Optimizing Rectangle and Boomerang Attacks: A Unified and Generic Framework for Key Recovery

Qianqian Yang ${ }^{1,5}$, Ling Song ${ }^{2,3 凶}$, Nana Zhang ${ }^{1,5}$, Danping Shi ${ }^{1,5}$, Libo Wang ${ }^{2}$, Jiahao Zhao ${ }^{1,5}$, Lei Hu ${ }^{1,5}$, and Jian Weng ${ }^{2,3,4}$
${ }^{1}$ Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
${ }^{2}$ College of Cyber Security, Jinan University, Guangzhou, China
${ }^{3}$ National Joint Engineering Research Center of Network Security Detection and Protection Technology, Jinan University, Guangzhou, China
${ }^{4}$ Guangdong Key Laboratory of Data Security and Privacy Preserving, Jinan University, Guangzhou, China
${ }^{5}$ School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China yangqianqian@iie.ac.cn, songling.qs@gmail.com, zhangnana_mail@163.com, shidanping@iie.ac.cn, wanglibo12b@gmail.com, zhaojiahao@iie.ac.cn, hulei@iie.ac.cn, cryptjweng@gmail.com

Abstract

The rectangle attack has shown to be a very powerful form of cryptanalysis against block ciphers. Given a rectangle distinguisher, one expects to mount key recovery attacks as efficiently as possible. In the literature, there have been four algorithms for rectangle key recovery attacks. However, their performance varies from case to case. Besides, numerous are the applications where the attacks lack optimality. In this paper, we delve into the rectangle key recovery and propose a unified and generic key recovery algorithm, which supports any possible attacking parameters. Not only does it encompass the four existing rectangle key recovery algorithms, but it also reveals five new types of attacks that were previously overlooked. Further, we put forward a counterpart for boomerang key recovery attacks, which supports any possible attacking parameters as well. Along with these new key recovery algorithms, we propose a framework to automatically determine the best parameters for the attack. To demonstrate the efficiency of the new key recovery algorithms, we apply them to Serpent, AES-192, CRAFT, SKINNY, and Deoxys-BC-256 based on existing distinguishers, yielding a series of improved attacks.

Keywords: Boomerang attack, Rectangle attack, Key recovery algorithm, Serpent, AES-192, CRAFT, SKINNY, Deoxys-BC

1 Introduction

Differential cryptanalysis, which was introduced by Biham and Shamir [BS91], is one of the most powerful cryptanalytic approaches for assessing the security of block ciphers. The basic idea is to exploit non-random propagation of input difference to output difference, i.e., high-probability differentials. In many cases,

Figure 1: Basic boomerang attack (left) and the schematic view of the key recovery (right)
it may be hard to find a long differential of high probability. In 1999, Wagner proposed the boomerang attack [Wag99], which divides a cipher E into two sub-ciphers and utilizes two short differentials of high probability to construct a long one.

Suppose $E=E_{1} \circ E_{0}$, where there are two short differentials $\alpha \rightarrow \beta$ and $\gamma \rightarrow \delta$ with probability p and q for E_{0} and E_{1}, respectively. The boomerang attack, as depicted in Figure 1 (left), exploits the high probability of the following differential property:

$$
\begin{equation*}
\operatorname{Pr}\left[E^{-1}(E(x) \oplus \delta) \oplus E^{-1}(E(x \oplus \alpha) \oplus \delta)=\alpha\right]=p^{2} q^{2} \tag{1}
\end{equation*}
$$

The basic boomerang attack requires adaptive chosen plaintexts and ciphertexts. Later, Kelsey et al. developed a chosen-plaintext variant, named the amplified boomerang attack [KKS00]. However, this transition reduced the probability of the distinguisher to $2^{-n} p^{2} q^{2}$ where n is the block size. In [BDK01], Biham et al. further converted the amplified boomerang attack into the rectangle attack by considering as many differences as possible in the middle to estimate the probability more accurately. As a result, the probability of a rectangle distinguisher becomes $2^{-n} \hat{p}^{2} \hat{q}^{2}$, where $\hat{p}=\sqrt{\Sigma_{i} \operatorname{Pr}^{2}\left(\alpha \rightarrow \beta_{i}\right)}$ and $\hat{q}=\sqrt{\Sigma_{j} \operatorname{Pr}^{2}\left(\gamma_{j} \rightarrow \delta\right)}$. The boomerang and rectangle attack then have been applied to numerous block ciphers, such as Serpent [BDK01], AES [BK09], KASUMI [DKS10b, DKS14], etc.

Since the boomerang attack was proposed, there has been a line of research on estimating the probability of boomerang distinguishers more accurately to find better distinguishers. At first, the probability of a boomerang distinguisher was considered as $p^{2} q^{2}$ by simply assuming the two differentials are independent until the dependency issue between the two differentials came into view. In boomerang or rectangle attacks on concrete ciphers, observations were made that the probability computed via $p^{2} q^{2}$ may be inaccurate in some cases [BK09, Mur11],
where the probability can be higher by using tricks or the two chosen differentials may even be incompatible. Taking the dependency between the two differentials into account, Dunkelman et al. suggested the sandwich attack [DKS10b, DKS14] which estimates the probability by $p^{2} q^{2} r$, where r is the exact probability for a middle part. Later, a new tool named boomerang connectivity table (BCT) was proposed to estimate the probability r theoretically [$\left.\mathrm{CHP}^{+} 18, \mathrm{SQH} 19\right]$.

Another line of research on the boomerang and rectangle attack is to mount key recovery attacks as efficiently as possible using different strategies of guessing the key. Figure 1 (right) displays a schematic view of key recovery attacks based on a distinguisher over the middle part E_{d}. The first rectangle key recovery algorithm was proposed by Biham et al. together with the proposal of the rectangle attack [BDK01]. This algorithm guesses all the key bits involved in both E_{b} and E_{f} and was applied to 10-round Serpent [ABK98] with an 8-round rectangle distinguisher. Shortly after that, in [BDK02] the same authors introduced the second rectangle key recovery algorithm, which guesses no key bit and can improve the result on Serpent by reducing the time complexity. Along with the rectangle key recovery algorithm, a boomerang key recovery algorithm was proposed as well in [BDK02]. There was no improvement until Zhao et al. proposed a new rectangle key recovery algorithm in $\left[\mathrm{ZDM}^{+} 20\right]$ which guesses the key bits involved only in E_{b}. Such an algorithm, when applied to SKINNY [BJK $\left.{ }^{+} 16\right]$ outperforms the two previous key recovery algorithms. However, the algorithm presented in a very recent work [DQSW22] makes a step further in improving rectangle attacks on SKINNY and some other ciphers by guessing additional key bits in the bottom part E_{f}.

Motivation. Even though the two recent rectangle key recovery algorithms provide surprisingly good results on SKINNY, we carefully check that they do not beat the algorithm in [BDK02] when applied to Serpent. On the other hand, the rectangle key recovery algorithm in [BDK02] is not efficient on SKINNY when compared with the two recent ones. Then, the following questions arise.

- Given a rectangle distinguisher of a block cipher, how efficient can the rectangle key recovery be?
- Are there any other ways to mount rectangle key recovery attacks?
- Can advances in rectangle key recovery attacks be transferred to the boomerang key recovery attacks and other related attacks?

Not only would answers to these questions be of great significance to the cryptanalysis of block ciphers, but they would also provide a deeper understanding of the key recovery of rectangle and boomerang attacks.

Our contributions. In this paper, we investigate the key recovery phase of rectangle and boomerang attacks thoroughly and completely answer the above questions. In the previous key recovery algorithms, the involved subkey bits in the outer rounds added around the distinguisher may or may not be guessed. The four previous rectangle key recovery algorithms use four different kinds of subkey
guessing strategies. Our basic idea is that any possible guessing strategy should be allowed and that there exists a guessing strategy yielding optimal complexities for the key recovery attack. To realize these ideas, we have to solve two problems. The first is how the attack proceeds when partial key bits (the extreme cases are full/none of the subkey bits) are guessed on both sides of the distinguisher. Note that such generalized cases have never been considered before. The second problem is how the attack proceeds so that the time complexity is low.

The starting point of our work is some new insights that the key recovery of the rectangle attack always includes steps of constructing pairs from single messages and quartets from pairs, whereas the number of pairs or quartets that will be constructed is affected by the guessed subkey bits. Unlike in the previous works that always construct pairs on a fixed side, we do not restrain ourselves to only one side but generate pairs on either side. With this in mind, we come up with a unified and generic rectangle key recovery algorithm that supports any possible attacking parameters. Moreover, we adapt the algorithm and suit it to the adaptive chosen-plaintext/ciphertext requirement of the boomerang attack, leading to a unified and generic boomerang key recovery algorithm. Besides, we propose a framework to find the best-attacking parameters, especially the subkey bits to be guessed. Our contributions are summarized as follows.

- Based on a deeper understanding of the rectangle key recovery, a unified and generic key recovery algorithm is proposed. It supports any number of guessed key bits and covers the four previous rectangle key recovery algorithms, i.e., any of the previous four algorithms is a special case of our algorithm. In addition, it unveils five types of new attacks that were missed previously (see Figure 4 in Section 4.1 for more information).
- Inspired by the new rectangle key recovery algorithm, we put forward a counterpart for boomerang key recovery attacks, which also supports any number of guessed key bits.
- Although our new algorithms support any set of attacking parameters, it does not tell which is the best on its own. As a complement, we propose a framework for automatically finding the best parameters for the new algorithms. When we feed the parameters returned by this framework to our new key recovery algorithms, the time complexity of the attack will be minimized.
- We analyze the relationship between the basic rectangle/boomerang attack and the related attacks, i.e., the retracing boomerang attack [DKRS20], the mixture differential attack [Gra18], and the boomeyong attack [RSP21]. We further discuss the applicability of our new algorithms in these attacks.

Previously, the four mentioned rectangle key recovery algorithms are treated as separate ones. Given a rectangle distinguisher, one can compute the complexities for all algorithms and pick the algorithm with the lowest complexity. Now, we can work with the new rectangle key recovery algorithm only. To demonstrate the efficiency of the new key recovery algorithms, we apply them to five block ciphers using existing distinguishers and obtain a series of improved results.

- We revisit both the rectangle attack and the boomerang attack on 10-round Serpent and find better attacks than the one given in [BDK02].
- We give an improved 12-round rectangle attack and the first 13-round rectangle attack on AES-192, which are the best attacks on AES-192 so far in the related-key setting.
- We revisit the rectangle attacks on round-reduced SKINNY in [DQSW22], which are the best existing attacks on SKINNY in the related-tweakey setting. For the four distinguishers of SKINNY, we find better attacks for three of them, despite the fact that these distinguishers were searched dedicatedly for the key recovery algorithm in [DQSW22].
- We extend the rectangle attack on CRAFT by one round and give the first 19 -round attack, which is the best attack on this cipher so far in the single-key setting.
- On Deoxys-BC-256, we improve the 11-round rectangle attack and extend the boomerang attack by one round in the related-tweakey setting. These are the best attacks on Deoxys-BC-256 so far in terms of time complexity.

These results are summarized in Table 1. According to these applications, we find that the best attacking parameters differ significantly from those that were used in previous works, and even the number of rounds added around the distinguisher is different. Notably, these new attacking parameters are not covered by the previous key recovery algorithms in many cases. Thus, it is likely that previous rectangle attacks can be improved to some extent using the new key recovery algorithms.

Organization. The rest of the paper is organized as follows. In Section 2, we give notations that will be used throughout the paper. In Section 3, the new key recovery algorithms will be introduced as well as the framework for automatically finding the best-attacking parameters. In Section 4, we compare our new key recovery algorithms with the previous ones in detail and discuss the applicability of our algorithms to other attacks based on non-random properties of quartets. Section 5 presents applications of the new algorithms to five block ciphers. We conclude this paper in Section 6.

2 Notations

In this paper, we focus on the key recovery for a given boomerang distinguisher. For simplicity, we treat a target cipher $E:\{0,1\}^{n} \times\{0,1\}^{k} \rightarrow\{0,1\}^{n}$ as $E=E_{f} \circ E_{d} \circ E_{b}$, where there is a boomerang distinguisher over E_{d} of probability P^{2}, i.e.,

$$
\begin{equation*}
\operatorname{Pr}\left[E_{d}^{-1}\left(E_{d}\left(P_{1}\right) \oplus \delta\right) \oplus E_{d}^{-1}\left(E_{d}\left(P_{1} \oplus \alpha\right) \oplus \delta\right)=\alpha\right]=P^{2} \tag{2}
\end{equation*}
$$

That is, we take the probability of the boomerang distinguisher for P^{2} and do not pay attention to whether it is evaluated with $p^{2} q^{2} r$ or $\hat{p}^{2} \hat{q}^{2}$. Figure 1 (right) depicts the framework of E, where E_{b} and E_{f} are added around E_{d}. The aim of the key recovery is to identify partial subkeys used in E_{b} and E_{f} by utilizing the

Table 1: Summary of the cryptanalytic results.

Cipher	Rounds	Data	Memory	Time	Approach	Setting	Ref.
Serpent	10	$2^{126.3}$	$2^{126.3}$	$2^{173.8}$	Rectangle	SK	[BDK02]
		$2^{126.3}$	$2^{126.3}$	$2^{159.11}$	Rectangle	SK	Sect. 5.1
		$2^{124.15}$	$2^{124.15}$	$2^{155.67}$	Rectangle	SK	Sect. 5.1
		2^{128}	2^{96}	$2^{173.80}$	Boomerang	SK	[BDK02]
		2^{128}	2^{128}	$2^{158.85}$	Boomerang	SK	Sect. 5.1
		2^{128}	2^{128}	$2^{154.55}$	Boomerang	SK	Sect. 5.1
AES-192	12	2^{123}	2^{152}	2^{178}	Rectangle	RK	[BK09]
	12	$2^{120.5}$	$2^{127.5}$	$2^{135.5}$	Rectangle	RK	Sect. 5.2
	13	$2^{126.5}$	$2^{133.5}$	2^{170}	Rectangle	RK	Sect. 5.2
CRAFT	18	$2^{60.92}$	2^{84}	$2^{101.7}$	Rectangle	SK	[HBS21]
	19	$2^{60.92}$	2^{72}	$2^{112.61}$	Rectangle	SK	Sect. 5.3
SKINNY-64-128	25	$2^{61.67}$	$2^{64.26}$	$2^{118.43}$	Rectangle	RK	[DQSW22]
		$2^{61.67}$	$2^{63.67}$	$2^{110.03}$	Rectangle	RK	Sect. 5.4
SKINNY-128-384	32	$2^{123.54}$	$2^{123.54}$	$2^{354.99}$	Rectangle	RK	[DQSW22]
		$2^{123.54}$	$2^{129.54}$	$2^{344.78}$	Rectangle	RK	Sect. B. 1
SKINNY-128-256	26	$2^{126.53}$	2^{136}	$2^{254.4}$	Rectangle	RK	[DQSW22]
		$2^{126.53}$	2^{136}	$2^{241.38}$	Rectangle	RK	Sect. B. 1
Deoxys-BC-256	10	$2^{127.58}$	$2^{127.58}$	2^{204}	Rectangle	RK	[$\mathrm{CHP}^{+} 17$]
	11	$2^{122.1}$	$2^{128.2}$	$2^{249.9}$	Rectangle	RK	[ZDJ19]
	11	$2^{126.78}$	2^{128}	$2^{222.49}$	Rectangle	RK	Sect. B. 2
	10	$2^{98.4}$	2^{88}	$2^{109.1}$	Boomerang	RK	[ZDJ19]
	11	$2^{122.4}$	2^{128}	$2^{218.65}$	Boomerang	RK	Sect. 5.5

distinguisher over E_{d} and further to find the master key more efficiently than the exhaustive search.

To describe the key recovery, a series of notations are used throughout the paper. For convenience, we borrow some notations which are frequently used in the previous works on boomerang and rectangle attacks, such as [BDK02, LGS17, ZDM^{+}20, DQSW22]. As shown in Figure 2, the input difference of the distinguisher α propagates back over E_{b}^{-1} to α^{\prime}. Let V_{b} be the space spanned by all possible α^{\prime} where $r_{b}=\log _{2}\left|V_{b}\right|$. The output difference of the distinguisher δ propagates forward over E_{f} to δ^{\prime}. Let V_{f} be the space spanned by all possible δ^{\prime} where $r_{f}=\log _{2}\left|V_{f}\right|$. Let k_{b} be the subset of subkey bits which are employed in E_{b} and affect the propagation $\alpha^{\prime} \rightarrow \alpha$. Similarly, let k_{f} be the subset of subkey bits which are used in E_{b} and affect the propagation $\delta \leftarrow \delta^{\prime}$. Then let $m_{b}=\left|k_{b}\right|$ and $m_{f}=\left|k_{f}\right|$ be the number of bits in k_{b} and k_{f}, respectively.

In a specific key recovery algorithm, a part of k_{b} and k_{f}, denoted by $k_{b}^{\prime}, k_{f}^{\prime}$, may be guessed at first. Let $m_{b}^{\prime}=\left|k_{b}^{\prime}\right|$ and $m_{f}^{\prime}=\left|k_{f}^{\prime}\right|$. With the guessed subkey bits, the differential propagations $\alpha^{\prime} \rightarrow \alpha$ and $\delta \leftarrow \delta^{\prime}$ can be partially verified.

Figure 2: Outline of rectangle/boomerang key recovery attack

Suppose under the guessed subkey bits a r_{b}^{\prime}-bit condition on the top and a r_{f}^{\prime}-bit condition on the bottom can be verified. Finally, let $r_{b}^{*}=r_{b}-r_{b}^{\prime}$ and $r_{f}^{*}=r_{f}-r_{f}^{\prime}$.

In this paper, we mainly focus on the key recovery algorithms in the single-key setting and these can be easily converted into the related-key setting for ciphers with a linear key schedule.

3 Unified and Generic Key Recovery Algorithms

In this section, we present our unified and generic key recovery algorithms for the rectangle attack and the boomerang attack, respectively. Both algorithms support any possible key guessing strategy. Given a specific distinguisher, which parameters are the best for our algorithm? A framework for automatically finding the best parameters is then introduced afterward.

3.1 Key Recovery Algorithm for the Rectangle Attack

3.1.1 Basic Ideas and Intuitions

In this subsection, we recall the principles of the rectangle attack and give some new insights on the key recovery which are core ideas behind our new algorithm.

As can be seen from Figure 1 and Eq. (2), the boomerang distinguisher is built on a non-random property of quartets. The rectangle distinguisher is an chosen-plaintext variant. This non-random property is then used to extract subkey information in E_{b} and E_{f}. As in standard differential cryptanalysis, candidates for subkey k_{b} and k_{f} are identified if they are suggested by a sufficiently large number of quartets. Here, k_{b} and k_{f} are suggested by a quartet $\left(P_{i}, C_{i}\right), i=1,2,3,4$, if

$$
\begin{aligned}
E_{b}\left(k_{b}, P_{1}\right) \oplus E_{b}\left(k_{b}, P_{2}\right) & =E_{b}\left(k_{b}, P_{3}\right) \oplus E_{b}\left(k_{b}, P_{4}\right)=\alpha, \\
E_{f}^{-1}\left(k_{f}, C_{1}\right) \oplus E_{f}^{-1}\left(k_{f}, C_{3}\right) & =E_{f}^{-1}\left(k_{f}, C_{2}\right) \oplus E_{f}^{-1}\left(k_{f}, C_{4}\right)=\delta
\end{aligned}
$$

holds. As shown in Figure 2, the α difference propagates to α^{\prime} via E_{b}^{-1} and $\alpha^{\prime} \in V_{b}$. It does not mean every element of V_{b} is a possible α^{\prime}, whereas any difference outside V_{b} is impossible for α. The same applies to the bottom side. This means quartets with plaintext differences outside V_{b} or ciphertext differences outside V_{f} will not suggest any subkeys. Therefore, an important step in rectangle key recovery algorithms is to construct quartets that are possible to suggest subkeys and at least satisfy $P_{1} \oplus P_{2}, P_{3} \oplus P_{4} \in V_{b}$, and $C_{1} \oplus C_{3}, C_{2} \oplus C_{4} \in V_{f}$.

Data complexity. A commonly-used idea to improve differential cryptanalysis is to employ plaintext structures. A plaintext structure takes all possible values for the r_{b} bits and chooses a constant for the remaining $n-r_{b}$ bits. It allows enjoying the birthday effect. For each structure, there are $2^{2 r_{b}-1}$ pairs of plaintext with the difference in V_{b} and $2^{r_{b}-1}$ of them satisfy α difference by meeting the r_{b}-bit condition.

Given a boomerang distinguisher with probability P^{2}, the number of quartets satisfying the input difference α of the distinguisher should be at least $s P^{-2} 2^{n}$ for a rectangle attack, where s is the expected number of right quartets (say $s=4$). These quartets can be formed from plaintext pairs taken in structures. Suppose the number of structures needed is y. Note y structures can constitute $2 \cdot\binom{y 2^{r} b-1}{2}^{6}$ quartets that satisfy α difference. Then $y=\sqrt{s} 2^{n / 2-r_{b}+1} / P$ and the data complexity is $D=y \cdot 2^{r_{b}}=\sqrt{s} 2^{n / 2+1} / P$. This infers that the data complexity is the same with different key recovery algorithms.

Time complexity. Next, let us investigate the time complexity from a highlevel perspective. We stress that the key recovery of the rectangle attack always includes steps of constructing pairs from single messages and quartets from pairs. Therefore, the whole key recovery can be split into the following phases: (1) data collection, (2) pair construction, (3) constructing quartets and processing them to extract subkeys, and (4) a brute force search for the unique right master key among key candidates. The time complexities of the first and the last phases are easy to estimate, so let us focus on the time complexities of the middle two phases, which we denote by T_{2} and T_{3}, respectively.
T_{3} is mainly affected by the number of quartet candidates. From D plaintexts, we can construct $N=D^{2} \cdot 2^{2 r_{b}+2 r_{f}-2 n-2}$ quartet candidates with plaintext difference in V_{b} and ciphertext difference in V_{f}. This seems to be a fixed term like the data complexity. However, the number of quartets to be processed may be reduced when some subkey bits are guessed. Recall that m_{b}-bit k_{b} and m_{f}-bit k_{f} are involved in the propagation $\alpha^{\prime} \leftarrow \alpha$ and $\delta \rightarrow \delta^{\prime}$ and verifying α difference and δ difference for such a quartet takes $2 r_{b}$-bit and $2 r_{f}$-bit conditions (as there are two pairs), respectively. Thus, there will be $N \cdot 2^{m_{b}+m_{f}-2 r_{b}-2 r_{f}}=D^{2} \cdot 2^{m_{b}+m_{f}-2 n-2}$ suggestions for k_{b} and k_{f} in total. On average, the number of suggestions for a wrong subkey is less than 1 as $D^{2} \cdot 2^{-2 n-2}<1$, while it is s for the right subkey.

[^0]

Figure 3: A toy example to illustrate the parameters of the rectangle key recovery. Both E_{b} and E_{f} contain one round. Bold lines stand for active bits, so $r_{b}=12, r_{f}=8$, and the number of involved subkey bits in E_{b} and E_{f} are $m_{b}=12$ and $m_{f}=8$, respectively. The subkey bits corresponding to blue lines are guessed. With the guessed subkey bits, $r_{b}^{\prime}=4$ out of $r_{b}=12$ bits of conditions can be ensured. Likewise, $r_{f}^{\prime}=4$ out of $r_{f}=8$ bits of conditions can be ensured.

On the one hand, this confirms that the rectangle attack works; on the other hand, it means that when the subkey is fixed, most quartets are wrong and thus are likely to be filtered out before being constructed. This is what has been done in the first rectangle key recovery algorithm proposed in [BDK01], which guesses the whole k_{b} and k_{f}. We rewrite this algorithm in Appendix C.1.

However, a full guess of k_{b} and k_{f} is not necessary to reduce the number of quartet candidates, as studied in $\left[\mathrm{ZDM}^{+} 20\right.$, DQSW22]. In this paper, we consider the most general situation where a part of k_{b}, i.e., k_{b}^{\prime}, and a part of k_{f}, i.e., k_{f}^{\prime} are guessed, with $m_{b}^{\prime}=\left|k_{b}^{\prime}\right|, m_{f}^{\prime}=\left|k_{f}^{\prime}\right|, 0 \leq m_{b}^{\prime} \leq m_{b}$ and $0 \leq m_{f}^{\prime} \leq m_{f}$. To have a better view of this situation, we present a toy example in Figure 3 to illustrate the parameters. Assume under the guess a r_{b}^{\prime}-bit (resp. r_{f}^{\prime}-bit) condition can be verified for a plaintext (resp. ciphertext) pair. Then the number of quartets to be processed is $2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D^{2} \cdot 2^{2 r_{b}^{*}+2 r_{f}^{*}-2 n-2}$, where $r_{b}^{*}=r_{b}-r_{b}^{\prime}$ and $r_{f}^{*}=r_{f}-r_{f}^{\prime}$. We point out that the number of quartet candidates gets smaller as long as $m_{b}^{\prime}+m_{f}^{\prime}<2 r_{b}^{\prime}+2 r_{f}^{\prime}$.

Let us come to the time complexity of constructing pairs, i.e., T_{2}. Note that T_{2} is determined by the number of pairs that are used to construct quartets. We emphasize that pairs can be constructed either on the top for plaintexts or on the bottom for ciphertexts. Still assume partial subkey bits are guessed. Then the number of filters for plaintext pairs is $n-r_{b}^{*}$ while it is roughly $n-r_{f}^{*}$ for ciphertext pairs (we will present the exact number of filters in the next subsection). Since filters for plaintext pairs and filters for ciphertext pairs work on different faces, they can not be taken into account simultaneously in the phase of constructing pairs. The key principle is to form pairs on the side with more filters so that T_{2} is lower.

Questions. Then, there come two questions:
Question 1: How does the key recovery algorithm proceed when k_{b}^{\prime} and k_{f}^{\prime} are guessed, where $m_{b}^{\prime}=\left|k_{b}^{\prime}\right|, m_{f}^{\prime}=\left|k_{f}^{\prime}\right|, 0 \leq m_{b}^{\prime} \leq m_{b}$ and $0 \leq m_{f}^{\prime} \leq m_{f}$?
Question 2: What is the best choice for $\left(k_{b}^{\prime}, k_{f}^{\prime}\right)$ so that the overall time complexity is minimized?

To answer the first question, we propose a detailed algorithm for the rectangle key recovery in the next subsection. Because this algorithm supports any possible $\left(k_{b}^{\prime}, k_{f}^{\prime}\right)$ and covers all previous key recovery algorithms, we call it a generic and unified algorithm for the rectangle key recovery. For the second question, we present a framework for automatically finding the best $\left(k_{b}^{\prime}, k_{f}^{\prime}\right)$ in Section 3.3. Combining both, we can find the most efficient rectangle key recovery attack.

3.1.2 Details of the Algorithm

In the following, we describe our algorithm for the rectangle key recovery attack which works for any number of guessed key bits. Like most of the key recovery algorithms, our new algorithm also employs the counting method. Namely, we set counters for the involved subkey bits and search for the correct one among the subkey candidates with a large number of suggestions. Suppose m_{b}^{\prime}-bit k_{b}^{\prime} and m_{f}^{\prime}-bit k_{f}^{\prime} are to be guessed. For these guessed subkey bits, we may or may not set counters for them. To enjoy such flexibility, we set counters for t bits of the guessed subkey bits, $0 \leq t \leq m_{b}^{\prime}+m_{f}^{\prime}$.

Our algorithm for the single-key setting proceeds as follows. A variant of this algorithm for the related-key setting is given in A. 1 for ciphers with a linear key schedule. Refer to the illustrative toy example in Figure 3 for a helpful guide to comprehending the algorithm.

1. Collect and store y structures of $2^{r_{b}}$ plaintexts. Hence, the data complexity is $D=y \cdot 2^{r_{b}}$. The time and memory complexities of this step are also D.
2. Split $\left(m_{b}^{\prime}+m_{f}^{\prime}\right)$-bit $k_{b}^{\prime} \| k_{f}^{\prime}$ into two parts: $G_{L} \| G_{R}$ where G_{L} has t bits.
3. Guess G_{R} :
(a) Initialize a list of key counters for G_{L} and the unguessed key bits of k_{b}, k_{f}. The memory complexity in this step is $2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}$.
(b) Guess the t-bit G_{L} :
i. For each data $\left(P_{1}, C_{1}\right)$, partially encrypt P_{1} and partially decrypt C_{1} under the guessed subkey bits. Let $P_{1}^{*}=\operatorname{Enc}_{k_{b}^{\prime}}\left(P_{1}\right)$ and $C_{1}^{*}=$ $D e c_{k_{f}^{\prime}}\left(C_{1}\right)$. For each structure, we will get $2^{r_{b}^{\prime}}$ sub-structures, each of which includes $2^{r_{b}-r_{b}^{\prime}}=2^{r_{b}^{*}}$ plaintexts which take all possible values for the active bits. In other words, there are $y^{*}=y \cdot 2^{r_{b}^{\prime}}$ structures of $2^{r_{b}^{*}}$ plaintexts. The time complexity of this step is D.
ii. Let $2^{-\mu}=D \cdot 2^{-n}$. If $r_{b}^{*} \leq r_{f}^{*}-\mu^{7}$, it turns to step (A); else if $r_{b}^{*}>r_{f}^{*}-\mu$, it turns to step (D).

[^1]A. Insert all the obtained $\left(P_{1}^{*}, C_{1}^{*}\right)$ into a hash table according to $n-r_{b}^{*}$ bits of P_{1}^{*}. Then construct a set as $S=\left\{\left(P_{1}^{*}, C_{1}^{*}, P_{2}^{*}, C_{2}^{*}\right)\right.$: P_{1}^{*} and P_{2}^{*} have difference only in r_{b}^{*} bits $\}$. The size of S is $y \cdot 2^{r_{b}^{\prime}} \cdot 2^{2\left(r_{b}-r_{b}^{\prime}\right)-1}=D \cdot 2^{r_{b}^{*}-1}$. Hence, the time and memory complexities of this step are both $D \cdot 2^{r_{b}^{*}-1}$.
B. Insert S into a hash table by $n-\left(r_{f}-r_{f}^{\prime}\right)=n-r_{f}^{*}$ inactive bits of C_{1}^{*} and $n-\left(r_{f}-r_{f}^{\prime}\right)=n-r_{f}^{*}$ inactive bits of C_{2}^{*}.
C. For each $2\left(n-r_{f}^{*}\right)$-bit index, we pick two distinct $\left(P_{1}^{*}, C_{1}^{*}, P_{2}^{*}, C_{2}^{*}\right)$, $\left(P_{3}^{*}, C_{3}^{*}, P_{4}^{*}, C_{4}^{*}\right)$ to generate the quartet. We will get
$$
2 \cdot\binom{\frac{|S|}{2^{2\left(n-r_{f}^{*}\right)}}}{2} \cdot 2^{2\left(n-r_{f}^{*}\right)}=D^{2} \cdot 2^{2 r_{b}^{*}} \cdot 2^{2 r_{f}^{*}} \cdot 2^{-2 n-2}
$$
quartets. Then go to step (iii).
D. Insert all the obtained $\left(P_{1}^{*}, C_{1}^{*}\right)$ into a hash table according to $n-r_{f}^{*}$ bits of C_{1}^{*}. Then construct a set as $S=\left\{\left(P_{1}^{*}, C_{1}^{*}, P_{3}^{*}, C_{3}^{*}\right)\right.$: C_{1}^{*} and C_{3}^{*} are colliding in $n-r_{f}^{*}$ bits $\}$. The size of S is D^{2}. $2^{r_{f}-r_{f}^{\prime}-n-1}=D \cdot 2^{r_{f}^{*}-1-\mu}$. Hence, the time and memory complexities of this step are both $D \cdot 2^{r_{f}^{*}-1-\mu}$.
E. Insert S into a hash table by $n-r_{b}^{*}$ inactive bits of P_{1}^{*} and $n-r_{b}^{*}$ inactive bits of P_{3}^{*}.
F. There are at most $2^{2\left(n-r_{b}^{*}-\mu\right)}$ possible values for the $2\left(n-r_{b}^{*}\right)$-bit index. For each index, we pick two distinct entries $\left(P_{1}^{*}, C_{1}^{*}, P_{3}^{*}, C_{3}^{*}\right)$, $\left(P_{2}^{*}, C_{2}^{*}, P_{4}^{*}, C_{4}^{*}\right)$ to generate the quartet. We will get
$$
2 \cdot\binom{\frac{|S|}{2^{2\left(n-r_{b}^{*}-\mu\right)}}}{2} \cdot 2^{2\left(n-r_{b}^{*}-\mu\right)}=D^{2} \cdot 2^{2 r_{b}^{*}} \cdot 2^{2 r_{f}^{*}} \cdot 2^{-2 n-2}
$$
quartets.
iii. Determine the key candidates involved in E_{b} and E_{f} and increase the corresponding counters. Denote the time complexity for processing one quartet as ϵ. Then the time complexity in this step is $D^{2} \cdot 2^{2 r_{b}^{*}}$. $2^{2 r_{f}^{*}} \cdot 2^{-2 n-2} \cdot \epsilon$.
(c) Select the top $2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}-h}$ hits in the counters to be the candidates, which delivers a h-bit or higher advantage, where $0<h \leq$ $t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}$.
(d) Guess the remaining $k-m_{b}-m_{f}$ unknown key bits according to the key schedule algorithm and exhaustively search over them to recover the correct key. The time complexity of this step is $2^{k+t-m_{b}^{\prime}-m_{f}^{\prime}-h}$.

Data complexity. The data complexity is $D=y \cdot 2^{r_{b}}=\sqrt{s} 2^{n / 2+1} / P$.

Memory complexity. The memory complexity is $M=D+\min \left\{D \cdot 2^{r_{b}^{*}-1}, D\right.$. $\left.2^{r_{f}^{*}-1-\mu}\right\}+2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}$ for storing the data, the set S, and the key counters.

Time complexity. The time complexity of collecting data is $T_{0}=D$, the time complexity of doing partial encryption and decryption under guessed key bits is

$$
T_{1}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot y \cdot 2^{r_{b}}=\sqrt{s} \cdot 2^{m_{b}^{\prime}+m_{f}^{\prime}+\frac{n}{2}+1} / P
$$

the time complexity of generating set S is

$$
\begin{aligned}
T_{2} & =2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D \cdot \min \left\{2^{r_{b}^{*}-1}, 2^{r_{f}^{*}-1-\mu}\right\} \\
& =\min \left\{\sqrt{s} \cdot 2^{m_{b}^{\prime}+m_{f}^{\prime}+r_{b}-r_{b}^{\prime}+\frac{n}{2}} / P, s \cdot 2^{m_{b}^{\prime}+m_{f}^{\prime}+r_{f}-r_{f}^{\prime}+1} / P^{2}\right\}
\end{aligned}
$$

the time complexity of generating and processing quartet candidates is
$T_{3}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D^{2} \cdot 2^{2 r_{b}^{*}} \cdot 2^{2 r_{f}^{*}} \cdot 2^{-2 n-2} \cdot \epsilon=\left(s \cdot 2^{m_{b}^{\prime}+m_{f}^{\prime}-n+2 r_{b}+2 r_{f}-2 r_{b}^{\prime}-2 r_{f}^{\prime}} / P^{2}\right) \cdot \epsilon$,
and the time complexity of the exhaustive search is $T_{4}=2^{m_{b}^{\prime}+m_{f}^{\prime}-t} \cdot 2^{k+t-m_{b}^{\prime}-m_{f}^{\prime}-h}=$ 2^{k-h}, where $h \leq t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}$. The overall time complexity is the sum of $T_{i}, i \in[0,4]$.

On \boldsymbol{h}. According to [Sel08], the success probability of differential analysis is

$$
P_{s}=\Phi\left(\frac{\sqrt{s S_{N}}-\Phi^{-1}\left(1-2^{-h}\right)}{\sqrt{S_{N}+1}}\right)
$$

where S_{N} is the signal-to-noise ratio and $S_{N}=\frac{2^{-n} P^{2}}{2^{-2 n}}$ in rectangle attacks as well as in boomerang attacks. In the algorithm, the parameter t not only gives much greater flexibility in choosing h but also allows the previous rectangle key recovery algorithm to fit in easily regarding the setting of the key counters. We will discuss more about the relation with the previous algorithms in Section 4.1.

On $\boldsymbol{\epsilon}$. In the algorithm, m_{b}^{\prime} bits of k_{b} and m_{f}^{\prime} bits of k_{f} are guessed, respectively. With the guessed subkey bits, partial differential propagation over E_{b} (resp. E_{f}) can be ensured by properly selecting pairs. Now suppose the input difference (resp. output difference) falls in a smaller space V_{b}^{*} (resp. V_{f}^{*}) where $r_{b}^{*}=\left|V_{b}^{*}\right|$ (resp. $\left.r_{f}^{*}=\left|V_{f}^{*}\right|\right)$. In step $3(\mathrm{~d})$ of the algorithm, the subkey information is extracted from quartets with input difference in V_{b}^{*} and output difference in V_{f}^{*}. Then, ϵ is defined to be the time to process one such quartet.

Recall that a right quartet satisfies $E_{b}\left(P_{1}\right) \oplus E_{b}\left(P_{2}\right)=\alpha=E_{b}\left(P_{3}\right) \oplus E_{b}\left(P_{4}\right)$. Both pairs are encrypted by the same subkey, so a right quartet must agree on the remaining m_{b}^{*} bits of k_{b}. Under the guess of m_{b}^{\prime} bits of k_{b}, there are $2^{r_{b}^{*}}$ possible input differences that lead to α difference after E_{b}. Since each pair suggests $2^{m_{b}^{*}-r_{b}^{*}}$ subkeys on average, both pairs agree on $2^{2\left(m_{b}^{*}-r_{b}^{*}\right)} / 2^{m_{b}^{*}}=2^{m_{b}^{*}-2 r_{b}^{*}}$ for E_{b}. Similarly, for E_{f} we get $2^{m_{f}^{*}-2 r_{f}^{*}}$ suggestions for the remaining m_{f}^{*} bits of k_{f}. Consequently, each quartet suggests $2^{m_{b}^{*}+m_{f}^{*}-2 r_{b}^{*}-2 r_{f}^{*}}$ possible subkeys.

There are different methods to deduce the remaining m_{b}^{*} bits of k_{b} suggested by these quartets. A recommended method is to precompute a hash table for all possible input pairs and the value of m_{b}^{*}-bit k_{b} that can lead to α difference. This
table can be built with time complexity $2^{r_{b}^{*}+m_{b}^{*}}$ and indexed by the values of the pairs. The memory cost of this table is $2^{r_{b}^{*}+m_{b}^{*}}$ (rather than $2^{r_{b}^{*}}$ in [BDK01]). When processing a quartet, we can extract the subkey candidates suggested by both pairs by looking up the table twice. Do the same thing for E_{f}. Therefore, ϵ will be no more than $\max \left\{4,2^{m_{b}^{*}-r_{b}^{*}}+2^{m_{f}^{*}-r_{f}^{*}}\right\}$ memory accesses, provided that two lookup tables have been built with time and memory complexity of $2^{r_{b}^{*}+m_{b}^{*}}+2^{r_{f}^{*}+m_{f}^{*}}$. If $2^{m_{b}^{*}-r_{b}^{*}}+2^{m_{f}^{*}-r_{f}^{*}}$ is relatively large, ϵ can be lowered to no more than $\max \left\{2,2^{m_{b}^{*}-2 r_{b}^{*}}+2^{m_{f}^{*}-2 r_{f}^{*}}\right\}$ by using tables built for quartets. In this case, the memory cost increases to $2^{2 r_{b}^{*}+m_{b}^{*}}+2^{2 r_{f}^{*}+m_{f}^{*}}$, which also means achieving the smallest ϵ at the cost of memory. This proves particularly advantageous when $2^{2 r_{b}^{*}+m_{b}^{*}}+2^{2 r_{f}^{*}+m_{f}^{*}}$ does not heavily influence memory costs.

Note that sometimes the above method of processing quartets may not be applied directly. In certain cases, besides the r_{b}^{*} bits, some other non-active bits of pairs are needed to verify α difference after E_{b}, resulting in a larger time complexity for building a precomputation table as well as a larger memory cost. For the bottom part E_{f}, it is similar. As an example, this can be seen from rectangle attacks on SKINNY (e.g., Figure 9). In such cases, we suggest building lookup tables for smaller local operations. Consequently, ϵ can be equivalent to a few memory accesses.

Another method to determine the remaining subkey bits suggested by a quartet candidate is to guess and check. One can guess the remaining subkey bits and check if the quartet is a right one under the guess. Such a method does not require additional memory, whereas ϵ is some partial encryptions or decryptions.

Minimizing the time complexity. As can be seen from the formulas of $T_{i}, i \in[0,4]$, the overall time complexity depends on the number of guessed subkey bits $m_{b}^{\prime}+m_{f}^{\prime}$ and the number of filters $r_{b}^{\prime}+r_{f}^{\prime}$ obtained under these guessed subkey bits. In order to reduce the time complexity, a natural strategy is to guess those subkey bits which can lead to a large filter. If each subkey cell is equally profitable (e.g., the attack on Serpent in Section 5.1), one can find by hand the subkey k_{b}^{\prime} and k_{f}^{\prime} to be guessed in the key recovery so that the time complexity is minimized. However, this is not the case for many ciphers. For certain ciphers, not only the subkey cells are not equally profitable, but also the subkey cells are closely related through the key schedule. Finding the best parameters by hand is challenging. Moreover, given a set of parameters that permit an efficient key recovery, one may wonder whether it is optimal or not. Therefore, optimal rectangle attacks are possible only when the above key recovery algorithm is fed with a set of proper parameters.

3.2 Key Recovery Algorithm for the Boomerang Attack

Recall that the boomerang attack requires adaptively chosen plaintexts and chosen ciphertexts. In concrete boomerang attacks, the distinguisher is usually extended on only one side. If it is extended on both sides, the key recovery
becomes complicated and the required data complexity depends not only on the distinguisher but also on the extended rounds.

In this subsection, we give a generic key recovery algorithm for the boomerang attack which has the same advantage as the algorithm for the rectangle attack in Section 3.1. Namely, it supports any type of extension and any possible strategy for guessing keys.

3.2.1 Basic Ideas

Assume the goal is to mount key recovery attacks on a cipher $E=E_{f} \circ E_{d} \circ E_{b}$ using a boomerang distinguisher of E_{d}, as shown in Fig. 2. The attack can start either from the top or from the bottom. For convenience, assume we start from the top, i.e., we choose plaintexts first.

Suppose the probability of the distinguisher is P^{2}. Then we need $1 / P^{2}$ pairs of plaintexts such that the difference after E_{b} is α. We use structures of plaintexts. From y structures, we can form $y \cdot 2^{2 r_{b}-1}$ plaintext pairs. Among them, $y \cdot 2^{r_{b}-1}$ pairs satisfy α difference on average. Let s be the expected number of right quartets. Then, we have $y \cdot 2^{r_{b}-1} \cdot P^{2}=s, y=s \cdot 2^{1-r_{b}} / P^{2}$. That is, we need $D_{0}=y \cdot 2^{r_{b}}=2 s / P^{2}$ chosen plaintexts.

As the ciphertext differences fall in a set of $2^{r_{f}}$ elements, we need many more chosen ciphertexts. The number of chosen ciphertexts the attack needs depends on r_{f}, which roughly is $D_{0} \cdot 2^{r_{f}}$. As in the key recovery phase of the rectangle attack, guessing some subkey bits may help filter wrong quartets in advance. Suppose a part of k_{f}, i.e., k_{f}^{\prime} are guessed, with $m_{f}^{\prime}=\left|k_{f}^{\prime}\right|, 0 \leq m_{f}^{\prime} \leq m_{f}$. With the guessed subkey bits, the differential propagation $\delta \leftarrow \delta^{\prime}$ can be partially verified. Suppose a r_{f}^{\prime}-bit condition on the bottom can be verified. If $m_{f}^{\prime}<r_{f}^{\prime}$, the number of chosen ciphertexts can be reduced from $D_{0} \cdot 2^{r_{f}}$ to $D_{0} \cdot 2^{r_{f}-r_{f}^{\prime}+m_{f}^{\prime}}$ by adaptively choosing ciphertexts under each guess of k_{f}^{\prime}.

As in the rectangle attack, we need to decide on which side we construct pairs. If we construct pairs on the top, the time complexity for generating pairs and quartets is $2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot\left(D_{0} \cdot 2^{r_{b}^{*}}+D_{0} \cdot 2^{r_{b}^{*}+r_{f}^{*}}\right)$ while it is $2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D_{0} \cdot 2^{r_{f}^{*}}$ if we construct pairs on the bottom. This distinction comes from the adaptive chosen-plaintext/ciphertext requirement of the boomerang attack. Therefore, it is advantageous to construct pairs on the bottom (when we start from the top).

Next, we will give the details of our generic algorithm for the boomerang key recovery attack, which incorporates the above ideas.

3.2.2 Details of the Algorithm

Our algorithm for the single-key setting proceeds as follows. A variant of this algorithm for the related-key setting is given as well in A. 2 for ciphers with a linear key schedule.

1. Collect and store y structures of $2^{r_{b}}$ plaintexts such that $D_{0}=y 2^{r_{b}}=2 s / P^{2}$. Query for the corresponding ciphertexts and store the plaintext-ciphertext pairs in $L_{0} .\left(M=T=D_{0}\right)$
2. Let $D_{1}=\min \left\{D_{0} \cdot 2^{r_{f}}, D_{0} \cdot 2^{r_{f}^{*}+m_{f}^{\prime}}, 2^{n}\right\}$. If $D_{1}=2^{n}$, query for the plaintext for each possible ciphertext. If $D_{1}=D_{0} \cdot 2^{r_{f}}$, for each possible δ^{\prime}, shift the ciphertexts in L_{0} by δ^{\prime} and query for their plaintexts. Store these plaintextciphertext pairs in L_{1}. The size of L_{1} is $\min \left\{D_{0} \cdot 2^{r_{f}}, 2^{n}\right\}$.
3. Split m_{b}^{\prime}-bit k_{b}^{\prime} into two parts: $G_{L} \| G_{R}$ where G_{L} has t bits, $0 \leq t \leq m_{b}^{\prime}$.
4. Guess k_{f}^{\prime} :
(a) If $r_{f}^{\prime} \geq m_{f}^{\prime}$, for each data $\left(P_{1}, C_{1}\right) \in L_{0}$, partially decrypt C_{1} to C_{1}^{*} under k_{f}^{\prime} and for each possible r_{f}^{*}-bit difference, construct C_{3}^{*} and new ciphertexts C_{3}. If $D_{1}<2^{n}$ query for the plaintexts P_{3}; otherwise, read P_{3} from L_{1}. Store $\left(P_{3}, C_{3}^{*}\right)$ in $L_{1, k_{f}^{\prime}}$. (Let $\hat{L_{1}}=\cup_{k_{f}^{\prime}} L_{1, k_{f}^{\prime}}$. The size of $\hat{L_{1}}$ is $D_{0} \cdot 2^{r_{f}^{*}+m_{f}^{\prime}}$. The memory cost for $L_{1, k_{f}^{\prime}}$ is $D_{0} \cdot 2^{r_{f}^{*}}$.)
(b) Guess G_{R} :
i. Initialize a list of key counters for G_{L} and the unguessed key bits of k_{b}, k_{f}. The memory complexity in this step is $2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}$.
ii. Guess the t-bit G_{L} :
A. For each data $\left(P_{1}, C_{1}\right) \in L_{0}$, partially encrypt P_{1} and partially decrypt C_{1} under the guessed subkey bits. Let $P_{1}^{*}=E n c_{k_{b}^{\prime}}\left(P_{1}\right)$ and $C_{1}^{*}=\operatorname{Dec}_{k_{f}^{\prime}}\left(C_{1}\right)$. For each structure, we will get $2^{r_{b}^{\prime}}$ substructures, each of which includes $2^{r_{b}-r_{b}^{\prime}}=2^{r_{b}^{*}}$ plaintexts which take all possible values for the active bits. In other words, there are $y^{*}=y \cdot 2^{r_{b}^{\prime}}$ structures of $2^{r_{b}^{*}}$ plaintexts. $\left(T=D_{0}\right)$
B. If $r_{f}^{\prime}<m_{f}^{\prime}$, do partial encryption and decryption for $\left(P_{3}, C_{3}\right) \in L_{1}$ to get $\left(P_{3}^{*}, C_{3}^{*}\right) .\left(T=D_{0} \cdot 2^{r_{f}}=D_{1}\right)$
C. If $r_{f}^{\prime} \geq m_{f}^{\prime}$, do partial encryption for data in $L_{1, k_{f}^{\prime}} \operatorname{get}\left(P_{3}^{*}, C_{3}^{*}\right)$. $\left(T=D_{0} \cdot 2^{r_{f}^{*}}\right)$
D. Insert $\left(P_{3}^{*}, C_{3}^{*}\right)$ into a hash table H_{1} according to $\left(n-r_{f}^{*}\right)$ inactive bits of C_{3}^{*}. (The size of H_{1} is $D_{0} \cdot 2^{r_{f}}$ or $D_{0} \cdot 2^{r_{f}^{*}}$.)
E. Look up H_{1} with $\left(P_{1}^{*}, C_{1}^{*}\right)$ and construct a set as $S=\left\{\left(P_{1}^{*}, C_{1}^{*}\right.\right.$, $\left.P_{3}^{*}, C_{3}^{*}\right): C_{1}^{*}$ and C_{3}^{*} have difference only in r_{f}^{*} bits $\}$. The size of S is $D_{0} \cdot 2^{r_{f}^{*}}$. Insert pairs from S into the hash table H_{2} according to $n-r_{b}^{*}$ inactive bits of P_{1}^{*} and $n-r_{b}^{*}$ inactive bits of P_{3}^{*}. ($T=D_{0} \cdot 2^{r_{f}^{*}}$)
F. There are $y \cdot 2^{r_{b}^{\prime}}$ possible values for the $n-r_{b}^{*}$ bits of P_{1}^{*} and $2^{n-r_{b}^{*}}$ possible values for the $n-r_{b}^{*}$ bits of P_{3}^{*}. For each index, we pick two distinct entries $\left(P_{1}, C_{1}^{*}, P_{3}, C_{3}^{*}\right)$ and $\left(P_{2}, C_{2}^{*}, P_{4}, C_{4}^{*}\right)$ to generate the quartet. The number of quartets we will get is

$$
\binom{\frac{|S|}{2^{n-r_{b}^{*}} \cdot y \cdot 2^{r_{b}^{\prime}}}}{2} \cdot 2^{n-r_{b}^{*}} \cdot y \cdot 2^{r_{b}^{\prime}}=D_{0} \cdot 2^{2 r_{b}^{*}+2 r_{f}^{*}-n-1}
$$

iii. Determine the key candidates involved in E_{b} and E_{f} and increase the corresponding counters. Denote the time complexity for processing one quartet as ϵ. Then the time complexity in this step is D_{0}. $2^{2 r_{b}^{*}+2 r_{f}^{*}-n-1} \cdot \epsilon$.
iv. Select the top $2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}-h}$ hits in the counters to be the candidates, which delivers a h-bit or higher advantage, where $0<$ $h \leq t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}$.
v. Guess the remaining $k-m_{b}-m_{f}$ unknown key bits according to the key schedule algorithm and exhaustively search over them to recover the correct key. The time complexity of this step is $2^{k+t-m_{b}^{\prime}-m_{f}^{\prime}-h}$.

Data complexity. From y structures, we can form $y \cdot 2^{2 r_{b}-1}$ plaintext pairs. Among them, $y \cdot 2^{r_{b}-1}$ pairs satisfy α difference on average. Let s be the expected number of right quartets, so we have $y \cdot 2^{r_{b}-1} \cdot P^{2}=s, y=s \cdot 2^{1-r_{b}} / P^{2}$ and $D_{0}=$ $y \cdot 2^{r_{b}}=2 s / P^{2}$ chosen plaintexts as well as $D_{1}=\min \left\{D_{0} \cdot 2^{r_{f}}, D_{0} \cdot 2^{r_{f}^{*}+m_{f}^{\prime}}, 2^{n}\right\}$ chosen ciphertexts.

Memory complexity. The memory complexity is $M=D_{0}+D_{1}+2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}$ when $r_{f}^{\prime}<m_{f}^{\prime}$ or $D_{1}=2^{n}$ and $M=D_{0}+\min \left\{D_{0} \cdot 2^{r_{f}^{*}}, 2^{n}\right\}+2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}$ when $r_{f}^{\prime} \geq m_{f}^{\prime}$ and $D_{1}<2^{n}$ to store the data, the set S of pairs, and the counters.

Time complexity. The time complexity of collecting data is $T_{0}=D_{0}+D_{1}$, the time complexity of doing partial encryption and decryption under guessed key bits is

$$
T_{1}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot\left(D_{0}+D_{1}\right)
$$

when $r_{f}^{\prime}<m_{f}^{\prime}$ and

$$
T_{1}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot\left(D_{0}+D_{0} \cdot 2^{r_{f}^{*}}\right)
$$

when $r_{f}^{\prime} \geq m_{f}^{\prime}$, the time complexity of generating set S is

$$
T_{2}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D_{0} \cdot 2^{r_{f}^{*}}
$$

the time complexity of generating and processing quartet candidates is

$$
T_{3}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D_{0} \cdot 2^{2 r_{b}^{*}+2 r_{f}^{*}-n-1} \cdot \epsilon=s \cdot 2^{m_{b}^{\prime}+m_{f}^{\prime}+2 r_{b}^{*}+2 r_{f}^{*}-n} / P^{2} \cdot \epsilon
$$

and the time complexity of the exhaustive search is $T_{4}=2^{m_{b}^{\prime}+m_{f}^{\prime}-t+k-m_{b}-m_{f}}$. $2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}-h}=2^{k-h}$, where $0<h \leq t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}$.

3.3 Framework for Finding the Best Attacking Parameters

In this subsection, we present a framework that acts as a complement to our new key recovery algorithms. This framework finds the best parameters for the attack. When we apply the parameters returned by this framework to our key recovery algorithms, the time complexity of the attack will be minimal.

Specifically, the framework takes as input a boomerang distinguisher with $\left(\alpha, \delta, P^{2}\right)$, i.e., the input difference and output difference, and its probability, and extended rounds $\left(E_{d}, E_{f}\right)$, and returns $\left(k_{b}^{\prime}, k_{f}^{\prime}\right)$ and the minimal time complexity. In essence, this is an optimization problem that can be solved with
various tools. A similarity can be observed in finding optimal differential/linear trails $\left[\mathrm{SHW}^{+} 14, \mathrm{SWW} 21, \mathrm{KLT15}\right]$, the division property $\left[\mathrm{HLM}^{+} 20\right]$, the meet-in-the-middle attack $\left[\mathrm{SSD}^{+} 18\right]$, etc. Therefore, tools like Mixed-Integer Linear Programming (MILP) and SAT which are widely used for solving these previously mentioned problems can be applied as well in this framework. Since we want to keep our framework generic and flexible, we will describe it as a template in a high-level language. When it comes to a specific cipher, one can instantiate it and solve it with MILP solvers or SAT solvers.

Our framework has five modules:
Difference propagation. Model the differentials $\alpha^{\prime} \stackrel{E_{b}^{-1}}{\longleftrightarrow} \alpha$ and $\delta \xrightarrow{E_{f}} \delta^{\prime}$, both of which propagate difference with probability 1 . Compute r_{b} and r_{f}. Mark the state cell if its difference is fixed.
Value path. Mark the state cells whose values are needed for verifying α difference and δ difference. Alongside, mark the subkey k_{b} and k_{f} which are needed for the verification.
Guess-and-determine. Model the relation between the subkey bits and the internal state cells, i.e., when certain subkey bits are guessed, the corresponding internal state cell can be determined. When an internal state cell resulting from some active cells is determined and should have a fixed difference, then a filter is reached. Model the number of filters $r_{b}^{\prime}+r_{f}^{\prime}$.
Key bridging. ${ }^{8}$ Model the relation between subkey bits according to the key schedule algorithm. Model the number of independent guessed subkey bits $m_{b}^{\prime}+m_{f}^{\prime}$.
Objective function. Compute $T_{i}, i \in[0,4]$ from $P, n, r_{b}, r_{f}, r_{b}^{\prime}, r_{f}^{\prime}, m_{b}^{\prime}$ and m_{f}^{\prime}. Set the objective function to $\min \sum_{0}^{4} T_{i}$.

Other constraints can be imposed alongside, such as constraints on memory. Given a boomerang distinguisher of a certain cipher, one can follow this framework to build a concrete model dedicated to this cipher and try different E_{b} and E_{f} to find a set of best parameters. Key information that can be extracted from these parameters include

- Subkey k_{b}^{\prime} and k_{f}^{\prime} which will be guessed;
- The number of independent key bits in k_{b}^{\prime} and k_{f}^{\prime}, i.e., $m_{b}^{\prime}+m_{f}^{\prime}$;
- The overall time complexity.

Feed these parameters to our key recovery algorithms, and the rectangle or boomerang key recovery will be optimized. For more details, one can refer to our source codes ${ }^{9}$ which showcase the implementation of this framework for the attack on Serpent and SKINNY.

[^2]
4 Comparisons and Extensions

In this section, we compare our new algorithms with related works and discuss their applicability to other attacks that also exploit non-random properties of quartets, such as the retracing boomerang attack [DKRS20] and the mixture differential attack [Gra18]. In the literature, more algorithms have been proposed for the rectangle key recovery attack, so we mainly compare our new algorithms with previous algorithms for the rectangle key recovery attack.

4.1 Comparison with Previous Works on Rectangle Attacks

Rectangle key recovery algorithms in previous works. The rectangle attack was proposed by Biham, Dunkelman, and Keller in [BDK01] and has been applied to Serpent [ABK98]. The key recovery algorithm used for attacking Serpent is rewritten in Appendix C.1. Later, the same authors introduced a new rectangle key recovery algorithm in [BDK02] which improves the result on Serpent by reducing the time complexity. Since then, not much progress has been made until Zhao et al. proposed a new key recovery algorithm in [ZDM $\left.{ }^{+} 20\right]$ which originally worked for ciphers with a linear key schedule in the relatedkey setting, but it can be converted to the single-key setting trivially. Such an algorithm, when applied to SKINNY, outperforms the two previous key recovery algorithms. However, the algorithm presented in a very recent work [DQSW22] takes a step further in improving rectangle attacks on SKINNY. For convenience, we call these four rectangle key recovery algorithms in chronological order by Algorithm 1, Algorithm 2, Algorithm 3, and Algorithm 4, respectively. Details of these algorithms can be found in Appendix C. As concluded in [DQSW22], these algorithms seem independent and perform differently for different parameters. Given a rectangle distinguisher, one can pick the algorithm with the lowest complexity among them.

Similarities between our algorithm and the previous algorithms. Our

 new algorithm reuses some techniques of the previous algorithms.- Like Algorithm 2, we recommend using hash tables when generating pairs and quartets. It costs a certain amount of memory (not necessarily increasing the overall memory complexity), but the time complexity is lowered.
- When constructing quartets, we apply the filters on both pairs simultaneously with the help of hash tables. This is also a strategy to trade memory with time which has been used in Algorithms 3 and 4.
- When processing a quartet, we make use of precomputation tables so that the term ϵ appearing in the time complexity is as small as possible. This has been suggested in Algorithm 2 and we develop this technique in a more practical way.

Figure 4: Diagram of guessed key for different algorithms

Our new algorithm unifies all the previous rectangle key recovery algorithms. All the previous four algorithms are distinct from each other by the number of guessed key bits. Figure 4 illustrates the comparison of our algorithm with the four previous algorithms.

Specifically, Algorithm 1 guesses the full ($m_{b}+m_{f}$)-bit subkey; the main refinement of Algorithm 2 is to generate quartets with birthday paradox without guessing key bits involved in E_{b} and E_{f}; Algorithm 3 guesses the m_{b}-bit key bits involved in E_{b} to generate quartets; Algorithm 4 extended Algorithm 3 by guessing additional key bits in E_{f} and exploiting the inner state bits as fast filters.

Our new algorithm supports any number of guessed key bits. Hence, it not only covers all the cases considered by the four previous algorithms but also includes five types of new cases (see Figure 4).

Any of the previous four algorithms is a special case of our algorithm. We summarize the complexities of different algorithms in Table 2 using notations in this paper. Note the data complexity D remains the same and all the algorithms have to store the data and the subkey counters ${ }^{10}$. Some algorithms may need some extra memory. Therefore, we mainly focus on the comparison of the time complexity and the extra memory complexity.

From complexities listed in Table 2, we can see that Algorithms 1 to 4 are special cases of our algorithm by substituting the corresponding parametersthe exact number of guessed subkey bits and the number of resulted filters-for $m_{b}^{\prime}+m_{f}^{\prime}$ and $r_{b}^{\prime}, r_{f}^{\prime}$ in our formulas shown in the last big row of Table 2. Note $r_{b}^{*}=r_{b}-r_{b}^{\prime}, r_{f}^{*}=r_{f}-r_{f}^{\prime}$. More specifically,

1. When replacing $m_{b}^{\prime}=m_{b}, m_{f}^{\prime}=m_{f}$ and setting $t=m_{b}+m_{f}$, we have Algorithm 1. Since $r_{b}^{*}=r_{f}^{*}=0$, the time complexities T_{2}, T_{3} disappear or can be neglected.

[^3]2. Algorithm 2 is the case of our algorithm with $m_{b}^{\prime}=m_{f}^{\prime}=0, t=0$ which constructs pairs on the bottom side for ciphertexts.
3. Algorithm 3 is the case of our algorithm with $m_{b}^{\prime}=m_{b}, m_{f}^{\prime}=0$ which constructs pairs on the top side for plaintexts.
4. Algorithm 4 is the case of our algorithm with $m_{b}+m_{f}^{\prime}$ guessed key bits which constructs pairs on the top side for plaintexts.

Table 2: Comparisons of different rectangle key recovery algorithms

Alg.	\#Guessed bit	Extra memory	Time
1	$m_{b}+m_{f}$	0	$T_{1}=2^{m_{b}+m_{f}} \cdot D$
2	0	0	$\begin{gathered} T_{2}=D^{2} \cdot 2^{r_{f}-n-1}=\frac{D}{2} \cdot 2^{r_{f}-\mu} \\ T_{3}=D^{2} \cdot 2^{2 r_{b}+2 r_{f}-2^{n}-2} \cdot \epsilon_{2} \end{gathered}$
3	m_{b}	$\frac{D}{2}$	$\begin{gathered} T_{1}=2^{m_{b}} \cdot D \\ T_{2}=2^{m_{b}} \cdot \frac{D}{2} \\ T_{2}=2^{m_{b}} \cdot D^{2} \cdot 2^{2 r_{f}-2 n-2} \cdot \epsilon_{3} \end{gathered}$
4	$m_{b}+m_{f}^{\prime}$	$\frac{D}{2}$	$\begin{gathered} T_{1}=2^{m_{b}+m_{f}^{\prime}} \cdot D \\ T_{2}=2^{m_{b}+m_{f}^{\prime}} \cdot \frac{D}{2} \\ T_{2}=2^{m_{b}+m_{f}^{\prime}} \cdot D^{2} \cdot 2^{2 r_{f}^{*}-2 n-2} \cdot \epsilon_{4} \end{gathered}$
This	$m_{b}^{\prime}+m_{f}^{\prime}$	$\frac{D}{2} \cdot \min \left\{2^{r_{b}^{*}}, 2^{r_{f}^{*}-\mu}\right\}$	$\begin{gathered} T_{1}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D \\ T_{2}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot \frac{D}{2} \cdot \min \left\{2^{r_{b}^{*}}, 2^{r_{f}^{*}-\mu}\right\} \\ T_{3}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D^{2} \cdot 2^{2 r_{b}^{*}+2 r_{f}^{*}-2 n-2} \cdot \epsilon \end{gathered}$

Application to concrete ciphers. The four previous key recovery algorithms were treated as separate ones. Given a rectangle distinguisher, one can compute the complexities for different algorithms and pick the one with the lowest complexity. Now, with the new algorithm, we can work with this one only, and the best parameters that allow the minimization of the time complexity may likely lie outside the cases covered by the four previous algorithms. Section 5 includes a series of such examples.

4.2 Comparison with Previous Works on Boomerang Attacks

In [BDK02], an algorithm for the boomerang key recovery attack was proposed. In this algorithm, none of the key bits involved in the outer rounds are guessed, which is similar to Algorithm 2 mentioned in the previous subsection for the rectangle key recovery attack. Similarly, our algorithm for the boomerang key recovery attack in Section 3.2 covers this algorithm and is more generic. The comparison between the algorithm in [BDK02] and our new algorithm is showcased in Section 5.1.

4.3 Applicability to Related Attacks

For attacks that exploit non-random properties of quartets, one must construct pairs from single messages, quartets from pairs, and then check the properties of quartets. The advantage of our new algorithms for the rectangle and boomerang key recovery attack comes from two things. One is that any possible key guessing strategy is supported. The other is that generating pairs on the more advantageous side results in lower time complexity. The core ideas of our new algorithms should not be limited to the standard rectangle or boomerang attack. Next, we consider the applicability of our new algorithms to other attacks that utilize properties of quartets. Such attacks include the truncated boomerang attack, the retracing boomerang/rectangle attack, the mixture differential attack, and the boomeyong attack.

The truncated boomerang attack. In [Wag99], Wagner observed that the boomerang attack can exploit truncated differential characteristics if several difficulties are addressed. In [BL22], Bariant et al. formalize the truncated boomerang attack. For the basic boomerang distinguisher, the input difference and the output difference are both specific values, while for the truncated boomerang distinguisher, the input and the output differences are sets of differences $\mathcal{D}_{\text {in }}$ and $\mathcal{D}_{\text {out }}$, respectively. The distinction mainly lies in the computation of probability. Specifically, $\operatorname{Pr}\left[\alpha \xrightarrow{E_{0}} \beta\right]=\operatorname{Pr}\left[\alpha \stackrel{E_{0}}{\longleftarrow} \beta\right]$ holds for standard differential characteristics while $\operatorname{Pr}\left[\mathcal{D}_{\text {in }} \xrightarrow{E_{0}} \mathcal{D}_{\text {out }}\right]$ and $\operatorname{Pr}\left[\mathcal{D}_{\text {in }} \stackrel{E_{0}}{\leftrightarrows} \mathcal{D}_{\text {out }}\right]$ are usually not equal for truncated differential characteristics. Here, we focus on the key recovery.

In the basic boomerang attack, we consider pairs of plaintexts $\left(P_{1}, P_{2}\right)$ with $P_{1} \oplus P_{2}=\alpha$, then generate the corresponding pair of ciphertexts $\left(C_{3}, C_{4}\right)$ with $C_{3}=C_{1} \oplus \delta, C_{4}=C_{2} \oplus \delta$, and check whether the corresponding pair of plaintexts $\left(P_{3}, P_{4}\right)$ satisfies $P_{3} \oplus P_{4}=\alpha$. In the truncated boomerang attack, we consider pairs $P_{1} \oplus P_{2}=\alpha \in \mathcal{D}_{\text {in }}$, the corresponding pair of ciphertexts $C_{3}=C_{1} \oplus \delta \in \mathcal{D}_{\text {out }}$, $C_{4}=C_{2} \oplus \delta \in \mathcal{D}_{\text {out }}$, and check whether the corresponding pair of plaintexts $\left(P_{3}, P_{4}\right)$ satisfies $P_{3} \oplus P_{4}=\alpha \in \mathcal{D}_{i n}$.

The algorithm in Section 3.2 is specifically targeted at the basic boomerang attack. Since in the key recovery phase, only conditions on the two sides of the distinguisher matter, the algorithm in Section 3.2 can be adapted to the truncated boomerang key recovery attack without any modification.

The retracing boomerang/rectangle attack. The retracing boomerang attack and rectangle attack were proposed by Dunkelman et al. in [DKRS20]. Extra conditions are imposed on the quartets in these attacks. Specifically, the retracing boomerang attack imposes extra conditions on the output quartets while the retracing rectangle attack imposes extra conditions on the input quartets. According to the type of conditions, the retracing attack contains a shifting type and a mixture type.

In the shifting retracing boomerang attack, we consider only pairs $\left(P_{1}, P_{2}\right)$ with $P_{1} \oplus P_{2}=\alpha$ and $C_{1}^{L} \oplus C_{2}^{L}=0$ or δ_{L} to generate the corresponding
ciphertext pair (C_{3}, C_{4}) with $C_{3}=C_{1} \oplus \delta, C_{4}=C_{2} \oplus \delta$, and check whether the corresponding pair of plaintexts $\left(P_{3}, P_{4}\right)$ satisfies $P_{3} \oplus P_{4}=\alpha$, where $\delta=\delta^{L} \| \delta^{R}$, $C_{i}=C_{i}^{L} \| C_{i}^{R}$ for $1 \leq i \leq 4$. In the mixing retracing boomerang attack, we consider only pairs $\left(P_{1}, P_{2}\right)$ with $P_{1} \oplus P_{2}=\alpha$ to generate the corresponding pair of ciphertexts $\left(C_{3}, C_{4}\right)$ with $C_{3}=\left(C_{2}^{L}, C_{1}^{R}\right), C_{4}=\left(C_{1}^{L}, C_{2}^{R}\right)$, and check whether the corresponding pair of plaintexts $\left(P_{3}, P_{4}\right)$ satisfies $P_{3} \oplus P_{4}=\alpha$.

In the standard rectangle attack, we consider quartets of plaintexts $\left(\left(P_{1}, P_{2}\right)\right.$, $\left.\left(P_{3}, P_{4}\right)\right)$ such that $P_{1} \oplus P_{2}=P_{3} \oplus P_{4}=\alpha$, and check whether the corresponding quartets of ciphertexts $\left(\left(C_{1}, C_{3}\right),\left(C_{2}, C_{4}\right)\right)$ satisfy $C_{1} \oplus C_{3}=C_{2} \oplus C_{4}=\delta$. In the shifting retracing rectangle attack, we consider only quartets of plaintexts that satisfy $P_{1} \oplus P_{2}=P_{3} \oplus P_{4}=\alpha$ and $P_{1}^{L} \oplus P_{3}^{L}=0$ or α^{L}, where $\alpha=\alpha^{L} \| \alpha^{R}$, $P_{i}=P_{i}^{L} \| P_{i}^{R}$ for $1 \leq i \leq 4$. In the mixing retracing rectangle attack, we consider only quartets of plaintexts that satisfy $P_{1}^{L} \oplus P_{2}^{L}=P_{3}^{L} \oplus P_{4}^{L}=P_{1}^{L} \oplus P_{3}^{L}$, or in other words, the pair $\left(P_{3}, P_{4}\right)$ is the mixture counterpart of the pair $\left(P_{1}, P_{2}\right)$ with $P_{3}=\left(P_{2}^{L}, P_{1}^{R}\right), P_{4}=\left(P_{1}^{L}, P_{2}^{R}\right)$.

Mixture differentials. The mixture differential technique was presented by Grassi [Gra18]. The core step of the mixture differential attack of Grassi on 5 -round AES is included in the mixture retracing rectangle attack framework. In the mixture differentials, the upper path is closely related to the one in the mixing retracing rectangle attack, and the lower path is closely related to the one in the truncated rectangle attack. In other words, the mixture differential attack is a truncated version of the mixing retracing rectangle attack.

Boomeyong. The boomeyong, embedding yoyo with boomerang, was presented by Rahman et al. in [RSP21]. For boomeyong, the lower path is closely related to the mixing boomerang variant, the upper path is closely related to the truncated boomerang variant. In other words, boomeyong is a truncated version of the mixing retracing boomerang attack.

Key recovery for different attacks. Regardless of the construction of distinguishers, we only consider the key recovery when some rounds are added on both sides of the distinguishers.

For the key recovery, we have an algorithm in Section 3.1 targeted at the basic rectangle attack and an algorithm in Section 3.2 targeted at the basic boomerang attack. Is it possible to apply our algorithms to these related attacks?

In essence, the retracing rectangle attack and the mixture differential attack are variants of the rectangle attack; the retracing boomerang attack and the boomeyong attack are variants of the boomerang attack. Compared with the basic boomerang and basic rectangle attacks, these related attacks can be classified into two types of variants, where quartets satisfy the truncated differences rather than the fixed difference in one type, and in the other type, quartets need to satisfy extra conditions. For the first type, our algorithms can be directly applied, where one only needs to change the filter from a fixed value to a truncated value.

For the second type, we can impose extra conditions after getting the quartets that satisfy normal conditions. In other words, it needs to add extra filters after the step of obtaining the quartets in the algorithms in Section 3.1 and Section 3.2. In summary, we can apply our algorithm to all these related attacks. Table 3 compares these related attacks and lists the extra filters needed for different attacks.

Taking AES as the main target, these attacks extend either at the top or at the bottom of the distinguisher to recover the key, which can be handled by previous key recovery algorithms. Thus, we could not find improved results by simply applying our new algorithms to existing distinguishers. However, our key recovery algorithms are potentially useful in more generic cases of these attacks.

Table 3: Comparisons of different attacks

Attack	Generate	Extra Filtering	Check
Standard boomerang	$\begin{aligned} & P_{1} \oplus P_{2}=\alpha \\ & C_{3} \oplus C_{1}=\delta \\ & C_{4} \oplus C_{2}=\delta \\ & \hline \end{aligned}$	-	$P_{3} \oplus P_{4}=\alpha$
Truncated boomerang	$\begin{gathered} P_{1} \oplus P_{2}=\alpha \in \mathcal{D}_{\text {in }} \\ C_{3} \oplus C_{1}=\delta \in \mathcal{D}_{\text {out }} \\ C_{4} \oplus C_{2}=\delta^{*} \in \mathcal{D}_{\text {out }} \end{gathered}$	-	$P_{3} \oplus P_{4}=\alpha^{*} \in \mathcal{D}_{\text {in }}$
Shifting retracing boomerang	$\begin{aligned} & P_{1} \oplus P_{2}=\alpha \\ & C_{3} \oplus C_{1}=\delta \\ & C_{4} \oplus C_{2}=\delta \end{aligned}$	$\begin{aligned} & C_{1}^{L} \oplus C_{2}^{L} \\ & =0 \text { or } \delta^{L} \end{aligned}$	$P_{3} \oplus P_{4}=\alpha$
Mixing retracing boomerang	$\begin{gathered} P_{1} \oplus P_{2}=\alpha \\ C_{3} \oplus C_{1}=\delta \in \mathcal{D}_{\text {out }} \\ C_{4} \oplus C_{2}=\delta^{*} \in \mathcal{D}_{\text {out }} \end{gathered}$	$\begin{gathered} C_{1}^{L} \oplus C_{2}^{L}= \\ C_{1}^{L} \oplus C_{3}^{L}= \\ C_{2}^{L} \oplus C_{4}^{L} \end{gathered}$	$P_{3} \oplus P_{4}=\alpha$
Boomeyong	$\begin{gathered} P_{1} \oplus P_{2}=\alpha \in \mathcal{D}_{\text {in }} \\ C_{3} \oplus C_{1}=\delta \in \mathcal{D}_{\text {out }} \\ C_{4} \oplus C_{2}=\delta^{*} \in \mathcal{D}_{\text {out }} \end{gathered}$	$\begin{gathered} C_{1}^{L} \oplus C_{2}^{L}= \\ C_{1}^{L} \oplus C_{3}^{L}= \\ C_{2}^{L} \oplus C_{4}^{L} \\ \hline \end{gathered}$	$P_{3} \oplus P_{4}=\alpha^{*} \in \mathcal{D}_{\text {in }}$
Standard rectangle	$\begin{aligned} & P_{1} \oplus P_{2}=\alpha \\ & P_{3} \oplus P_{4}=\alpha \end{aligned}$	-	$\begin{aligned} & C_{3} \oplus C_{1}=\delta \\ & C_{4} \oplus C_{2}=\delta \end{aligned}$
Shifting retracing rectangle	$\begin{aligned} & P_{1} \oplus P_{2}=\alpha \\ & P_{3} \oplus P_{4}=\alpha \end{aligned}$	$\begin{gathered} P_{1}^{L} \oplus P_{3}^{L}=0 \\ \quad \text { or } \alpha^{L} \end{gathered}$	$\begin{aligned} & C_{3} \oplus C_{1}=\delta \\ & C_{4} \oplus C_{2}=\delta \end{aligned}$
Mixing retracing rectangle	$\begin{gathered} P_{1} \oplus P_{2}=\alpha \in \mathcal{D}_{i n} \\ P_{3} \oplus P_{4}=\alpha^{*} \in \mathcal{D}_{i n} \end{gathered}$	$\begin{gathered} P_{1}^{L} \oplus P_{2}^{L}=P_{3}^{L} \oplus P_{4}^{L} \\ =P_{1}^{L} \oplus P_{3}^{L} \end{gathered}$	$\begin{aligned} & C_{3} \oplus C_{1}=\delta \\ & C_{4} \oplus C_{2}=\delta \end{aligned}$
Mixture differential	$\begin{gathered} P_{1} \oplus P_{2}=\alpha \in \mathcal{D}_{i n} \\ P_{3} \oplus P_{4}=\alpha^{*} \in \mathcal{D}_{i n} \end{gathered}$	$\begin{gathered} \hline P_{1}^{L} \oplus P_{2}^{L}=P_{3}^{L} \oplus P_{4}^{L} \\ =P_{1}^{L} \oplus P_{3}^{L} \end{gathered}$	$\begin{aligned} & C_{3} \oplus C_{1}=\delta \in \mathcal{D}_{\text {out }} \\ & C_{4} \oplus C_{2}=\delta^{*} \in \mathcal{D}_{\text {out }} \end{aligned}$

$\overline{\mathcal{D}_{\text {in }}}$ and $\mathcal{D}_{\text {out }}$ are sets of differences.

5 Applications

In this section, we apply our new key recovery algorithms to five block ciphers using existing distinguishers: Serpent, AES-192, CRAFT, SKINNY, and Deoxys-BC256. We find that the best attacking parameters differ significantly from those that were used in previous works and even the number rounds in the outer part E_{b} or E_{f} are different. Moreover, these new attacking parameters are not covered by the previous key recovery algorithms in many cases. Consequently, improved results on these ciphers are obtained.

5.1 Application to Serpent

We apply our new rectangle key recovery algorithm to Serpent [ABK98], which was the first target when the rectangle attack was proposed in 2001 [BDK01]. Serpent is a block cipher that ranked second in the Advanced Encryption Standard (AES) finalist. It was an SP-network designed by Ross Anderson, Eli Biham, and Lars Knudsen, which has a block size of 128 bits and supports a key size of 128,192 or 256 bits. Serpent iterates 32 rounds, and each round $i \in\{0,1, \ldots, 31\}$ consists of three operations: key mixing, S-boxes, and linear transformation. Suppose B_{i} represents the internal state before round i, K_{i} is the 128 -bit subkey, and S_{i} denotes the application of S-box in round i. Let L be the linear transformation. Then the Serpent round function is defined as follows.

$$
\begin{aligned}
X_{i} & =B_{i} \oplus K_{i} \\
Y_{i} & =S_{i}\left(X_{i}\right) \\
B_{i+1} & =L\left(Y_{i}\right), i=0, \cdots, 30 \\
B_{i+1} & =Y_{i} \oplus K_{i+1}, i=31
\end{aligned}
$$

The internal state of Serpent can be seen as a 4×32 array, where each row is a 32 -bit word. The S -boxes are applied to 4 -bit columns. Serpent applies eight different 4-bit S-boxes, and these eight S-boxes are used four times. As our attack does not depend on the order of S-boxes, we omit the details here.

Distinguisher. We use the 8-round rectangle distinguisher of Serpent proposed by Biham et al. in [BDK01] to attack 10-round Serpent with E_{b} and E_{f} consisting of round 0 and round 9 respectively. The probability of the distinguisher is $2^{-n} P^{2}=2^{-128-120.6}$, and other parameters of the attack are: $n=128, m_{b}=$ $r_{b}=76, m_{f}=r_{f}=20$.

Recently in [KT22], this distinguisher has been re-evaluated and a more accurate probability of $2^{-128-116.3}$ is reported. For a better comparison, we will mount key recovery attacks with both probabilities of the distinguisher.

In the case of Serpent, a 4-bit key guess for an active S-box will lead to a 4-bit inner state filter for a pair of messages. That is, all the key nibbles corresponding to the active S -boxes of the first round and the last round are equivalently good for filtering data.

Parameters and complexities of the rectangle attack. When we take the old probability, the best guessing parameters are $m_{f}^{\prime}=r_{f}^{\prime}=20, m_{b}^{\prime}=r_{b}^{\prime}=8$, which means guessing all the k_{f} and two nibbles of k_{b}. Note that, this type of guessing strategy is not supported by previous rectangle key recovery algorithms. The complexities are as follows.

- The data complexity is $D=y \cdot 2^{r_{b}}=\sqrt{s} \cdot 2^{n / 2+1} / P=\sqrt{s} \cdot 2^{125.3}$.
- The memory complexity is $M=D+D^{2} \cdot 2^{r_{f}^{*}-n-1}+2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}=$ $\sqrt{s} \cdot 2^{125.3}+s \cdot 2^{121.6}+2^{t+68}$.
- The time complexity $T_{1}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D=\sqrt{s} \cdot 2^{153.3}$;
$-T_{2}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D^{2} \cdot 2^{r_{f}^{*}-n-1}=s \cdot 2^{149.6}$;
$-T_{3}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D^{2} \cdot 2^{2 r_{b}^{*}+2 r_{f}^{*}-2 n-2} \cdot \epsilon=s \cdot 2^{28+250.6+2 \times 68+0-2 \times 128-2} \cdot \epsilon=$ $s \cdot 2^{156.6} \cdot \epsilon$;
$-T_{4}=2^{k-h}, h<68+t$.
For each of the remaining quartets, it can be processed S-box by S-box, so ϵ takes about $1+2^{-4}+2^{-8}+\cdots+2^{-16 * 4}=2^{0.09}$ memory accesses. Set $s=4$, then the data and memory complexities of our attack are both $2^{126.3}$. The time complexity besides the brute forcing part includes $2^{154.3}$ partial encryptions/decryptions and $2^{158.69}$ memory accesses. Assume a partial encryption/decryption is equivalent to 7 memory accesses as 7 S-boxes are involved. Then it needs $2^{159.11}$ memory accesses in total.

When we take the new probability, the guessing parameters $m_{f}^{\prime}=r_{f}^{\prime}=$ $20, m_{b}^{\prime}=r_{b}^{\prime}=8$ are still the best. Another choice for these parameters is $m_{f}^{\prime}=r_{f}^{\prime}=16, m_{b}^{\prime}=r_{b}^{\prime}=12$ which leads to the same time complexity but a slightly higher memory complexity. Thus we choose the former. Set $s=4$, then the data and memory complexities of our attack are both $2^{124.15}$. The time complexity besides the brute forcing part includes $2^{152.15}$ partial encryptions/decryptions and $2^{154.39}$ memory accesses, which is about $2^{155.67}$ memory accesses in total.

Parameters and complexities of the boomerang attack. We use the same distinguisher to give 10 -round boomerang attacks. If we take the old probability $P^{2}=2^{-120.6}$ for the distinguisher, the best attacking parameters are $m_{b}^{\prime}=12, m_{f}^{\prime}=20$.

- The data and memory complexities are both 2^{128};
$-T_{0}=2^{128}$ encryptions, $T_{1}=2^{155.6}$ partial encryptions, $T_{2}=2^{155.6}$ memory accesses, and $T_{3}=2^{32} \cdot 2^{123.6} \cdot 2^{2 * 64-128-1} \cdot \epsilon=2^{154.6} \cdot \epsilon=2^{154.69}$ memory accesses. In total, it needs $2^{158.85}$ memory accesses.

If we take the new probability, the best attacking parameters remain the same. The time complexity is improved to $2^{154.55}$ memory accesses.

The comparison with the previous rectangle attacks ${ }^{11}$ based on the same distinguisher is presented in Table 4.

[^4]Table 4: Comparisons of key recovery attacks on 10-round Serpent where the time is measured by the number of memory accesses.

Attack	P^{2}	m_{b}, m_{f}	$m_{b}^{\prime}, m_{f}^{\prime}$	Data	Memory	Time	Reference
Rectangle	$2^{-120.6}$	76, 20	76,20	$2^{126.8}$	2^{192}	2^{217}	[BDK01]
			0,0	$2^{126.3}$	$2^{126.3}$	$2^{173.8}$	[BDK02]
			8,20	$2^{126.3}$	$2^{126.3}$	$2^{159.11}$	This
	$2^{-116.3}$	76, 20	8,20	$2^{124.15}$	$2^{124.15}$	$2^{155.67}$	This
Boomerang	$2^{-120.6}$	76, 20		2^{128}	2^{96}	$2^{173.80}$	[BDK02]
			12,20	2^{128}	2^{128}	$2^{158.85}$	This
	$2^{-116.3}$	76, 20	12,20	2^{128}	2^{128}	$2^{154.55}$	This

5.2 Application to AES-192

Using the 10-round distinguisher from [DEFN22], we can get the same 12-round boomerang attack on AES-192 as in [DEFN22] and the best 12-round rectangle attack so far. Applying our new algorithm for the rectangle attack to a new distinguisher extended from the 10 -round one, we obtain the first 13-round rectangle attack on AES-192. Next, we give details about the 12 -round and 13-round rectangle attacks of AES-192.

Specification. The Advanced Encryption Standard (AES) [DR02] is an iterated block cipher that encrypts 128-bit plaintext with the secret key of sizes 128 , 192 , and 256 bits. Its internal state can be represented as a 4×4 matrix whose elements are byte values (8 bits). The round function, as depicted in Figure 5, consists of four basic transformations in the following order:

- SubBytes (SB) is a nonlinear substitution that applies the same S-box to each byte of the internal state.
- ShiftRows (SR) is a cyclic rotation of the i-th row by i bytes to the left, for $i=0,1,2,3$.
- MixColumns (MC) is a multiplication of each column with a Maximum Distance Separable (MDS) matrix over $G F\left(2^{8}\right)$.
- AddRoundKey (AK) is an exclusive-or with the round key.

Figure 5: AES round function

At the very beginning of the encryption, an additional whitening key addition is performed, and the last round does not contain MixColumns. AES-128, AES-192,
and AES-256 share the same round function with different numbers of rounds: 10, 12 , and 14 , respectively.

The key schedule of AES transforms the master key into round keys that are used in the round function. Here, we describe the key schedule of AES-192. The 192-bit master key is divided into six 32 -bit words ($W[0], W[1], \ldots, W[5]$), then $W[i]$ for $i \geqslant 6$ is computed as

$$
W[i]= \begin{cases}W[i-6] \oplus \operatorname{SB}(\operatorname{RotByte}(W[i-1])) \oplus R \operatorname{con}[i / 6] & i \equiv 0 \bmod 6 \\ W[i-6] \oplus W[i-1] & \text { otherwise }\end{cases}
$$

where RotByte is a cyclic shift by one byte to the left, and Rcon is the round constant.

12-round related-key rectangle attack. We reuse the 10-round boomerang distingisher of AES-192 proposed by Derbez et al. in [DEFN22]. The probability of the distinguisher is $2^{-n} P^{2}=2^{-128-108}=2^{-236}$. The attack extends one round before and after the distinguisher respectively. The parameters of the attack are $n=128, m_{b}=8, r_{b}=16, m_{f}=32, r_{f}=35$.

Note that our original rectangle key recovery algorithm works in the relatedkey setting for ciphers with a linear key schedule. Even though the key schedule of AES contains many linear operations, it is not fully linear. Therefore, we must treat the S-boxes in the key schedule carefully when applying our new algorithm. In particular, we choose to guess the subkey bytes at the positions that have fixed differences for both trails. In this way, a one-byte guess will lead to known values for the four related keys at the same position. Besides, when processing the remaining quartets to extract more subkey bytes, we also need to take into account the nonlinearity of the key schedule.

With this in mind, we apply our rectangle key recovery algorithm to it and find that the best strategy is to guess 1 byte of k_{b} for a 1-byte filter. The complexities of our new attack are as follows.

- The data complexity is $D_{R}=4 \cdot y \cdot 2^{r_{b}}=\sqrt{s} \cdot 2^{n / 2+2} / P=\sqrt{s} \cdot 2^{120}$.
- The memory complexity is $M_{R}=D_{R}+D \cdot 2 \cdot 2^{r_{b}^{*}}+2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}=$ $\sqrt{s} \cdot 2^{120}+\sqrt{s} \cdot 2^{127}+2^{t+40}$.
- The time complexity $T_{1}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D_{R}=\sqrt{s} \cdot 2^{8+120}=\sqrt{s} \cdot 2^{128}$;
$-T_{2}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D \cdot 2 \cdot 2^{r_{b}-r_{b}^{\prime}}=\sqrt{s} \cdot 2^{8+118+1+8}=\sqrt{s} \cdot 2^{135}$;
$-T_{3}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D^{2} \cdot 2^{2 r_{b}^{*}+2 r_{f}^{*}-2 n} \cdot \epsilon=s \cdot 2^{8+2 \times 118+2 \times 35+2 \times 8-2 \times 128} \cdot \epsilon=s \cdot 2^{76} \cdot \epsilon ;$
The remaining key bytes are gradually recovered using the right quartets and available data. Set $s=2$, then the data, memory, and time complexities of our attack are $2^{120.5}, 2^{127.5}$, and $2^{135.5}$ memory access.

13-round related-key rectangle attack. Adding one round before the 10 round boomerang distinguisher from [DEFN22], we get a 11-round rectangle distinguisher with probability $2^{-n} P^{2}=2^{-128-120}=2^{-248}$, as shown in Figure 13.

We still extend one round before and after the distinguisher respectively. As a result, we get the first 13 -round related-key rectangle attack on AES-192. The parameters of the attack are: $n=128, m_{b}=56, r_{b}=56, m_{f}=32, r_{f}=35$, as shown in Figure 6.

Note that the i-th subkey, denoted by K_{i}, is of size 192 -bit and K_{1} is the master key. We denote the difference between subkeys in the upper trail by ΔK_{i}, and in the lower trail by ∇K_{i}. We add the difference ΔK_{2} to K_{2} for the upper trail and add the difference ∇K_{5} to K_{5} for the lower trail. The details of the subkey differences are listed in Table 14. The best strategy is to guess 1 byte of k_{b} to get a 1-byte filter. The attack proceeds as follows:

Figure 6: AES-192 13-round rectangle attack

1. Construct y structures of $2^{r_{b}}$ plaintexts and query for the ciphertexts under the key K_{i}, and store them in set L_{i}, for $i=1,2,3,4$. The data complexity is $D_{R}=4 \cdot y \cdot 2^{r_{b}}=\sqrt{s} \cdot 2^{126}$.
2. Guess 8 -bit round key $R K_{0}^{1}[13]$ as marked in Figure 6:
(a) Initialize a list of key counters for the unguessed key bits of k_{b}, k_{f}.
(b) For each $\left(P_{i}, C_{i}\right)$ in data set L_{i}, partially encrypt P_{i} under the 8 bit $R K_{0}^{i}[13]$. The time of this step is $T_{1}=2^{8} \cdot D_{R}=s \cdot 2^{134}$ partial encryptions.
(c) Construct two sets as $S_{3}=\left\{\left(P_{1}^{*}, C_{1}^{*}, P_{3}^{*}, C_{3}^{*}\right):\left(P_{1}^{*}, C_{1}^{*}\right) \in L_{1},\left(P_{3}^{*}, C_{3}^{*}\right) \in\right.$ L_{3}, C_{1}^{*} and C_{3}^{*} are colliding in 93 bits $\}, S_{4}=\left\{\left(P_{2}^{*}, C_{2}^{*}, P_{4}^{*}, C_{4}^{*}\right)\right.$: $\left(P_{2}^{*}, C_{2}^{*}\right) \in L_{2},\left(P_{4}^{*}, C_{4}^{*}\right) \in L_{4}, C_{3}^{*}$ and C_{4}^{*} are colliding in 93 bits $\}$. The size of each set is $D^{2} \cdot 2^{-93}=s \cdot 2^{155}$. Note that an 88 -bit filter can be used before we get the pairs, and another 5 -bit filter can be used after we
get the pairs, thus the time of this step is $T_{2}=2^{5} \cdot 2^{8} \cdot 2 \cdot s \cdot 2^{155}=s \cdot 2^{169}$ memory access.
(d) Insert S_{3} into a hash table H_{3} by $n-r_{b}^{*}=n-48$ in active bits of P_{1}^{*} and $n-48$ in active bits of P_{3}^{*}. Insert S_{4} into a hash table H_{2} by $n-48$ in active bits of P_{2}^{*} and $n-48$ in active bits of P_{4}^{*}.
(e) There are at most $2^{2(n-48-\mu)}=s \cdot 2^{2(80-4)}=s \cdot 2^{152}$ possible values for the $2(n-48)=160$-bit index. With each $2(n-48)$-bit index, we pick two distinct $\left(P_{1}^{*}, C_{1}^{*}, P_{3}^{*}, C_{3}^{*}\right),\left(P_{2}^{*}, C_{2}^{*}, P_{4}^{*}, C_{4}^{*}\right)$ to generate the quartet. We will get

$$
D^{2} \cdot 2^{2 \cdot 48} \cdot 2^{2 \cdot 35} \cdot 2^{-2 n}=s \cdot 2^{124 \cdot 2-90}=s \cdot 2^{158}
$$

quartets. The time of this step is $2^{8} \cdot s \cdot 2^{158}=s \cdot 2^{166}$ memory accesses.
3. Determine the key candidates involved in E_{b} and E_{f} and increase the corresponding counters. In bytes 9,10 , and 15 of the $R K_{0}$, the key differences in the upper and lower trail are known. We construct tables for quartets S-box by S-box. Traversing the value of the key and the four input values before the AddRoundKey operation, we can calculate the output differences for a quartet. Then for a fixed quartet, there is 2^{-8} solution on average for a fixed output difference. Thus we can get the key values by looking up the table once. In bytes $0,1,5$ of the $R K_{0}$ and $0,4,8,12$ of the $R K_{13}$, the key difference in the lower path is unknown. Similar to constructing the tables about quartets, we construct tables for pairs. Traversing the value of the key and the two input values before the AddRoundKey operation, we can calculate the output difference. Then for a fixed pair, there is 1 solution on average for a fixed output difference. Thus we can get the key values by looking up the table once.
(a) By looking up the table for a quartet, we get $\left(K_{0}^{1}[9], K_{0}^{2}[9], K_{0}^{3}[9], K_{0}^{4}[9]\right)$, and there are $s \cdot 2^{166-8}=s \cdot 2^{158}$ quartets.
(b) Similarly, by looking up the table for a quartet, we get ($K_{0}^{1}[10], K_{0}^{2}[10]$, $\left.K_{0}^{3}[10], K_{0}^{4}[10]\right)$. Traversing the output differences, there are $2^{8} \cdot s \cdot 2^{158-8}=$ $s \cdot 2^{158}$ quartets.
(c) Similarly, by looking up the table for a quartet, we get $\left(K_{0}^{1}[15], K_{0}^{2}[15]\right.$, $\left.K_{0}^{3}[15], K_{0}^{4}[15]\right)$, and there are $s \cdot 2^{158-8}=s \cdot 2^{150}$ quartets remaining.
(d) By looking up the table for a pair, we get ($\left.K_{0}^{1}[0,1,5], K_{0}^{2}[0,1,5]\right)$ and $\left(K_{0}^{3}[0,1,5], K_{0}^{4}[0,1,5]\right)$, respectively. There are $s \cdot 2^{150}$ quartets remaining.
(e) Similarly, by looking up the table for a pair, we get $\left(K_{13}^{1}[0,4,8,12]\right.$, $\left.K_{2}^{13}[0,4,8,12]\right)$ and $\left(K_{13}^{3}[0,4,8,12], K_{12}^{4}[0,4,8,12]\right)$, respectively. There are $s \cdot 2^{150+8}=s \cdot 2^{158}$ quartets remaining.
Therefore, the time of this step is $T_{3}=2 \cdot s \cdot 2^{166}=s \cdot 2^{167}$ memory accesses.
The remaining key bytes are gradually recovered using the right quartets and available data. Set $s=2$, then the data, memory, and time complexities of our attack are $2^{126.5}, 2^{133.5}$, and 2^{170} memory accesses. The comparison with the previous rectangle attacks is presented in Table 5. Even though the full AES-192 has only 12 rounds, our result shows it is possible to attack more rounds using our rectangle key recovery algorithm.

Table 5: Comparisons of key recovery attacks on AES-192 where the time is measured by the number of memory accesses.

P^{2}	Rounds	m_{b}, m_{f}	$m_{b}^{\prime}, m_{f}^{\prime}$	Data	Memory	Time	Reference
2^{-110}	$2+9+1$	48,32	0,0	2^{123}	2^{152}	2^{178}	[BK09]
2^{-108}	$1+10+1$	8,32	8,0	$2^{120.5}$	$2^{127.5}$	$2^{135.5}$	This
2^{-120}	$1+11+1$	56,32	8,0	$2^{126.5}$	$2^{133.5}$	2^{170}	This

5.3 Application to CRAFT

We apply our new rectangle key recovery algorithm to CRAFT in the single-key setting and obtain the first 19-round rectangle attack, which is one more round than the previous work in [HBS21].

Specification. CRAFT is a lightweight tweakable block cipher that was introduced by Beierle et al. [BLMR19]. It supports 64 -bit plaintexts, 128 -bit keys, and 64 -bit tweaks. Its round function is composed of involutory building blocks. The 64 -bit input is arranged as a state of 4×4 nibbles. The state is then going through 32 rounds $\mathcal{R}_{i}, i \in 0, \cdots, 31$, to generate a 64 -bit ciphertext. As depicted in Figure 7, each round, excluding the last round, has five functions, i.e., MixColumn (MC), AddRoundConstants (ARC), AddTweakey (ATK), PermuteNibbles (PN), and S-box (SB). The last round only includes MC, ARC and ATK, i.e., $\mathcal{R}_{31}=\mathrm{ATK}_{31} \circ \mathrm{ARC}_{31} \circ \mathrm{MC}$, while for any $0 \leq i \leq 30, \mathcal{R}_{i}=\mathrm{SB} \circ \mathrm{PN} \circ \mathrm{ATK}_{i} \circ \mathrm{ARC}_{i} \circ \mathrm{MC}$.

The tweakey schedule of CRAFT is rather simple. Given the secret key $K=$ $K_{0} \| K_{1}$ and the tweak $T \in\{0,1\}^{64}$, where $K_{i} \in\{0,1\}^{64}$, four round tweakeys $T K_{0}=K_{0} \oplus T, T K_{1}=K_{1} \oplus T, T K_{2}=K_{0} \oplus Q(T)$ and $T K_{3}=K_{1} \oplus Q(T)$ are generated, where Q is a nibble-wise permutation. Then at the round $\mathcal{R}_{i}, T K_{i \% 4}$ is used as the subtweakey.

Figure 7: A round of CRAFT

Figure 8: A 19-round key recovery attack against CRAFT

Distinguisher. We use the 14-round rectangle distinguisher of CRAFT proposed by Hadipour et al. in [HBS21] to attack 19-round CRAFT with 3-round E_{b} and 2round E_{f}, as shown in Figure 8. The probability of the distinguisher is $2^{-n} P^{2}=$ $2^{-64-55.85}$, and other parameters of the attack are: $n=64, k=128, m_{b}=$ $112, r_{b}=60, m_{f}=r_{f}=24$. The first three subtweakeys are $T K_{0}, T K_{1}$, and $T K_{2}$, respectively. The last subtweakey is $T K_{2}$. Note $T K_{2}$ shares the same key information with $T K_{0}$, and $k_{b} \cup k_{f}$ only contains $(16+12+6-6) \times 4=112$ information bits.

Parameters and complexities. The best guessing parameters are $m_{b}^{\prime}=$ $32, r_{b}^{\prime}=16, m_{f}=r_{f}^{\prime}=24$, and $\left|k_{b}^{\prime} \cup k_{f}^{\prime}\right|=40$, which means guessing 10 cells of k_{f} and k_{b} to get 10 cells filters. The key cells to be guessed and the corresponding filters are highlighted with red squares in Figure 8. Note that this type of guessing is not covered in previous rectangle key recovery attacks. The complexities of our new attack are as follows.

- The data complexity is $D=y \cdot 2^{r_{b}}=\sqrt{s} \cdot 2^{n / 2+1} / P=\sqrt{s} \cdot 2^{60.92}$.
- The memory complexity is $M=D+D^{2} \cdot 2^{r_{f}^{*}-n-1}+2^{m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}=$ $\sqrt{s} \cdot 2^{60.92}+s \cdot 2^{56.85}+2^{t+72}$
- The time complexity $T_{1}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D=\sqrt{s} \cdot 2^{100.92}$;
$-T_{2}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D^{2} \cdot 2^{r_{f}^{*}-n-1}=s \cdot 2^{96.85}$;
$-T_{3}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D^{2} \cdot 2^{2 r_{b}^{*}+2 r_{f}^{*}-2 n-2} \cdot \epsilon=s \cdot 2^{40+121.85+2 \times 44+0-2 \times 64-2} \cdot \epsilon=$ $s \cdot 2^{119.85} \cdot \epsilon$;
$-T_{4}=2^{k-h}, h<t+72$.
Processing a candidate quartet to retrieve the rest of k_{b} can be realized by looking up tables. We precompute several tables as illustrated in Table 15. How will these tables be used? For each quartet candidate, we first look up the first table using known values $\left(Y_{1}^{i}[9], Y_{1}^{i}[12]\right), i=1,2,3,4$ for $T K_{1}[9], T K_{1}[12]$. Each quartet candidate will have one $T K_{1}[9], T K_{1}[12]$ on average. Then, look up the second table using $\left(Y_{0}^{i}[3], X_{1}^{i}[2] \oplus X_{1}^{i}[10], \Delta X_{2}^{j}[1], T K_{0}[13]\right), i=1,2,3,4, j=1,3$ and only 2^{-8} of the quartet candidates can find a hit in the table for $T K_{0}[3], T K_{1}[2]$. Discard those quartet candidates which can not find a hit in the table. Then look up the next table and so on. Therefore, ϵ is equivalent to about 2 memory accesses which is around $2 \times \frac{1}{16} \times \frac{1}{19}=2^{-7.24}$ encryption. If we set $s=1, h=28$, and $t=0$, then the data, memory, and time complexities of our attack are $2^{60.92}$, 2^{72}, and $2^{112.61}$, respectively. The success probability is about 74.59% which is computed by Selçuk's formula [Sel08].

The comparison with the previous rectangle attacks based on the same distinguisher is presented in Table 6.

Table 6: Comparisons of key recovery attacks on CRAFT

P^{2}	Rounds	m_{b}, m_{f}	$m_{b}^{\prime}, m_{f}^{\prime}$	Data	Memory	Time	Reference
$2^{-55.85}$	$1+14+3$	24,84	24,0	$2^{60.92}$	2^{84}	$2^{101.7}$	[HBS21]
$2^{-55.85}$	$3+14+2$	112,24	32,24	$2^{60.92}$	2^{72}	$2^{112.61}$	This

5.4 Application to SKINNY

When we apply our new rectangle key recovery algorithm to SKINNY's distinguishers from [DQSW22], better attacks are obtained for three out of four distinguishers, and for the rest, our attack matches with the one in [DQSW22]. Even though these distinguishers were searched dedicatedly for the key recovery algorithm in [DQSW22] (named Algorithm 4 in Section 4.1), we found that the best-attacking parameters may be not covered by that key recovery algorithm.

Next, we give the detailed attack on 25 -round SKINNY-64-128, and the attacks on 32-round SKINNY-128-384 and 26-round SKINNY-128-256 are postponed to Appendix B.1.

Specification. SKINNY $\left[\mathrm{BJK}^{+} 16\right]$ is a family of lightweight block ciphers which adopt the substitution-permutation network and elements of the TWEAKEY framework [JNP14]. Members of SKINNY are denoted by SKINNY- $n-t k$, where $n \in\{64,128\}$ is the block size and $t k \in\{n, 2 n, 3 n\}$ is the tweakey size. The internal states of SKINNY are represented as 4×4 arrays of cells with each cell being a nibble in case of $n=64$ bits and a byte in case of $n=128$ bits. The tweakey state is seen as a group of $z 4 \times 4$ arrays, where, $z=t k / n$. The arrays are marked as $T K 1,(T K 1, T K 2)$ and $(T K 1, T K 2, T K 3)$ for $z=1,2,3$ respectively.

SKINNY iterates a round function for N_{r} rounds and each round consists of the following five steps.

1. SubCells (SC) - A 4-bit (resp. 8-bit) S-box is applied to all cells when n is 64 (resp. n is 128).
2. AddConstants (AC) - This step adds constants to the internal state.
3. AddRoundTweakey (ART) - The first two rows of the internal state absorb the first two rows of $T K$, where $T K=\bigoplus_{i=1}^{z} T K_{i}$.
4. ShiftRows (SR) - Each cell in row j is rotated to the right by j cells.
5. MixColumns (MC) - Each column of the internal state is multiplied by the matrix M whose branch number is only 2 .

The tweakey schedule of SKINNY is a linear algorithm. The $t k$-bit tweakey is first loaded into $z 4 \times 4$ tweakey states. After each ART step, a cell-wised permutation P is applied to each tweakey state, where P is defined as: $P=$ $[9,15,8,13,10,14,12,11,0,1,2,3,4,5,6,7]$. Then cells in the first two rows of all tweakey states but $T K_{1}$ are individually updated using LFSRs. For complete details of the tweakeys scheduling algorithm, one can refer to $\left[\mathrm{BJK}^{+} 16\right]$.

Distinguisher of SKINNY-64-128. We reuse the 18-round rectangle distinguisher of SKINNY-64-128 from [QDW ${ }^{+} 21$, DQSW22] and apply our new rectangle key recovery algorithm to it. As a result, we obtain a new 25 -round rectangle attack. The probability of the distinguisher is $2^{-n} P^{2}=2^{-64-55.34}=2^{-119.34}$. Our key recovery extends the distinguisher by three rounds at the top and four rounds at the bottom, as shown in Figure 9. The parameters for this attack are $r_{b}=8 \times 4=32, r_{f}=12 \times 4=48, m_{b}=10 \times 4=40$, and $m_{f}=21 \times 4=84$. Due to the tweakey schedule, we can deduce $S K T_{22}[6,1,7,2]$ from $S T K_{0}[0,5,6,7]$ and $S T K_{24}[5,0,1,4]$, and deduce $S T K_{21}[6]$ from $S T K_{1}[2]$ and $S T K_{23}[5]$. Such that $k_{b} \cup k_{f}$ only contain $(31-5) \times 4=104$ information bits.

Parameters and complexities. We apply the related-key version of our new algorithm in Appendix A. 1 to the above distinguisher. The best parameters are $m_{b}^{\prime}=32, r_{b}^{\prime}=28$, and $m_{f}^{\prime}=r_{f}^{\prime}=16$, which means guessing partial bits of k_{b} and k_{f}. This quessing strategy is not covered in previous rectangle key recovery algorithms. The complexities of our new attack are as follows.

- The data complexity is $D_{R}=4 \cdot y \cdot 2^{r_{b}}=\sqrt{s} \cdot 2^{n / 2+2} / P=\sqrt{s} \cdot 2^{61.67}$.

Figure 9: A 25-round key recovery attack against SKINNY-64-128

- The memory complexity is $M_{R}=D_{R}+D \cdot 2^{r_{b}^{*}}+2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}=$ $\sqrt{s} \cdot 2^{61.67}+\sqrt{s} \cdot 2^{63.67}+2^{56+t}$
- The time complexity $T_{1}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D_{R}=\sqrt{s} \cdot 2^{12 \times 4+61.67}=\sqrt{s} \cdot 2^{109.67}$;
$-T_{2}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D \cdot 2^{r_{b}-r_{b}^{\prime}}=\sqrt{s} \cdot 2^{12 \times 4+59.67+4}=\sqrt{s} \cdot 2^{111.67}$;
$-T_{3}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D^{2} \cdot 2^{2 r_{b}^{*}+2 r_{f}^{*}-2 n} \cdot \epsilon=s \cdot 2^{12 \times 8+119.34+2 \times 4+2 \times 32-2 \times 64} \cdot \epsilon=$ $s \cdot 2^{111.34} \cdot \epsilon$;
$-T_{4}=2^{128-h}, h<56+t$.
Processing a candidate quartet to retrieve the rest of k_{b} and k_{f} can be realized by looking up tables. We pre-compute several tables as illustrated in Table 17, so that ϵ is equivalent to about $1+1+2^{4}+2^{4}+1=35$ memory accesses which is around $35 \times \frac{1}{16} \times \frac{1}{25}=2^{-3.51}$ encryption. If we set $s=1, h=30$, and $t=0$,
then the data, memory, and time complexities of our attack are $2^{61.67}, 2^{63.67}$, and $2^{110.03}$, respectively. The success probability is about 75.81%.

The comparison with the previous rectangle attacks based on the same distinguisher is presented in Table 7.

Table 7: Comparisons of key recovery attacks on SKINNY-64-128

P^{2}	Rounds	m_{b}, m_{f}	$m_{b}^{\prime}, m_{f}^{\prime}$	Data	Memory	Time
$2^{-55.34}$	$2+18+5$	12,116	12,40	$2^{61.67}$	$2^{64.26}$	$2^{118.43}$

5.5 Application to Deoxys-BC-256

We apply our new boomerang key recovery algorithm to Deoxys-BC-256 and obtain the first 11-round boomerang attack and an improved 11-round rectangle attack. Next, we give details about the 11-round boomerang attack while the 11-round rectangle attack is postponed to Appendix B.2.

Specification. Deoxys-BC is an AES-based tweakable block cipher [JNPS16], based on the tweakey framework [JNP14]. The Deoxys authenticated encryption scheme makes use of two versions of the cipher as its internal primitive: Deoxys-BC-256 and Deoxys-BC-384. Both versions are ad-hoc 128-bit tweakable block ciphers which besides the two standard inputs, a plaintext P (or a ciphertext C) and a key K, also take an additional input called a tweak T. The concatenation of the key and tweak states is called the tweakey state. For Deoxys-BC-256 the tweakey size is 256 bits.

Deoxys-BC is an AES-like design, i.e., it is an iterative substitution-permutation network (SPN) that transforms the initial plaintext (viewed as a 4×4 matrix of bytes) using the AES round function, with the main differences with AES being the number of rounds and the round subkeys that are used every round. Deoxys-BC-256 has 14 rounds.

Similarly to the AES, one round of Deoxys-BC has the following four transformations applied to the internal state in the order specified below:

- AddRoundTweakey - XOR the 128-bit round subtweakey to the internal state.
- SubBytes - Apply the 8-bit AES S-box to each of the 16 bytes of the internal state.
- ShiftRows - Rotate the 4 -byte i-th row left by $\rho[i]$ positions, where $\rho=$ ($0,1,2,3$).
- MixColumns - Multiply the internal state by the 4×4 constant MDS matrix of AES.

After the last round, a final AddRoundTweakey operation is performed to produce the ciphertext.

We denote the concatenation of the key K and the tweak T as $K T$, i.e. $K T=K \| T$. The tweakey state is then divided into 128 -bit words. More precisely, in Deoxys-BC-256 the size of $K T$ is 256 bits with the first (most significant) 128 bits of $K T$ being denoted W_{2}; the second word is denoted by W_{1}. Finally, we denote by $S T K_{i}$ the 128-bit subtweakey that is added to the state at round i during the AddRoundTweakey operation. For Deoxys-BC-256, a subtweakey is defined as $S T K_{i}=T K_{i}^{1} \oplus T K_{i}^{2} \oplus R C_{i}$. The 128 -bit words $T K_{i}^{1}, T K_{i}^{2}$ are outputs produced by a special tweakey schedule algorithm, initialized with $T K_{0}^{1}=W_{1}$ and $T K_{0}^{2}=W_{2}$ for Deoxys-BC-256. The tweakey schedule algorithm is defined as $T K_{i+1}^{1}=h\left(T K_{i}^{1}\right), T K_{i+1}^{2}=h\left(L F S R_{2}\left(T K_{i}^{2}\right)\right)$, where the byte permutation h is defined as

$$
\left(\begin{array}{rrrrrrrrrrrrrrrr}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
1 & 6 & 11 & 12 & 5 & 10 & 15 & 0 & 9 & 14 & 3 & 4 & 13 & 2 & 7 & 8
\end{array}\right),
$$

with the 16 bytes of a 128-bit tweakey word numbered by the usual AES byte ordering.

Boomerang attack. We reuse the 9-round boomerang distinguisher of Deoxys-BC256 proposed by Cid et al. [CHP ${ }^{+}$17, WP19] to attack 11-round boomerang Deoxys-BC-256 with 2-round E_{f}, as shown in Figure 10. The probability of the distinguisher is $P^{2}=2^{-120.4}$, and other parameteres are: $n=128, k=256, m_{b}=$ $r_{b}=0, m_{f}=(16+10) \times 8=208, r_{f}=16 \times 8=128$.

Figure 10: Rectangle/Boomerang attack on 11-round reduced Deoxys-BC-256

The best guessing parameters are $m_{f}^{\prime}=12 \times 8=96$ and $r_{f}^{\prime}=8 \times 8=64$, which means guessing 8 bytes of k_{f}. The complexities of our new attack are as follows.

- The data complexity is $D_{R B}=4 s / P^{2}=s \cdot 2^{122.4}$.
- The memory complexity is $M_{R B}=D_{R B}+D+2^{m_{f}-m_{f}^{\prime}+t}=s \cdot 2^{122.4}+s$. $2^{120.4}+2^{112+t}$.
- The time complexity $T_{1}=2^{m_{f}^{\prime}} \cdot D_{R B}=2^{96} \cdot s \cdot 2^{122.4}=s \cdot 2^{218.4}$;
$-T_{2}=2^{m_{f}^{\prime}} \cdot D=s \cdot 2^{216.4}$;
$-T_{3}=2^{m_{f}^{\prime}} \cdot D \cdot 2^{2\left(r_{f}-r_{f}^{\prime}\right)} \cdot 2^{-n} \cdot \epsilon=s \cdot 2^{96+120.4+2 \times 64-128} \cdot \epsilon=2^{212.4} \cdot \epsilon ;$
$-T_{4}=2^{256-h}, h<112+t$.
We consider the equivalent subtweakey $M T K_{i}=S R^{-1} \circ M C^{-1}\left(S T K_{i}\right)$ in round i. To process a candidate quartet to retrieve the rest of k_{f}, we prepare some tables as illustrated in Table 16, so that ϵ is equivalent to about 1 memory accesses which is around $1 \times \frac{1}{16} \times \frac{1}{11}=2^{-7.45}$ encryption. If we set $s=1, h=40$ and $t=0$, then the data, memory, and time complexities of our attack are $2^{122.4}, 2^{128}, 2^{218.65}$, respectively. The success probability is about 68.89%. The comparison with the previous boomerang attacks is presented in Table 8.

Table 8: Comparisons of key recovery attacks on Deoxys-BC-256

P^{2}	Rounds	m_{b}, m_{f}	$m_{b}^{\prime}, m_{f}^{\prime}$	Data	Memory	Time	Reference
$2^{-96.4}$	10	0,88	0,0	$2^{98.4}$	2^{88}	$2^{109.1}$	[ZDJ19]
$2^{-120.4}$	11	0,208	0,96	$2^{122.4}$	2^{128}	$2^{218.65}$	This

6 Concluding Remarks

In this paper, we propose unified and generic key recovery algorithms for the rectangle/boomerang attack, as well as a framework for automatically finding the best-attacking parameters. Combining both, we can find the optimal rectangle/boomerang attack in terms of time complexity for a given distinguisher. We also show that our new generic algorithms can be applied to other attacks that exploit non-random properties of quartets. Such attacks include the retracing boomerang attack, the mixture differential attack, and the boomeyong attack. Applications to block ciphers Serpent, AES-192, CRAFT, SKINNY, and Deoxys-BC256 show that the best rectangle or boomerang attacks are missed by the previous key recovery algorithms in many cases. Thus, better attacks can be obtained. Also, it is likely that previous rectangle/boomerang attacks can be improved to some extent using the new key recovery algorithms.

Acknowledgement. The authors would like to thank anonymous reviewers for their helpful comments and suggestions. The work of this paper was supported by the National Key Research and Development Program (No. 2018YFA0704704) and the National Natural Science Foundation of China (Grants 62022036, 62202460, $62372213,62132008,62172410,62102167$). Jian Weng is supported by the National Natural Science Foundation of China under Grant Nos. 61825203, 62332007, and U22B2028, Science and Technology Major Project of Tibetan Autonomous Region of China under Grant No. XZ202201ZD0006G, National Joint Engineering Research Center of Network Security Detection and Protection Technology, Guangdong Key Laboratory of Data Security and Privacy Preserving, Guangdong Hong Kong Joint Laboratory for Data Security and Privacy Protection, and Engineering Research Center of Trustworthy AI, Ministry of Education.

Bibliography

[ABK98] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A proposal for the advanced encryption standard. NIST AES Proposal, 174:1-23, 1998.
[BDK01] Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack-rectangling the Serpent. In International Conference on the Theory and Applications of Cryptographic Techniques, pages 340-357. Springer, 2001.
[BDK02] Eli Biham, Orr Dunkelman, and Nathan Keller. New results on boomerang and rectangle attacks. In International Workshop on Fast Software Encryption, pages 1-16. Springer, 2002.
[BDK05] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and rectangle attacks. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 507-525. Springer, 2005.
$\left[\mathrm{BJK}^{+} 16\right]$ Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of block ciphers and its low-latency variant MANTIS. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016-36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes in Computer Science, pages 123-153. Springer, 2016.
[BK09] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full AES-192 and AES-256. In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, 15th International Conference on the Theory and Application of Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings, volume 5912 of Lecture Notes in Computer Science, pages 1-18. Springer, 2009.
[BL22] Augustin Bariant and Gaëtan Leurent. Truncated boomerang attacks and application to AES-based ciphers. IACR Cryptol. ePrint Arch., page 701, 2022.
[BLMR19] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh. CRAFT: lightweight tweakable block cipher with efficient protection against DFA attacks. IACR Trans. Symmetric Cryptol., 2019(1):5-45, 2019.
[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems. Journal of CRYPTOLOGY, 4(1):3-72, 1991.
$\left[\mathrm{CHP}^{+} 17\right]$ Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. A security analysis of Deoxys and its internal tweakable block ciphers. IACR Trans. Symmetric Cryptol., 2017(3):73-107, 2017.
$\left[\mathrm{CHP}^{+} 18\right]$ Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang connectivity table: a new cryptanalysis tool. In An-
nual International Conference on the Theory and Applications of Cryptographic Techniques, pages 683-714. Springer, 2018.
[DEFN22] Patrick Derbez, Marie Euler, Pierre-Alain Fouque, and Phuong Hoa Nguyen. Revisiting related-key boomerang attacks on AES using computer-aided tool. Cryptology ePrint Archive, Paper 2022/725, 2022. https://eprint.iacr.org/2022/725.
[DKRS20] Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir. The retracing boomerang attack. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I, volume 12105 of Lecture Notes in Computer Science, pages 280-309. Springer, 2020.
[DKS10a] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key attacks on 8-round AES-192 and AES-256. In Masayuki Abe, editor, Advances in Cryptology - ASIACRYPT 2010-16th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer Science, pages 158-176. Springer, 2010.
[DKS10b] Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony. In Tal Rabin, editor, Advances in Cryptology CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223 of Lecture Notes in Computer Science, pages 393-410. Springer, 2010.
[DKS14] Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony. Journal of cryptology, 27(4):824-849, 2014.
[DKS15] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key attacks on 8-round AES-192 and AES-256. J. Cryptol., 28(3):397-422, 2015.
[DQSW22] Xiaoyang Dong, Lingyue Qin, Siwei Sun, and Xiaoyun Wang. Key guessing strategies for linear key-schedule algorithms in rectangle attacks. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology - EUROCRYPT 2022 - 41st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May 30-June 3, 2022, Proceedings, Part III, volume 13277 of Lecture Notes in Computer Science, pages 3-33. Springer, 2022.
[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer, 2002.
[Gra18] Lorenzo Grassi. Mixture differential cryptanalysis: a new approach to distinguishers and attacks on round-reduced AES. IACR Transactions on Symmetric Cryptology, 2018, Issue 2:133-160, 2018.
[HBS21] Hosein Hadipour, Nasour Bagheri, and Ling Song. Improved rectangle attacks on SKINNY and CRAFT. IACR Transactions on Symmetric Cryptology, pages 140-198, 2021.
$\left[\mathrm{HLM}^{+} 20\right]$ Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang. Modeling for three-subset division property without unknown subset - improved cube attacks against Trivium and Grain-128AEAD. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I, volume 12105 of Lecture Notes in Computer Science, pages 466-495. Springer, 2020.
[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II, volume 8874 of Lecture Notes in Computer Science, pages 274-288. Springer, 2014.
[JNPS16] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. Deoxys v1. 41. Submitted to CAESAR, 124, 2016.
[KKS00] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang attacks against reduced-round MARS and Serpent. In Bruce Schneier, editor, Fast Software Encryption, 7th International Workshop, FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings, volume 1978 of Lecture Notes in Computer Science, pages 75-93. Springer, 2000.
[KLT15] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the SIMON block cipher family. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology-CRYPTO 2015-35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages 161-185. Springer, 2015.
[KT22] Andreas B. Kidmose and Tyge Tiessen. A formal analysis of boomerang probabilities. IACR Transactions on Symmetric Cryptology, 2022(1):88-109, Mar. 2022.
[LGS17] Guozhen Liu, Mohona Ghosh, and Ling Song. Security analysis of SKINNY under related-tweakey settings. IACR Trans. Symmetric Cryptol., 2017(3):37-72, 2017.
[Mur11] Sean Murphy. The return of the cryptographic boomerang. IEEE Transactions on Information Theory, 57(4):2517-2521, 2011.
$\left[\mathrm{QDW}^{+} 21\right]$ Lingyue Qin, Xiaoyang Dong, Xiaoyun Wang, Keting Jia, and Yunwen Liu. Automated search oriented to key recovery on ciphers with linear key schedule applications to boomerangs in SKINNY and ForkSkinny. IACR Trans. Symmetric Cryptol., 2021(2):249-291, 2021.
[RSP21] Mostafizar Rahman, Dhiman Saha, and Goutam Paul. Boomeyong: Embedding yoyo within boomerang and its applications to key recovery attacks on AES and Pholkos. IACR Trans. Symmetric Cryptol., 2021(3):137-169, 2021.
[Sel08] Ali Aydın Selçuk. On probability of success in linear and differential cryptanalysis. Journal of Cryptology, 21(1):131-147, 2008.
[SHW ${ }^{+}$14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Automatic security evaluation and (related-key) differential characteristic search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science, pages 158-178. Springer, 2014.
[SQH19] Ling Song, Xianrui Qin, and Lei Hu. Boomerang connectivity table revisited: Application to SKINNY and AES. IACR Trans. Symmetric Cryptol., 2019(1):118-141, 2019.
$\left[\mathrm{SSD}^{+} 18\right]$ Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun, and Lei Hu. Programming the Demirci-Selçuk meet-in-the-middle attack with constraints. In Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018-24th International Conference on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II, volume 11273 of Lecture Notes in Computer Science, pages 3-34. Springer, 2018.
[SWW21] Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of differential and linear characteristics with the SAT method. IACR Trans. Symmetric Cryptol., 2021(1):269-315, 2021.
[Wag99] David A. Wagner. The boomerang attack. In Lars R. Knudsen, editor, Fast Software Encryption, 6th International Workshop, FSE '99, Rome, Italy, March 24-26, 1999, Proceedings, volume 1636 of Lecture Notes in Computer Science, pages 156-170. Springer, 1999.
[WP19] Haoyang Wang and Thomas Peyrin. Boomerang switch in multiple rounds. application to AES variants and deoxys. IACR Trans. Symmetric Cryptol., 2019(1):142-169, 2019.
[ZDJ19] Boxin Zhao, Xiaoyang Dong, and Keting Jia. New related-tweakey boomerang and rectangle attacks on Deoxys-BC including BDT effect. IACR Trans. Symmetric Cryptol., 2019(3):121-151, 2019.
$\left[\mathrm{ZDM}^{+} 20\right]$ Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, and Gaoli Wang. Generalized related-key rectangle attacks on block ciphers with linear key schedule: applications to SKINNY and GIFT. Designs, Codes and Cryptography, 88(6):1103-1126, 2020.

A Our Algorithms in the Related-Key Setting

A. 1 Related-key Rectangle Key Recovery Algorithm for Ciphers with a Linear Key-Schedule

Our key recovery algorithm in Section 3.1.2 can be easily adapted to the relatedkey setting for ciphers with a linear key schedule. In related-key setting, as in [BDK05], the differential $\alpha \rightarrow \beta$ over E_{0} is considered with key difference ΔK and for $\gamma \rightarrow \delta$ over E_{1} the key difference is ∇K. Then the keys related to the master key K_{1} are determined, where $K_{2}=K_{1} \oplus \Delta K, K_{3}=K_{1} \oplus \nabla K$ and $K_{4}=K_{1} \oplus \Delta K \oplus \nabla K$. When the key schedule is linear, the partial guess of subkeys of K_{1} will determine the corresponding parts of subkeys of K_{2}, K_{3}, and K_{4}. Considering the related keys, the data set will be different. Choose $y=\sqrt{s} \cdot 2^{\frac{n}{2}-r_{b}} / P$ and we get about $s=\left(y \cdot 2^{2 r_{b}}\right)^{2} \cdot 2^{-2 r_{b}} \cdot 2^{-n} \cdot P^{2}$ right quartets. The related-key algorithm proceeds as follows.

1. Collect and store y structures of $2^{r_{b}}$ plaintexts each. Let $D=y \cdot 2^{r_{b}}$. Query the corresponding ciphertexts for each structure under the four related keys K_{1}, K_{2}, K_{3} and K_{4} and get the corresponding plaintext-ciphertext sets L_{1}, L_{2}, L_{3} and L_{4}.
2. Split $\left(m_{b}^{\prime}+m_{f}^{\prime}\right)$-bit $k_{b}^{\prime} \| k_{f}^{\prime}$ into two parts: $G_{L} \| G_{R}$ where G_{L} has t bits.
3. Guess G_{R} :
(a) Initialized a list of key counters for G_{L} and unguessed key bits of k_{b}, k_{f}.
(b) Guess the t-bit G_{L} :
i. For each $\left(P_{i}, C_{i}\right)$ in data set L_{i}, partially encrypt P_{i} under the $m_{b^{-}}^{\prime}$ bit $\left(k_{b}^{\prime}\right)_{i}$ and partially decrypt C under the m_{f}^{\prime}-bit $\left(k_{f}^{\prime}\right)_{i}$ of $K_{i}(i=$ $1,2,3,4)$. Let $P_{i}^{*}=\operatorname{Enc} c_{\left(k_{b}^{\prime}\right)_{i}}\left(P_{i}\right)$ and $C_{i}^{*}=\operatorname{Dec}_{\left(k_{f}^{\prime}\right)_{i}}\left(C_{i}\right)$. For each structure under $K_{i}(i=1,2,3,4)$, we will get $2^{r_{b}^{\prime}}$ sub-structures, each of which includes $2^{r_{b}^{*}}$ plaintexts. In other words, there are $y^{*}=y \cdot 2^{r_{b}^{\prime}}$ structures of $2^{r_{b}^{*}}$ plaintexts each.
ii. Let $2^{-\mu}=D \cdot 2^{-n}$. If $r_{f}^{*}-\mu \geq r_{b}^{*}$, it turns to step (A); else if $r_{f}^{*}-\mu<r_{b}^{*}$, it turns to step (D).
A. Construct two sets as $S_{1}=\left\{\left(P_{1}^{*}, C_{1}^{*}, P_{2}^{*}, C_{2}^{*}\right):\left(P_{1}^{*}, C_{1}^{*}\right) \in L_{1}\right.$, $\left(P_{2}^{*}, C_{2}^{*}\right) \in L_{2}, P_{1}^{*}$ and P_{2}^{*} have difference in r_{b}^{*} bits $\}, S_{2}=$ $\left\{\left(P_{3}^{*}, C_{3}^{*}, P_{4}^{*}, C_{4}^{*}\right):\left(P_{3}^{*}, C_{3}^{*}\right) \in L_{3},\left(P_{4}^{*}, C_{4}^{*}\right) \in L_{4}, P_{3}^{*}\right.$ and P_{4}^{*} have difference in r_{b}^{*} bits $\}$. The size of each set is $y \cdot 2^{r_{b}^{\prime}} \cdot 2^{2\left(r_{b}-r_{b}^{\prime}\right)}=$ $y \cdot 2^{2 r_{b}-r_{b}^{\prime}}=D \cdot 2^{r_{b}^{*}}$.
B. Insert S_{1} into a hash table H_{1} by $n-r_{f}^{*}$ inactive bits of C_{1}^{*} and $n-r_{f}^{*}$ inactive bits of C_{2}^{*}. Insert S_{2} into a hash table H_{2} by $n-r_{f}^{*}$ inactive bits of C_{3}^{*} and $n-r_{f}^{*}$ inactive bits of C_{4}^{*}.
C. With each $2\left(n-r_{f}^{*}\right)$-bit index, we pick two distinct $\left(P_{1}^{*}, C_{1}^{*}, P_{2}^{*}, C_{2}^{*}\right)$, $\left(P_{3}^{*}, C_{3}^{*}, P_{4}^{*}, C_{4}^{*}\right)$ to generate the quartet. We will get

$$
\left(\frac{|S|}{2^{2\left(n-r_{f}^{*}\right)}}\right)^{2} \cdot 2^{2\left(n-r_{f}^{*}\right)}=D^{2} \cdot 2^{2 r_{b}^{*}} \cdot 2^{2 r_{f}^{*}} \cdot 2^{-2 n}
$$

quartets. Then go to step (iii).
D. Construct two sets as $S_{3}=\left\{\left(P_{1}^{*}, C_{1}^{*}, P_{3}^{*}, C_{3}^{*}\right):\left(P_{1}^{*}, C_{1}^{*}\right) \in L_{1}\right.$, $\left(P_{3}^{*}, C_{3}^{*}\right) \in L_{3}, C_{1}^{*}$ and C_{3}^{*} are colliding in $n-r_{f}^{*}$ bits $\}, S_{4}=$ $\left\{\left(P_{2}^{*}, C_{2}^{*}, P_{4}^{*}, C_{4}^{*}\right):\left(P_{2}^{*}, C_{2}^{*}\right) \in L_{2},\left(P_{4}^{*}, C_{4}^{*}\right) \in L_{4}, C_{2}^{*}\right.$ and C_{4}^{*} are colliding in $n-r_{f}^{*}$ bits $\}$. The size of each set is $D^{2} \cdot 2^{r_{f}-r_{f}^{\prime}-n}=$ $D \cdot 2^{r_{f}^{*}-\mu}$.
E. Insert S_{3} into a hash table H_{3} by $n-r_{b}^{*}$ inactive bits of P_{1}^{*} and $n-r_{b}^{*}$ inactive bits of P_{3}^{*}. Insert S_{4} into a hash table H_{4} by $n-r_{b}^{*}$ inactive bits of P_{2}^{*} and $n-r_{b}^{*}$ inactive bits of P_{4}^{*}.
F. There are at most $2^{2\left(n-r_{b}^{*}-\mu\right)}$ possible values for the $2\left(n-r_{b}^{*}\right)$-bit index. For each index, we pick two distinct entries $\left(P_{1}^{*}, C_{1}^{*}, P_{3}^{*}, C_{3}^{*}\right)$, $\left(P_{2}^{*}, C_{2}^{*}, P_{4}^{*}, C_{4}^{*}\right)$ to generate the quartet. We will get

$$
\left(\frac{|S|}{2^{2\left(n-r_{b}^{*}-\mu\right)}}\right)^{2} \cdot 2^{2\left(n-r_{b}^{*}-\mu\right)}=D^{2} \cdot 2^{2 r_{b}^{*}} \cdot 2^{2 r_{f}^{*}} \cdot 2^{-2 n}
$$

quartets.
iii. Determine the key candidates involved in E_{b} and E_{f} and increase the corresponding counters. Likewise, denote the time complexity in this step as ϵ.
(c) Select the top $2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}-h}$ hits in the counters to be the candidates, which delivers a h-bit or higher advantage.
(d) Guess the remaining $k-m_{b}-m_{f}$ unknown key bits according to the key schedule algorithm and exhaustively search over them to recover the correct key, where k is the key size.

Data complexity. The data complexity is $D_{R}=4 \cdot y \cdot 2^{r_{b}}=4 \cdot D=\sqrt{s} 2^{n / 2+2} / P$.

Memory complexity. The memory complexity is $M_{R}=D_{R}+2 \times \min \{D$. $\left.2^{r_{b}^{*}}, D \cdot 2^{r_{f}^{*}-\mu}\right\}+2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}$ to store the data, the sets S_{i}, and key counters.

Time complexity. The time complexity of collecting data is $T_{0}=D_{R}$, the time complexity of doing partial encryption and decryption under guessed key bits is

$$
T_{1}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D_{R}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot 4 \cdot y \cdot 2^{r_{b}}=\sqrt{s} \cdot 2^{m_{b}^{\prime}+m_{f}^{\prime}+\frac{n}{2}+2} / P
$$

the time complexity of generating set S_{i} is

$$
\begin{aligned}
T_{2} & =2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D \cdot 2 \cdot \min \left\{2^{r_{b}^{*}}, 2^{r_{f}^{*}-\mu}\right\} \\
& =\min \left\{\sqrt{s} \cdot 2^{m_{b}^{\prime}+m_{f}^{\prime}+r_{b}-r_{b}^{\prime}+\frac{n}{2}+1} / P, s \cdot 2^{m_{b}^{\prime}+m_{f}^{\prime}+r_{f}-r_{f}^{\prime}+1} / P^{2}\right\}
\end{aligned}
$$

the time complexity of generating quartet candidates is
$T_{3}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D^{2} \cdot 2^{2 r_{b}^{*}} \cdot 2^{2 r_{f}^{*}} \cdot 2^{-2 n} \cdot \epsilon=\left(s \cdot 2^{m_{b}^{\prime}+m_{f}^{\prime}-n+2 r_{b}+2 r_{f}-2 r_{b}^{\prime}-2 r_{f}^{\prime}} / P^{2}\right) \cdot \epsilon$, and the time complexity of the exhaustive search is

$$
T_{4}=2^{m_{b}^{\prime}+m_{f}^{\prime}-t} \cdot 2^{k+t-m_{b}^{\prime}-m_{f}^{\prime}-h}=2^{k-h}
$$

where $h \leq t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}$.

A. 2 Related-key Boomerang Key Recovery Algorithm for Ciphers with a Linear Key-Schedule

Our key recovery algorithm in Section 3.2.2 can be easily adapted to the relatedkey setting for ciphers with a linear key schedule. The related-key algorithm proceeds as follows.

1. Collect and store y structures of $2^{r_{b}}$ plaintexts such that $y 2^{r_{b}}=s / P^{2}$. Query for the corresponding ciphertexts under the related keys K_{1}, K_{2} and store the plaintext-ciphertext pairs in sets L_{1} and L_{2}. The size of these two sets is $D_{0}=y 2^{r_{b}+1}$.
2. Let $D_{1}=\min \left\{D_{0} \cdot 2^{r_{f}}, D_{0} \cdot 2^{r_{f}^{*}+m_{f}^{\prime}}, 2^{n+1}\right\}$. If $D_{1}=2^{n+1}$, query for the plaintext for each possible ciphertext under K_{3}, K_{4} respectively. If $D_{1}=$ $D_{0} \cdot 2^{r_{f}}$, for each possible δ^{\prime}, shift the ciphertexts in L_{1}, L_{2} by δ^{\prime} and query for their plaintexts. Store these plaintext-ciphertext pairs in sets L_{3} and L_{4}. The size of the two sets is $D_{0} \cdot 2^{r_{f}}$.
3. Split m_{b}^{\prime}-bit k_{b}^{\prime} into two parts: $G_{L} \| G_{R}$ where G_{L} has t bits, $0 \leq t \leq m_{b}^{\prime}$.
4. Guess k_{f}^{\prime} :
(a) If $r_{f}^{\prime} \geq m_{f}^{\prime}$, for each data $\left(P_{1}, C_{1}\right) \in L_{1}$, partially decrypt C_{i} to C_{i}^{*} under $\left(k_{f}^{\prime}\right)_{1}$ and for each possible r_{f}^{*}-bit difference, construct C_{3}^{*} and new ciphertexts C_{3}. If $D_{1}<2^{n}$, query for the plaintexts P_{3} under K_{3}; otherwise, read P_{3} from L_{3}. Store $\left(P_{3}, C_{3}^{*}\right)$ in $L_{3, k_{f}^{\prime}}$. Do the same for each data in L_{2} and obtain $L_{4, k_{f}^{\prime}}$. (Let $\hat{L_{3}}=\cup_{k_{f}^{\prime}} L_{3, k_{f}^{\prime}}, \hat{L_{4}}=\cup_{k_{f}^{\prime}} L_{4, k_{f}^{\prime}}$. The size of $\hat{L_{3}}, \hat{L_{4}}$ is $D_{0} \cdot 2^{r_{f}^{*}+m_{f}^{\prime}}$. The memory cost for this step is $D_{0} \cdot 2^{r_{f}^{*}}$.)
(b) Guess G_{R} :
i. Initialized a list of key counters for G_{L} and the unguessed key bits of
k_{b}, k_{f}. The memory complexity in this step is $2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}$.
ii. Guess the t-bit G_{L} :
A. For each data $\left(P_{i}, C_{i}\right) \in L_{i}, i=1,2$, partially encrypt P_{i} and partially decrypt C_{i} under the guessed subkey bits. Let $P_{i}^{*}=$ $E n c_{\left(k_{b}^{\prime}\right)_{i}}\left(P_{i}\right)$ and $C_{i}^{*}=\operatorname{Dec} c_{\left(k_{f}^{\prime}\right)_{i}}\left(C_{i}\right)$. For each structure, we will get $2^{r_{b}^{\prime}}$ sub-structures, each of which includes $2^{r_{b}-r_{b}^{\prime}}=2^{r_{b}^{*}}$ plaintexts which take all possible values for the active bits. In other words, there are $y^{*}=y \cdot 2^{r_{b}^{\prime}}$ structures of $2^{r_{b}^{*}}$ plaintexts. $\left(T=D_{0}\right)$
B. If $r_{f}^{\prime}<m_{f}^{\prime}$, do partial encryption and decryption for $\left(P_{j}, C_{j}\right) \in L_{j}$ to get $\left(P_{j}^{*}, C_{j}^{*}\right)$ for $j=3,4$. $\left(T=D_{0} \cdot 2^{r_{f}}\right)$
C. If $r_{f}^{\prime} \geq m_{f}^{\prime}$, do partial encryption for data in $L_{j, k_{f}^{\prime}}$ get $\left(P_{j}^{*}, C_{j}^{*}\right)$ for $j=3,4 .\left(T=D_{0} \cdot 2^{r_{f}^{*}}\right)$
D. Insert $\left(P_{j}^{*}, C_{j}^{*}\right)$ into a hash table H_{j} for $j=3,4$, according to $\left(n-r_{f}^{*}\right)$ inactive bits of C_{j}^{*}. (The size of the two hash tables is $D_{0} \cdot 2^{r_{f}}$ or $D_{0} \cdot 2^{r_{f}^{*}}$.)
E. For $(i, j) \in\{(1,3),(2,4)\}$, look up H_{j} with $\left(P_{i}^{*}, C_{i}^{*}\right)$ and construct a set as $S_{i, j}=\left\{\left(P_{i}^{*}, C_{i}^{*}, P_{j}^{*}, C_{j}^{*}\right): C_{i}^{*}\right.$ and C_{j}^{*} have difference only in r_{f}^{*} bits $\}$. The size of each $S_{i, j}$ is $D_{0} \cdot 2^{r_{f}^{*}-1}$ no matter when $r_{f}^{\prime}<m_{f}^{\prime}$ or $r_{f}^{\prime} \geq m_{f}^{\prime}$. Insert pairs from $S_{i, j}$ into hash table
H_{i} according to $n-r_{b}^{*}$ inactive bits of P_{i}^{*} and $n-r_{b}^{*}$ inactive bits of $P_{j}^{*} .\left(T=D_{0} \cdot 2^{r_{f}^{*}}\right)$
F. For $(i, j) \in\{(1,3),(2,4)\}$, there are $y \cdot 2^{r_{b}^{\prime}}$ possible values for the $n-r_{b}^{*}$ bits of P_{i}^{*} and $2^{n-r_{b}^{*}}$ possible values for the $n-r_{f}^{*}$ bits of P_{j}^{*}. For each index, we pick two distinct entries $\left(P_{1}, C_{1}^{*}, P_{3}, C_{3}^{*}\right)$ and $\left(P_{2}, C_{2}^{*}, P_{4}, C_{4}^{*}\right)$ to generate the quartet. The number of quartets we will get is

$$
\frac{\left|S_{1,3}\right| \cdot\left|S_{2,4}\right|}{\left(2^{n-r_{b}^{*}} \cdot y \cdot 2^{r_{b}^{\prime}}\right)^{2}} \cdot 2^{n-r_{b}^{*}} \cdot y \cdot 2^{r_{b}^{\prime}}=D_{0} \cdot 2^{2 r_{b}^{*}+2 r_{f}^{*}-n-1}
$$

iii. Determine the key candidates involved in E_{b} and E_{f} and increase the corresponding counters. Denote the time complexity for processing one quartet as ϵ. Then the time complexity in this step is $D_{0} \cdot 2^{2 r_{b}^{*}+2 r_{f}^{*}-n} \cdot \epsilon$.
iv. Select the top $2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}-h}$ hits in the counters to be the candidates, which delivers a h-bit or higher advantage, where $0<$ $h \leq t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}$.
v. Guess the remaining $k-m_{b}-m_{f}$ unknown key bits according to the key schedule algorithm and exhaustively search over them to recover the correct key. The time complexity of this step is $2^{k+t-m_{b}^{\prime}-m_{f}^{\prime}-h}$.

Data complexity. From y pairs of structures under K_{1} and K_{2} respectively, we can form $y \cdot 2^{2 r_{b}}$ plaintext pairs. Among them, $y \cdot 2^{r_{b}}$ pairs satisfy α difference on average. Let s be the expected number of right quartets, so we have $y \cdot 2^{r_{b}} \cdot P^{2}=s$, $y=s \cdot 2^{-r_{b}} / P^{2}$ and $D_{0}=2 \cdot y \cdot 2^{r_{b}}=2 s / P^{2}$ chosen plaintexts as well as $D_{1}=\min \left\{D_{0} \cdot 2^{r_{f}}, D_{0} \cdot 2^{r_{f}^{*}+m_{f}^{\prime}}, 2^{n+1}\right\}$ chosen ciphertexts.

Memory complexity. The memory complexity is $M=D_{0}+D_{1}+2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}$ when $r_{f}^{\prime}<m_{f}^{\prime}$ or $D_{1}=2^{n+1}$ and $M=D_{0}+\min \left\{D_{0} \cdot 2^{r_{f}^{*}}, 2^{n+1}\right\}+2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}$ when $r_{f}^{\prime} \geq m_{f}^{\prime}$ and $D_{1}<2^{n+1}$ to store the data, the pairs, and the counters.

Time complexity. The time complexity of collecting data is $T_{0}=D_{0}+D_{1}$, the time complexity of doing partial encryption and decryption under guessed key bits is

$$
T_{1}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot\left(D_{0}+D_{1}\right)
$$

when $r_{f}^{\prime}<m_{f}^{\prime}$ and

$$
T_{1}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot\left(D_{0}+D_{0} \cdot 2^{r_{f}^{*}}\right)
$$

when $r_{f}^{\prime} \geq m_{f}^{\prime}$, the time complexity of generating set S_{2} is

$$
T_{2}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D_{0} \cdot 2^{r_{f}^{*}}
$$

the time complexity of generating and processing quartet candidates is

$$
T_{3}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D_{0} \cdot 2^{2 r_{b}^{*}+2 r_{f}^{*}-n-1} \cdot \epsilon=s \cdot 2^{m_{b}^{\prime}+m_{f}^{\prime}+2 r_{b}^{*}+2 r_{f}^{*}-n} / P^{2} \cdot \epsilon
$$

and the time complexity of the exhaustive search is $T_{4}=2^{m_{b}^{\prime}+m_{f}^{\prime}-t+k-m_{b}-m_{f}}$. $2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}-h}=2^{k-h}$, where $0<h \leq t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}$.

B Application to Some Other Ciphers

B. 1 Other Variants of SKINNY

Attack on 32-round SKINNY-128-384. We reuse the 23 -round rectangle distinguisher of SKINNY-128-384 from [DQSW22]. The probability of this distinguisher is $2^{-n} P^{2}=2^{-128} \cdot 2^{-115.09}$. Our key recovery extends the distinguisher by four rounds at the top and five rounds at the bottom, as shown in Figure 11. The parameters for this attack are: $r_{b}=12 \times 8, r_{f}=16 \times 8, m_{b}=18 \times 8$ and $m_{f}=24 \times 8$. Note that $k_{b} \cup k_{f}$ only contain $(18+24-2) \times 8$ information bits.

We apply our generic framework and obtain that when constructing pairs on the top and guessing 27 subtweakey cells leads to the lowest complexity overall. The positions of the guessed subtweakey cell and 19 filters ($r_{b}^{\prime}=11 \times 8, r_{f}^{\prime}=8 \times 8$) that can be checked under these subtweakey cells are marked by red squares in Figure 11.

Next, we compute the complexities of our attack.

- The data complexity is $D_{R}=4 \cdot y \cdot 2^{r_{b}}=\sqrt{s} \cdot 2^{n / 2+2} / P=\sqrt{s} \cdot 2^{123.54}$.
- The memory complexity is $M_{R}=D_{R}+D \cdot 2^{r_{b}^{*}}+2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}=$ $\sqrt{s} \cdot 2^{123.54}+\sqrt{s} \cdot 2^{129.54}+2^{104+t}$
- The time complexity $T_{1}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D_{R}=\sqrt{s} \cdot 2^{27 \times 8+123.55}=\sqrt{s} \cdot 2^{339.54}$;
$-T_{2}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D \cdot 2^{r_{b}-r_{b}^{\prime}}=\sqrt{s} \cdot 2^{27 \times 8+121.55+8}=\sqrt{s} \cdot 2^{345.54} ;$
$-T_{3}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D^{2} \cdot 2^{2 r_{b}^{*}+2 r_{f}^{*}-2 n} \cdot \epsilon=s \cdot 2^{27 \times 8+243.09+2 \times 8+2 \times 64-2 \times 128} \cdot \epsilon=$ $s \cdot 2^{347.09} \cdot \epsilon ;$
$-T_{4}=2^{384-h}, h<104+t$.
Processing a candidate quartet to retrieve the rest of k_{b} and k_{b} can be realized by looking up tables. We pre-compute several tables as illustrated in Table 9, so that ϵ is equivalent to about 4 memory accesses which is around $4 \times \frac{1}{16} \times \frac{1}{32}=2^{-7}$ encryption. If we set $s=1, h=40$ and $t=0$, then the data, memory, and time complexities of our attack are $2^{123.54}, 2^{129.54}$, and $2^{344.16}$, respectively. The success probability is about 82.1%.

The comparison with the previous rectangle attacks based on the same distinguisher is presented in Table 10.

Attack on 26-round SKINNY-128-256. Applying our new rectangle key recovery algorithm to SKINNY-128-256, we get a new 26 rectangle attack by appending 3 -round E_{b} and 4-round E_{f}, with using the 19 -round rectangle distinguisher of SKINNY-128-256 in [DQSW22], as shown in Figure 12. The probability of the distinguisher is $2^{-n} P^{2}=2^{-128-121.07}=2^{249.07}$. The parameters for this attack are $r_{b}=9 \times 8=72, r_{f}=12 \times 8=96, m_{b}=11 \times 8=88$ and $m_{f}=21 \times 8=168$. Due to the tweakey schedule, $k_{b} \cup k_{f}$ only contain $(88+168-16)=240$ information bits.

The best guessing parameters are $m_{b}^{\prime}=72, r_{b}^{\prime}=64$, and $m_{f}^{\prime}=r_{f}^{\prime}=32$, which means guessing partial bits of k_{b} and k_{f}. This type of guessing is not covered in previous rectangle key recovery attacks. The complexities of our new attack are as follows.

Figure 11: A 32-round key recovery attack against SKINNY-128-384

- The data complexity is $D_{R}=4 \cdot y \cdot 2^{r_{b}}=\sqrt{s} \cdot 2^{n / 2+2} / P=\sqrt{s} \cdot 2^{126.53}$.
- The memory complexity is $M_{R}=D_{R}+D \cdot 2^{r_{b}^{*}}+2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}=$ $\sqrt{s} \cdot 2^{126.53}+\sqrt{s} \cdot 2^{132.53}+2^{136+t}$.

Table 9: Precomputation tables for the 32-round attack on SKINNY-128-384, where underlined bytes are used as input and determine the time and memory complexity for building the table. Note that the precomputation table may be built for pairs or quartets. When a table is built for pairs, the filter effect in brackets is for two pairs.

No.	Starting cells	subtweakey bytes	Bytes deduced	Filter	Pairs or quartets	Time and memory	filter effect
1	$\begin{array}{\|l\|} \hline \frac{Z_{31}[1],}{X_{31}[13],}, \underline{Z_{30}[6],} \\ \overline{\left(Z_{31}^{i}[1]\right.}, \underline{X_{31}^{i}[13]} \\ \hline \end{array}$	$\underbrace{S T K_{30}[6]}_{\frac{\mid}{i}[6] K_{31}[1],}, 1,2$,	$\frac{\left\lvert\, \begin{array}{l} X_{30}[14], X_{30}[6], \\ Z_{31}^{\prime}[1], Z_{30}^{\prime}[6] \end{array}\right.}{\qquad, 2,3,4: S T K_{31}[}$	$\begin{aligned} & \begin{array}{l} X_{30}[14] \oplus X_{30}[6] \oplus \\ X_{30}^{\prime}[14] \oplus X_{30}^{\prime}[6]=0 \end{array} \\ & {[1], S T K_{30}[6]} \end{aligned}$	Quartets	2^{96}	1
2	$\frac{Z_{30}[0]}{Z_{29}[1]}, \underline{X_{30}[12],}$, $\Delta X_{29}[9]$ $\left(Z_{30}^{i}[0], Z_{29}^{i}[1], X_{39}\right.$ $S T K_{30}[0], S T K_{29}$	$\left.\frac{\frac{S T K_{30}[0]}{S T K_{29}[1]}}{} \right\rvert\,$	$\begin{aligned} & \hline \begin{array}{l} X_{29}[13], X_{29}[1], \\ Z_{30}^{\prime}[0], Z_{29}^{\prime}[1] \end{array} \\ & \hline 9]), i=1,2,3,4, \end{aligned}$	$X_{29}[13] \oplus X_{29}^{\prime}[13]=$ $\Delta X_{29}[9], \quad X_{29}[1] \oplus$ $X_{29}[13] \oplus X_{29}^{\prime}[1] \oplus$ $X_{29}^{\prime}[13]=0$ $, j=1,3:$	Quartets	2^{80}	2^{-16}
3	$\frac{Z_{30}[2],}{X_{30}[14],}, \frac{Z_{30}[4]}{X_{30}^{\prime}[14]}$, $\frac{X_{30}[8]}{X_{30}[12]}$, $\frac{X_{30}^{\prime}[8] \oplus X_{30}^{\prime}[12]}{Z_{29}[3]}$ $\left(Z_{30}^{i}[2], Z_{30}^{i}[4], X_{30}^{i}\right.$ $S T K_{30}[2], S T K_{30}$	$\left.\frac{\frac{S T K_{30}[2]}{S T K_{30}[4]},}{\frac{S T K_{29}[3]}{S T K_{29}[7]}} \right\rvert\,$	$\|$$X_{29}[3], \quad X_{29}[7]$, $X_{29}[15]$, $Z_{30}^{\prime}[4], Z_{29}^{\prime}[3]$] $\oplus X_{30}^{i}[12], Z_{29}^{i}\left[3 T K_{29}[7]\right.$	$X_{29}[3] \oplus X_{29}[15]=$ $X_{29}^{\prime}[3] \oplus X_{29}^{\prime}[15]$, $X_{29}[7] \oplus X_{29}[15]=$ $X_{29}^{\prime}[7] \oplus \underline{X_{29}^{\prime}[15]}$ 3$]), i=1,2:$	Pairs	2^{96}	$\begin{aligned} & 2^{16} \\ & (1) \end{aligned}$
4	$\frac{Z_{29}[2],}{X_{29}[13],}, Z_{29}[5]$, $\frac{\Delta X_{28}[3]}{}$ $\left(Z_{29}^{i}[2], X_{29}^{i}[13], Z_{2}^{j}\right.$ $S T K_{29}[2], S T K_{29}$	$\left.\underbrace{\frac{S T K_{29}[2]}{S T K_{29}[5]}}_{{ }_{29}^{j}[5], X_{29}^{j}[14]} \right\rvert\,$	$\begin{array}{\|l\|} \hline X_{28}[11], X_{28}[15] \\ Z_{29}^{\prime}[2], X_{29}^{\prime}[13] \\ \left.\hline 4], \Delta X_{28}^{j}[3]\right), i= \\ \hline \end{array}$	$\begin{aligned} & \mid X_{28}[15] \oplus X_{28}^{\prime}[15]= \\ & \Delta X_{28}[3], X_{28}[15] \oplus \\ & X_{28}^{\prime}[15]=X_{28}[11] \oplus \\ & X_{28}^{\prime}[11] \\ & =1,2,3,4, j=1,3: \\ & \hline \end{aligned}$	Quartets	2^{96}	2^{-16}
5	$\frac{Z_{29}[4],}{X_{29}[8]} \oplus X_{29}[12]$, $X_{28}[15], S T K_{28}[7]$ $\left(X_{28}^{i}[15], Z_{29}^{j}[4], X_{2}\right.$ $S T K_{29}[4]$	$\begin{aligned} & \underline{S T K_{29}[4]} \\ & { }_{{ }_{29}}^{j}[8] \oplus X_{29}^{j} \\ & \hline \end{aligned}$	$\frac{X_{27}[9], X_{28}^{\prime}[15]}{\left.[12], \text { ST } K_{28}[7]\right),}$	$\begin{aligned} & \begin{array}{l} X_{27}[9] \oplus X_{27}^{\prime}[9]= \\ 0 x 50 \end{array} \\ & i=1,2,3,4, j=1,3: \end{aligned}$	Quartets	2^{64}	2^{-8}
6	$\begin{array}{\|l\|} \hline \underline{Y_{1}[6],}, \underline{Y_{1}[9],}, \underline{Y_{2}[4]} \\ \left(Y_{2}^{i}[4], Y_{1}^{j}[6], Y_{1}^{j}[9]\right. \\ \hline \end{array}$	$\left.\frac{\frac{S T K_{1}[6]}{S T K_{2}[4]}}{}\right)^{\text {, } i=1,2,3}$	$\begin{aligned} & \hline \begin{array}{l} W_{2}[5], W_{2}[9], \\ Y_{2}^{\prime}[4] \end{array} \\ & \hline 3,4, j=1,3: S T \\ & \hline \end{aligned}$	$Y_{3}[9] \oplus Y_{3}^{\prime}[9]=0 x 20$ $K_{1}[6], S T K_{2}[4]$	Quartets	2^{64}	1

- The time complexity $T_{1}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D_{R}=\sqrt{s} \cdot 2^{13 \times 8+126.53}=\sqrt{s} \cdot 2^{230.53}$;
$-T_{2}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D \cdot 2^{r_{b}-r_{b}^{\prime}}=\sqrt{s} \cdot 2^{13 \times 8+124.53+8}=\sqrt{s} \cdot 2^{236.53} ;$
$-T_{3}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D^{2} \cdot 2^{2 r_{b}^{*}+2 r_{f}^{*}-2 n} \cdot \epsilon=s \cdot 2^{13 \times 8+124.53 \times 2+2 \times 8+2 \times 64-2 \times 128} \cdot \epsilon=$ $s \cdot 2^{241.07} \cdot \epsilon ;$
$-T_{4}=2^{256-h}, h<136+t$.
Processing a candidate quartet to retrieve the rest of k_{b} and k_{f} can be realized by looking up tables. We pre-compute several tables as illustrated in Table 11, so that ϵ is equivalent to about $1+1+2^{8}+2^{8}+1+1=516$ memory accesses which is around $516 \times \frac{1}{16} \times \frac{1}{26}=2^{0.31}$ encryption. If we set $s=1, h=40$ and $t=0$, then the data, memory and time complexities of our attack are $2^{126.53}$, $2^{136}, 2^{241.38}$, respectively. The success probability is about 64.06%.

Table 10: Comparisons of key recovery attacks on 32-round SKINNY-128-384

P^{2}	m_{b}, m_{f}	$m_{b}^{\prime}, m_{f}^{\prime}$	Data	Memory	Time	Reference
$2^{-115.09}$	144,192	144,88	$2^{123.54}$	$2^{123.54}$	$2^{354.99}$	[DQSW22]
$2^{-115.09}$	144,192	128,88	$2^{123.54}$	$2^{129.54}$	$2^{344.16}$	This

Figure 12: A 26-round key recovery attack against SKINNY-128-256

The comparison with the previous rectangle attacks based on the same distinguisher is presented in Table 12.

Table 11: Precomputation tables for the 26-round attack on SKINNY-128-256, where underlined bytes are used as input and determine the time and memory complexity for building the table. Note that the precomputation table may be built for pairs or quartets. When a table is built for pairs, the filter effect in brackets is for two pairs.

No.	Starting cells	Subtweakey bytes	Bytes deduced	Filter	Pairs or quartets	Time and memory	Filter effect
1	$\frac{Z_{25}[1],}{X_{25}[13], X_{25}[6]}$	$\begin{aligned} & \frac{S T K_{25}[1],}{S T K_{24}[2]} \\ & \hline \end{aligned}$	$\begin{aligned} & X_{24}[2], X_{24}[14], \\ & Z_{25}^{\prime}[1], X_{25}^{\prime}[6] \end{aligned}$	$\begin{aligned} & X_{24}[2] \oplus X_{24}^{\prime}[2] \\ & X_{24}[14] \oplus \underline{X_{24}[14]} \\ & \hline \end{aligned}$	Quartets	2^{96}	1
2	$\frac{Z_{25}[7],}{X_{25}[11]} \oplus X_{25}[15]$, $\Delta X_{24}[14]$ $\left(Z_{25}^{i}[7], X_{25}^{i}[11] \oplus\right.$ $S T K_{25}[7], S T K_{24}[$	$\begin{aligned} & \frac{S T K_{25}[7],}{S T K_{24}[6]} \\ & \hline X_{25}^{i}[15], \Delta X \\ & {[6]} \end{aligned}$	$\begin{array}{\|l\|} \hline X_{24}[6], Z_{25}^{\prime}[7], \\ X_{25}^{\prime}[11] \\ X_{25}^{\prime}[15] \end{array} \underbrace{}_{\left.X_{24}^{j}[14]\right), i=1,2,5}$	$X_{24}[6] \oplus X_{24}^{\prime}[6]=$ $\Delta X_{24}[14]$	Quartets	2^{80}	1
3	$\frac{Z_{24}[5],}{Z_{25}[0]}, \frac{X_{24}[9],}{X_{25}[12]}$, $\frac{X_{24}^{\prime}[9]}{X_{25}^{\prime}[12]}$ $\left(Z_{25}^{i}[0], X_{25}^{i}[12]\right.$,	$\begin{aligned} & \frac{S T K_{25}[0],}{S T K_{24}[5]} \\ & i_{24}^{i}[5], X_{24}^{i}[9 \end{aligned}$	$\begin{aligned} & \hline \hline X_{24}[5], X_{24}[12] \\ & Z_{24}^{\prime}[5], Z_{25}^{\prime}[0], \\ & \\ & \hline, i=1,2: S T K_{2} \\ & \hline \end{aligned}$	$X_{24}[5]$ \oplus $X_{24}^{\prime}[5] \oplus$ $X_{24}[9]$ \oplus $X_{24}^{\prime}[9] \oplus$ $X_{24}[13]$ \oplus $X_{24}^{\prime}[13]$ $0 x 82$ 0 $25[0]$, ST $K_{24}[5]$	Pairs	2^{72}	$2^{8}(1)$
4	$\begin{aligned} & \frac{Z_{23}[2]}{Z_{24}[1]}, \frac{X_{24}[13]}{X_{24}^{\prime}[13]}, \\ & \hline Z_{24}^{i}[1], Z_{23}^{i}[2], X_{2}^{i} \end{aligned}$	$\frac{\frac{S T K_{24}[1]}{S T K_{23}[2]}}{\left.{ }_{4}[13]\right), i=1,}$	$\begin{aligned} & \begin{array}{l} X_{23}[2], Z_{23}^{\prime}[2], \\ Z_{24}^{\prime}[1] \end{array} \\ & , 2,3,4: S T K_{24} \end{aligned}$	$\begin{aligned} & \begin{array}{l} X_{23}[2] \oplus X_{23}^{\prime}[2]= \\ \Delta X_{23}[14] \end{array} \\ & \hline \text { L] } S T K_{23}[2] \end{aligned}$	Quartets	2^{96}	1
5	$\begin{array}{\|l} \left\lvert\, \begin{array}{l} \frac{Z_{24}[7],}{X_{24}[11]} \oplus X_{23}[14] \\ \hline S T X_{24}[2] \\ \hline\left(X_{24}^{i}[11]\right. \end{array}\right., X_{24}^{i}[15] \\ j=1,3: S T K_{24}[7 \\ \hline \end{array}$	$\begin{aligned} & \frac{S T K_{24}[7],}{S T K_{23}[6]} \\ &], Z_{24}^{j}[7], \Delta X \\ &], S T K_{23}[6] \end{aligned}$	$\left\lvert\,$$X_{23}[6], X_{22}[2]$ $X_{24}^{\prime}[11]$ $X_{24}^{\prime}[15]$$\oplus\right.$ $X_{23}^{j}[14], S T K_{22}[6]$	$X_{23}[6] \oplus X_{23}^{\prime}[6]=$ $\Delta X_{23}[14], X_{22}[2] \oplus$ $X_{22}[2]=0 x 81$ $), i=1,2,3,4$,	Quartets	2^{56}	2^{-16}
6	$\frac{Z_{25}[4], Z_{24}[0],}{Z_{23}[1]}, \frac{X_{24}[12]}{}$ $\frac{S T K_{23}[1]}{\left(Z_{23}^{i}[1], Z_{25}^{j}[4], Z_{24}^{j}\right.}$ $S T K_{25}[4], S T K_{24}$	$\begin{aligned} & \frac{S T K_{25}[4],}{S T K_{24}[0]} \\ & \hline[0], X_{24}^{j}[12], \\ & {[0]} \end{aligned}$	$\begin{array}{\|l\|} \hline X_{22}[14], Z_{23}^{\prime}[1] \\ \left., S T K_{23}[1]\right), i=1 \end{array}$	$X_{22}[14] \oplus X_{22}^{\prime}[14]=$ $0 x 81$$1,2,3,4, j=1,3:$	Quartets	2^{88}	1
7	$\begin{array}{\|l\|} \hline \frac{Z_{24}[4],}{X_{23}[11]} \oplus X_{23}[15] \\ \frac{X_{24}[13]}{}, \frac{S T K_{22}[6]}{\left(X_{23}^{i}[11]\right.} \oplus X_{23}^{i}[15] \\ i=1,2,3,4: S T K \end{array}$	$\begin{aligned} & \frac{S T K_{24}[4]}{S T K_{23}[7]} \\ & C_{24}[7], S T K_{23}^{j}[13], Z_{2}^{j} \end{aligned}$		$X_{22}[6] \oplus X_{22}^{\prime}[6]$ $0 x 81$$\left.S T K_{22}[6]\right)$,	Quartets	2^{80}	1
8	$\begin{array}{\|l\|} \hline \frac{Y_{0}[4],}{Y_{1}[3]}, \frac{W_{1}[15]}{Y_{0}^{\prime}[4]} \\ \hline\left(Y_{0}^{i}[4], W_{1}^{i}[15], Y_{1}^{j}[\right. \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{S T K_{0}[4],}{S T K_{1}[3]} \\ [3]), i=1,2, \\ \hline \end{array}$	Y2 29$], W_{1}[9]$, $3,4, j=1,3: S T$	$\begin{aligned} & \hline Y_{2}[3] \oplus Y_{2}^{\prime}[3]=0 x c b \\ & \hline T K_{0}[4], S T K_{1}[3] \\ & \hline \end{aligned}$	Quartets	2^{80}	1

B. 2 Deoxys-BC-256

Deoxys-BC [JNPS16] is the internal tweakable block cipher of Deoxys-II, which is among the final portfolio of CAESAR competition. Both versions of the cipher have a 128 -bit state and variable size key and tweak. It has two versions with a 256 -bit key size and a 384 -bit key size.

Table 12: Comparisons of key recovery attacks on 26-round SKINNY-128-256

P^{2}	m_{b}, m_{f}	$m_{b}^{\prime}, m_{f}^{\prime}$	Data	Memory	Time	Reference
$2^{-121.07}$	88,168	88,24	$2^{126.53}$	2^{136}	$2^{254.4}$	[DQSW22]
$2^{-121.07}$	88,168	72,32	$2^{126.53}$	2^{136}	$2^{241.38}$	This

Rectangle Attack. We reuse the 9-round rectangle distinguisher of Deoxys-BC256 proposed by Cid et al. $\left[\mathrm{CHP}^{+} 17\right]$ and reevaluated in [WP19] to attack 11-round rectangle Deoxys-BC-256 with 2 -round E_{f}, as shown in Figure 10. The probability of the distinguisher is $2^{-n} P^{2}=2^{-128-120.4}=2^{-248.4}$, and other parameteres are: $n=128, k=256, m_{b}=r_{b}=0, m_{f}=(16+10) \times 8=208, r_{f}=$ $16 \times 8=128$.

The best guessing parameters are $m_{f}^{\prime}=12 \times 8=96$ and $r_{f}^{\prime}=8 \times 8=64$, which means guessing 8 bytes of k_{f}. The complexities of our new attack are as follows.

- The data complexity is $D_{R}=4 \cdot y \cdot 2^{r_{b}}=\sqrt{s} \cdot 2^{n / 2+2} / P=\sqrt{s} \cdot 2^{126.2}$.
- The memory complexity is $M_{R}=D_{R}+D \cdot 2^{r_{b}^{*}}+2^{t+m_{b}+m_{f}-m_{b}^{\prime}-m_{f}^{\prime}}=$ $\sqrt{s} \cdot 2^{126.2}+\sqrt{s} \cdot 2^{124.2}+2^{112+t}$.
- The time complexity $T_{1}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D_{R}=\sqrt{s} \cdot 2^{12 \times 8+126.2}=\sqrt{s} \cdot 2^{222.2}$;
$-T_{2}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D \cdot 2^{r_{b}-r_{b}^{\prime}}=\sqrt{s} \cdot 2^{12 \times 8+124.2}=\sqrt{s} \cdot 2^{220.2}$;
$-T_{3}=2^{m_{b}^{\prime}+m_{f}^{\prime}} \cdot D^{2} \cdot 2^{2 r_{b}^{*}+2 r_{f}^{*}-2 n} \cdot \epsilon=s \cdot 2^{12 \times 8+124.2 \times 2+2 \times 64-2 \times 128} \cdot \epsilon=s \cdot 2^{216.4} \cdot \epsilon ;$
$-T_{4}=2^{256-h}, h<112+t$.

Table 13: Comparisons of key recovery attacks on 11-round Deoxys-BC-256

P^{2}	m_{b}, m_{f}	$m_{b}^{\prime}, m_{f}^{\prime}$	Data	Memory	Time	Reference
2^{-122}	0,80	0,0	$2^{127.58}$	$2^{127.58}$	2^{204}	$\left[\mathrm{CHP}^{+} 17\right]$
$2^{-116.4}$	128,80	112,0	$2^{122.1}$	$2^{128.2}$	$2^{249.9}$	[ZDJ19]
$2^{-120.4}$	0,208	0,96	$2^{126.78}$	2^{128}	$2^{222.49}$	This

Processing a candidate quartet to retrieve the rest of k_{f} can be realized by looking up tables. We consider the equivalent round subtweakey $M T K_{i}=$ $S R^{-1} \circ M C^{-1}\left(S T K_{i}\right)$ in round i. To process a candidate quartet to retrieve the rest of k_{f}, we prepare some tables as illustrated in Table 16. So that ϵ is equivalent to about 1 memory access which is around $1 \times \frac{1}{16} \times \frac{1}{11}=2^{-7.45}$ encryption. If we set $s=1.5, h=36$ and $t=0$, then the data, memory, and time complexities of our attack are $2^{126.78}, 2^{128}, 2^{222.49}$, respectively. The success probability is about 77.19\%.

C Previously Proposed Key Recovery Algorithms

C. 1 Algorithm 1: Biham-Dunkelman-Keller's Algorithm at EUROCRYPT 2001

Biham, Dunkelman, and Keller introduced the rectangle attack[BDK01] at EUROCRYPT 2001 and first applied it to Serpent[ABK98]. The specific procedures are as follows:

1. Create and store $y=\sqrt{s} \cdot 2^{\frac{n}{2}-r_{b}+1} / P$ structures including $2^{r_{b}}$ each by traversing the active bits in each structure, where s denotes the expected number of right quartets.
2. Initialize $2^{m_{b}+m_{f}}$ key counters for the $\left(m_{f}+m_{b}\right)$-bit subkey involved in E_{b} and E_{f}. For each $\left(m_{f}+m_{b}\right)$-bit subkey and each structure:
(a) Partially encrypt plaintext P_{1} to the position of α under the guessed m_{b}-bit subkey in E_{b} and partially decrypt the state xored the known difference α to the plaintext P_{2}.
(b) Denote C_{1} and C_{2} the corresponding ciphertexts of P_{1} and P_{2} respectively. Partially decrypt C_{1} to the position of δ and encrypt it to the ciphertext C_{3} after xoring δ. Similarly, we find C_{4} from C_{2} in the same way and then obtain the quartet $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$.
(c) Check whether the corresponding ciphertexts $\left(C_{3}, C_{4}\right)$ exist in our data. If exist, we check the difference is α after partially encrypting corresponding plaintexts $\left(P_{3}, P_{4}\right)$ under m_{b}-bit subkey in E_{b}. If so, we increase the corresponding counter by 1 .
(d) Select the top $2^{m_{b}+m_{f}-h}$ hits in the counter to be the candidates, which delivers a h-bit or higher advantage.
(e) Guess the remaining $k-m_{b}-m_{f}$ unknown key bits according to the key schedule algorithm and exhaustively search over them to recover the correct key, where k is the key size.

The data complexity is $D=y \cdot 2^{r_{b}}=\sqrt{s} \cdot 2^{\frac{n}{2}+1} / P$. The memory complexity is $D+2^{m_{b}+m_{f}}$ to store the data and key counters. The time complexity of generating quartets and determining the key candidates is

$$
T_{1}=2^{m_{b}+m_{f}} \cdot D=\sqrt{s} \cdot 2^{m_{b}+m_{f}+\frac{n}{2}+1} / P
$$

and the complexity of the exhaustive search is

$$
T_{2}=2^{m_{b}+m_{f}-h} \cdot 2^{k-\left(m_{b}+m_{f}\right)}=2^{k-h}
$$

where $h \leq m_{b}+m_{f}$.

C. 2 Algorithm 2: Biham-Dunkelman-Keller's Algorithm at FSE 2002

At FSE 2002, Biham, Dunkelman and Keller further introduced their new algorithm for rectangle recovery attacks in the single-key setting. Later, the attack was converted into the related-key setting by Liu et al. [LGS17] on ciphers with a linear key schedule. The procedures are summarized as follows and more details are described in [BDK01]:

1. Construct and store y structures of $2^{r_{b}}$ plaintexts each by traversing the active bits in each structure.
2. Initialize an array of $2^{m_{b}+m_{f}}$ counters for the $\left(m_{f}+m_{b}\right)$-bit subkey involved in E_{b} and E_{f}.
3. Insert the $y \cdot 2^{r_{b}}$ ciphertexts into a hash table H according to the $n-r_{f}$ inactive ciphertext bits. For each index, there are $2^{r_{b}} \cdot 2^{r_{f}-n}$ plaintexts and ciphertexts colliding in the $n-r_{f}$ bits for each structure.
4. In each structure S, we search for a ciphertext pair $\left(C_{1}, C_{2}\right)$ and choose a ciphertext C_{3} by the $n-r_{f}$ inactive ciphertext bits of C_{1} from the hash table H. We pick a ciphertext C_{4} according to the $n-r_{f}$ inactive ciphertext bits of C_{2} from the hash table in the same way. Then we check whether the corresponding plaintexts P_{3} and P_{4} are in the same structure. If so, then we generate a quartet $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)$ and its corresponding ciphertexts $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$.
5. Determine the key candidates involved in E_{b} and E_{f} with the quartets obtained above and increase the corresponding counters. This phase is just a guess and filter procedure. Denote the time complexity in this step as ϵ_{2}.
6. Select the top $2^{m_{b}+m_{f}-h}$ hits in the counter to be the candidates, which delivers a h-bit or higher advantage.
7. Guess the remaining $k-m_{b}-m_{f}$ unknown key bits according to the key schedule algorithm and exhaustively search over them to recover the correct key, where k is the key size.

The data complexity is $D=y \cdot 2^{r_{b}}=\sqrt{s} \cdot 2^{\frac{n}{2}+1} / P$. The memory complexity is $D+2^{m_{b}+m_{f}}$ to store the data and key counters. The time complexity of inserting the ciphertexts into the hash table is

$$
T_{1}=D=\sqrt{s} \cdot 2^{\frac{n}{2}+1} / P
$$

the time complexity to generate quartets accessing the colliding pairs is

$$
T_{2}=\binom{D}{2} \cdot 2^{r_{f}-n}=D^{2} \cdot 2^{r_{f}-n-1}=y^{2} \cdot 2^{2 r_{b}+r_{f}-n-1}=s \cdot 2^{r_{f}+1} / P^{2}
$$

the complexity of determining the key candidates is

$$
\begin{aligned}
T_{3} & =\left(y \cdot 2^{2 r_{b}+r_{f}-n-1}\right)^{2}=y^{2} \cdot 2^{4 r_{b}+2 r_{f}-2 n-2} \cdot \epsilon_{2} \\
& =D^{2} \cdot 2^{2 r_{b}+2 r_{f}-2 n-2} \cdot \epsilon_{2} \\
& =s \cdot 2^{2 r_{b}+2 r_{f}-n} / P^{2} \cdot \epsilon_{2}
\end{aligned}
$$

and the complexity of exhaustive search is

$$
T_{4}=2^{m_{b}+m_{f}-h} \cdot 2^{k-\left(m_{b}+m_{f}\right)}=2^{k-h}
$$

where $h \leq m_{b}+m_{f}$.
In step 4 of the above algorithm, quartets are constructed in time T_{2} and the memory cost does not exceed D. Here we try to give an illustration of
how to avoid the increase in memory. Firstly, we need to store the collected data and the memory complexity is D. Next, insert (P, C) into a hash table H_{1} according to $n-r_{f}$ bits in ciphertexts. There are $D \cdot 2^{-\left(n-r_{f}\right)}$ values in each index and the time complexity of this step is D. Then for each structure $S_{i}(i=$ $1,2, \cdots, y)$, considering $\left(P_{1}, P_{2}\right)\left(P_{1}, P_{2} \in S_{i}\right)$, we will obtain $2^{2 r_{b}-1}$ such pairs. The values in the same index with C_{1} in H_{1} are denoted as $C_{3}^{1}, C_{3}^{2}, \cdots, C_{3}^{j}, \ldots$ and $C_{4}^{1}, C_{4}^{2}, \cdots, C_{4}^{k}, \cdots$ for C_{2}. Insert C_{3}^{j} into a hash table H_{2} according to $n-r_{b}$ bits of P_{3}^{j}, which is the same as we defined in our algorithm. We then look up H_{2} with $n-r_{b}$ bits of P_{4}^{k}; if a collision is found, $\left(C_{1}, C_{2}, C_{3}^{j}, C_{4}^{k}\right)$ is a candidate quartet. In this step, the memory complexity of storing H_{2} is $D \cdot 2^{-\left(n-r_{f}\right)}$, which can be ignored compared to D. We will get

$$
y \cdot 2^{2 r_{b}-1} \cdot\binom{D \cdot 2^{-\left(n-r_{f}\right)}}{2} \cdot 2^{-\left(n-r_{b}-\mu\right)}=D^{2} \cdot 2^{2 r_{b}+2 r_{f}-2 n-2}
$$

candidate quartets.However, there will be an extra time complexity of accessing the hash table H_{2}, which is

$$
y \cdot 2^{2 r_{b}-1} \cdot D \cdot 2^{-\left(n-r_{f}\right)}=D^{2} \cdot 2^{r_{b}+r_{f}-n-1}
$$

It should be noted that the extra time complexity may not be omitted as it may be a dominant part in some cases. We feel that this term of time complexity was neglected by the authors of [BDK01] inadvertently, or the memory complexity should be higher than D.

C. 3 Algorithm 3: Zhao et al.'s Single-key Variant

Zhao et al. proposed a new generalized related-key rectangle framework [ZDJ19, $\mathrm{ZDM}^{+} 20$] for block ciphers with a linear key schedule. The attack can be applied to single-key setting with simple modifications:

1. Collect and store y structures of $2^{r_{b}}$ plaintexts each by traversing the active bits in each structure.
2. Guess the $2^{m_{b}}$ possible m_{b}-bit subkey involved in E_{b} :
(a) Initialized a list of $2^{m_{f}}$ counters corresponding to a m_{f}-bit subkey guess.
(b) For each structure, partially encrypt plaintext P_{1} under the guessed subkey bits in E_{b} to the position of α and decrypt the intermediate value xored the known difference α to obtain the plaintext P_{2} in the same structure with P_{1}. Construct a set S with the relevant plaintexts and ciphertexts as

$$
S=\left\{\left(P_{1}, C_{1}, P_{2}, C_{2}\right): E_{b}\left(P_{1}\right) \oplus E_{b}\left(P_{2}\right)=\alpha\right\}
$$

(c) The size of S is $y \cdot 2^{r_{b}-1}$. Insert S into a hash table H indexed by the $n-r_{f}$ bits of C_{1} and $n-r_{f}$ bits of C_{2} that are 0 in δ^{\prime}. We randomly choose (C_{1}, C_{2}) and ($C_{1}^{\prime}, C_{2}^{\prime}$) to generate quartet ($C_{1}, C_{2}, C_{3}, C_{4}$) with each $2\left(n-r_{f}\right)$-bit index, where $\left(C_{3}, C_{4}\right)=\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$.
(d) Determine the key candidates related to E_{f} using the quartets obtained above and increase the corresponding counters. Similarly, denote the time complexity in this step as ϵ_{3}.
(e) Select the top $2^{m_{f}-h}$ hits in the counter to be the candidates, which delivers a h-bit or higher advantage.
(f) Guess the remaining $k-m_{b}-m_{f}$ unknown key bits according to the key schedule algorithm and exhaustively search over them to recover the correct key, where k is the key size.

The data complexity is $D=y \cdot 2^{r_{b}}=\sqrt{s} \cdot 2^{\frac{n}{2}+1} / P$. The memory complexity is $D+D / 2+2^{m_{f}}$ to store the data, set S, and key counters. The time complexity to generate quartets by constructing set S is

$$
T_{1}=2^{m_{b}} \cdot D=\sqrt{s} \cdot 2^{m_{b}+\frac{n}{2}+1} / P
$$

the complexity of determining the key candidates is

$$
\begin{aligned}
T_{2} & =2^{m_{b}} \cdot 2^{2\left(n-r_{f}\right)} \cdot 2 \cdot\binom{D^{2} \cdot 2^{-2\left(n-r_{f}\right)-1}}{2} \cdot \epsilon_{3} \\
& =2^{m_{b}} \cdot D^{2} \cdot 2^{2 r_{f}-2 n-2} \cdot \epsilon_{3} \\
& =s \cdot 2^{m_{b}-n+2 r_{f}} / P^{2} \cdot \epsilon_{3}
\end{aligned}
$$

and the exhaustive search complexity is

$$
T_{3}=2^{m_{b}} \cdot 2^{m_{f}-h} \cdot 2^{k-\left(m_{b}+m_{f}\right)}=2^{k-h}
$$

where $h \leq m_{f}$.

C. 4 Algorithm 4: Dong et al.'s Single-key Variant

To avoid generating quartets that may never suggest key candidates as many as possible, Dong et al. presented a new rectangle attack framework [DQSW22] to transform Algorithm 3 into Algorithm 4 using a fast filter with partially guessed key k_{f}^{\prime} and h_{f}-bit inactive internal states resulted from the the partially guessed key. Denote $m_{f}^{\prime}=\left|k_{f}^{\prime}\right|$. We summarize the procedures as follows:

1. Collect and store y structures of $2^{r_{b}}$ plaintexts each by traversing the active bits in each structure.
2. Guess the possible $\left(m_{b}+m_{f}^{\prime}\right)$-bit k_{b} and k_{f}^{\prime} involved in E_{b} and part of E_{f} :
(a) Initialize an array of $2^{m_{f}-m_{f}^{\prime}}$ counters.
(b) For each structure, construct set S in the same way with Model 3 in the following:

$$
S=\left\{\left(P_{1}, C_{1}, P_{2}, C_{2}\right): E_{b}\left(P_{1}\right) \oplus E_{b}\left(P_{2}\right)=\alpha\right\}
$$

(c) The size of S is $y \cdot 2^{r_{b}-1}$. For each $\left(P_{1}, C_{1}, P_{2}, C_{2}\right)$ in S, partially decrypt $\left(C_{1}, C_{2}\right)$ to get two r_{f}^{\prime}-bit partial internal state $\left(Y_{1}, Y_{2}\right)$. Insert S into a hash table indexed by $n-r_{f}$ inactive bits of $C_{1}, n-r_{f}$ inactive bits of C_{2}, r_{f}^{\prime} inactive bits of both Y_{1} and Y_{2}.
(d) With each $2\left(n-r_{f}+r_{f}^{\prime}\right)$-bit index, we pick two distinct $\left(P_{1}, C_{1}, P_{2}, C_{2}\right)$, $\left(P_{1}^{\prime}, C_{1}^{\prime}, P_{2}^{\prime}, C_{2}^{\prime}\right)$ to generate the quartet, denoted as $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$, where $\left(C_{3}, C_{4}\right)=\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$.
(e) Determine the key candidates involved in E_{f} and increase the corresponding counters. Likewise, denote the time complexity in this step as ϵ_{4}.
(f) Select the top $2^{m_{f}-m_{f}^{\prime}-h}$ hits in the counter to be the candidates, which delivers a h-bit or higher advantage.
(g) Guess the remaining $k-m_{b}-m_{f}$ unknown key bits according to the key schedule algorithm and exhaustively search over them to recover the correct key, where k is the key size.

The data complexity is $D=y \cdot 2^{r_{b}}=\sqrt{s} \cdot 2^{\frac{n}{2}+1} / P$. The memory complexity is $D+D / 2+2^{m_{f}-m_{f}^{\prime}}$ to store the data, set S, and key counters. The time complexity of generating quartets by constructing set S is

$$
T_{1}=2^{m_{b}+m_{f}^{\prime}} \cdot D=\sqrt{s} \cdot 2^{m_{b}+m_{f}^{\prime}+\frac{n}{2}+1} / P
$$

the complexity to determine key candidates is

$$
\begin{aligned}
T_{2} & =2^{m_{b}+m_{f}^{\prime}} \cdot 2^{2\left(n-r_{f}+r_{f}^{\prime}\right)} \cdot 2 \cdot\binom{D \cdot 2^{-1-2\left(n-r_{f}+r_{f}^{\prime}\right)}}{2} \cdot \epsilon_{4} \\
& =2^{m_{b}+m_{f}^{\prime}} \cdot D^{2} \cdot 2^{2 r_{f}-2 r_{f}^{\prime}-2 n-2} \cdot \epsilon_{4} \\
& =s \cdot 2^{m_{b}+m_{f}^{\prime}-n+2 r_{f}-2 r_{f}^{\prime}} / P^{2} \cdot \epsilon_{4}
\end{aligned}
$$

and the complexity of exhaustive search is

$$
T_{3}=2^{m_{b}+m_{f}^{\prime}} \cdot 2^{m_{f}-m_{f}^{\prime}-h} \cdot 2^{k-\left(m_{b}+m_{f}\right)}=2^{k-h},
$$

where $h \leq 2^{m_{f}-m_{f}^{\prime}}$.
Actually, there are also another two refinements of Algorithm 4 presented in [DQSW22]. The first refinement is to balance the overall complexity by guessing different key cells among the partial key guesses. The second is to apply the improved algorithm to the related-key setting. More details about this can be found in [DQSW22]. In this paper, the refined algorithms can be grouped, in which Algorithm 4 is representative.

D Distinguishers and Precomputation Tables

D. 1 The new 11-round distinguisher for AES-192

D. 2 Precomputataion Tables for Attacks in Section 5

Figure 13: A 11-round boomerang distinguisher of AES-192. White stands for no difference, blue for a set difference, green for a known difference, and gray for a free variable.

Table 14: Key schedule difference in the AES-192 trail

$\Delta K_{0}$$?$ $?$ 00 00 21 00 3 e 00 00 01 $3 f$ 01 1f 00 00 00 1f 00 1f 00 00 00 1f 00	$\Delta K_{1}$$?$ 21 21 21 00 00 $3 e$ $3 e$ $3 e$ $3 f$ 00 01 $1 f$ $1 f$ $1 f$ $1 f$ 00 00 $1 f$ $1 f$ $1 f$ $1 f$ 00 00	$\left.\Delta K_{2} \begin{array}{lllllll} 21 & 00 & 21 & 00 & 00 & 00 \\ 3 \mathrm{e} & 00 & 3 \mathrm{e} & 01 & 01 & 00 \\ & 1 \mathrm{f} & 00 & 1 \mathrm{f} & 00 & 00 & 00 \\ & \text { 1f } & 00 & 1 \mathrm{f} & 00 & 00 & 00 \end{array} \right\rvert\,$	$\left.\Delta K_{3} \begin{array}{lllllll} 21 & 21 & 00 & 00 & 00 & 00 \\ 3 e & 3 e & 00 & 01 & 00 & 00 \\ \text { 1f } & \text { if } & 00 & 00 & 00 & 00 \\ \text { 1f } & \text { if } & 00 & 00 & 00 & 00 \end{array} \right\rvert\,$
ΔK_{4}21 00 00 00 00 3e 00 00 01 01 1 01 1f 00 00 00 00 00 1f 00 00 00 00 00		$$	$$
	$$		
$$	$\nabla K_{1}$$?$ $?$ $?$ $?$ f 33 f 8 $?$ 7 c 7 c 7 c $?$ $?$ 7 c 7 c 7 c $?$ $?$ $?$ $?$ 84 84	$\nabla K_{2}$$?$ $?$ 33 cb f 8 00 $?$ $?$ $7 c$ 00 7 c 00 $?$ $7 c$ 00 7 c 00 $?$ $?$ $?$ 00 84 00	
$\begin{array}{ccccccccc} \hline \text { f } 8 & 00 & \mathrm{cb} & \mathrm{cb} & 33 & \mathrm{cb} \\ 7 \mathrm{c} & 00 & 00 & 00 & 7 \mathrm{c} & 00 \\ 7 \mathrm{c} & 00 & 00 & 00 & 7 \mathrm{c} & 00 \\ ? & 00 & 00 & 0 & 84 & 00 \end{array}$			f8 f 8 cb 00 00 00 7 c 7 c 00 00 00 00 7 c 7 c 00 00 00 00 84 84 00 00 00 00
 ∇K_{8} f 8 00 cb cb cb cb 7 c 00 00 00 00 00 7 c 00 00 00 00 00 84 00 00 00 00 00	f8 f8 33 f8 33 f8 7c 7c 7c 7c 7c 7c ∇K_{9} 7c 7c 7c 7c 7c 7c ? ? ? ? ?		

Table 15: Precomputation tables for 19-round attack on CRAFT, where underlined bytes are used as input and determine the time and memory complexity for building the table. Note that the precomputation table may be built for pairs or quartets. When a table is built for pairs, the filter effect in brackets is for two pairs.

No.	Starting cells	Subtweakey bytes	Bytes deduced	Filter	Pairs or quartets	Time and memory	Filter effect
1	$\frac{Y_{1}[9]}{Y_{1}^{\prime}[9]}, Y_{1}[12],$	$\begin{aligned} & T K_{1}[9], \\ & T K_{1}[12] \\ & \hline \end{aligned}$	$\begin{aligned} & X_{2}[1], X_{2}[5], \\ & Y_{1}^{\prime}[12] \end{aligned}$	$\begin{aligned} & X_{2}[1] \oplus \underset{2}{\prime} X_{2}^{\prime}[1]= \\ & X_{2}[5] \oplus X_{2}^{\prime}[5] \end{aligned}$	Quartets	2^{32}	1
	(Y1 $\left.{ }_{1}^{i}[9], Y_{1}^{i}[12]\right), i=1,2,3,4: T K_{1}[9], T K_{1}[12]$						
2	$\begin{aligned} & \frac{Y_{0}[3], \Delta X_{2}[1],}{X_{1}[2] \oplus X_{1}[10]}, \\ & \frac{X_{1}^{\prime}[2] \oplus X_{1}^{\prime}[10]}{T K_{0}[13]} \\ & \hline \end{aligned}$	$\frac{T K_{0}[3]}{T K_{1}[2]}$	$\begin{aligned} & X_{2}[13], X_{3}[2], \\ & Y_{0}^{\prime}[3] \end{aligned}$	$\|$$X_{2}[13]$ \oplus $X_{2}^{\prime}[13]$ $=$ $\Delta X_{2}[1]$ $X_{3}[2] \oplus$ $X_{3}^{\prime}[2]$ $=0 x A$	Quartets	$2^{44}, 2^{36}$	2^{-8}
	$\begin{aligned} & \left(Y_{0}^{i}[3], X_{1}^{i}[2] \oplus X_{1}^{i}[10], \Delta X_{2}^{j}[1], T K_{0}[13]\right), i=1,2,3,4, j=1,3: \\ & T K_{0}[3], T K_{1}[2] \end{aligned}$						
3	$\frac{Y_{0}[0]}{Y_{0}^{\prime}[0]}, \underline{Y_{0}[11]},$	$\begin{aligned} & \hline \frac{T K_{0}[0],}{T K_{0}[11]} \\ & \hline \end{aligned}$	$\begin{aligned} & X_{1}[7], X_{1}[15], \\ & Y_{0}^{\prime}[11] \end{aligned}$	$\begin{aligned} & X_{1}[7] \oplus \underset{1}{X_{1}^{\prime}[7]} \\ & X_{1}[15] \oplus X_{1}^{\prime}[15] \end{aligned}=$	Quartets	2^{32}	1
	($\left.Y_{0}^{i}[0], Y_{0}^{i}[11]\right), i=1,2,3,4: T K_{0}[0], T K_{0}[11]$						
4	$\begin{aligned} & \frac{Y_{0}[8], X_{1}[14]}{X_{1}^{\prime}[14]} \end{aligned}$	$\begin{aligned} & \frac{T K_{0}[8]}{T K_{1}[6]} \\ & \hline \end{aligned}$	$X_{3}[6], Y_{0}^{\prime}[8]$	$X_{3}[6] \oplus X_{3}^{\prime}[6]=0 x A$	Quartets	2^{32}	1
	$\left.\overline{\left(Y_{0}^{i}[8]\right.}, X_{1}^{i}[14]\right), i=1,2,3,4: T K_{0}[8], T K_{1}[6]$						
5	$\underline{\Delta X_{2}[8], ~} \underline{Y_{1}[15]}$	$\underline{T K}{ }^{\text {[15] }}$	$X_{2}[0], Y_{1}^{\prime}[15]$	$\begin{array}{\|lll} \hline X_{2}[0] & \oplus & X_{2}^{\prime}[0] \\ \Delta X_{2}[8] & & \\ \hline \end{array}$	Quartets	2^{20}	2^{-4}
	$\left(\Delta X_{2}^{j}[8], Y_{1}^{i}[15]\right), i=1,2,3,4, j=1,3: T K_{1}[15]$						
6	$\begin{aligned} & \frac{Y_{1}[8],}{Y_{0}[7]}, \frac{Y_{1}[13],}{Y_{0}[14]}, \\ & \frac{X_{1}[15] \oplus X_{1}[11]}{X_{1}^{\prime}[15] \oplus X_{1}^{\prime}[11]}, \\ & \frac{T K_{0}[6]}{} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{T K_{1}[3],}{T K_{1}[8]}, \\ & \frac{T K_{1}[13]}{}, \\ & \hline \frac{T K_{0}[7],}{T K_{0}[14]}, \\ & \hline \end{aligned}$	$\begin{aligned} & X_{2}[2], X_{2}[14], \\ & X_{3}[4], X_{3}[8], \\ & Y_{1}^{\prime}[8], Y_{1}^{\prime}[3], \\ & Y_{0}^{\prime}[7], Y_{0}^{\prime}[14] \end{aligned}$	$\|$$X_{2}[2] \oplus X_{2}^{\prime}[2]=$ $X_{2}[14] \oplus \stackrel{X_{2}^{\prime}[14]}{ }$, $X_{3}[3] \oplus X_{3}^{\prime}[3]=0 x A$, $X_{3}[8] \oplus X_{3}^{\prime}[8]=0 x A$	Pairs	2^{52}	$\begin{aligned} & 2^{8} \\ & \left(2^{-4}\right) \end{aligned}$
	$\begin{aligned} & \left(Y_{1}^{i}[8], Y_{1}^{i}[13], X_{1}^{i}[15] \oplus X_{1}^{i}[11], Y_{0}^{i}[7], Y_{0}^{i}[14], T K_{0}[6]\right), i=1,2: \\ & T K_{0}[7], T K_{0}[14], T K_{1}[3], T K_{1}[8], T K_{1}[13] \end{aligned}$						
7	$\begin{aligned} & \frac{Y_{1}[0],}{Y_{1}[11]}, \frac{Y_{1}[7],}{Y_{1}[14]}, \\ & \underline{T K_{0}[3]}, \underline{T K_{0}[7]}, \end{aligned}$	$\begin{array}{\|l} \hline \frac{T K_{1}[0],}{T K_{1}[7]}, \\ \frac{T K_{1}[11]}{T K_{1}[14]} \\ \hline \end{array}$	$\begin{aligned} & X_{3}[11], X_{3}[14], \\ & Y_{1}^{\prime}[11], Y_{1}^{\prime}[14] \end{aligned}$	$\begin{array}{ll} \hline X_{3}[11] \oplus X_{3}^{\prime}[11] & = \\ 0 x A, & X_{3}[14] \\ \oplus \\ X_{3}^{\prime}[14]=0 x A & \\ \hline \end{array}$	Pairs	2^{40}	$2^{8}(1)$
	$\begin{aligned} & \left(Y_{1}^{j}[0], Y_{1}^{j}[7], Y_{1}^{i}[11], Y_{1}^{i}[14], T K_{0}[3], T K_{0}[7]\right), i=1,2, j=1: \\ & T K_{1}[0], T K_{1}[7], T K_{1}[11], T K_{1}[14] \end{aligned}$						

Table 16: Precomputation tables for the 11-round attack on Deoxys-BC-256, where underlined bytes are used as input and determine the time and memory complexity for building the table.

No.	Starting cells	Subtweakey bytes	Bytes deduced	Filter	Pairs or quartets	Time and memory	Filter effect			
1	$\frac{X_{10}[1,11]}{W_{10}[12,14]}$	$\frac{M T K_{11}[12 \sim 15]}{M T K_{10}[1,11]}$	$\begin{array}{lll} \hline Z_{11}[12 & \sim & 15] \\ Z_{11}^{\prime}[12 \sim 15] & \end{array}$	$\begin{aligned} & \Delta X_{10}[1,6,11,12]= \\ & 0 x e 4\\|00\\| 21 \\| 00 \end{aligned}$	Quartets	2^{112}	2^{-16}			
	$\left(Z_{11}^{2}[12 \sim 15]\right), i=1,2,3,4: M T K_{11}[12 \sim 15], M T K_{10}[1,6]$									
2	$\underline{X_{10}[9,14,3,14]}$	$\begin{aligned} & M T K_{11}[4 \sim 7], \\ & M T K_{10}[4,9,14,3] \end{aligned}$	$\begin{array}{\|l\|l\|} \hline Z_{11}[4 & \sim \\ Z_{11}^{\prime}[4 \sim 7] & 7] \\ \hline \end{array}$	$\begin{aligned} & \Delta X_{10}[4,9,14,3] \\ & 0 x 25\\|0 x 9 d\\| 0 x 14 \\| 72 \end{aligned}=$	Quartets	2^{128}	1			
	$\left(Z_{11}^{2}[4,5,6,7]\right), i=1,2,3,4: M T K_{11}[4,5,6,7], M T K_{10}[4,9,14,3]$									

Table 17: Precomputation tables for the 25-round attack on SKINNY-64-128, where underlined bytes are used as input and determine the time and memory complexity for building the table. Note that the precomputation table may be built for pairs or quartets. When a table is built for pairs, the filter effect in brackets is for two pairs.

No.	Starting cells	Subtweakey bytes	Bytes deduced	Filter	Pairs or quartets	Time and memory	$\begin{aligned} & \text { Filter } \\ & \text { effect } \end{aligned}$
1	$\begin{aligned} & \frac{Z_{24}[1]}{X_{24}[13]}, \frac{X_{24}[6]}{X_{24}^{\prime}[13]} \\ & \hline \end{aligned}$	$\underline{\frac{S T K_{24}[1]}{S T K_{23}[2]}}$	$\begin{aligned} & X_{23}[2], X_{23}[14], \\ & Z_{24}^{\prime}[1], X_{24}^{\prime}[6] \end{aligned}$	$, \begin{aligned} & X_{23}[2] \oplus X_{23}^{\prime}[2]= \\ & X_{23}[14] \oplus X_{23}^{\prime}[14] \\ & \hline \end{aligned}$	Quartets	2^{48}	1
	$\left(Z_{24}^{i}[1], X_{24}^{i}[13], X_{24}^{i}[6]\right), i=1,2,3,4: S T K_{24}[1], S T K_{23}[2]$						
2	$\begin{aligned} & \frac{Z_{24}[7],}{X_{24}[11] \oplus X_{24}[15],} \\ & \frac{X_{24}^{\prime}[11] \oplus X_{24}^{\prime}[15]}{\Delta X_{23}[14]} \\ & \hline \end{aligned}$		$X_{23}[6], Z_{24}^{\prime}[7]$	$\begin{aligned} & X_{23}[6] \oplus X_{23}^{\prime}[6]= \\ & \Delta X_{23}[14] \end{aligned}$	Quartets	2^{40}	1
	$\begin{aligned} & \overline{\left(Z_{24}^{i}[7], X_{24}^{i}[11] \oplus X_{24}^{i}[15], \Delta X_{23}^{j}[14]\right), i=1,2,3,4, j=1,3:} \\ & S T K_{24}[7], S T K_{23}[6] \end{aligned}$						
3	$\left[\begin{array}{l}\frac{Z_{23}[5]}{Z_{24}[0]}, \\ \frac{X_{23}[9],}{X_{24}^{\prime}[12]}, \\ \hline X_{23}^{\prime}[9]\end{array}\right.$,	ST K ${ }_{24}[0]$, $S T K_{23}[5]$	$\begin{aligned} & X_{23}[5], X_{23}[12] \\ & Z_{23}^{\prime}[5], Z_{24}^{\prime}[0], \end{aligned}$	$\|$$X_{23}[5]$ \oplus $X_{23}^{\prime}[5] \oplus$ $X_{23}[9]$ \oplus $X_{23}^{\prime}[9] \oplus$ $X_{23}[13] \oplus$ \oplus $0 x 7$ $\underline{X_{23}^{\prime}[13]}=$ 	Pairs	2^{36}	$2^{4}(1)$
	$\left(Z_{24}^{i}[0], X_{24}^{i}[12], Z_{23}^{i}[5], X_{23}^{i}[9]\right), i=1,2: S T K_{24}[0], S T K_{23}[5]$						
4	$\begin{aligned} & \frac{Z_{22}[2]}{Z_{23}[1]}, \frac{X_{23}[13]}{X_{23}^{\prime}[13]}, \\ & \underline{S T K_{22}[2]} \end{aligned}$	STK ${ }_{23}[1]$,	$\begin{aligned} & X_{22}[2], Z_{22}^{\prime}[2], \\ & Z_{23}^{\prime}[1] \end{aligned}$	$\begin{aligned} & X_{22}[2] \oplus X_{22}^{\prime}[2]= \\ & \Delta X_{22}[14] \end{aligned}$	Quartets	2^{48}	2^{-4}
	${ }_{\left(Z_{23}^{i}[1], Z_{22}^{i}[2], X_{23}^{i}[13], S T K_{22}[2]\right), i=1,2,3,4: S T K_{23}[1]}$						
5	$\begin{aligned} & \frac{Z_{24}[4]}{Z_{22}[1]}, \frac{Z_{23}[0],}{X_{23}[12]} \\ & \frac{S T K_{22}}{}[1] \end{aligned}$	$\frac{S T K_{24}[4],}{S T K_{23}[0]}$	$X_{21}[14], Z_{22}^{\prime}$ [1]	$\begin{aligned} & X_{21}[14] \oplus X_{21}^{\prime}[14]= \\ & 0 x d \end{aligned}$	Quartets	2^{44}	1
	$\begin{aligned} & \left(Z_{22}^{i}[1], Z_{24}^{j}[4], Z_{23}^{j}[0], X_{23}^{j}[12], S T K_{22}[1]\right), i=1,2,3,4, j=1,3: \\ & S T K_{24}[4], S T K_{23}[0] \end{aligned}$						
6	$\frac{Z_{23}[7], \Delta X_{22}[14]}{X_{23}[11]} \oplus X_{23}[15]$ $S T K_{22}[6]$ $\left(X_{23}^{i}[11] \oplus X_{23}^{i}[15]\right.$, $j=1,3: S T K_{23}[7]$	$\begin{array}{\|l\|} \hline \underline{S T K_{23}[7]} \\ , Z_{23}^{j}[7], \Delta X_{2}^{j} \end{array}$	$\begin{array}{\|ll\|} \hline \hline X_{22}[6], & \\ X_{23}^{\prime}[11] & \oplus \\ X_{23}^{\prime}[15] & \\ \left.\hline{ }_{22}[14], S T K_{22}[6]\right), \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline X_{22}[6] \oplus X_{22}^{\prime}[6]= \\ \Delta X_{22}[14] \end{array},$	Quartets	2^{32}	2^{-4}
7	$\|$$Z_{21}[2], Z_{23}[4]$, $X_{22}[11] \oplus X_{22}[15]$, $X_{23}[13], S T K_{22}[7]$ $S T K_{21}[6]$ $\left(Z_{21}^{i}[2], X_{22}^{i}[11] \oplus X\right.$, $i=1,2,3,4, J=1$,	$\begin{aligned} & \frac{S T K_{23}[4]}{S T K_{21}[2]} \\ & \hline X_{22}^{i}[15], X_{23}^{j} \\ & , 3: S T K_{23}[4 \\ & \hline \end{aligned}$	$\left.\left\lvert\, \begin{array}{l}X_{21}[2], X_{21}[6], \\ X_{22}^{\prime}[11] \\ X_{22}^{\prime}[15], Z_{21}^{\prime}[2] \\ \\ \hline 13], Z_{23}^{j}[4], S T K_{2} \\ \hline \\ \hline\end{array}\right.\right]$	$\left.\left\lvert\, \begin{array}{ll}X_{21}[6] \oplus X_{21}^{\prime}[6] & = \\ 0 x d \quad X_{21}[2] & \oplus \\ X_{21}^{\prime}[2]=0 x d & \\ & \\ \hline\end{array}\right.\right]$ $\left.22[7], S T K_{21}[6]\right)$,	Quartets	2^{48}	2^{-8}
8	$\begin{array}{\|l\|} \hline \frac{Y_{0}[6]}{}, W_{0}[11] \\ \hline\left(Y_{1}^{i}[4], Y_{0}^{j}[6], W_{0}^{j}[11\right. \\ \hline \end{array}$	$\frac{\left\lvert\, \frac{S T K_{0}[6]}{S T K_{1}[4]}\right.}{1]), i=1,2,3}$	$\begin{array}{\|l\|} \hline \begin{array}{l} W_{0}[7], X_{1}[11] \\ W_{1}[9], Y_{1}^{\prime}[4] \end{array} \\ 3,4, j=1,3: S T \\ \hline \end{array}$	$\|$$Y_{2}[9] \oplus Y_{2}^{\prime}[9]=0 x 2$ $K_{0}[6], S T K_{1}[4]$	Quartets	2^{32}	1

[^0]: ${ }^{6}$ If both $\left(P_{1}, P_{2}\right)$ and $\left(P_{3}, P_{4}\right)$ satisfy α difference, then we can form two quartets: $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)$ and $\left(P_{1}, P_{2}, P_{4}, P_{3}\right)$.

[^1]: ${ }^{7}$ The number of filters for plaintext pairs is $n-r_{b}^{*}-\mu$ while it is $n-r_{f}^{*}$ for ciphertext pairs.

[^2]: 8 "Key bridging" is borrowed from [DKS10a, DKS15] which originally connects two subkeys separated by several key mixing steps.
 ${ }^{9}$ https://github.com/Ling-Song-000/Optimizing-Rectangle-Attacks

[^3]: ${ }^{10}$ The key counters can be set flexibly. Thus the memory cost for them is elastic.

[^4]: ${ }^{11}$ In [DQSW22], a rectangle attack on 10-round Serpent was also given. However, the authors seem to mistake m_{f}, r_{f} for m_{b}, r_{b}. So we do not include their result in Table 4.

