alternative is to use the same key for all
the block ciphers, whether it be a part of the hash or the PRF, the
design being called the 1k-DBHtS. In section 5, we prove that the single-
keyed variant of 1k-PMAC+ and 1k-LightMAC+ achieve security up to
23n/4 queries. In particular, in section 6, we show that the corresponding
hash functions PHash and LightHash are diblock hash functions having
the desired properties.

● The Sum of Even-Mansour: In section 7, for r ≥ 2, we define the sum
of r Even-Mansour ciphers — an extension of the Sibleyras-Todo [35]
variant of the sum of two Even-Mansour construction [14] by Chen et
al. We show that this construction achieves security up to 2

r
r+1n queries,

which can be shown to be tight by a simple key recovery argument. This
directly generalizes the previous results, both in terms of design and
security.

2 Preliminaries

For any prime power N , FN denotes the finite field of order N . With a slight
abuse of notation, we use ⊕ and ⋅ to denote the addition and multiplication oper-
ations in any finite field. For m,n ∈ N+, Fm

N and Fm×n
N denote the m-dimensional

vector space and the set of all (m × n)-matrices over FN , respectively. For any
v ∈ Fm

N , H(v) denotes the number of non-zero coordinates in v.
For any n ∈ N+, we identify F2n with {0,1}n, the set of all n-bit strings. We

write {0,1}∗ ∶= ∪∞n=0{0,1}n. For any k ≤ n ∈ N+, (n)k ∶= n(n − 1) . . . (n − k + 1)
denotes the falling factorial, and (n)0 = 1 by convention.

Sum Capture: For some k ≥ 2, let α ∈ Fk
N and A,B1,B2, . . . ,Bk ⊆ FN such

that H(α) = k. Define

SCα(A,B) ∶= {b ∈ B1 × . . . × Bk ∶
k

⊕
i=1

αi ⋅ bi ∈ A} , (1)

µα(A,B) ∶= ∣SCα(A,B)∣ , (2)

where B = (Bi1 , . . . ,Bik) denotes an arbitrary ordering of the constituent sets.
For α = (1,1, . . . ,1), µα(A,Bi1 ,Bi2 , . . . ,Bik) = µα(A,Bj1 ,Bj2 , . . . ,Bjk) for any
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two permutations (i1 i2 . . . ik) and (j1 j2 . . . jk) of [k]. We drop the mask from
notation whenever α = (1,1, . . . ,1).
For any k ≥ 2 and p ≥ 0, we define

µα(A, p) ∶= max
B1,...,Bk⊆FN

∣Bi∣≤p

µα(A,B), (3)

The following lemma is a restatement of [25, Theorem 1].

Lemma 1. For all but an O(N−1) fraction of (multi)sets A ⊆ FN such that
∣A∣ = q and any α ∈ Fk

N with H(α) = k, we have

µα(A, p) ≤ (
qpk

N
+ 4pk−1

√
ln(N)q) .

Proposition 1. For any real-valued random variable X, we have

E (∣X −E (X)∣) ≤
√
V (X).

Proof. We have

E (∣X −E (X)∣) =
√

E (∣X −E (X)∣)2

≤
√
E ((X −E (X))2) =

√
V (X),

where the inequality also follows from Jensen’s inequality among others. ⊓⊔

2.1 Hash Functions

A (K,{0,1}∗,Y)-keyed function H is the function family {HK ∶ {0,1}∗ → Y}K∈K.
We often call H a diblock hash function, if we can write Y as Z2 for some Z.

For any diblock hash function H, we write (H1
K(m),H2

K(m)) ∶= (z1, z2), where
z1, z2 ∈ Z, whenever HK(m) = y = (z1, z2).

Permutation-based Hash Functions. A (K,{0,1}∗,Y)-hash function is said to
be permutation-based if K ⊆ P (n)r for some r ∈ N. For any such hash function
H, the block function, βH ∶ P (n) × {0,1}∗ → N, is defined by the mapping:

(πr,m)↦ β(πr,m),

where πr = (π1, . . . , πr) and β(πr,m) denotes the minimum number of invoca-
tions1 of π needed to compute Hπ(m).

In this paper, we fix r = 1, and make the following two plausible assumptions
on βH :
1 Note that, there exists a circuit for H such that on every input, H makes (possibly)

a large but bounded number of black-box calls to πr. Thus, βπr,m is well-defined for
any πr and m.
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1. βH is functionally independent of the permutation, whence we drop the
permutation from the parameters.

2. there exists a constant c ∈ R+ such that for any m ∈ {0,1}∗, βH(m) ∶=
c⌈∣m∣/n⌉. We refer to such an H a rate-c−1 hash function.

Note that, 1 follows from 2. We state it explicitly for brevity.
We remark that the underlying hash functions in almost all the popular

constructions, including LightMAC, PMAC, LightMAC+, PMAC+, 3kf9 etc. are rate-1,
and SUM-ECBC is rate-2−1. Thus, the above assumption is indeed plausible, and
c ≤ 2 in most applications.

Coverfree Hash Functions. For any (K,{0,1}∗,Y2)-diblock hash function
H, any r ≥ 3, s ≥ 2, and any m ∶= (m1, . . . ,mq) ∈ ({0,1}∗)q, we define the
following events
COLL1H(m): ∃∗ i, j ∈ [q] such that H1

K (mi) =H1
K (mj);

COLL2H(m): ∃∗ i, j ∈ [q] such that H2
K (mi) =H2

K (mj);
AP1rH(m): ∃∗ i1, . . . , ir ∈ [q] such that

H1
K (mi1) =H1

K (mi2),H2
K (mi2) =H2

K (mi3), . . . ,H1
K (mir−1) =H1

K (mir);
AP2rH(m): ∃∗ i1, . . . , ir ∈ [q] such that

H2
K (mi1) =H2

K (mi2),H1
K (mi2) =H1

K (mi3), . . . ,H2
K (mir−1) =H2

K (mir);
MC1sH(m): ∃∗ i1, . . . , is ∈ [q] such that

H1
K (mi1) =H1

K (mi2) = ⋯ =H1
K (mis);

MC2sH(m): ∃∗ i1, . . . , is ∈ [q] such that
H2

K (mi1) =H2
K (mi2) = ⋯ =H2

K (mis),
COLLH(m): ∃∗ i, j ∈ [q] such that HK(mi) =HK(mj).

where the randomness is induced by K↞ K.

Definition 1. For some ε1, δ ∶ N3 → [0,1] and ε2, ε3 ∶ N4 → [0,1], a
(K,{0,1}∗,Y)-diblock hash function H is said to be an (ε1, ε2, ε3, δ)-Coverfree
Hash or CfH if and only if for any ρ = (q, `, σ) ∈ N3, any m = (m1, . . . ,mq) ∈
({0,1}n`)q containing at most σ blocks, any r ≥ 3, and any s ≥ 2, it satisfies

Pr (COLL1H(m)) ≤ ε1(ρ), Pr (AP1rH(m)) ≤ ε2(ρ, r), Pr (MC1sH(m)) ≤ ε3(ρ, s),

Pr (COLL2H(m)) ≤ ε1(ρ), Pr (AP2rH(m)) ≤ ε2(ρ, r), Pr (MC2sH(m)) ≤ ε3(ρ, s),

and Pr (COLLH(m)) ≤ δ(ρ).

Double-block Hash-then-Sum. Let H be a (K,{0,1}∗,{0,1}2n)-
diblock hash function. The DiBlock Hash-then-Sum construction is a (K ×
P (n)2 ,{0,1}∗,{0,1}n)-keyed function DBHtSH defined by the mapping:

(K,π1, π2,m)↦ π1(H1
K(m))⊕ π2(H2

K(m)) (4)
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Several beyond-the-birthday bound MAC constructions, including SUM-
ECBC [37], PMAC+ [38], LightMAC+ [32] etc. follow this paradigm.

2.2 Security Definitions
In this paper, we assume that the distinguisher is non-trivial, i.e. it never makes
a duplicate query, and it never makes a query for which the response is already
known due to some previous query. Let A (q, `, σ, t) be the class of all non-trivial
distinguishers limited to q oracle queries of each of length up to ` blocks and
a total of σ blocks, and t computations. Any A ∈ A (q, `, σ, t) is referred as a
(q, `, σ, t)-adversary.

In our analyses, especially security proofs, it will be convenient to work in the
information-theoretic setting. Accordingly, we always skip the boilerplate hybrid
steps and often assume that the adversary is computationally unbounded, i.e.,
t = ∞, and deterministic. A computational equivalent of all our security proofs
can be easily obtained by a simple hybrid argument.

The advantage of any adversary A in distinguishing some oracle O1 from
another oracle O0 is defined as

∆O1;O0 (A) ∶= ∣Pr (AO1 = 1) −Pr (AO0 = 1)∣ .

PRF Security: The PRF advantage of distinguisher A against a (K,X ,Y)-
keyed function F instantiated with a key K↞ K is defined as

AdvtprfF (A) =∆F;Γ (A) . (5)

In this paper, we also consider the security model where the distinguisher is given
oracle access to the internal primitives of the construction. More specifically, sup-
pose F is constructed on top of k uniform random permutations Π = (Π1, . . . ,Πk)
of {0,1}n, denoted F[Π]. Then, the PRF advantage of A is defined as

Advtprf
F[Π] (A) =∆(F[Π],Π±);(Γ,Π±) (A) , (6)

where the superscript ± denotes a bidirectional access to Π.

2.3 The Expectation Method
Let A be a computationally unbounded and deterministic distinguisher that tries
to distinguish between two oracles O0 and O1 via black box interaction with one
of them. We denote the query-response tuple of A’s interaction with its oracle
by a transcript ω. This may also include any additional information the oracle
chooses to reveal to the distinguisher at the end of the query-response phase
of the game. We denote by Θre (res. Θid) the random transcript variable when
A interacts with O1 (res. O0). The probability of realizing a given transcript ω
in the security game with an oracle O is known as the interpolation probability
of ω with respect to O. Since A is deterministic, this probability depends only
on the oracle O and the transcript ω. A transcript ω is said to be attainable if
Pr (Θid = ω) > 0.
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Lemma 2 (Fine-grained Expectation Method). Let Ω be the set of all
transcripts. For some εbad ≥ 0 and εratio ∶ Ω → R, suppose there is a set Ωbad ⊆ Ω
satisfying the following conditions:
• Pr (Θid ∈ Ωbad) ≤ εbad,
• εratio is non-negative on Ωgood = Ω ∖Ωgood,

• for any ω ∈ Ωgood, ω is attainable and Pr (Θre = ω)
Pr (Θid = ω)

≥ 1 − εratio(ω).
Then for any distinguisher A trying to distinguish between O1 and O0, we have
the following bound on its distinguishing advantage:

∆O1;O0 (A) ≤ εbad +EΘid (1goodεratio) ,

where 1good denotes the indicator variable corresponding to Ωgood.

The expectation method due to Hoang and Tessaro [23] is a simple corollary of
the above result, when εratio is non-negative over the entire transcript space.
Corollary 1 (Expectation Method). Suppose there is a non-negative func-
tion εratio ∶ Ω → [0,∞) satisfying the following conditions:
• Pr (Θid ∈ Ωbad) ≤ εbad;

• For any ω ∉ Ωbad, ω is attainable and Pr (Θre = ω)
Pr (Θid = ω)

≥ 1 − εratio(ω).
Then for any distinguisher A trying to distinguish between O1 and O0, we have
the following bound on its distinguishing advantage:

∆O1;O0 (A) ≤ εbad +EΘid (εratio) .

3 Constrained Systems

System of Linear Equations: Fix some q, r ≤ N . Any system of q linear
equations in r variables, Ax = λ, over FN can be compactly represented by the
augmented matrix A∣λ, where A ∈ Fq×r

N and λ ∈ Fq
N .

System-graph and Components: It would be often convenient to look at a graph-
theoretic representation of the system A∣λ. Formally, to any system A∣λ, we
associate an undirected, labeled, bipartite graph G(A∣λ) = (row(A∣λ), col(A),E)
where row(A∣λ) and col(A) denote the two disjoint sets of vertices, and

E = {({Ai●∣λi,A●j},Aij) ∶ (i, j) ∈ [q] × [r],Ai,j ≠ 0n}

denotes the edge-set. Each edge e = ({Ai●∣λi,A●j},Aij) ∈ E is often written in
a more illustrative notation as Ai●∣λi

Aij A●j or simply i− j ∣ whenever
convenient, where the superscripts − and ∣ are used to differentiate row and
column index, respectively. We call G(A∣λ) a system-graph.

In this context, we say that two rows Ai●∣λi and Ai′●∣λi′ are adjacent, denoted
Ai●∣λi ∼ Ai′●∣λi′ , if and only if there exists an A●j ∈ col(A) such that i− j ∣

i′−.2 The relation ∼ on row(A∣λ) is reflexive and symmetric, but not transitive.
2 Any two rows of a matrix are said to be disjoint, if they do not share a common

column index with non-zero entry, and non-disjoint otherwise.
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We say that two rows Ai● and Aj● are connected, denoted Ai●∣λi ∼∼ Aj●∣λj ,
if and only if they are connected in G(A∣λ). ∼∼ is an equivalence relation on
row(A∣λ), effectively partitioning row(A∣λ) = A1∣λ1⊔⋯⊔Ac∣λc. For each compo-
nent Ai∣λi of A∣λ, let Ai denote the column-reduced form of Ai, which is obtained
by simply dropping all the zero columns from Ai. Then, it is easy to see that the
induced subgraph G[Ai∣λi, col(Ai)] is a component G(A∣λ), and a system-graph
in its own right. As a consequence, with a slight abuse of notations, we also write
Ai∣λi to denote the qi × (r + 1) submatrix (also referred as a component) of A∣λ
corresponding to the equivalence class Ai∣λi = {Aj1●∣λj1 , . . . ,Ajqi●∣λjqi

}, i.e.

Ai∣λi =
⎛
⎜
⎝

Aj1●∣λj1

⋮
Ajqi●∣λjqi

⎞
⎟
⎠
,

where ∑i qi = q. Let ri ∶= ∣col(Ai)∣ and ∑i ri = r. For any i ∈ [c], we say that Ai∣λi

is isolated if qi = 1. By extension, A∣λ is said to be isolated if Ai∣λi is isolated
for all i ∈ [c].

Note that, both ∼ and ∼∼ are independent of λ. Accordingly, we often view
them as relations on row(A).

Definition 2 (Canonical Component Form). Let A1∣λ1 ⊔ . . .⊔Ac∣λc be the
partitioning of row(A∣λ) with respect to ∼∼. The component form (CF) of A∣λ
with respect to an arbitrary ordering (Ai1 ∣λi1 , . . . ,Aic ∣λic) is defined as the block
matrix

CF(A∣λ) ∶=
⎛
⎜⎜⎜
⎝

Ai1 0 ⋯ 0 λi1

0 Ai2 ⋯ 0 λi2

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ Aic λic

⎞
⎟⎟⎟
⎠

A∣λ can have several component forms. Unless stated otherwise, we always as-
sume that the system A∣λ is in some component form, for if not, it can be placed
in CF by a swapping of rows and columns.

Definition 3 (Acyclic System). Any system A∣λ is said to be cyclic if and
only if the corresponding system-graph G(A∣λ) is cyclic, and acyclic otherwise.

The following proposition is a trivial consequence of the acyclic nature of the
system-graph.

Proposition 2. Any acyclic system has full row-rank.

See Example 1 for a short explanation on the notations and definitions in-
troduced thus far.
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Example 1. Consider the following system of 6 equations in 15 variables over
FN :

A∣λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α1 α2 α3 0 0 0 0 0 0 0 0 0 0 0 0 λ1

0 0 0 α4 α5 α6 0 0 0 0 0 0 0 0 0 λ2

α7 0 0 0 0 0 0 α8 α9 0 0 0 0 0 0 λ3

0 0 0 0 α10 0 α11 0 0 0 0 α12 0 0 0 λ4

0 0 α13 0 0 0 0 0 0 α14 α15 0 0 0 0 λ5

0 0 0 0 0 0 0 0 0 0 0 0 α16 α17 α18 λ6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

for non-zero α1, . . . , α18 ∈ FN . The corresponding system-graph is illustrated in
Figure 1.

A1●∣λ1

A●1

A2●∣λ2 A3●∣λ3 A4●∣λ4 A5●∣λ5 A6●∣λ6

A●2 A●3 A●4 A●5 A●6 A●7 A●8 A●9 A●10 A●11 A●12 A●13 A●14 A●15

Fig. 1. The system-graph corresponding to the system in Example 1. The edge labels
are omitted for readability.

Here,
• A3●∣λ3 ∼ A1●∣λ1 ∼ A5●∣λ5 giving A1∣λ1 = {A1●∣λ1,A3●∣λ3,A5●∣λ5},
• A2●∣λ2 ∼ A4●∣λ4 giving A2∣λ2 = {A2●∣λ2,A4●∣λ4}, and
• A6●∣λ6 ∼ A6●∣λ6 giving A3∣λ3 = {A6●∣λ6},

resulting in the following component form:

⎛
⎜
⎝

A1 0 0 λ1

0 A2 0 λ2

0 0 A3 λ3

⎞
⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α1 α2 α3 0 0 0 0 0 0 0 0 0 0 0 0 λ1

α7 0 0 α8 α9 0 0 0 0 0 0 0 0 0 0 λ3

0 0 α13 0 0 α14 α15 0 0 0 0 0 0 0 0 λ5

0 0 0 0 0 0 0 α4 α5 α6 0 0 0 0 0 λ2

0 0 0 0 0 0 0 0 α10 0 α11 α12 0 0 0 λ4

0 0 0 0 0 0 0 0 0 0 0 0 α16 α17 α18 λ6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The resulting system CF(A∣λ) is acyclic and same as A∣λ up to a relabeling of
variables and constants. Furthermore, one of the components A3∣λ3 is isolated,
although the overall system itself is non-isolated.

Solutions to a System of Equations: Let η(A∣λ) denote the number of solutions
to the system A∣λ. Throughout we assume that the system is consistent, i.e.,
rank(A∣λ) = rank(A), otherwise η(A∣λ) = 0.

The component form of a system gives a very simple product rule for the
number of solutions:

η(A∣λ) =
c

∏
i=1

η(Ai∣λi), (7)
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which stems from the simple observation that any two components are com-
pletely disjoint, i.e., involve distinct variables.

Definition 4 (Constrained System). For any positive integers q, r, t such
that q, t < r, a (q, r, t)-constrained system S = (A∣λ ; P) over FN is the system
A∣λ of q equations in r variables, over FN , endowed with an equivalence relation
P on col(A) resulting in the partition col(A) = P1 ⊔ . . . ⊔ Pt.

The dimension and rank of S, denoted dim(S) and rank(S), are simply the
dimension and rank of A, respectively.

For what follows, we fix a (q, r, t)-constrained system S = (A∣λ ; P), where A∣λ
is in a component form. Whenever convenient, we drop P from the notation.

Since S is effectively a system of equations, all the notations and notions are
analogously extended unless stated otherwise, except for a minor change in the
definition of the system-graph G(S) associated with S which is now endowed with
an implicit coloring of the vertices col(A) that has a one to one correspondence
with P. More precisely, for any i ∈ [t], any two columns A●j ,A●j′ ∈ Pi share the
same implicit color.

The ordered sequence (S1 ≺ ⋯ ≺ Sc) denotes the component form of S, de-
noted CF(S), where each Si is the (qi, ri, ti)-constrained system (Ai∣λi ; P

(i)),
with P(i) ⊆ P being the equivalence relation on the set col(Ai) ⊆ [r], that parti-
tions col(Ai) into ti subsets P

(i)
1 , . . . ,P

(i)
ti

.
S is said to be:
• a clique iff for all j, j′ ∈ col(A), (j, j′) ∈ P.
• a partite iff for all Ai● ∈ row(A), and for all j, j′ ∈ col(Ai●), (j, j′) ∉ P.

Since P(i) ⊆ P, for brevity we continue to use P instead of P(i) for all i. Wlog
we also assume that S is in component form or simply CF.

See Example 2 for an explanation on the notations and definitions related to
constrained systems.
Example 2. Recall Example 1, and endow the system A∣λ with an implicit equiv-
alence relation P (as evident from the updated system-graph illustrated in Fig-
ure 2), resulting in the partition col(A) = P1⊔P2⊔P3, where Pi = {j ∈ [15] ∶ j ≡ i
(mod 3)} for all i ∈ [3].

A1●∣λ1

A●1

A2●∣λ2 A3●∣λ3 A4●∣λ4 A5●∣λ5 A6●∣λ6

A●2 A●3 A●4 A●5 A●6 A●7 A●8 A●9 A●10 A●11 A●12 A●13 A●14 A●15

Fig. 2. The system-graph corresponding to the constrained system in Example 2. Yet
again the edge labels are omitted for readability.

For the (6,15,3)-constrained system S = (A∣λ ; P), we have
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• dim(S) = 6 × 15, rank(S) = 6,
• CF(S) = (S1 ≺ S2 ≺ S3), where Si = (Ai∣λi ; P),
• S3 is isolated, but S is not, and
• S is acyclic and partite.

4 Solutions to a Constrained System

Definition 5 (Solution to a Constrained System). For a family of sets
R = {Ri ⊆ FN}i∈[t], any y = (y1, . . . , yr) ∈ Fr

N is said to be an R-solution for S if
and only if the following conditions are satisfied:
1. y satisfies the system A∣λ,

2. for any i ∈ [t], and any j ∈ Pi, yj ∉Ri,

3. for any i ∈ [t], and any j ≠ j′ ∈ Pi, yj ≠ yj′ .

In words, all elements inR1, . . . ,Rt are forbidden. In this context,Ri are referred
as forbidden sets. Furthermore any two distinct P-related variables3 must have
distinct values.

Let (S ∣R) denote the R-solution space of S and η(S ∣R) ∶= ∣(S ∣R)∣, the
number of R-solutions of S. The central problem that we study in this work is
to find a good lower bound on η(S ∣R) under some assumptions on A, λ and R.

Fix a (q, r, t)-constrained system S = (A∣λ ; P) and a family of sets R =
{Ri}i∈[t]. Fix a component form (S1 ≺ . . . ≺ Sc) for S. For any (i, j) ∈ [c] × [t],
let r

(j)
i ∶= ∣col(Ai) ∩ Pj ∣, and define r(j) = ∑c

i=1 r
(j)
i .

Without loss of generality, we assume ∣Ri∣ = si ≤ s for some s < N , or else,
(S ∣R) = ∅. Then, under the assumption that λ is uniform at random, one would
expect that the number of R-solutions for S is approximately

E (S ∣R) ∶= ∏
t
j=1(N − si)r(j)

Nq
(8)

Of course, the assumption and the expression are both quite speculative at a
first glance. However, as we show later, η(S ∣R) is very close to E (S ∣R) for a
large class of constrained systems. Indeed, for certain binary matrices A and
R = ∅ case, Cogliati et al. prove [15] exactly this result. We aim to prove it in a
more general setting where R may not be empty.

While tackling the problem in its full generality is an interesting and tech-
nically challenging endeavor, it might not captivate the general cryptography
community. Instead, we focus on a specific class of constrained systems that
includes, among other things, known instances in symmetric cryptography, par-
ticularly those discussed in this paper.

3 The equivalence relation P on col(A) can be equivalently defined over the set of
variables {x1, . . . , xr}.
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Definition 6 (Weight). The weight of any A ∈ Fq×r
N is defined as

H(A) ∶=min{H(v) ∶ v ∈ rowsp+(A)},

where rowsp+(A) ∶= {a1A1● ⊕ ⋯ ⊕ aqAq● ∶ ∀(a1, . . . , aq) ≠ 0} and H(v) denotes
the number of non-zero coordinates in v.

We have the following fact that relates the weight of a matrix (and its compo-
nents) with its row rank.

Proposition 3. Suppose A ∈ Fq×r
N has H(A) = k > 0. Then,

(1) A has full row rank.
(2) for every r′ ≥ r − k + 1 and 1 ≤ i1 < ⋯ < ir′ ≤ r, the matrix A′ = (A●i1 ∣⋯∣A●ir′ )

has full row rank, where A●i denotes the i-th column of A viewed as a q-
dimensional vector.

(3) r − k + 1 ≥ q.

Proof. (1) follows from the definition. For (2), suppose to the contrary that
A′ does not have full rank. Then, we must have 0 ∈ rowsp+(A′). Specifically,
one can find (a1, . . . , aq) ≠ 0 ∈ Fq

2, such that a1A
′
1● ⊕ ⋯ ⊕ aqA

′
q● = 0. Then,

v = a1A1● ⊕ ⋯ ⊕ aqAq● ∈ rowsp+(A), and H(v) ≤ r − r′ ≤ k − 1. Thus, H(S) < k,
which is a contradiction. Finally, (3) follows from (2). ⊓⊔

Looking ahead momentarily the higher the weight of a system, the closer our
bound to E (S ∣R), and point (2) and (3) of Proposition 3 play a crucial role
towards establishing this fact. The following definition and subsequent results
provide an easy-to-check condition for determining the weight of a matrix.

Definition 7 (Regularity). Any A ∈ Fq×r
N is said to be k-regular if and only if

H(Ai●) = k, for all i ∈ [q].

Note that, the above definition can be equivalently formulated as row(A∣λ) is
regular4 in G(A∣λ). The following propositions show that acyclic and highly
regular systems have high weight.

Proposition 4. For any k ≥ 2, any k-regular and acyclic A ∈ Fq×r
N has H(A) = k.

Proof. The result is trivial for q = 1. Assume for contradiction that H(A) < k for
some q ≥ 2. Then, for some 2 ≤ l ≤ q, there exists a sequence of rows Ai1●, . . . ,Ail●
and a sequence of non-zero field elements a1, . . . , al, such that v = a1Ai1● ⊕ . . .⊕
alAil● has H(v) < k. Since, A is acyclic, one can always find two distinct rows
Aia● and Aib● such that there exists at most one Aic● ∈ {Ai1●, . . . ,Ail●} ∖ Aia●
and one Aid● ∈ {Ai1●, . . . ,Ail●} ∖ Aib● such that Aia● ∼ Aic● and Aib● ∼ Aid●,
respectively. For if not, then due to the finiteness of l, the matrix

⎛
⎜
⎝

Ai1●
⋮

Ail●

⎞
⎟
⎠

4 A vertex set is said to be regular if all the constituent vertices have the same degree.
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is cyclic which contradicts the acyclic nature of A. Then, using the k-regularity
of A, at least k − 1 ≥ 1 non-zero columns in each of Aia● and Aib● have a single
non-zero entry. Therefore, these columns contribute non-zero coordinates to v.
Thus, H(v) ≥ 2k − 2 which is at least k for k ≥ 2. ⊓⊔

Proposition 5. For any q ≥ 2 and any k ≥ 3, let A ∈ Fq×r
N be acyclic and k-

regular. Then, for any 1 ≤ i1 < . . . < ik ≤ r, the matrix A′ = A ∖ {A●i1 , . . . ,A●ik}
has:

rank(A′) =
⎧⎪⎪⎨⎪⎪⎩

q − 1 if {i1, . . . , ik} = col(Aj●) for some j ∈ [q],
q otherwise.

Proof. First consider the case: {i1, . . . , ik} = col(Aj●) for some j ∈ [q], i.e., all
the non-zero columns of Aj● are deleted, and hence Aj● can be dropped without
affecting the rank of A′. Thus, rank(A′) ≤ q−1. Furthermore, since the system is
acyclic and A is k-regular, A′ must be acyclic and at least (k−1)-regular. Then,
using Proposition 4, we have H(A′) ≥ k − 1 ≥ 2, and thus using Proposition 3,
rank(A′) = q − 1.

Now suppose {i1, . . . , ik} ≠ col(Aj●) for all j ∈ [q]. Thus, A′ has q non-zero
rows. Assume towards a contradiction that rank(A′) < q. Then one can find a
sequence of distinct rows A′j1●,A

′
j2●, . . . ,A

′
jl● ∈ row(A

′) and a sequence of non-
zero coefficients a1, a2, . . . , al such that v = a1A′j1● ⊕ . . .⊕ alA

′
jl● = 0. Let

A′′ =
⎛
⎜⎜⎜
⎝

Aj1●
Aj2●
⋮

Ajl●

⎞
⎟⎟⎟
⎠

We claim that the number of columns in A′′ with a single non-zero entry in each
of these columns is at least 2k − 2. Indeed, in the worst case, all the rows are
connected to each other. So after a relabeling of rows one can find a sequence
Aj′1● ∼ Aj′2● ∼ . . . ∼ Aj′

l′●
for some l′ ≤ l. Since A′′ is acyclic and k-regular, Aj′1●

and Aj′
l′●

contribute at least k − 1 columns each with a single non-zero entry.
Now, even if one deletes k columns from A′′, there are still at least k − 2 ≥ 1
columns that contribute non-zero entries in any linear combination, including
v = a1A′j1● ⊕ . . .⊕ alA

′
jl●. Therefore, v ≠ 0, contradicting rank(A′) < q. ⊓⊔

Column-Uniform System: S = (A∣λ ; P) is said to be a column-uniform matrix
if for each column j of A, there exists a non-zero scalar αj such that all non-zero
entries in column j are equal to αj . Formally, for each column j, there exists a
non-zero scalar αj , such that for all row i of A the following condition holds:

Aij =
⎧⎪⎪⎨⎪⎪⎩

αj if Aij ≠ 0,
0 otherwise.

In this paper, we focus on lower bounding η(S ∣R) for column-uniform, acyclic
and k-regular (or k-CAR) system S = (A∣λ ; P).
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Additional Notations and Conventions: Without loss of generality assume a
component form (S1 ≺ . . . ≺ Sc), such that all the isolated components appear
before the non-isolated ones. Let NI(S) denote the set of indices of all the non-
isolated components, ξS ∶= max{ri ∶ i ∈ [c]}, ∆S ∶= maxd ∣{i ∈ [q] ∶ λi = d}∣, and
for any i ∈ [c], let:
• S≤i denote the system (S1 ≺ . . . ≺ Si),
• y≤i denote the solution of the sub-system S≤i,
• P and F define families of set indexed by j ∈ [t] such that

Pj(y≤i) ∶= {yk ∈ y≤i ∶ k ∈ Pj} and Fj(y≤i) ∶=Rj ⊔Pj(y≤i).

Let ∣Pj(y≤i)∣ ∶= r
(j)
≤i and ∣Fj(y≤i)∣ = f

(j)
≤i ∶= sj + r

(j)
≤i .

Extending the notation for i = 0, let y≤0 denote any empty sequence, and thus,
Pj(y≤0) = ∅ and Fj(y≤0) = Rj . In addition, for the sake of convenience we also
assume that 0n ∈Rj for all j ∈ [t]. Note that, r(j)≤i and hence f (j)≤i are independent
of the actual elements in Pj(y≤i) and Fj(y≤i), respectively. In particular, we
have r

(j)
≤i ≤ q, as each equation can have at most one variable in Pj , and thus,

f
(j)
≤i ≤ sj + q ≤ s + q.

4.1 The Case of CAR Partite System

For any t-CAR and partite (t-CARP) (q, r, t)-system S, there exists a fixed
coefficient vector αS = (α1, . . . , αt) ∈ Ft

N common across all equations. Further,
we have the obvious bijective map αj ↦ Pj . With this in mind, we define three
families of sets R̂, P̂ and F̂ indexed by j ∈ [t] such that

R̂j ∶= αj ⋅Rj

P̂j(y≤i) ∶= {αj ⋅ yk ∈ y≤i ∶ k ∈ Pj}
F̂j(y≤i) ∶= R̂j ⊔ P̂j(y≤i).

It is obvious that ∣R̂j ∣ = sj , ∣P̂j(y≤i)∣ = r
(j)
≤i and ∣F̂j(y≤i)∣ = f

(j)
≤i .

Theorem 1 (Partite Bound). Let t ≥ 2, and R be a family of sets. For any
(q, r, t)-constrained system S which is t-CARP and satisfies ξS(s + q) ≤ N/2, we
have η(S ∣R) ≥ (1 − ε)E (S ∣R), where

ε ≤ 2µαS(λ,R)
N t−1 + 2q∆S

N t−1 +
6q(s + q)t

N t
+ ∑

i∈NI(S)
(2r

t
i(s + q)t
N t

+ qi(s + q)t−1
N t−1 ) .

A proof of this result is derived in two stages. First, in Lemma 4, we derive an
initial bound that would be useful when the local5 error terms can be shown to
be sufficiently small in expectation for a random constrained system. We then
go on to derive a bound on the global error term which completes the proof of
the aforementioned theorem.
5 The adjective “local” here corresponds to individual components.
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Consider the i-th component Si = (Ai∣λi ; P). Since S is in CF, col(Ai) = {r≤(i−1)+
1, . . . , r≤(i−1) + t}, where r≤(i−1) = r1 + . . .+ ri−1. For brevity, we ignore the r≤(i−1)
shift in indexing.

Now, towards a proof of Theorem 1, observe that

η(S≤i ∣R) = ∑
y≤(i−1)

η(Si ∣F(y≤(i−1))), (9)

For a fixed y≤(i−1), the set of R-solutions to Si is given by

(Si ∣F) ∶= {y = (y1, . . . , yri) ∈ F(1) × . . . ×F (ri) ∶ Aiy = λi},

where, for all j ∈ [ri], F(j) ∶= Fk(y≤i−1) for a unique k ∈ [t]. Let f(j) = ∣F(j)∣, and
thus f(j) = f (k)≤(i−1) for a unique k ∈ [t]. Let A∅ ∶= {y ∈ Fri

N ∶ Aiy = λi}. Moreover,
for each j ∈ [ri], we define

A{j} ∶= A∅⋂(Fj−1
N ×F(j) × Ft−j

N ).

Then, we have

(Si ∣F) = A∅ ∖
⎛
⎝ ⋃
j∈col(Ai)

A{j}
⎞
⎠
.

For any non-empty J ⊆ col(Ai), let AJ ∶= ∩j∈JA{j}. Using the principal of
inclusion-exclusion, we have

η(Si ∣F) = ∣A∅∣ −
RRRRRRRRRRR

⎛
⎝ ⋃j∈[ri]

A{j}
⎞
⎠

RRRRRRRRRRR
= ∑
J ⊆[ri]

(−1)∣J ∣∣AJ ∣ (10)

Now, ∣A∅∣ = Nri−qi follows from elementary linear algebra; In fact, by virtue
of S being an acyclic and t-regular system, Proposition 4 and 3 allows for an
analogous argument to prevail for any AJ with ∣J ∣ ≤ t−1. In particular, for any
J = {l1, . . . , l∣J ∣}, and any yJ = (yl1 , . . . , yl∣J ∣) ∈ F(l1) × . . . × F(l∣J ∣), we obtain
an equation in exactly ri − ∣J ∣ ≥ ri − t + 1 ≥ qi variables, which has exactly
Nri−∣J ∣−qi solutions. There are exactly f(J ) = f(l1) . . . f(l∣J ∣) such yJ . Thus, we
have ∣AJ ∣ = f(J ) ⋅N t−∣J ∣−qi for all J ⊂ [t].
Crude Bound: Digressing a little, from (10) and the above discussion, we have

Nri−qi − ri(s + q)Nri−qi−1 ≤ η(Si ∣F) ≤ Nri−qi

for any acyclic system S where we use the fact f(j) ≤ (s+ q) for all j ∈ [ri]. This
along with (9) gives the following crude bound

Nri−qi − ri(s + q)Nri−qi−1 ≤ η(S≤i ∣R)
η(S≤(i−1) ∣R)

≤ Nri−qi (11)
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Now coming back to (10) for a proof of Theorem 1, we study the right hand side
separately for isolated and non-isolated components, starting with an isolated
component.

Lemma 3. Suppose Si is isolated. Then, for any y≤(i−1) ∈ (S≤(i−1) ∣R), we have

η(Si ∣F) ≥
∏t

j=1(N − f
(j)
≤(i−1))

N

⎛
⎜
⎝
1 − 2

N t−1

RRRRRRRRRRRRR
µαS(λi,F) −

f
([t])
≤(i−1)

N

RRRRRRRRRRRRR

⎞
⎟
⎠
,

where f
([t])
≤(i−1) = f

(1)
≤(i−1) ⋅ . . . ⋅ f

(t)
≤(i−1).

Proof. Since Si is t-regular, partite and isolated, ri = t and qi = 1. Then, recall
from (10) and the subsequent discussion

η(Si ∣F) = ∑
J ⊆[t]

(−1)∣J ∣∣AJ ∣

= ∑
J ⊂[t]

(−1)∣J ∣f(J )N t−∣J ∣−1 + (−1)tµαS(λi,F)

= 1

N

⎛
⎝ ∑J ⊂[t]

(−1)∣J ∣f(J )N t−∣J ∣ + f([t]) − f([t]) + (−1)tNµαS(λi,F)
⎞
⎠

= 1

N

⎛
⎝

t

∏
j=1
(N − f(j)) + (−1)tN (µαS(λi,F) −

f([t])

N
)
⎞
⎠

= 1

N

⎛
⎜
⎝

t

∏
j=1
(N − f

(j)
≤(i−1)) + (−1)

tN
⎛
⎜
⎝
µαS(λi,F) −

f
([t])
≤(i−1)

N

⎞
⎟
⎠

⎞
⎟
⎠

≥
∏t

j=1(N − f
(j)
≤(i−1))

N

⎛
⎜
⎝
1 − N

∏t
j=1(N − f

(j)
≤(i−1))

RRRRRRRRRRRRR
µαS(λi,F) −

f
([t])
≤(i−1)

N

RRRRRRRRRRRRR

⎞
⎟
⎠

≥
∏t

j=1(N − f
(j)
≤(i−1))

N

⎛
⎜
⎝
1 − 2

N t−1

RRRRRRRRRRRRR
µαS(λi,F) −

f
([t])
≤(i−1)

N

RRRRRRRRRRRRR

⎞
⎟
⎠
, (12)

where the second equality is due to (2), the fifth equality is from a simple re-
labeling, and the last inequality follows from the fact that f

(j)
≤(i−1) ≤ (s + q) and

t(s + q) ≤ ξS(s + q) ≤ N/2. ⊓⊔

Now, on to a lower bound on η(S≤i ∣R) for isolated Si.

Lemma 4. Suppose Si is isolated. Then, we have

η(S≤i ∣R) ≥
∏t

j=1(N − f
(j)
≤(i−1))

N
(1 − 2µαS(λi,R)

N t−1 − 2∆S

N t−1 −
6(s + q)t

N t
)η(S≤(i−1) ∣R).



18 B. Cogliati, J. Ethan, A. Jha, M. Nandi and A. Saha

Proof. From (9) and Lemma 3, we have

η(S≤i ∣R) = ∑
y≤(i−1)

η(Si ∣F(y≤(i−1)))

≥ ∑
y≤(i−1)

∏t
j=1(N − f

(j)
≤(i−1))

N

⎛
⎜
⎝
1 − 2

N t−1

RRRRRRRRRRRRR
µαS(λi,F) −

f
([t])
≤(i−1)

N

RRRRRRRRRRRRR

⎞
⎟
⎠

≥
∏t

j=1(N − f
(j)
≤(i−1))

N

⎛
⎜
⎝
η(S≤(i−1) ∣R) −

2f
([t])
≤(i−1)

N t
η(S≤(i−1) ∣R) −

2

N t−1 ∑
y≤(i−1)

µαS(λi,F)
⎞
⎟
⎠

≥
∏t

j=1(N − f
(j)
≤(i−1))

N

⎛
⎜
⎝
η(S≤(i−1) ∣R) −

2f
([t])
≤(i−1)

N t
η(S≤(i−1) ∣R) −

2

N t−1 ∑
y≤(i−1)

µαS(λi,F)
⎞
⎟
⎠

(13)

Claim. We claim

∑
y≤(i−1)

µαS(λi,F) ≤ (µαS(λi,R) +∆S +
2(s + q)t

N
)η(S≤(i−1) ∣R)

Proof. We have

∑
y≤(i−1)

µαS(λi,F) = ∑
y≤(i−1)

∑
I⊆[t]

µ(λi, P̂I , R̂[t]∖I)

= ∑
I⊆[t]

∑
y≤(i−1)

µ(λi, P̂I , R̂[t]∖I)

where P̂I = P̂j1 × . . .×P̂jm and R̂[t]∖I = R̂k1
× . . .×R̂km′ for every I = {j1, . . . , jm}

and [t] ∖ I = {k1, . . . , km′}. For brevity we simply write I = [m]. Consider the
following two cases:
• Case A: I = ∅. In this case the definition straightaway gives

∑
y≤(i−1)

µ(λi, R̂[t]) = µαS(λi,R) × η(S≤(i−1) ∣R).

We remark that for i = 1 this is the only possible case.

• Case B: I ≠ ∅ ⊆ [t]. Fix some (at−m+1, . . . , at) ∈ R̂[t]∖I and define a⊕ ∶=
at−m+1 ⊕ . . . ⊕ at, with a⊕ = 0 whenever I = [t]. Fix some (yl1 , . . . , ylm) ∈
P̂1 × . . . × P̂m. Then, we have

∑
y≤(i−1)

µ(λi, yl1 , . . . , ylm , at−m+1, . . . , at) = ∑
y≤(i−1)

µ(λi ⊕ a⊕, yl1 , . . . , ylm) (14)

Thus, we want to count the number of solutions for S≤(i−1) that additionally
satisfies the equation αl1 ⋅xl1 ⊕ . . .⊕ αlm ⋅xlm = λi ⊕ a⊕.
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Let S′≤(i−1) = S≤(i−1) ∪{αl1 ⋅xl1 ⊕ . . .⊕αlm ⋅xlm = λi⊕a⊕} be the constrained
system S≤(i−1) extended with the additional equation xl1 ⊕ . . .xlm = λi⊕a⊕.
Then, by definition, we have

∑
y≤(i−1)

µ(λi ⊕ a⊕, yl1 , . . . , ylm) = η(S′≤(i−1) ∣R).

Let A′≤(i−1) denote the corresponding coefficient matrix. We can have two
cases based on the rank of A′≤(i−1):
● Case B1: A′≤(i−1) has full row rank. Suppose lm ∈ colAj

for some j ≤ (i−1)
and let S≤(i−1)∖j denote the constrained system that excludes Sj . Then,
using the fact that A′≤(i−1) is full rank, we have

η(S′≤(i−1) ∣R) ≤ N t−2 × η(S≤(i−1)∖j ∣R),

and further, using the crude bound (11), we have η(S≤(i−1) ∣R) ≥ (N t−1−
t(s + q)N t−2) × η(S≤(i−1)∖j ∣R) holds as S≤(i−1) is acyclic and t-regular.
Thus,

η(S′≤(i−1) ∣R) ≤
2

N
η(S≤(i−1) ∣R),

where we use the fact that t(s+ q) ≤ N/2. There are at most ( t
m
) choices

for I and for each such choice there are at most qmst−m choices for
(l1, . . . , lm, at−m+1, . . . , at), which finally gives

∑
I⊆[t]

∑
y≤(i−1)

µ(λi,PI ,R[t]∖I) ≤
2(s + q)t

N
η(S≤(i−1) ∣R).

● Case B2: A′≤(i−1) does not have full row rank. This case is only possible
if the additional equation is defined by the equations in S≤(i−1). Since
S≤(i−1) is isolated, this case is only possible if the additional equation is
redundant, i.e., I = [t], {l1, . . . , lt} = col(Aj) for some j ≤ (i − 1), and
λj = λi. Since there is only one choice for I, and at most ∆S choices for
j, the number of solutions in this case is bounded by ∆Sη(S≤(i−1) ∣R).

The claim then follows by combining the bounds in all cases, and the lemma
follows by substituting the claimed bound in (13). ⊓⊔

Now on to non-isolated components.

Lemma 5. Suppose Si is non-isolated. Then, we have

η(Si ∣F) ≥
∏t

j=1(N − f
(j)
≤(i−1))

r
(j)
i

Nqi
(1 − 2rti(s + q)t

N t
− εodd(q, r, s, t)) ,

where

εodd(q, r, s, t) =
⎧⎪⎪⎨⎪⎪⎩

2qi(s+q)t−1
Nt−1 for odd t,

0 for even t.
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Proof. Recall from (10) that

η(Si ∣F) = ∑
J ⊆[ri]

(−1)∣J ∣∣AJ ∣.

First consider the even t case, where using Bonferroni’s inequality, we have

η(Ψi ∣F) ≥ ∑
J ⊆[ri]
∣J ∣≤t−1

(−1)∣J ∣∣AJ ∣

≥ ∑
J ⊆[ri]
∣J ∣≤t−1

(−1)∣J ∣f(J )Nri−∣J ∣−qi

≥ 1

Nqi

⎛
⎜⎜⎜
⎝
∑
J ⊆[ri]
∣J ∣≤t

(−1)∣J ∣f(J )Nri−∣J ∣ − ∑
J ′⊆[ri]
∣J ′∣=t

f(J ′)N
ri−t
⎞
⎟⎟⎟
⎠

≥ 1

Nqi

⎛
⎝

ri

∏
j=1
(N − f(j)) − rti(s + q)tNri−t⎞

⎠

≥
∏ri

j=1(N − f(j))
Nqi

(1 − 2rti(s + q)t
N t

) , (15)

where the last inequality follows from the fact that f(j) ≤ (s + q) for any j and
ri(s + q) ≤ ξS(s + q) ≤ N/2.

As for the odd t case, using Bonferroni’s inequality, we have

η(Ψi ∣F) ≥ ∑
J ⊆[ri]
∣J ∣≤t

(−1)∣J ∣∣AJ ∣

≥ ∑
J ⊆[ri]
∣J ∣<t

(−1)∣J ∣fJNri−∣J ∣−qi − ∑
J ⊆[ri]
∣J ∣=t

∣AJ ∣

≥ 1

Nqi

⎛
⎜⎜⎜
⎝
∑
J ⊆[ri]
∣J ∣<t

(−1)∣J ∣fJNri−∣J ∣ −Nqi ∑
J ⊆[ri]
∣J ∣=t

∣AJ ∣
⎞
⎟⎟⎟
⎠

≥ 1

Nqi

⎛
⎜⎜⎜
⎝

ri

∏
j=1
(N − f(j)) −Nqi ∑

J ⊆[ri]
∣J ∣=t

∣AJ ∣
⎞
⎟⎟⎟
⎠

≥
∏ri

j=1(N − f(j))
Nqi

⎛
⎜⎜⎜
⎝
1 − 2

Nri−qi ∑
J ⊆[ri]
∣J ∣=t

∣AJ ∣
⎞
⎟⎟⎟
⎠

(16)
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Claim. We claim

∑
J ⊆[ri]
∣J ∣=t

∣AJ ∣ ≤ qi(s + q)t−1Nri−t−qi+1 + rti(s + q)tNri−t−qi .

Proof. Let J = {l1, . . . , lt} and suppose S′i denote the updated system after the
removal of these t columns from Si. Using Proposition 5, we have two cases:
• Case A: J = col(Aj●) for some Aj● ∈ row(Ai). From Proposition 5 we know

that rank(S′i) = qi − 1. Thus, we have

∑
J =col(Aj●)
Aj●∈row(Ai)

∣AJ ∣ ≤ qi(s + q)t−1Nri−t−qi+1.

• Case B: J ≠ col(Aj●) for all Aj● ∈ row(Ai). From Proposition 5 we know that
rank(S′i) = qi. Thus, we have

∑
J ≠col(Aj●)

∣AJ ∣ ≤ rti(s + q)tNri−t−qi .

This proves the claim. ⊓⊔

The result follows by substituting the claimed bound in (16) by realizing that

ri

∏
j=1
(N − f(j)) =

t

∏
k=1
(N − fk

≤(i−1))r
(k)
i ⊓⊔

Since the bound in Lemma 5 is independent of y≤(i−1), we have the following
corollary.

Corollary 2. Suppose Si is non-isolated. Then, we have

η(S≤i ∣R) ≥
∏t

j=1(N − f
(j)
≤(i−1))

r
(j)
i

Nqi
(1 − 2rti(s + q)t

N t
− εodd(q, r, s, t))η(S≤(i−1) ∣R),

where

εodd(q, r, s, t) =
⎧⎪⎪⎨⎪⎪⎩

2qi(s+q)t−1
Nt−1 for odd t,

0 for even t.

Theorem 1 now follows from the appropriate recursive application of
Lemma 4 and Corollary 2 for all i from c down to 1, carefully accumulating
the bound for non-isolated components.

4.2 The Case of CAR Clique System

Towards a variation of Theorem 1, suppose S is column-uniform, acyclic, k-
regular (k-CARC) for some k ≥ 2, and clique. Thus, t = 1 in this case.
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A system S is said to be trivial if and only if there exists v ∈ rowsp+(A) such
that

H(v) = 2 and (v∣0n) ∈ rowsp+(A∣λ),
and non-trivial otherwise. For all trivial systems, η(S ∣R) = 0. Accordingly, we
assume that the system is non-trivial. Beyond this obvious limitation, the case
of clique systems is quite similar to the partite case.

Indeed we reuse the same notations and arguments to a large extent. First,
we redefine

E (S ∣R) ∶= (N − s)r
Nq

Next, suppose S denote an arbitrary partite version of S. Set R1 = ⋯ = Rk,
s1 = . . . = sk, and reuse the definitions of A∅ and A{j} for any j ∈ col(Ai).
Furthermore, for each j1 ≠ j2 ∈ col(Ai), let

EQj1,j2 ∶= {y = (y1, . . . , yri) ∈ Fri
N ∶ Aiy = λi ∧ yj1 = yj2}.

Then, for any i ∈ [q], we have

(Si ∣F) = A∅ ∖
⎛
⎝
(

ri

⋃
j=1
A{j}) ∪

⎛
⎝ ⋃
j1<j2∈col(Ai)

EQj1,j2

⎞
⎠
⎞
⎠
,

More importantly,

η(Si ∣F) = ∣A∅∣ − ∣
ri

⋃
j=1
A{j}∣ −

RRRRRRRRRRRR
⋃

j1<j2∈col(Ai)
EQj1,j2

RRRRRRRRRRRR

= η(Si ∣F) −
RRRRRRRRRRRR

⋃
j1<j2∈col(Ai)

EQj1,j2

RRRRRRRRRRRR
≥ η(Si ∣F) − (

ri
2
)Nri−1−qi

where the inequality follows from the fact that ∣EQj1,j2 ∣ ≤ Nri−1−qi as H(A) ≥
k ≥ 2. This gives the following clique counterparts for the results derived in the
partite case.

Lemma 6. Suppose Si is isolated and non-trivial. Then, for any y≤(i−1) ∈
(S≤(i−1) ∣R), we have

η(Si ∣F) ≥
(N − f≤(i−1))k

N

⎛
⎝
1 − 2

Nk−1

RRRRRRRRRRR
µαS(λi,F) −

fk
≤(i−1)

N

RRRRRRRRRRR
− k2

N

⎞
⎠
.

Lemma 7. Suppose Si is isolated and non-trivial. Then, we have

η(S≤i ∣R) ≥
(N − f≤(i−1))k

N
(1 − 2µαS(λi,R)

Nk−1 − 2∆S

Nk−1 −
6(s + kq)k

Nk
− k2

N
) .
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Lemma 8. Suppose Si is non-isolated and non-trivial. Then, we have

η(Si ∣F) ≥
(N − f≤(i−1))ri

Nqi
(1 − 2rki (s + kq)k

Nk
− εodd(q, r, s) −

r2i
N
) ,

where

εodd(q, r, s) =
⎧⎪⎪⎨⎪⎪⎩

2qi(s+kq)k−1
Nk−1 for odd k,

0 for even k.

Corollary 3. Suppose Si is non-isolated and non-trivial. Then, we have

η(S≤i ∣R) ≥
(N − f≤(i−1))ri

Nqi
(1 − 2rki (s + kq)k

Nk
− εodd(q, r, s) −

r2i
N
)η(S≤(i−1) ∣R),

where

εodd(q, r, s) =
⎧⎪⎪⎨⎪⎪⎩

2qi(s+kq)k−1
Nk−1 for odd k,

0 for even k.

Theorem 2 (Clique Bound). Let k ≥ 2 and R be a family of sets. For any
(q, r,1)-constrained system S which is non-trivial, k-CARC and which satisfies
ξS(q + s) ≤ N/2, we have η(S ∣R) ≥ (1 − ε)E (S ∣R), where

ε ≤ 2µαS(λ,R)
Nk−1 +2q∆S

Nk−1+
6q(s + kq)k

Nk
+2qk

2

N
+ ∑
i∈NI(S)

(2r
k
i (s + kq)k

Nk
+ qi(s + kq)k−1

Nk−1 + r2i
N
) .

5 Single-keyed Double-block Hash-then-Sum

Let π be a permutation of {0,1}n. We define three injective functions π0, π1, π2 ∶
{0,1}n−2 → {0,1}n as follows:

π0(⋅) ∶= π(00∥⋅) π1(⋅) ∶= π(01∥⋅) π2(⋅) ∶= π(10∥⋅)

For 0 ≤ j ≤ 2, we define Ij (n) ∶= {πj ∶ π ∈ P (n)}.

Definition 8 (Single-keyed Permutation-based DBHtS). For some permu-
tation π of {0,1}n and a permutation-based rate-c−1 diblock hash function
H ∶ I0 (n) × {0,1}∗ → {0,1}n−2 × {0,1}n−2, we define the single-keyed DBHtS,
denoted 1k-DBHtSπ,H construction by the mapping:

m↦ π1(Hπ0(m))⊕ π2(Hπ0(m)). (17)

The construction is illustrated in Fig. 3.

We drop the parameters π and H whenever they are clear from the context.
We reemphasize here that the π0,π1,π2 are all domain-separated versions of the
same permutation π.
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Hπ0

π1

π2

m ⊕⊕⊕ t

x1

x2

y1

y2

Fig. 3. The 1k-DBHtSπ,H construction.

Theorem 3. Let c, q, `, σ ≥ 0 satisfying q` < σ and σ = cσ + 2q ≤ 2n−3. Suppose
H ∶ I0 (n) × {0,1}∗ → {0,1}2n−4 is a ratec−1 (ε1, ε2, ε3, δ)-CFH. Then, for ρ =
(q, `, σ) and ρ′ = (2, `,2`), the PRF advantage of any ρ-distinguisher A against
1k-DBHtSΠ,H satisfies

Advtprf1k-DBHtSΠ,H
(A) ≤ ε1 + ε2,

where

ε1 ∶= 2ε2(ρ,4) + δ(ρ) + q + 2ε1(ρ) + ε2(ρ,3)
2n

+ 2ε3 (ρ,2n/4σ) .

ε2 ∶=
16q2σ2ε1(ρ′)

22n
+ 8q2ε1(ρ′)

2n
+ 3qσ

23n/2
+ 40qσ5/2

25n/2
+ 4qσ2 + 16q2σ2 + 16q3σ

23n
.

Proof. Without loss of generality assume that A is deterministic. Let
• Mi ∶= (Mi

1, . . . ,M
i
`i
), denote the i-th query of the distinguisher, containing

`i ≤ ` blocks.
• Ti, denote the i-th response of the oracle.

In addition, the oracle releases additional information to the distinguisher, once
the distinguisher is done querying the oracle, but before it outputs its decision
bit.
In the real world, the oracle releases:
• Xi ∶= (Xi

1,X
i
2) =HΠ0

(Mi), the (2n−2)-bit internal hash output, or finalization
input corresponding to the i-th query.

• Yi ∶= (Yi
1,Y

i
2) = (Π1(Xi

1),Π2(Xi
2)), the 2n-bit finalization output correspond-

ing to the i-th query.
• R, the set of all image points sampled during the computation of HΠ0(Mi)

for all i ∈ [q]. Since H is a rate-c−1 hash function, ∣R∣ = cσ for M.
Thus, the full real world transcript can be described as

Θre ∶= ((Mi,Ti,Xi,Yi ∶ i ∈ [q]),R).

In the ideal world, the oracle first samples a dummy random permutation Π′,
and then computes Xi ∶=HΠ′0

(Mi) for all i ∈ [q]. In other words, Xi is generated
faithfully for all i ∈ [q]. Note that, R can be derived here as well, as the ideal
oracle is faithfully generating the hash outputs.
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Sampling Y in the ideal world: The sampling mechanism for Yi is on the
other hand a bit more sophisticated. The goal is to sample Yi’s in such a way
that

(Xi
1 = Xj

1 ⇐⇒ Yi
1 = Yj

1), (Xi
2 = Xj

2 ⇐⇒ Yi
2 = Yj

2),
is satisfied for all i ≠ j ∈ [q]. We refer to this predicate as the permutation
compatibility or PC condition.

For any i ∈ [q], let (i)1 ∶= min{j < i ∶ Xi
1 = X

j
1} and (i)2 ∶= min{j < i ∶ Xi

2 =
Xj
2}. Let r = ∣{(i)1, (i)2 ∶ i ∈ [q]}∣. Consider the 2-regular and binary, (q, r,1)-

constrained system S ∶= {Y(i)11 ⊕Y
(i)2
2 = Ti ∶ i ∈ [q]}.

Any R-solution for S satisfies the PC condition, apart from fully defining Y.
As long as the system is acyclic and non-trivial, we can use the results developed
in the previous section. Keeping this in mind, we now define some bad predicates
on the partial transcript ((Mi,Ti,Xi ∶ i ∈ [q]),R):

A1 ∶ ∃∗i, j, k, l ∈ [q], Xi
1 = Xj

1 ∧Xj
2 = Xk

2 ∧Xk
1 = Xl

1.

A2 ∶ ∃∗i, j ∈ [q], Xi
1 = Xj

1 ∧Ti ⊕Tj = 0n.
A3 ∶ ∃∗k ≥ 2n−2/(cσ + 2q), i1, . . . , ik ∈ [q], Xi1

1 = X
i2
1 = . . . = X

ik
1 .

B1 ∶ ∃∗i, j, k, l ∈ [q], Xi
2 = Xj

2 ∧Xj
1 = Xk

1 ∧Xk
2 = Xl

2.

B2 ∶ ∃∗i, j ∈ [q], Xi
2 = Xj

2 ∧Ti ⊕Tj = 0n.
B3 ∶ ∃∗k ≥ 2n−2/(cσ + 2q), i1, . . . , ik ∈ [q], Xi1

2 = X
i2
2 = . . . = X

ik
2 .

C ∶ ∃∗i ∈ [q], Ti = 0n.
D ∶ ∃∗i, j ∈ [q], Xi

1 = Xj
1 ∧Xi

2 = Xj
2.

E ∶ ∃∗i, j, k ∈ [q], Xi
1 = Xj

1 ∧Xj
2 = Xk

2 ∧Ti ⊕Tj ⊕Tk = 0n.

Define Cyclic ∶= A1∨B1∨D, Trivial ∶= A2∨B2∨C∧E, and Giant ∶= A3∨B3. It is not
difficult to see that as long as Cyclic, Trivial, and Giant are false, S is acyclic and
non-trivial, and satisfies χS(cσ + 2q) ≤ 2n−1 for (cσ + 2q) < 23n/4. For notational
convenience, let s = cσ.

Onwards we describe the sampling of Y conditioned on the fact that ¬(Cyclic∨
Trivial ∨ Giant) holds. Let CF(S) = (S1 ≺ . . . ≺ Sc) such that all the isolated
components appear before the non-isolated ones. Let Y0 =R, and Yi denote the
Y≤(i−1)-solution for Si, where Y≤(i−1) denotes a Y0-solution for S≤(i−1) = (S1 ≺
. . . ≺ Si−1). Let F(Y≤(i−1)) ∶= Y0 ∪Y≤(i−1) and and f≤(i−1) ∶= ∣F(Y≤(i−1))∣.
Sampling Yi in isolated case: For the i-th isolated component, using Lemma 6,
the number of solutions conditioned on the forbidden set Y0 and a compatible
solution Y≤(i−1) of S≤(i−1) is given by

η(S ∣F(Y≤(i−1))) ≥
(2n − f≤(i−1))2

2n
⎛
⎝
1 − 2

2n

RRRRRRRRRRR
µ(T(i),F) −

f2
≤(i−1)

2n

RRRRRRRRRRR
− 4

2n
⎞
⎠
, (18)

where T(i) = Tj for some j ∈ [q] and f≤(i−1) = s + 2(i − 1).
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Sampling Yi in non-isolated case: For the i-th non-isolated component, using
Lemma 8, the number of solutions conditioned on the forbidden set Y0 and a
compatible solution Y≤(i−1) of S≤(i−1) is given by

η(S ∣F(Y≤(i−1))) ≥
(2n − f≤(i−1))ri

2nqi
(1 − 2r2i (s + 2q)2

22n
− r2i
2n
) . (19)

Now, for all i ∈ [c], we sample Yi ↞ (S ∣F(Y≤(i−1))). This concludes the
sampling in the ideal world, and finally the ideal world transcript is given by

Θid ∶= ((Mi,Ti,Xi,Yi ∶ i ∈ [q]),R).

where the PC condition is satisfied as long as ¬(Cyclic ∨ Trivial ∨ Giant) holds;
otherwise the transcript is defined arbitrarily.

(Bad) Transcript Definition and Analysis: The set of transcripts Ω
is the set of all tuples ω = ((mi, ti, xi, yi ∶ i ∈ [q]),R), where mi ∈ {0,1}∗, ti ∈
{0,1}n, xi ∈ {0,1}2n−2, yi ∈ {0,1}2n and R ⊆ ({0,1}n)cσ, where σ = ∑q

i=1⌈∣mi∣/n⌉.
A transcript ω is said to be bad, i.e., ω ∈ Ωbad if and only if it satisfies

Cyclic ∨Trivial ∨Giant, and good otherwise.

Lemma 9. Suppose H is an (ε1, ε2, ε3, δ)-coverfree hash function. Then

Pr (Θid ∈ Ωbad) ≤ 2ε2(ρ,4) + δ(ρ) + q + 2ε1(ρ) + ε2(ρ,3)
2n

+ 2ε3 (ρ,
2n−2

cσ + 2q
) .

Proof. Let s′ = 2n−2/(cσ + q). We have

Pr (Θid ∈ Ωbad) = Pr (Cyclic ∨Trivial ∨Giant)
≤ Pr (Cyclic) +Pr (Trivial) +Pr (Giant)
≤ Pr (A1) +Pr (B1) +Pr (D) +Pr (A2) +Pr (B2) +Pr (C) +Pr (E) +Pr (A3) +Pr (B3)

≤ Pr (AP14H(M)) +Pr (AP24H(M)) +Pr (COLLH(M)) +
Pr (COLL1H(M))

2n

+ Pr (COLL2H(M))
2n

+ q

2n
+
Pr (AP13H(M))

2n
+Pr (MC1s

′

H(M)) +Pr (MC2s
′

H(M))

≤ 2ε2(ρ,4) + δ + q + 2ε1(ρ) + ε2(ρ,3)
2n

+ 2ε3(ρ, s′),

where the the first three (in)equalities follow from the definition and a trivial
application of union bound, the fourth inequality just maps the bad predicates
to corresponding coverfree hash events, and finally the fifth inequality follows
from the coverfree bound of H. ⊓⊔

Good Transcript Analysis: Fix a good transcript ω ∈ Ωgood. We will recycle
notations from the sampling phase.
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In the real world, Π is sampled exactly s+r times (∣R∣ = s and ∣{(i)1, (i)2 ∶ i ∈
[q]}∣ = r). Thus, we have

Pr (Θre = ω) =
1

(2n)s+r
(20)

In the ideal world, first T is sampled uniformly from a set of size 2nq, followed
by R which is sampled faithfully via Π. Finally, Y is sampled. Let CF(S) =
(S1, . . . ,Sc) where the first c′ ≤ c components are isolated and the remaining
components are non-isolated. Then, we have

Pr (Θid = ω) =
1

2nq
× 1

(2n)s
×

c′

∏
i=1

1

η(Si ∣F(Y≤(i−1)))
×

c

∏
i′=c′+1

1

η(Si′ ∣F(Y≤(i′−1)))

≤ 1

2nq
× 1

(2n)s
×

c′

∏
i=1

2n

(1 − µi)(2n − f≤(i−1))2
×

c

∏
i′=c′+1

2nqi′

(1 − νi′)(2n − f≤(i′−1))ri′

where

µi =
2

2n

RRRRRRRRRRR
µ(T(i),F) −

f2
≤(i−1)

2n

RRRRRRRRRRR
+ 4

2n
, (21)

νi′ =
2r2i′(s + 2q)2

22n
+ r2i′

2n
. (22)

Continuing on we have

Pr (Θid = ω) ≤
1

(2n)s
×

c′

∏
i=1

1

(1 − µi)(2n − f≤(i−1))2
×

c

∏
i′=c′+1

1

(1 − νi′)(2n − f≤(i′−1))ri′

≤ 1

(1 −∑c′

i=1 µi)
× 1

(1 −∑c
i′=c′+1 νi′)

×
c

∏
i=1

1

(2n − f≤(i−1))ri
(23)

On dividing (20) by (23), we have

Pr (Θre = ω)
Pr (Θid = ω)

≥
⎛
⎝
1 −

c′

∑
i=1

µi −
c

∑
i′=c′+1

νi′
⎞
⎠
× ∏

c
i=1(2n − f≤(i−1))ri
(2n)s+r

≥
⎛
⎝
1 −

c′

∑
i=1

µi −
c

∑
i′=c′+1

νi′
⎞
⎠
. (24)

In anticipation of applying the Expectation Method Corollary 1, we have to
compute

E
⎛
⎝

c′

∑
i=1

µi

⎞
⎠

E(
c

∑
i′=c′+1

νi′)

First, let ∼1 (res. ∼2) be equivalence relations on [q], such that i ∼1 j (res. i ∼2 j)
if and only if Xi

1 = X
j
1 (res. Xi

2 = X
j
2). Let C11 , . . . ,C1t1 and C21 , . . . ,C2t2 denote the
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non-singleton equivalence classes of [q] with respect to ∼1 and ∼2, respectively.
For i ∈ [t1] and j ∈ [t2], let mc(1)i = ∣C1i ∣ and mc

(2)
j = ∣C2j ∣.

E(
c

∑
i′=c′+1

νi′) = (
2(s + 2q)2

22n
+ 1

2n
)E(

c

∑
i′=c′+1

r2i′)

≤ (2(s + 2q)2
22n

+ 1

2n
) × 2

⎛
⎝

t1

∑
j=1

E (mc(1)j ) +
t2

∑
j′=1

E (mc(2)j′ )
⎞
⎠

≤ 16q2(s + 2q)2ε1(2, `,2`)
22n

+ 8q2ε1(2, `,2`)
2n

. (25)

Second, using Proposition 1, we have

E
⎛
⎝

c′

∑
i=1

µi

⎞
⎠
= E
⎛
⎝
2

2n

c′

∑
i=1

RRRRRRRRRRR
µ(T(i),F) −

f2
≤(i−1)

2n

RRRRRRRRRRR
+

c′

∑
i=1

4

2n
⎞
⎠

= 2

2n

c′

∑
i=1

E
⎛
⎝

RRRRRRRRRRR
µ(T(i),F) −

f2
≤(i−1)

2n

RRRRRRRRRRR

⎞
⎠
+ 4q

2n

≤ 2

2n

c′

∑
i=1

√
V (µ(T(i),F)) + 2

2n

c′

∑
i=1

RRRRRRRRRRR
E (µ(T(i),F)) −

f2
≤(i−1)

2n

RRRRRRRRRRR
+ 4q

2n
(26)

We claim:

RRRRRRRRRRR
E (µ(T(i),F)) −

f2
≤(i−1)

2n

RRRRRRRRRRR
≤ 2s2 + 8q(s + 2q)2 + 8q2(s + 2q)

22n
(27)

√
V (µ(T(i),F)) ≤

√
2(s + 2q)
2n/2

+ 20(s + 2q)5/2
23n/2

(28)

A proof of this claim is given in Appendix A. Theorem 3 then follows from
Lemma 9 and (25)-(28). ⊓⊔

6 Instantiations of Cover-free Hash functions

For a diblock hash function H ∶ I0 (n) × {0,1}∗ → {0,1}n × {0,1}n we can con-
struct the truncated diblock hash TH ∶ I0 (n) × {0,1}∗ → {0,1}n−2 × {0,1}n−2
as TH(x) ∶= (Trunc(H1(x)),Trunc(H2(x))), where Trunc ∶ {0,1}n → {0,1}n−2
truncates the first two bits of its n-bit input.

Now let us define the functions PHash ∶ I0 (n) × {0,1}∗ → {0,1}n × {0,1}n
and LightHash ∶ I0 (n) × {0,1}∗ → {0,1}n × {0,1}n, as follows:

Two instances of CfHs will be the truncated versions of the above hash func-
tions, TPHash and TLightHash, respectively. In fact, we have that 1k-PMAC+ =
1k-DBHtSTPHash and 1k-LightMAC+ = 1k-DBHtSTLightHash.
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PHashΠ0 LightHashΠ0

Input: m =m[1]∥⋯∥m[k] ∈ ({0,1}n−2)k Input: m =m[1]∥⋯∥m[k] ∈ ({0,1}n−s)k
∆0 ← Trunc(Π0(0)) for i ∈ [k],
∆1 ← Trunc(Π0(1)) Z[i]← Π0(⟨i⟩s−2∥m[i])
for i ∈ [k], x[1]← Z[1]⊕Z[2]⊕⋯⊕Z[k]

W [i]←m[i]⊕ 2i ⋅∆0 ⊕ 22i ⋅∆1 x[2]← 2k−1 ⋅Z[1]⊕ 2k−2 ⋅Z[2]⋯⊕Z[k]
Z[i]← Π0(W [i]) return x ∶= (x[1]∥x[2])

x[1]← Z[1]⊕Z[2]⋯⊕Z[k]

x[2]← Z[1]⊕ 2 ⋅Z[2]⋯⊕ 2k−1 ⋅Z[k]
return x ∶= (x[1]∥x[2])

6.1 Affine bad events.

For a diblock hash function H, any x = (x1, . . . , xq) ∈ (X )q, and c, c1, c2, c3 ∈
{0,1}2, we define:

COLLc1,c2H (x) ∶ ∃∗ i, j ∈ [q] such that HK(xi)⊕HK(xj) = (c1∥0n−2, c2∥0n−2)

COLL1cH(x) ∶ ∃∗ i, j ∈ [q] such that H1
K(xi)⊕H1

K(xj) = c∥0n−2.

COLL2cH(x) ∶ ∃∗ i, j ∈ [q] such that H2
K(xi)⊕H2

K(xj) = c∥0n−2.

AP1c1,c2,c3H (x) ∶ ∃∗ i, j, k, l ∈ [q] such that

H1
K(xi)⊕H1

K(xj) = c1∥0n−2 ∧H2
K(xj)⊕H2

K(xk) = c2∥0n−2

∧H1
K(xk)⊕H1

K(xl) = c3∥0n−2.

AP2c1,c2,c3H (x) ∶ ∃∗ i, j, k, l ∈ [q] such that

H2
K(xi)⊕H2

K(xj) = c1∥0n−2 ∧H1
K(xj)⊕H1

K(xk) = c2∥0n−2

∧H2
K(xk)⊕H2

K(xl) = c3∥0n−2.

AP2c1,c2H (x) ∶ ∃∗ i, j, k ∈ [q] such that

H2
K(xi)⊕H2

K(xj) = c1∥0n−2 ∧H1
K(xj)⊕H1

K(xk) = c2∥0n−2

MC1c1,...,csH (x) ∶ ∃∗ i, j, k, l ∈ [q] such that

H1
K(xi)⊕H1

K(xj) = c1∥0n−2 ∧⋯ ∧H1
K(xis−1)⊕H1

K(xis) = cs∥0n−2

MC2c1,...,csH (x) ∶ ∃∗ i, j, k, l ∈ [q] such that

H2
K(xi)⊕H2

K(xj) = c1∥0n−2 ∧⋯ ∧H2
K(xis−1)⊕H2

K(xis) = cs∥0n−2

One can readily check that

COLL1TH(x) = ⋁
c∈{0,1}2

COLL1cH(x) COLL2TH(x) = ⋁
c∈{0,1}2

COLL2cH(x)
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AP14TH(x) = ⋁
(c1,c2,c3)
∈({0,1}2)3

AP1c1,c2,c3H (x) AP24TH(x) = ⋁
(c1,c2,c3)
∈({0,1}2)3

AP2c1,c2,c3H (x)

COLLTH(x) = ⋁
(c1,c2)
∈({0,1}2)2

COLLc1,c2H (x) AP13TH(x) = ⋁
(c1,c2)
∈({0,1}2)3

AP1c1,c2,c3H (x)

MC1sTH(x) = ⋁
cs

∈({0,1}2)s

MC1c1,⋯,csH (x) MC2sTH(x) = ⋁
cs

∈({0,1}2)s

MC2c1,⋯,csH (x)

(29)

6.2 TPHash.

m[1]

⊕⊕⊕2 ⋅D0

⊕⊕⊕22 ⋅D1

Π0

⊕⊕⊕

⊗⊗⊗

⊕⊕⊕

20

0n

0n

X[1]

Y [1]

m[2]

⊕⊕⊕22 ⋅D0

⊕⊕⊕24 ⋅D1

Π0

⊕⊕⊕

⊗⊗⊗

⊕⊕⊕

21

X[2]

Y [2]

m[`]

⊕⊕⊕2` ⋅D0

⊕⊕⊕22` ⋅D1

Π0

⊕⊕⊕

⊗⊗⊗

⊕⊕⊕

2`−1

X[`]

Y [`]

⋯

⋯

Π1

Π2

⊕⊕⊕ t

Fig. 4. 1k-PMAC+

Our bad event analysis heavily depends on the one presented in [27]. We
tailor their bounds according to our needs while highlighting the main aspects
of similarity and departure between their results and ours.

Similar to the PMAC+ analysis in [27] we define analogous auxiliary events as
follows: Let the i-th message be mi =mi[1]∥⋯∥mi[`i] ∈ ({0,1}n−2)`i , i ∈ [q]. For
i ≠ j ∈ [q], let ` = min{`i, `j} and `′ = max{`i, `j}, then we can define the index
set for which mi[k] ≠mj[k] as

Iij ∶= {k ∈ [`] ∶mi[k] ≠mj[k]} ⊔ [` + 1..`′]

We define the following random variables: D0 ∶= Trunc(Π0(0)), D1 ∶=
Trunc(Π0(1)), and Wi =Wi[1]∥⋯∥Wi[`i], where Wi[k] =mi[k]⊕2k ⋅D0⊕22k ⋅D1.
We further define the random index sets where Wi and Wj collide as follows:

Icol = {(i, j) ∈ ([q])2 ∶ ∃∗k, k′ such that Wi[k] =Wj[k′]}
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Jcol = {(i, j) ∈ ([q])2 ∶min{Iij} ≤ `i and ∃k such that Wi[min{Iij}] =Wj[k]}

Then the auxiliary events are:
Aux1 : D0 = 0 ∨D1 = 0
Aux2 : ∃i ∈ [q],∃∗k, k′ such that Wi[k] =Wi[k′].
Aux3 : ∃i ∈ [q], k ∈ [`i] such that Wi[k] ∈ {0,1,Π−10 (0)}.
Aux4 : ∣Icol∣ > s, where s = 2n/4σ.
Aux5 : ∣Jcol∣ > s′ where s′ = `q
and let Aux = ⋁i∈[5]Auxi.

Lemma 10. For m = (mi ∶ i ∈ [q]) and c, c1, c2, c3 ∈ {0,1}2,

Pr (COLLc1,c2PHashΠ0
(m) ∧ ¬Aux) ≤ 4`q2

22n

Pr (AP1c1,c2,c3PHashΠ0
(m) ∧ ¬Aux) ≤ 2s′

2

22n
+ 4s

2n
+ 2

2n
+ 2
√
2q2

23n/2
+ 8sq2

22n
+ 96q2

22n
+ 8q4

23n

Proof Sketch: First we note that, the following pairs of events, the left defined in
[27] and the right defined in this paper, are equivalent in the single-key scenario:

Bad1 ≡ COLL0,0PHashΠ0
(m), Bad2 ≡ AP10,0,0PHashΠ0

(m)

Analogous to Eq. (10) and (11) of [27], we can write, for any c ∈ {0,1}2,

PHash1
Π0
(mi)⊕ PHash1

Π0
(mj) = c∥0n−2 ⇐⇒ A1 ⋅ Z[1]⊕⋯⊕At ⋅ Z[t] = c∥0n−2

PHash2
Π0
(mi)⊕ PHash2

Π0
(mj) = c∥0n−2 ⇐⇒ B1 ⋅ Z[1]⊕⋯⊕Bt ⋅ Z[t] = c∥0n−2

where, for (i, j) ∈ ([q])2, {W[1], . . . ,W[t]} ∶= {Wi[1], . . . ,Wi[`i]} ∪
{Wj[1], . . . ,Wj[`j]}, and for k ∈ [t], Z[k] ∶= Π0(W[k]).

Thus, borrowing from the analysis of [27], each of the events in the statement
of this lemma can be written as an event that a system of equations AZ = c
holds, where Z is a vector with k-th component Z[k], and c depends on the
indices c, c1, c2, c3 of the corresponding event. If c /∈ C(A), then this system of
equations will hold with 0 probability. If c ∈ C(A) then the probability that this
system of equations holds, depends on the rank of A and not on c. So we have
that

Pr (COLLc1,c2PHashΠ0
(m) ∧ ¬Aux) ≤ Pr (COLL0,0PHashΠ0

(m) ∧ ¬Aux) = Pr (Bad1 ∧ ¬Aux)

Pr (AP1c1,c2,c3PHashΠ0
(m) ∧ ¬Aux) ≤ Pr (AP10,0,0PHashΠ0

(m) ∧ ¬Aux) = Pr (Bad2 ∧ ¬Aux)

Thus we can use the bounds on the corresponding bad events from [27] to get
our result. ⊓⊔

The probability analysis of the events AP2c1,c2,c3PHashΠ0
(m) and AP1c1,c2PHashΠ0

(m)
are similar to the analysis of the events AP1c1,c2,c3PHashΠ0

(m) and COLLc1,c2PHashΠ0
(m),

respectively.
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Lemma 11. For ` ≤ 2n−2, m ≠m′ ∈ ({0,1}n−2)≤`, and c ∈ {0,1}2, we have

Pr (PHash1
Π0
(m)⊕ PHash1

Π0
(m′) = c∥0n−2) ≤ 26`

2n

Pr (PHash2
Π0
(m)⊕ PHash2

Π0
(m′) = c∥0n−2) ≤ 26`

2n

Proof. Let m ∈ ({0,1}n−2)` and m′ ∈ ({0,1}n−2)`′ . Note that the claim is trivial
` = 1 and we ignore this case.

Let i be the maximum block-index where m and m′ are distinct, precisely,

i = { `, if ` > `′
max{j ≤ ` ∶m[j] ≠m′[j]}, if ` = `′

Consider the random variables:

D0 = trunc(Π(0)), D1 = trunc(Π(1)),
W[i] =m[i]⊕ 2i ⋅D0 ⊕ 22i ⋅D1, Z[i] = Π0(W[i]), i ∈ [`]
W′[i] =m′[i]⊕ 2i ⋅D0 ⊕ 22i ⋅D1, Z′[i] ∶= Π0(W′[i]), i ∈ [`′]

Let us define the following events:

E1 ∶D0 = 0
E2 ∶ ⋁

j∈[`]
(W[j] = 0 ∨W[j] = 1) ∨ ⋁

j∈[`′]
(W′[j] = 0 ∨W′[j] = 1)

E3 ∶ ⋁
j∈[`]
j≠i

(W[i] =W[j]) ∨ ⋁
j∈[`′]
(W[i] =W′[j])

Note that Pr (c ⋅ Trunc(Π(a)) = b) = 4/2n for any a ∈ {0,1}n and b, c ∈ {0,1}n−2
with c ≠ 0. Hence, for any a1, . . . , ar ∈ {0,1}n and b, c1, . . . , cr ∈ {0,1}n−2 with
cr ≠ 0, we have

Pr (c1 ⋅ Trunc(Π(a1))⊕⋯⊕ cr ⋅ Trunc(Π(ar)) = b)
= ∑

b′1,...,b
′
r1

∈{0,1}n
all distinct

Pr (Trunc(Π(ar)) = b′)Pr (Π(ai) = b′i ∀i ∈ [r − 1])

≤ 4

2n − r + 1

where bi = trunc(b′i) and b′ = c−1r ⋅ (b⊕ c1 ⋅ b1 ⊕⋯⊕ cr−1 ⋅ br−1). Similarly for any
a1, . . . , ar ∈ {0,1}n and b, c1, . . . , cr ∈ {0,1}n−2 with at least one ci ≠ 0, we have

Pr (c1 ⋅Π(a1)⊕⋯⊕ cr ⋅Π(ar) = b) ≤
1

2n − r + 1
. (30)

This implies Pr (E1) = Pr (trunc(Π(0)) = 0) = 4/2n, Pr (E2 ∣ Ec
1) ≤ 4` ⋅ 4/2n, and

Pr (E3 ∣ Ec
1 ∧ Ec

2) ≤ (2` − 1) ⋅ 4/2n.
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Now the event PHash1
Π0
(m) ⊕ PHash1

Π0
(m′) = c∥0n−2, is equivalent to Z[1] ⊕

⋯⊕ Z[`]⊕ Z′[1]⊕⋯⊕ Z′[`′] = c∥0n−2. Of course, if any two Z-random variables
are identically equal then they cancel out. However, conditional on Ec

1 ∧ Ec
2 ∧ Ec

3

we have Z[i] ≠ Z[j],Z′[j′] for any j ∈ [m]∖{i}, j′ ∈ [m′] and Z[i] ≠ 0,Π(0),Π(1).
Hence from Eq. (30), we have

Pr (PHash1
Π0
(m)⊕ PHash1

Π0
(m′) = c∥0n−2 ∣ Ec

1 ∧ Ec
2 ∧ Ec

3)

≤ 1

2n − (m − 1) −m′ − 2
≤ 1

2n − 2`
≤ 2/2n

assuming ` ≤ 2n−2.
Since for any two events A and B, we have Pr (A) = Pr (A ∧B) + Pr (A ∧Bc)

and Pr (A ∧B) ≤ Pr (A) and Pr (A ∧B) ≤ Pr (A ∣ B), we have

Pr (PHash1
Π0
(m)⊕ PHash1

Π0
(m′) = c∥0n−2)

≤ Pr (E1) + Pr (E2 ∣ Ec
1) + Pr (E3 ∣ Ec

1 ∧ Ec
2)

+ Pr (PHash1
Π0
(m)⊕ PHash1

Π0
(m′) = c∥0n−2 ∣ Ec

1 ∧ Ec
2 ∧ Ec

3)

≤ 4

2n
+ 16`

2n
+ 8` − 4

2n
+ 2

2n
≤ 26`

2n

Same argument shows that Pr (PHash2
Π0
(m)⊕ PHash2

Π0
(m′) = c∥0n−2) ≤ 26`/2n.

Corollary 4.

Pr (COLL1cPHashΠ0
(m)) ≤ 13`q2

2n
Pr (COLL2cPHashΠ0

(m)) ≤ 13`q2

2n

Pr (MC1c1,...,csPHashΠ0
(m)) ≤ 13`q2

s ⋅ 2n Pr (MC2c1,...,csPHashΠ0
(m)) ≤ 13`q2

s ⋅ 2n

The Corollary 4 follows from Lemma 11 by simple application of the Markov’s
inequality.y

Finally, we bound the auxilliary events

Lemma 12. We have

Pr (Aux1 ∨Aux3) ≤
3`q

2n − 2
+ 2

2n
Pr (Aux2) ≤

`2q

2n+1

Pr (Aux4) ≤
`2q2

s ⋅ 2n Pr (Aux5) ≤
`q2

s′ ⋅ 2n

Combining these bounds we have

Pr (Aux) ≤ (`
2 + 8`)q
2n+1

+ `2q2

s ⋅ 2n + `q2

s′ ⋅ 2n

Combining Eq. (29), Lemma 10, Corollary 4 and Lemma 12 we have the
following result:
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Lemma 13. TPHashΠ0 is a (ε1, ε2, ε3, δ)-CfH where

ε1(ρ) =
26`q2

2n
, ε2(ρ,3) =

16`q2

22n
, ε3(ρ, s) =

2s ⋅ 13`q2
s ⋅ 2n , δ(ρ) = 16`q2

22n

ε2(ρ,4) = 8 ⋅ (
2s′

2

22n
+ 4s

2n
+ 2

2n
+ 2
√
2q2

23n/2
+ 8sq2

22n
+ 96q2

22n
+ 8q4

23n
)

6.3 TLightHash.

⟨1⟩s−2∥m[1]

Π0

⊕⊕⊕

⊗⊗⊗

⊕⊕⊕

2`−1

0n

0n

Z[1]

⟨2⟩s−2∥m[2]

Π0

⊕⊕⊕

⊗⊗⊗

⊕⊕⊕

2`−2

Z[2]

⟨`⟩s−2∥m[`]

Π0

⊕⊕⊕

⊗⊗⊗

⊕⊕⊕

20

Z[`]

⋯

⋯

Π1

Π2

⊕⊕⊕ t

Fig. 5. 1k-LightMAC+

As before, we let the i-th message be mi =mi[1]∥⋯∥mi[`i] ∈ ({0,1}n−s)`i , i ∈
[q]. Note that, mi[k] ≠mj[k] ⇐⇒ Zi[k] ≠ Zj[k] for any k ∈ [max{`i, `j}], where
Zi[k] ∶= Π0(⟨k⟩s−2∥mi[k]). Moreover, Zi[k] ≠ Zj[k′] for any k ≠ k′, i, j ∈ [q]. Let
us fix (i, j) ∈ ([q])2, define {Z[1], . . . ,Z[t]} ∶= {Zi[k] ∶ k ∈ [`i]}∪{Zj[k] ∶ k ∈ [`j]}
and partition [t] ∶= Iij ⊔ Iij ⊔ Iij , where

Iij ∶= {k ∈ [t] ∶ Z[k] = Z
i[k′] ≠ Zj[k′], k′ ∈ [max{`i, `j}]}

Iij ∶= {k ∈ [t] ∶ Z[k] = Z
i[k′] = Zj[k′], k′ ∈ [max{`i, `j}]}

Iij ∶= {k ∈ [t] ∶ Z[k] = Z
j[k′] ≠ Zi[k′], k′ ∈ [max{`i, `j}]}

Then we have

LightHash1
Π0
(mi)⊕ LightHash1

Π0
(mj) = c∥0n−2

⇐⇒ A1 ⋅ Z[1]⊕⋯⊕At ⋅ Z[t] = c∥0n−2

LightHash2
Π0
(mi)⊕ LightHash2

Π0
(mj) = c∥0n−2

⇐⇒ B1 ⋅ Z[1]⊕⋯⊕Bt ⋅ Z[t] = c∥0n−2

where
• Ak = 1 for k ∈ Iij ⊔ Iij , Ak = 0, otherwise.
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• Bk = 2β for some β, if k ∈ Iij ⊔ Iij , otherwise Bk = 2β ⊕ 2γ for some β, γ.
Due to this similarity with PHash, the argument given in Lemma 10 also holds
here, giving us

Pr (COLLc1,c2LightHashΠ0

(m)) ≤ Pr (COLL0,0LightHashΠ0

(m))

Pr (AP1c1,c2,c3LightHashΠ0

(m)) ≤ Pr (AP10,0,0LightHashΠ0

(m))

Pr (AP2c1,c2,c3LightHashΠ0

(m)) ≤ Pr (AP20,0,0LightHashΠ0

(m))

Lemma 14. Assume ` ≤ 2n/4. Then in the ideal world,

Pr (COLL0,0LightHashΠ0

(m)) ≤ 2q2

22n

Proof. We fix (i, j) ∈ ([q])2 as above, thus fixing {Z[1], . . . ,Z[t]} and partition-
ing [t] = Iij ⊔ Iij ⊔ Iij . We can make the following observations about the index
sets:
• Iij ⊔ Iij ≠ ∅ since otherwise mi and mj will not be distinct.
• ∣Iij ⊔ Iij ∣ ≥ 2 because otherwise LightHash1

Π0
(mi) ≠ LightHash1

Π0
(mj).

If we consider the system of linear equations representing the
events LightHash1

Π0
(mi) = LightHash1

Π0
(mj) and LightHash2

Π0
(mi) =

LightHash2
Π0
(mj), respectively:

A1 ⋅ Z[1]⊕⋯⊕At ⋅ Z[t] = 0n

B1 ⋅ Z[1]⊕⋯⊕Bt ⋅ Z[t] = 0n

then the above observations about the index sets imply that there are two distinct
indices k, k′ ∈ Iij ⊔ Iij such that Ak = Ak′ = 1 and Bk = 2β , Bk′ = 2γ for distinct
β and γ. This implies that the above system of linear equations has rank 2, and
hence will be satisfied with probability (2n)t−2/(2n)t = 1/(2n − t+2)(2n − t+1) ≤
(2n − 2` + 2)(2n − 2` + 1) ≤ 4/22n for ` ≤ 2n/4. Since there are q(q − 1)/2 tuples
(i, j) ∈ ([q])2, we have our result.

Lemma 15. Assume that ` ≤ 2n/8. Then in the ideal world, one has,

Pr (AP10,0,0LightHashΠ0

(m)) ≤ q4

3 ⋅ 23n + q2

2 ⋅ 23n/2 +
2

2n
+ 96q2

22n

Proof. Let us fix (i, j, r, s) ∈ ([q])4. We want to find the probability of the event

E(i, j, r, s) ∶ (LightHash1
Π0
(mi) = LightHash1

Π0
(mj))

∧ (LightHash2
Π0
(mj) = LightHash2

Π0
(mr))

∧ (LightHash1
Π0
(mr) = LightHash1

Π0
(ms))

Let {Z[1], . . . ,Z[t]} = {Zi[k] ∶ k ∈ [`i]} ∪ {Zj[k] ∶ k ∈ [`j]} ∪ {Zr[k] ∶ k ∈ [`r]} ∪
{Zs[k] ∶ k ∈ [`s]}. Also let us partition [t] in three ways as [t] = Iij⊔Iij⊔Iij⊔Iij =
Ijr ⊔ Ijr ⊔ Ijr ⊔ Ijr = Irs ⊔ Irs ⊔ Irs ⊔ Irs where

Iij ∶= {k ∶ Z[k] = Z
i[k′] ≠ Zj[k′], k′ ∈ [max{`i, `j , `r, `s}]}
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Iij ∶= {k ∶ Z[k] = Z
j[k′] ≠ Zi[k′], k′ ∈ [max{`i, `j , `r, `s}]}

Iij ∶= {k ∶ Z[k] = Z
i[k′] = Zj[k′], k′ ∈ [max{`i, `j , `r, `s}]}

Iij ∶= {k ∶ Z[k] ≠ Zi[k′],Z[k] ≠ Zj[k′], k′ ∈ [max{`i, `j , `r, `s}]}

and the rest of the index sets are defined analogously.
Then the above event can be represented by the following system of equations

A1 ⋅ Z[1]⊕⋯⊕At ⋅ Z[t] = 0n

B1 ⋅ Z[1]⊕⋯⊕Bt ⋅ Z[t] = 0n

C1 ⋅ Z[1]⊕⋯⊕Ct ⋅ Z[t] = 0n

where
• Ak = 1 if k ∈ Iij ⊔ Iij , and Ak = 0 otherwise.
• Bk = 2β for some β if k ∈ Ijr ⊔ Ijr, Bk = 2β ⊕ 2γ for some β, γ if k ∈ Ijr, and

Bk = 0 otherwise.
• Ck = 1 if k ∈ Irs ⊔ Irs, and Ck = 0 otherwise.

As observed in the proof of Lemma 14, ∣Iij ⊔ Iij ∣ ≥ 2 and ∣Irs ⊔ Irs∣ ≥ 2. Let us
call the coefficient matrix of the above system of equations M (i,j,r,s), its first
row as A(i,j,r,s), second row as B(i,j,r,s) and third row as C(i,j,r,s). Let us write
([q])4 as union of three index sets, ([q])4 = J1 ⊔ J2 ⊔ J3, where Ji are defined as
follows:

J1 ∶= {(i, j, r, s) ∶ rank(M (i,j,r,s)) = 3}
J2 ∶= {(i, j, r, s) ∶ A(i,j,r,s) = C(i,j,r,s)}}
J2 ∶= {(i, j, r, s) ∶ B(i,j,r,s) = c1A(i,j,r,s) ⊕ c2C

(i,j,r,s) for c1, c2 ≠ 0}

For (i, j, r, s) ∈ J1, the probability of the Z-variables satisfying the system of
equations is (2n)t−3/(2n)t ≤ 8/23n for ` ≤ 2n/8, since t ≤ 4`. Thus we have

Pr

⎡⎢⎢⎢⎢⎣
⋁

(i,j,r,s)∈J1
E(i, j, r, s)

⎤⎥⎥⎥⎥⎦
≤ q4

3 ⋅ 23n (31)

Now let us define the equivalence relation over ([q])2 as (i, j) ∼ (r, s)
if Iij ⊔ Iij = Irs ⊔ Irs. If (i, j) ∼ (r, s), then A(i,j,r,s) = C(i,j,r,s), which
implies LightHash1

Π0
(mi) = LightHash1

Π0
(mj) ⇐⇒ LightHash1

Π0
(mr) =

LightHash1
Π0
(ms). Suppose the above relations partitions ([q])2 into c equiva-

lence classes ([q])2 = C1 ⊔ ⋯ ⊔ Cc. For a = 1, . . . , c, consider the events Ea that
LightHash1

Π0
(mi) = LightHash1

Π0
(mj) for every (i, j) ∈ Ca. Thus from Eq. (30)

we have that
Pr[Ea] ≤

1

2n − 2` + 1

since ∣Iij ⊔ Iij ∣ ≤ 2` for all (i, j) ∈ Ca. Now we have

Pr

⎡⎢⎢⎢⎢⎣
⋁

(i,j,r,s)∈J2
E(i, j, r, s)

⎤⎥⎥⎥⎥⎦
= Pr

⎡⎢⎢⎢⎢⎣
⋁

a∈[c]
⋁

(i,j),(r,s)∈Ca

E(i, j, r, s)
⎤⎥⎥⎥⎥⎦
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≤
c

∑
a=1

Pr

⎡⎢⎢⎢⎢⎣
⋁

(i,j),(r,s)∈Ca

E(i, j, r, s)
⎤⎥⎥⎥⎥⎦

=
c

∑
a=1

Pr[Ea] ⋅ Pr
⎛
⎝ ⋁
(i,j),(r,s)∈Ca

LightHash2
Π0
(mj) = LightHash2

Π0
(mr)

RRRRRRRRRRR
Ea

⎞
⎠

≤
c

∑
a=1

1

2n − 2` + 1
⋅min{ ∣Ca∣2

2(2n − 2` + 1) ,1}

where the last inequality follows from Eq. (30) and the facts that A(i,j,r,s) and
B(i,j,r,s) are linearly independent, and that ∣Ijr ⊔Ijr ⊔Ijr ∣ ≤ 2` for all (j, r) ∈ Ca.
Note that 1/(2n − 2` + 1) ≤ 2/2n for ` ≤ 2n/8. Subject to the condition that
∑c

a=1 ∣Ca∣ = (q2), the sum ∑c
a=1min{∣Ca∣2/(2(2n − 2` + 1)),1} is maximized when

c = ⌊(q
2
)/2n/2⌋ + 1, ∣Ca∣ = 2n/2 for a ∈ [c − 1] and ∣Cc∣ = (q2) − (c − 1)2n/2, in which

case we have
a

∑
c=1

2

2n
⋅min{∣Ca∣2

2n
,1} ≤ q2

2 ⋅ 23n/2 +
2

2n
.

Thus we have

Pr

⎡⎢⎢⎢⎢⎣
⋁

(i,j,r,s)∈J1
E(i, j, r, s)

⎤⎥⎥⎥⎥⎦
≤ q2

2 ⋅ 23n/2 +
2

2n
(32)

Finally we consider (i, j, r, s) ∈ J3. In this case B(i,j,r,s) = c1A
(i,j,r,s) +

c2C
(i,j,r,s). This linear dependence implies the following:

• c1 = 2β and c2 = 2γ for some β, γ.
• (Iij ⊔ Iij)△ (Irs ⊔ Irs) = Ijr ⊔ Ijr.6 Also Bk, k ∈ Ijr are all distinct, and

similarly, Bk, k ∈ Ijr are all distinct
• (Iij⊔Iij)∩(Irs⊔Irs) = Ijr. From the definition of the index sets, this reduces

to Iij∩Irs = Ijr. If for k ∈ Ijr, Z[k] = Zj[k′] = Zr[k′], then Bk = 2`j−k
′+2`r−k′ .

Since 2a + 2b = 2c + 2d implies either (a, b) = (c, d) or (a, b) = (d, c), and since
in this case for every k ∈ Ijr, Bk = 2β + 2γ , we have ∣Ijr ∣ = 1.

Thus the following assumptions made in proof of Lemma 4 of [27] holds true:
• B(i,j,r,s) does not contain the same entry more than twice.
• B(i,j,r,s) contains at least two different non-zero entries.
• Each of A(i,j,r,s) and C(i,j,r,s) contains at least three ones.

The rest of the analysis is exactly the one presented in the proof of Lemma 4 of
[27], except the ignorable fact that the coefficient of Zj[k′] is 2`j−k

′
(instead of

2k
′

as in the [27]), which however makes no changes in the argument presented.
Thus following the proof of Lemma 4 of [27], we have

Pr

⎡⎢⎢⎢⎢⎣
⋁

(i,j,r,s)∈J3
(i, j, r, s)

⎤⎥⎥⎥⎥⎦
≤ 24q2

(2n − 4` + 1)(2n − 4` + 2) ≤
96q2

22n
(33)

for ` ≤ 2n/8.
Combining Eqs. (31), (32) and (33) we have our result.

6 For two sets A,B, we denote their symmetric difference as A△B ∶= (A∖B)∪(B∖A)
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The probability analysis of the events AP2c1,c2,c3LightHashΠ0

(m) and
AP1c1,c2LightHashΠ0

(m) are similar to the analysis of the events AP1c1,c2,c3LightHashΠ0

(m)
and COLLc1,c2LightHashΠ0

(m), respectively, and we get the same probability bounds.
The exact same arguments given to prove Lemma 11 can be used to prove

the following statement, keeping in mind that we do not need to consider the
events E1 and E2, described in the proof of Lemma 11, for LightHash:

Lemma 16. For ` ≤ 2n−2, m ≠m′ ∈ ({0,1}n−2)≤`, and c ∈ {0,1}2, we have

Pr (LightHash1
Π0
(m)⊕ LightHash1

Π0
(m′) = c∥0n−2) ≤ 8`

2n

Pr (LightHash2
Π0
(m)⊕ LightHash2

Π0
(m′) = c∥0n−2) ≤ 8`

2n

Corollary 5.

Pr (COLL1cLightHashΠ0
(m)) ≤ 4`q2

2n
Pr (COLL2cLightHashΠ0

(m)) ≤ 4`q2

2n

Pr (MC1c1,...,csLightHashΠ0

(m)) ≤ 4`q2

s ⋅ 2n Pr (MC2c1,...,csLightHashΠ0

(m)) ≤ 4`q2

s ⋅ 2n

Thus we get our desired result:

Lemma 17. TLightHashΠ0
is a (ε1, ε2, ε3, δ)-CfH, where

ε1(ρ) =
8`q2

2n
, ε2(ρ,3) =

8q2

22n
, ε3(ρ, s) =

2s ⋅ 4`q2
s ⋅ 3n , δ(ρ) = 8q2

22n

ε2(ρ,4) = 8 ⋅ (
q4

3 ⋅ 23n + q2

2 ⋅ 23n/2 +
2

2n
+ 96q2

22n
)

7 PRF Security of Sum of k Even-Mansour

For any r ≥ 2 , let (π1, . . . , πr)↞ P (n)r be a tuple of r permutations of {0,1}n
and let (K1, . . . ,Kr) ∈ ({0,1}n)r be a r-tuple of n-bit strings.

One-round Even-Mansour construction is a keyed permutation of {0,1}n de-
fined by the mapping

xz→ π1(x⊕K1)⊕K1,

where K1 denotes the key.
The r-sum of Even-Mansour construction, π-SOEMr is a length-preserving

keyed function of {0,1}n defined by the mapping

mz→
r

⊕
i=1

πi(m⊕Ki),

where K = (K1, . . . ,Kr) denotes the key. See Figure 6 for a pictorial illustration.
Notice that we skipped the post-permutation key masking. This is motivated by
a similar simplification [35] by Sibleyras and Todo who studied the r = 2 case.
Thus, we study the same problem for any arbitrary r ≥ 2.
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π1 π2 ⋯ πr

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕K1 K2 Kr

m

⊕⊕⊕

t

x1 x2 xr

y1

y2

yr

Fig. 6. The π-SOEMr construction instantiated with key K = (K1, . . . ,Kr).

Theorem 4. Fix some r ≥ 2, q + p ≤ 2
r

r+1n−log2(n), and Π = (Π1, . . . ,Πr) ↞
P (n)r. For any (q, p)-distinguisher A we have

Advtprf
Π-SOEMr (A) ≤ 1

2n
+ 16nq(2p)r−2

2n(r−1)
+
20
√
nq(2p + 2q)r−1

2n(r−1)
+ 10q(2p + 2q)r

2nr
.

Proof. For the purpose of this proof let FK(⋅) = Π-SOEMr
K(⋅), and let Γ↞ {0,1}n.

A’s goal is to distinguish between the real oracle (FK,Π±) and the ideal oracle
(Γ,Π±), where FK and Γ are referred as the construction oracle and Π± is referred
as the primitive oracle.
Fix a (q, p)-distinguisher A. Let
• (Mi,Ti) denote the i-th query-response tuple corresponding to the construc-

tion oracle. Let M ∶= {Mi ∶ i ∈ [q]} and T ∶= {Ti ∶ i ∈ [q]}.
• (Ui

j ,V
i
j) denote the i-th query-response tuple corresponding to the permu-

tation Πj . Unless stated otherwise, we assume that all these queries are
in the forward direction. Let Uj ∶= {Ui

j ∶ i ∈ [p]}, Vj ∶= {Vi
j ∶ i ∈ [p]},

U ∶= (U1, . . . ,Ur), and V ∶= (V1, . . . ,Vr).
• (Xi

j ,Y
i
j) denote the input-output tuple to the j-th permutation, for all j ∈ [r],

within the i-th construction query in the real world, i.e., Xi
j = Mi ⊕ Kj . Let

Xi ∶= (Xi
j ∶ j ∈ [r]) and Yi ∶= (Yi

j ∶ j ∈ [r]). Let X ∶= {Xi ∶ i ∈ [q]} and
Y ∶= {Yi ∶ i ∈ [q]}.

We study a modified game where the real oracle releases (X,Y) to A once the
query-response phase is over, but before A outputs. This obviously does not
decrease A’s advantage.

Ideal World Transcript Extension: Naturally, in the ideal world, the sampling
is extended to generate this additional information. We have

SC(T,V) = {(Ti,Vj1
1 ,Vj2

2 , . . . ,Vjr
r ) ∈ T ×V ∶

r

⊕
k=1

Vjk
k = T

i}

µ(T,V) = ∣SC(T,V)∣
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Further due to the increasing nature of µr(T, ⋅), µ(T,V) ≤ µr(T, p+q). We define
the predicate

LSC(T, p + q) ∶ (µr(T, p + q) > q(p + q)r
2n

+ 4(p + q)r−1√nq)

The subsequent two-step sampling mechanism for (X,Y) in the ideal world is
defined under the condition that ¬LSC(T, p + q) holds:
1. In the first step, a dummy key tuple is sampled uniformly at random, i.e.,

K ↞ ({0,1}n)r, which determines Xi
j ∶= Mi ⊕ Kj . Consider the following

predicates:

KG(M,U,K) ∶ ∃ i ∈ [q], j1, . . . , jr ∈ [p] such that (∀k ∈ [r], Xi
k = Ujk

k )
SC(M,T,U,V,K) ∶ ∃ (i, j1, j2, . . . , jr) ∈ SC(T,V), k ∈ [r], such that

(Xi
k ≠ Ujk

k ) and (∀k′ ≠ k, Xi
k′ = U

jk′
k′ )

Going forward we assume that ¬(KG(M,U,K)∨SC(M,T,U,V,K)) holds. For
each i ∈ [q]:
(a) if there exists j ∈ [p] and k ∈ [r], such that Xi

k = U
j
k, then define Yi

k ∶= V
j
k;

(b) let Ii = {j ∈ [r] ∶ Xi
j ∉ Uj} to be the set of permutation indices with fresh

input for the i-th construction query.
(c) let ∼ be a relation on [q] defined as: i1 ∼ i2 ⇐⇒ Ii1 = Ii2 . Clearly, ∼ is

an equivalence relation. Let Q(1)(0) ⊔ . . .Q(r)(0) ⊔Q(1) ⊔ . . .⊔Q(c) denote the
corresponding partitioning of [q], where Q(j)(0) = {i ∈ [q] ∶ Ii = {j}}. Let
∣Q(j)(0)∣ = q

(j)
0 , q0 ∶= ∑j∈[r] q

(j)
0 and ∣Q(i)∣ = qi. Then q0 +∑i∈[c] qi = q. Also,

note that, c ≤ ∑r−1
j=2 (rj) ≤ 2

r.
(d) for all j ∈ [r] and i ∈ Q(j)(0), define Yi

j ∶= ⊕l∈[r]∖jY
i
l ⊕Ti and

Y(0) = {Yi
j ⊕l∈[r]∖j Y

i
l ⊕Ti ∶ j ∈ [r], i ∈ Q(j)(0)}.

This concludes the first step. We encourage the readers to verify that at the
end of this step Yi

j is undefined for exactly the indices in Ii and ∣Ii∣ ≥ 2.
Furthermore, due to ¬(KG(MU,K)∨SC(M,T,U,V,K)), the partially defined
(X,Y) is permutation-consistent.
Constrained system formulation: For each i ∈ [c], let J(i) = {j1, . . . , jti}
denote the set of permutation indices with fresh input for the i-th equivalence
class Q(i). Let ri = qiti.
Then, for each i ∈ [c], we obtain a (qi, ri, ti)-constrained system S(i):

S(i) =
⎧⎪⎪⎨⎪⎪⎩
⊕

k∈J(i)
Yj
k = T

j ⊕
k′∈[r]∖J(i)

Yj
k′

⎫⎪⎪⎬⎪⎪⎭j∈Q(i)

which is binary, acyclic, partite, isolate and ti-regular.
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2. In the second step, we sample a solution for each of the c constrained systems.
First fix any arbitrary ordering of S(1), . . . ,S(c). Now, for the i-th system:
• let R(j)≤(i−1) = Vj ∪ {Yk

j ∶ k ∈ Q(j)(0)}∪ {Y
k
j ∶ k ∈ Q(1) ⊔ . . .⊔Q(i−1)}, for all

j ∈ [r], and let ∣R(j)≤(i−1)∣ = r
(j)
≤(i−1) ≤ (p + q),

• let R≤(i−1) = (R(j)≤(i−1) ∶ j ∈ [r]) and R̂≤(i−1) = (R(j)≤(i−1) ∶ j ∈ J(i)),
• let T(i) = (Tk ∶ k ∈ Q(i)) and T̂(i) = (Tk⊕j∈[r]∖J(i) Y

k
j ∶ k ∈ Q(i)).

Then, ∣T(i)∣, ∣T̂(i)∣ ≤ qi.
• let Y(i) = {Yk

j ∶ k ∈ Q(i), j ∈ J(i)}. Then, ∣Y(i)∣ = ri.
We sample Y(i)↞ (S(i) ∣ R̂≤(i−1)), where using Theorem 1, we have

η(S(i) ∣ R̂≤(i−1)) ≥
∏j∈J(i)(2

n − r
(j)
≤(i−1))qi

2nqi
(1 − ε(i)) (34)

ε(i) ≤
2µ(T̂(i), R̂≤(i−1))

2n(ti−1)
+ 2qi∆S(i)

2n(ti−1)
+ 6qi(p + q)ti

2nti
(35)

Since the solution for each system is sampled in a consistent manner given a
consistent solution for the previous system, the cumulative sampling is also
permutation-compatible. This completes the second step.

At this stage the full transcript in the ideal world, i.e., Θid = (M,T,U,V,K,Y) is
fully determined.
Some Notations on Transcripts: For any wo ∈ {re, id}, and Θwo =
(M,T,U,V,K,Y), let:
• Θkeywo denote the restriction of Θwo to the key K,
• Θconwo denote the restriction of Θwo to the construction query-response tuple
(M,T),

• Θprimwo denote the restriction of Θwo to the key (U,V),
• Θintwo denote the restriction of Θwo to the construction-specific primitive query-

response (X,Y).

Bad Transcript Definition and Analysis: A transcript ω =
(M,T,U,V,K,Y ) ∈ Ω is said to be bad if and only if LSC(T, p+q)∨KG(M,U,K)∨
SC(M,T,U,V,K) holds.

Lemma 18.

Pr (Θid ∈ Ωbad) ≤
1

2n
+
4
√
nq(p + q)r−1

2n(r−1)
+ 2q(p + q)r

2nr

Proof. We have

Pr (Θid ∈ Ωbad) = Pr (LSC(T, p + q) ∨KG(M,U,K) ∨ SC(M,T,U,V,K))
≤ Pr (LSC(T, p + q)) +Pr (KG(M,U,K)) + Pr (SC(M,T,U,V,K) ∣ ¬LSC(T, p + q))

≤ 1

2n
+ qpr

2nr
+ q(p + q)r

2nr
+
4(p + q)r−1√nq

2n(r−1)
,
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where the first term on the right hand side corresponds to Pr (LSC(T, p + q))
and follows from Lemma 1, the second term corresponds to Pr (KG(M,U,K))
and follows from the uniformity of K. The last two terms correspond to
Pr (SC(M,T,U,V,K) ∣ ¬LSC(T, p + q)). To argue this, first notice that given
¬LSC(T, p + q), we have

µ(T,V) ≤ q(p + q)r
2n

+ 4(p + q)r−1√nq.

For each choice of k ∈ [r], the predicate ∀k′ ≠ k, Xi
k′ = U

jk′
k′ is satisfied with at

most 2−n(r−1) probability. Now, we get the desired terms using union bound. ⊓⊔

Good Transcript Analysis: Let ω = (M,T,U,V,K,Y ) be a good transcript.
Since the transcript is good, ¬(LSC(T, p+q)∨KG(M,U,K)∨SC(M,T,U,V,K))
holds.

Before moving forward, recall the notations introduced while discussing the
sampling in the ideal world. We assume analogous notations for any arbitrary
transcript.

We also ignore the probability computation of obvious events, such as: the
message tuple being realized.
Real World: In the real world, we have

Pr (Θre = ω) = Pr (Θkeyre =K,Θprimre = (U,V ),Θintre = (X,Y ),Θconre = (M,T ))
= Pr (Θkeyre =K) ×Pr (Θprimre = (U,V )) × Pr (Θintre = (X,Y ) ∣ Θkeyre ,Θprimre )

= 1

2nr
× 1

(2n)rp
× Pr (Θintre = (X,Y ) ∣ Θkeyre ,Θprimre ) ,

where the first term on the right hand side follows from the uniformity of K, the
second term follows from the uniformity of Π = (Π1, . . . ,Πr).

As for the last term, consider the partition imposed by ∼ in an arbitrary
order, and also the associated notations introduced earlier. Then, conditioned
on (Θkeyre ,Θprimre ), we have

Pr (Θintre = (X,Y ) ∣ Θkeyre ,Θprimre ) =
r

∏
j=1

1

(2n − p)
q
(j)
0

× ∏
i∈[c]

j′∈J(i)

1

(2n − r
(j′)
≤(i−1))qi

.

Indeed, the first product term corresponds to the query indices with exactly
one fresh primitive input, i.e. the ones in Q(j)(0) for some j ∈ [r], and the sec-
ond product correspond to the query indices with at least two fresh primitive
inputs, computed using a simple application of chain rule over the partitions
Q(1), . . . ,Q(c). By combining everything, we have

Pr (Θre = ω) =
1

2nr
× 1

(2n)rp
×

r

∏
j=1

1

(2n − p)
q
(j)
0

× ∏
i∈[c]

j′∈J(i)

1

(2n − r
(j′)
≤(i−1))qi

, (36)
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Ideal World: In the ideal world, we have

Pr (Θid = ω) = Pr (Θkeyid =K,Θprimid = (U,V ),Θintid = (X,Y ),Θconid = (M,T ))

= Pr (Θkeyid =K) ×Pr (Θconid = (M,T )) ×Pr (Θprimid = (U,V ))

× Pr (Θintid = (X,Y ) ∣ Θkeyid ,Θprimid ,Θconid )

= 1

2nr
× 1

2nq
× 1

(2n)rp
× Pr (Θintid = (X,Y ) ∣ Θkeyid ,Θprimid ,Θconid )

= 1

2nr
× 1

2nq
× 1

(2n)rp
× ∏

i∈[c]
Pr (Y

(i)
= Y (i) ∣ R̂≤(i−1))

= 1

2nr
× 1

2nq
× 1

(2n)rp
× ∏

i∈[c]

1

η(S(i) ∣ R̂≤(i−1))

where the first three terms are obvious. The fourth term corresponds to the
indices in Q(i) for all i ∈ [c]. Further, using (34), we have

Pr (Θid = ω) ≥
1

2nr
× 1

2nq
× 1

(2n)rp
× ∏

i∈[c]
j′∈[r]

2nqi

(1 − ε(i)) (2n − r
(j′)
≤(i−1))qi

= 1

2nr
× 1

2nq0
× 1

(2n)rp
× ∏

i∈[c]
j′∈[r]

1

(1 − ε(i)) (2n − r
(j′)
≤(i−1))qi

, (37)

where the equality follows from the fact that q = q0∑i∈[c] qi.
The Ratio: On dividing (36) by (37), we have

Pr (Θre = ω)
Pr (Θid = ω)

≥ ∏
i∈[c]
(1 − ε(i)) (38)

≥ 1 − ∑
i∈[c]

ε(i)

≥ 1 − ∑
i∈[c]

⎛
⎝
2µ(T̂(i), R̂≤(i−1))

2n(ti−1)
+ 2qi∆S(i)

2n(ti−1)
+ 6qi(p + q)ti

2nti

⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
εratio(ω)

. (39)

Now, we have

E (1goodεratio) = ∑
i∈[c]

E
⎛
⎝
1good(Θid)

2µ(T̂(i), R̂≤(i−1))
2n(ti−1)

⎞
⎠
+ ∑

i∈[c]

2E (qi)E (∆S(i))
2n(ti−1)

+ ∑
i∈[c]

6E (qi) (p + q)ti
2nti

(40)

≤ ∑
i∈[c]

E
⎛
⎝
1good(Θid)

2µ(T̂(i), R̂≤(i−1))
2n(ti−1)

⎞
⎠
+ 16nq(2p)r−2

2n(r−1)
+ 6q(2(p + q))r

2nr

(41)
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where the first equality follows from linearity of expectation and the fact that
E (χR) ≤ E (R) for any non-negative random variable R and indicator random
variable χ. The second/third term in the second inequality follows from E (qi) ≤
qpr−ti/2n(r−ti) ≤ q(p + q)r−ti/2n(r−ti), ti ≥ 2, c ≤ 2r. Additionally, due to the
uniformity of T and q < 2n, E (∆S(i)) ≤ 4n. Now, for the first term, when ti = r,
we have

E
⎛
⎝
1good(Θid)

2µ(T̂(i), R̂≤(i−1))
2n(r−1)

⎞
⎠
≤ 2µ(T,V)

2n(r−1)

≤ 2µr(T, p + q)
2n(r−1)

≤ 2q(p + q)r
2nr

+
8
√
nq(p + q)r−1

2n(r−1)
, (42)

where the last inequality follows from 1good(Θid) = 1. For, ti < r, let J(i) =
{j1, . . . , jti}, [r] ∖J(i) = {j′1, . . . , j′r−ti}, and

KSC(i) ∶= {(Ti′ ,Vk1

j′1
, . . . ,V

kr−ti
j′r−ti

,ZJ(i)) ∈ SC(T,V[r]∖J(i) ,R
(J(i))
≤(i−1)) ∶ Xi′

j′
l
= Ukl

j′
l
}

Then, ∣KSC(i)∣ = µ(T̂(i), R̂≤(i−1)), and thus

E
⎛
⎝
1good(Θid)

2µ(T̂(i), R̂≤(i−1))
2n(ti−1)

⎞
⎠
≤ 2

2n(ti−1)
E (1good(Θid)∣KSC(i)∣)

≤ 2

2n(ti−1)
× µr(T, p + q)

2n(r−ti)

≤ 2q(p + q)r
2nr

+
8
√
nq(p + q)r−1

2n(r−1)
(43)

where the second inequality follows from the uniformity of K, and the last in-
equality follows from 1good(Θid) = 1. Using (42) and (43) in (41), we have

E (1goodεratio) ≤
16nq(2p)r−2

2n(r−1)
+
16
√
nq(2(p + q))r−1

2n(r−1)
+ 8q(2(p + q))r

2nr
(44)

Finally, using the fine-grained variant of the Expectation method (see
Lemma 2) along with Lemma 18 and (44), we have

Advtprf
Π-SOEMr (A) ≤ 1

2n
+ 16nq(2p)r−2

2n(r−1)
+
20
√
nq(2p + 2q)r−1

2n(r−1)
+ 10q(2p + 2q)r

2nr
,

which completes the proof. ⊓⊔

Remark 1. We remark that a similar bound is also possible via the usual Expec-
tation method with an additional qpr/2rn term.
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A Residual Calculations

We aim to show:
RRRRRRRRRRR
E (µ(T(i),F)) −

f2
≤(i−1)

2n

RRRRRRRRRRR
≤ 2s2 + 8q(s + 2q)2 + 8q2(s + 2q)

22n
(45)

√
V (µ(T(i),F)) ≤

√
2(s + 2q)
2n/2

+ 20(s + 2q)5/2
23n/2

(46)

First consider ∣E (µ(T(i),F)) − f2
≤(i−1)
2n
∣. We need both lower and upper bounds

on E (µ(T(i),F)). Let I = {i1, . . . , is} be an arbitrary indexing of R and J =
{j1, . . . , jr≤(i−1)} denote the indexing corresponding to Y≤(i−1). Then, I ⊔J gives
an indexing of F .

For all j, j′ ∈ I⊔J , let 1j,j′ denote the indicator random variable correspond-
ing to the event Aj ⊕ Bj′ = T(i), where Aj ,Bj′ ∈ F . Then, we have

E (µ(T(i),F)) = ∑
j≠j′∈I⊔J

Pr (1j,j′) . (47)

Now, we can have four cases depending upon where j and j′ come from:
Case A: j, j′ ∈ I. In this case, for any pair of (j, j′), Pr (1j,j′) = 1/(2n − 1)
and there are at most s(s − 1) such pairs, which results in

∑
j≠j′∈I

Pr (1j,j′) =
s(s − 1)
2n − 1

. (48)

Case B: j ∈ I ∧ j′ ∈ J . In this case, using the fact that there are at least
(2n − s − 2q) and at most 2n solutions for any equation, we have

2s(i − 1)
2n

≤ ∑
j∈I,j′∈J

Pr (1j,j′) ≤
2s(i − 1)
2n − s − 2q

(49)

Case C: j ∈ I ∧ j′ ∈ J . This case is symmetrical to Case B above.

2s(i − 1)
2n

≤ ∑
j′∈I,j∈J

Pr (1j,j′) ≤
2s(i − 1)
2n − s − 2q

(50)

Case D: j, j′ ∈ J . Using similar argumentation as above, we have

4(i − 1)2 − 2(i − 1)
2n

≤ ∑
j,j′∈J

Pr (1j,j′) ≤
4(i − 1)2 − 2(i − 1)

2n − s − 2q
(51)

Recall that
f2
≤(i−1)

2n
= (s + 2(i − 1))2

2n
.

Then, (45) follows from (47)-(51).



Title Suppressed Due to Excessive Length 49

Now, consider the second claim. We have to compute the variance of µ(T(i),F).
First, using the above formulation, we have

V (µ(T(i),F)) = V
⎛
⎝ ∑
j,j′∈I⊔J

1j,j′
⎞
⎠

= ∑
j,j′∈I⊔J

V (1j,j′) + ∑
j1,j2,j3,j4∈I⊔J
{j1,j2}≠{j3,j4}

V (1j1,j2 ,1j3,j4)

≤ ∑
j,j′∈I⊔J

E (1j,j′) + ∑
j1,j2,j3,j4∈I⊔J
{j1,j2}≠{j3,j4}

V (1j1,j2 ,1j3,j4)

≤ E (µ(T(i),F)) + ∑
j1,j2,j3,j4∈I⊔J
{j1,j2}≠{j3,j4}

V (1j1,j2 ,1j3,j4) (52)

Now, from (47)-(51), we have

E (µ(T(i),F)) ≤ 2(s + 2q)2
2n

. (53)

All that remains is to bound the covariances for every choice of (j1, j2) ≠ (j3, j4).
First, we have

V (1j1,j2 ,1j3,j4) = Pr (1j1,j2 ,1j3,j4) −Pr (1j1,j2)Pr (1j3,j4)

Given the above discussion on Pr (1j,j′) for arbitrary j, j′, it is sufficient to upper
bound Pr (1j1,j2 ,1j3,j4), and use lower bound on Pr (1j1,j2) (and Pr (1j3,j4)) from
the above discussion. Depending upon jk ∈ I or jk ∈ J , for all k ∈ [4], we
can have 16 cases, that we group into 5 supercases depending upon the size of
{j1, j2, j3, j4}∩ I. We will skip most of the details of computation for each case,
and instead discuss the most important subcases.

Case A: ∣{j1, j2, j3, j4} ∩ I ∣ = 4: In this case it is easy to see that
Pr (1j1,j2 ,1j3,j4) ≤ 1/(2n − 1)(2n − 3), and thus

∑
j1,j2,j3,j4∈I
{j1,j2}≠{j3,j4}

V (1j1,j2 ,1j3,j4) ≤ s4 (
1

(2n − 1)(2n − 3) −
1

(2n − 1)2 )

≤ 16s4

23n
. (54)

Case B: ∣{j1, j2, j3, j4} ∩ I ∣ = 3: Wlog assume j1 ∉ I. Then, first Pr (1j3,j4) =
1/(2n − 1) and Pr (1j1,j2 ∣ 1j3,j4) ≤ 1/(2n − s − 2q) (since the j1 variable is
sampled out of a set of size at least (2n−s−2q)). Thus, in this case, we have

∑
∣{j1,j2,j3,j4}∩I∣=3
{j1,j2}≠{j3,j4}

V (1j1,j2 ,1j3,j4) ≤ 8s3q (
1

(2n − 1)(2n − s − 2q) −
1

2n(2n − 1))

≤ 32(s + 2q)4q
23n

. (55)
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Case C: ∣{j1, j2, j3, j4}∩I ∣ = 2: The most interesting subcase here is ∣{j1, j2}∩
I ∣ = 1, ∣{j3, j4}∩I ∣ = 1. Wlog assume j1, j3 ∈ I and j2, j4 ∈ J . Let R1,R3,Y2,Y4
denote the corresponding values in F . We have two equations:

R1 ⊕ Y2 = T(i)

R3 ⊕ Y4 = T(i)

Now, if Y2 and Y4 come from different equations, then the above holds with
at most 1/(2n − s − 2q)2 probability as each of Y2 and Y4 are sampled from
a set of size at least (2n − s − 2q). The interesting case arises when they are
from the same equation, say (k). In this case the above equation holds if and
only if R1 ⊕ R3 = T(i) ⊕T(k). Thus, we have a modified system

R1 ⊕ R3 = T(i) ⊕T(k)

R1 ⊕ Y2 = T(i)

Now, once we fix j1, j3 and (k) all other indices are fixed (remember, (i)
is fixed throughout). Thus, we have at most 2s2q choices and each choice
holds with at most 1/(2n − 1)(2n − s− 2q) probability, which is less than the
probability in other cases. All in all, by taking the maximum probability, in
this case we have

∑
∣{j1,j2,j3,j4}∩I∣=2
{j1,j2}≠{j3,j4}

V (1j1,j2 ,1j3,j4) ≤ 24s2q2 (
1

(2n − s − 2q)2 −
1

22n
)

≤ 96(s + 2q)3q2
23n

. (56)

Case D: ∣{j1, j2, j3, j4} ∩ I ∣ = 1: Wlog assume j1 ∈ I. The most interesting
case here would be if j3 and j4 correspond to the same equation index say
(k), in which case 1j3,j4 happens if and only if T(i) = T(k). But since T(i)

is uniform and independent of T(k), the overall probability in this subcase
is still 1/2n(2n − s − 2q) ≤ 1/(2n − s − 2q)(2n − s − 2q). Again by taking the
maximum probability across all subcases, we have

∑
∣{j1,j2,j3,j4}∩I∣=1
{j1,j2}≠{j3,j4}

V (1j1,j2 ,1j3,j4) ≤ 48sq3 (
1

(2n − s − 2q)2 −
1

22n
)

≤ 192(s + 2q)2q3
23n

. (57)

Case E: ∣{j1, j2, j3, j4} ∩ I ∣ = 0: Using a similar argumentation as above, we
have

∑
∣{j1,j2,j3,j4}∩I∣=0
{j1,j2}≠{j3,j4}

V (1j1,j2 ,1j3,j4) ≤ 16q4 (
1

(2n − s − 2q)2 −
1

22n
)

≤ 64(s + 2q)q4
23n

. (58)
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A cursory look shows that the covariance across all the cases is in O((s +
2q)5/23n). In particular, after appropriate simplifications, we have

∑
j1,j2,j3,j4∈I⊔J
{j1,j2}≠{j3,j4}

V (1j1,j2 ,1j3,j4) ≤
400(s + 2q)5

23n
(59)

Then, (46) follows by taking square root on both sides of (52) after appropriate
substitutions from (53) and (59).
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