
Breaking Free: Efficient Multi-Party Private Set
Union Without Non-Collusion Assumptions

Minglang Dong1,2,3[0009−0002−5323−7119], Yu Chen1,2,3[0000−0003−2553−1281],
Cong Zhang4[0009−0000−5403−2866], and Yujie Bai1,2,3[0009−0006−7500−3531]

1 School of Cyber Science and Technology, Shandong University,
Qingdao 266237, China

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of

Education, Shandong University, Qingdao 266237, China
minglang dong@mail.sdu.edu.cn, yuchen@sdu.edu.cn,

baiyujie@mail.sdu.edu.cn
4 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China

zhangcong@mail.tsinghua.edu.cn

Abstract. Multi-party private set union (MPSU) protocol enables m
(m > 2) parties, each holding a set, to collectively compute the union
of their sets without revealing any additional information to other par-
ties. There are two main categories of MPSU protocols: The first builds
on public-key techniques. All existing works in this category involve a
super-linear number of public-key operations, resulting in poor practi-
cal efficiency. The second builds on oblivious transfer and symmetric-key
techniques. The only existing work in this category is proposed by Liu
and Gao (ASIACRYPT 2023), which features the best concrete per-
formance among all existing protocols, despite its super-linear computa-
tion and communication. Unfortunately, it does not achieve the standard
semi-honest security, as it inherently relies on a non-collusion assump-
tion, which is unlikely to hold in practice. Therefore, the problem of
constructing a practical MPSU protocol based on oblivious transfer and
symmetric-key techniques in standard semi-honest model remains open.
Furthermore, there is no MPSU protocol achieving both linear compu-
tation and linear communication complexity, which leaves another unre-
solved problem. In this work, we resolve these two open problems.

– We propose the first MPSU protocol based on oblivious transfer and
symmetric-key techniques in the standard semi-honest model. This
protocol is 4.9− 9.3× faster than Liu and Gao in the LAN setting.
Concretely, our protocol requires only 3.6 seconds in online phase
for 3 parties with sets of 220 items each.

– We propose the first MPSU protocol achieving both linear computa-
tion and linear communication complexity, based on public-key op-
erations. This protocol has the lowest overall communication costs
and shows a factor of 3.0 − 36.5× improvement in terms of overall
communication compared to Liu and Gao.

We implement our protocols and conduct an extensive experiment to
compare the performance of our protocols and the state-of-the-art. To

2 M. Dong et al.

the best of our knowledge, our implementation is the first correct and
secure implementation of MPSU that reports on large-size experiments.

1 Introduction

Over the last decade, there has been growing interest in private set operation
(PSO), which consists of private set intersection (PSI), private set union (PSU),
and private computing on set intersection (PCSI), etc. Among these functionali-
ties, PSI, especially two-party PSI [PSZ14, KKRT16, PRTY19, CM20, PRTY20,
RS21, RR22], has made tremendous progress and become highly practical with
extremely fast and cryptographically secure implementations. Meanwhile, multi-
party PSI [KMP+17, NTY21, CDG+21, BNOP22] is also well-studied. In con-
trast, the advancement of PSU has been sluggish until recently, several works pro-
posed efficient two-party PSU protocols [KRTW19, GMR+21, JSZ+22, ZCL+23,
CZZ+24a]. However, multi-party PSU has still not been extensively studied. In
this work, we focus on PSU in the multi-party setting.

Multi-party private set union (MPSU) enables m (m > 2) mutually un-
trusted parties, each holding a private set of elements, to compute the union of
their sets without revealing any additional information. MPSU and its variants
have numerous applications, such as information security risk assessment [LV04],
IP blacklist and vulnerability data aggregation [HLS+16], joint graph computa-
tion [BS05], distributed network monitoring [KS05], building block for private
DB supporting full join [KRTW19], private ID [GMR+21] etc.

According to the underlying techniques, existing MPSU protocols can be
mainly divided into two categories: The first category, denoted PK-MPSU, is
primarily based on public-key techniques, and has been explored in a series of
works [KS05, Fri07, VCE22, GNT23]. The drawbacks of these works are that
each party has to perform a substantial number of public-key operations, lead-
ing to super-linear computation complexity and poor practical efficiency. The
second category, denoted SK-MPSU, is primarily based on symmetric-key tech-
niques, and has only one existing work [LG23] to date. This work exhibits much
better performance than all prior works. However, it fails to achieve the standard
semi-honest security due to its inherent reliance on a non-collusion assumption,
assuming the party who obtains the union (we call it leader hereafter) not to
collude with other parties. Furthermore, it has super-linear complexity as well.
Motivated by the above, we raise the following two questions:

Can we construct a MPSU protocol based on oblivious transfer and
symmetric-key operations, without any non-collusion assumptions? Can we

construct a MPSU protocol with both linear computation and linear
communication complexity5?

5 In the context of MPSU, linear complexity means that the complexity for each party
scales linearly with the total size of all parties’ sets. In this paper, we consider the
balanced setting where each party holds sets of equal size, thus linear complexity
means that the complexity for each party scales linearly with both the number of

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 3

1.1 Our Contribution

In this work, we resolve the above two open problems by first presenting a new
primitive for MPSU, called batch secret-shared private membership test (batch
ssPMT), then employing the batch ssPMT to build a SK-MPSU in the standard
semi-honest model, and a PK-MPSU with linear computation and communica-
tion complexity. Our contributions are summarized as follows:

Efficient Batch ssPMT. At the technical core of the state-of-the-art MPSU
protocol [LG23] (hereafter referred to as LG protocol) is the multi-query secret-
shared private membership test (mq-ssPMT), which dominates both computa-
tion and communication costs of LG protocol. In analogy of the relation between
batched oblivious pseudorandom function (batch OPRF) [KKRT16] and multi-
point oblivious pseudorandom function (multi-point OPRF) [PRTY19, CM20],
we abstract a new functionality called batch secret-shared private membership
test (batch ssPMT), which allows a fairly efficient construction and can be used
to build an alternative to mq-ssPMT in the context of MPSU. Looking ahead,
our batch ssPMT serves as a core building block in our two MPSU protocols,
and significantly contributes to our speedup compared to LG protocol.

SK-MPSU in Standard Semi-Honest Model. We generalize random OT
(ROT) into multi-party setting, which we call multi-party secret-shared random
oblivious transfer (mss-ROT). Based on batch ssPMT and mss-ROT, we propose
the first SK-MPSU protocol in the standard semi-honest model. Compared to
LG protocol, our SK-MPSU has superior online performance with a 4.9− 9.3×
improvement in the LAN setting.

PK-MPSU with Linear Complexity. Based on batch ssPMT and multi-
key rerandomizable public-key encryption (MKR-PKE) [GNT23], we propose
the first MPSU protocol with both linear computation and communication. Our
PK-MPSU has the lowest overall communication costs with a factor of 3.0−36.5×
improvement compared to LG protocol. It also achieves a 1.8 − 5.4× speedup
in terms of overall running time in the WAN setting. Along the way, we find
that the PK-MPSU protocol of Gao et al. [GNT23] is insecure against arbitrary
collusion and give a practical attack to demonstrate that it necessitates the same
non-collusion assumption as LG protocol as well. 6

parties m and the set size n. Meanwhile, following current conventions in the area
of PSO, linear complexity only considers the online phase.

6 After we pointed out the security flaw of the protocol in [GNT23] with this concrete
attack, the authors of [GNT23] contacted us and confirmed our attack. Subsequently,
they updated their paper and revised their original protocol (c.f. Appendix B in the
new version of [GNT23]) to a new one, which is similar to our PK-MPSU protocol.
The only difference lies in that they instantiate our batch ssPMT by invoking mul-
tiple instances of ssPMT separately, which renders their new protocol still having
superlinear complexities. See also the summary of the relationship in their paper.

4 M. Dong et al.

Figure 1 depicts the technical overview of our new MPSU framework. We
will elaborate the details in Section 2.

Our SK-MPSU Our PK-MPSU

batch ssPMT

batch OPPRF ssPEQT

mss-ROTmulti-party secret-shared

shuffle

MKR-PKE

Fig. 1. Technical overview of our MPSU framework. The newly introduced primitives
are marked with solid boxes. The existing primitives are marked with dashed boxes.

1.2 Related Works

We review the existing semi-honest MPSU protocols in the literature.

PK-MPSU. Kisser and Song [KS05] introduced the first MPSU protocol, based
on polynomial representations and additively homomorphic encryption (AHE).
This protocol requires a substantial number of AHE operations and high-degree
polynomial calculations, so it is completely impractical.

Frikken [Fri07] improved [KS05] by decreasing the polynomial degree. How-
ever, the number of AHE operations remains quadratic in the set size due to the
necessity of performing multi-point evaluations on the encrypted polynomials.

Vos et al. [VCE22] proposed a MPSU protocol based on the bit-vector repre-
sentations. The parties collectively compute the union by performing the private
OR operations on the bit-vectors, realized by ElGamal encryption. The origi-
nal version of this protocol is merely applicable for small universes. Even after
leveraging divide-and-conquer approach, the protocol requires quadratic compu-
tation and communication complexity in the number of parties for the leader
and shows poor concrete efficiency reported by [LG23].

Recently, Gao et al. [GNT23] proposed a MPSU protocol based on three
newly introduced cryptographic tools, including membership Oblivious Trans-
fer (mOT), conditional Oblivious Pseudorandom Function (cOPRF) and MKR-
PKE. This protocol achieves near-linear complexity in the set size and linear
complexity in the number of parties, and is the most advanced MPSU in terms
of theoretical complexity. Unfortunately, their protocol turns out to be insecure

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 5

against arbitrary collusion. We propose a practical attack to show that it re-
quires the same non-collusion assumption as LG protocol (see Appendix A for
details).

SK-MPSU. Recently, Liu and Gao [LG23] proposed a practical MPSU pro-
tocol based on oblivious transfer and symmetric-key operations. This protocol
is several orders of magnitude faster than the prior works. For instance, when
computing on datasets of 210 element, it is 109× faster than [VCE22]. However,
their protocol is not secure in the standard semi-honest model.

Other Related Works. Blanton et al. [BA12] proposed a MPSU protocol
based on oblivious sorting and generic MPC. Their work focuses on devising the
circuit for MPSU. The heavy dependency on general MPC leads to inefficiency.

Table 1 provides a comprehensive theoretical comparison between existing
MPSU protocols and our proposed protocols. Leader denotes the participant
who obtains the union result. Client refers to the remaining participants.

Protocol
Computation Communication

Round Security
Leader Client Leader Client

[KS05] m2n3 pub m2n3 pub λm3n2 λm3n2 m ✓

[Fri07] mn2 pub mn2 pub λmn λmn m ✓

[VCE22] lm2n pub lmn pub λlm2n λlmn l ✓

[BA12] σmn logn+m2 sym σ2mn logn+ σm2 logm ✓

[GNT23] mn(logn/ log log n) pub (γ + λ)mn(logn/ log logn) log γ +m ✗

[LG23] (T + l +m)mn sym (T + l)mn sym (T + l)mn+ lm2n (T + l)mn log(l − logn) +m ✗

Our SK-MPSU m2n sym m2n sym γmn+ lm2n (γ + l +m)mn log γ +m ✓

Our PK-MPSU mn pub mn pub (γ + λ)mn (γ + λ)mn log γ +m ✓

Table 1. Asymptotic communication (bits) and computation costs of MPSU proto-
cols in the semi-honest setting. For the sake of comparison, we omit the Big O no-
tations and simplify the complexity by retaining only the dominant terms. We use
✓ to denote protocols in the standard semi-honest model and ✗ to denote protocols
requiring non-collusion assumption. pub: public-key operations; sym: symmetric cryp-
tographic operations. We ignore the offline phase cost in all SK-MPSU protocols and
the symmetric-key operations in all PK-MPSU protocols. [KS05] and [Fri07] use Pail-
lier while [VCE22], [GNT23] and our PK-MPSU use ElGamal. n is the set size. m is the
number of participants. λ and σ are computational and statistical security parameter
respectively. T is the number of AND gate in a SKE decryption circuit in [LG23]. l
is the bit length of input elements. γ is the output length of OPPRF. In the typical
setting, n ≤ 224, m ≤ 32, λ = 128, σ = 40, T ≈ 600, l ≤ 128 , γ ≤ 64.

2 Technical Overview

2.1 LG Protocol Revisit

We start by recalling the high-level idea of LG protocol. For the sake of simplicity,
we focus here on the case of three parties P1, P2, P3, whose inputs are X1, X2, X3

6 M. Dong et al.

respectively. We designate P1 as the leader. Since P1 already holds X1, it needs
to obtain the set difference Y1 = (X1 ∪X2 ∪X3) \X1 from P2 and P3.

Roughly speaking, their protocol enables P2 to somehow secret-share Y2 =
X2 \X1 and P3 to somehow secret-share Y3 = X3 \ (X1 ∪X2) among all parties.
Since {Y2, Y3} is a partition of Y1, each party holds a share of Y1 in the order of
Y2, Y3 eventually, and any two parties cannot collude to obtain information of
the last one’s inputs.

A naive approach to reconstructing Y1 to P1 is to let P2 and P3 send their
shares to P1 straightforwardly. However, in this way, P1 can determine the party
that each obtained element x ∈ Y1 belongs. Their solution is to let the parties
invoke multi-party secret-shared shuffle to randomly permute and re-share all
shares. Multi-party secret-shared shuffle guarantees that any two parties have
no knowledge of the permutation and all shares are refreshed after the invocation,
hence the adversary is unaware of the correspondence between shares and the
individual difference sets Y2, Y3. Then P2 and P3 can send their shuffled shares
to P1, who reconstructs Y1 and obtains the union by appending elements of X1.

LG protocol utilizes two main ingredients: (1) The secret-shared private mem-
bership test (ssPMT) [CO18, ZMS+21], where the sender S inputs a set X, and
the receiver R inputs an element y. If y ∈ X, S and R receive secret shares of
1, otherwise they receive secret shares of 0. Liu and Gao proposed a multi-query
ssPMT (mq-ssPMT), which supports the receiver querying multiple elements’
memberships of the sender’s set simultaneously. Namely, S inputs X, and R
inputs y1, · · · , yn. S and R receive secret shares of a bit vector of size n, where
if yi ∈ X, the ith bit is 1, otherwise 0. (2) A two-choice-bit version of random
oblivious transfer (ROT), where the sender S and the receiver R each holds a
choice bit e0, e1. S receives two random messages r0, r1. If e0 ⊕ e1 = 0, R re-
ceives r0, otherwise r1

7. The following is to elaborate that how to utilize these
ingredients to realize the secret-sharing processes.

The process for P2 to secret-share Y2 is as follows: P2 acts as R and executes
the mq-ssPMT with P1. For each item x ∈ X2, P2 and P1 receive shares e2,1 and
e1,2. If x ∈ X1, e2,1 ⊕ e1,2 = 1, otherwise e2,1 ⊕ e1,2 = 0. Then P2 acts as S and
executes the two-choice-bit ROT with P1. P2 and P1 each inputs e2,1, e1,2. P2

receives r02,1, r
1
2,1. If e2,1 ⊕ e1,2 = 0, P1 receives r02,1, otherwise P1 receives r12,1.

P1 sets the output as its share s2,1. P2 sets its share s2,2 to be r02,1⊕x∥H(x)8. P3

sets s2,3 to 0. If x /∈ X1, e2,1⊕e1,2 = 0, s2,1⊕s2,2⊕s2,3 = r02,1⊕(r02,1⊕x∥H(x)) =
7 This special ROT is identical to the standard 1-out-of-2 ROT, where e0 is determined
by S to indicate whether it would swap the order of r0 and r1. We use the standard
ROT to formally describe our protocol specifications in the later sections. Here, we
boil down a number of steps to the two-choice-bit ROT for facilitating illustration.

8 Suppose a lack of specific structure for set elements, then P1 cannot distinguish a set
element x and a random value r when it reconstructs the difference set. To address
this, all parties append the hash value when secret sharing an element, i.e., sharing
x∥H(x). It is provable that if the output length of H is sufficiently long (according
to [LG23], at least σ + log(m − 1) + logn bits), the probability of existing x that
satisfies x∥H(x) = r is negligible. Therefore, P1 can distinguish set elements from
random values with overwhelming probability.

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 7

x∥H(x). Otherwise, e2,1 ⊕ e1,2 = 1, s2,1 ⊕ s2,2 ⊕ s2,3 = r12,1 ⊕ r02,1 ⊕ x∥H(x) is
uniformly random. That is, Y2 is secret-shared among all parties9, and the other
elements in X2 are masked by random values before being secret-share.

We proceed to the process for P3 to secret-share Y3: P3 acts asR and executes
the mq-ssPMT with P1 and P2 separately. For each x ∈ X3, P3 and P1 receive
shares e3,1 and e1,3, while P3 and P2 receive shares e3,2 and e2,3. Then P3 acts as
S and executes the two-choice-bit ROT with P1 and P2. In the ROT between P3

and P1, P3 inputs e3,1 and P1 inputs e1,3. P3 receives r03,1, r
1
3,1. If e3,1⊕ e1,3 = 0,

P1 receives r03,1, otherwise P1 receives r13,1. P1 sets the output as its share s3,1.
In the ROT between P3 and P2, P3 inputs e3,2 and P2 inputs e2,3. P3 receives
r03,2, r

1
3,2. If e3,2 ⊕ e2,3 = 0, P2 receives r03,2, otherwise P2 receives r13,2. P2 sets

the output as its share s3,2. P3 sets its share s3,3 to be r03,1 ⊕ r03,2 ⊕ x∥H(x). If
x /∈ X1 and x /∈ X2, e3,1 ⊕ e1,3 = 0 and e3,2 ⊕ e2,3 = 0, s3,1 ⊕ s3,2 ⊕ s3,3 =
r03,1 ⊕ r03,2 ⊕ (r03,1 ⊕ r03,2 ⊕ x∥H(x)) = x∥H(x). Otherwise, there is at least one
random value r (r13,1 or r13,2) cannot be canceled out from the summation.

The LG protocol described above has two main drawbacks: First, as the heart
of LG protocol, mq-ssPMT is given a heavy instantiation which is fed much
computation task through expensive general MPC machinery and renders it the
bottleneck of the entire protocol. Second, LG protocol fails to achieve security
against arbitrary collusion. In the following two sections, we are devoted to
improving the efficiency of mq-ssPMT and enhancing LG protocol into standard
semi-honest security, respectively.

2.2 Efficient Batch ssPMT

To improve the efficiency of mq-ssPMT, we abstract a new functionality called
batch ssPMT, which is essentially the batched version of single-query ssPMT. In
the batch ssPMT functionality, the sender S inputs n disjoint sets X1, · · · , Xn,
and the receiver R inputs n elements y1, · · · , yn. S and R receive secret shares of
a bit vector of size n, whose ith bit is 1 if yi ∈ Xi, otherwise 0. The relationship
between batch ssPMT and mq-ssPMT is two-fold: In terms of functionality, batch
ssPMT is to mq-ssPMT what batch OPRF is to multi-point OPRF, testing a
batch of elements’ memberships across distinct sets rather than a common set; In
terms of efficiency, batch ssPMT admits a more efficient construction, providing
a superior alternative to mq-ssPMT in the context of MPSU.

We adopt the following two-step approach to build the batch ssPMT protocol:
(1) S and R invoke batched oblivious programmable pseudorandom function
(batch OPPRF) [KMP+17, PSTY19]. To elaborate, for the ith ssPMT instance
(i = 1, · · · , n), S choose a random si, and creates a set Ei comprising key-
value pairs with elements from Xi as keys and si as all elements’ corresponding
values. Then S and R invoke batch OPPRF of size n, where in the ith instance
of OPPRF, S inputs Ei, while R inputs yi and receives ti. According to the
definition of OPPRF (cf. Section 3.5), if yi ∈ Xi, ti equals si, otherwise ti is

9 Since X2 \ X1 merely contains the information of X1 and X2, it is sufficient to
secret-share X2 \X1 among P1 and P2. Other difference sets are shared similarly.

8 M. Dong et al.

pseudorandom to si. If yi /∈ Xi, the probability of ti = si is 2
−γ , where γ is the

output length of OPPRF, i.e., the bit length of si and ti. To ensure that the
probability of any ti ̸= si occurring is less than 2−σ (σ is the statistical security
parameter), we set γ ≥ σ + log n so that n · 2−γ ≤ 2−σ. (2) S and R invoke
n instances of secret-shared private equality test (ssPEQT) [PSTY19, CGS22],
where in the ith instance of ssPEQT, S inputs si and R inputs ti. If si = ti,
they receive secret shares of 1, otherwise 0. It’s easy to verify that if yi ∈ Xi, S
and R receive shares of 1, otherwise they receive shares of 0 with overwhelming
probability.

Now we start to build an alternative to mq-ssPMT using our batch ssPMT.
Recall that in mq-ssPMT, the sender S’s input is a single set X. First, S and
R preprocess their inputs through hashing to bin technique: R uses hash func-
tions h1, h2, h3 to assign its input elements y1, · · · , yn to B bins via Cuckoo
hashing [PR04], which ensures that each bin accommodates at most one el-
ement. At the same time, S assigns each x ∈ X to all bins determined by
h1(x), h2(x), h3(x). Then the parties invoke B instances of ssPMT, where in the
jth instance, S inputs the subset Xj ∈ X containing all elements mapped into
its bin j and R inputs the sole element mapped into its bin j. If some yi is
mapped to bin j, and yi ∈ X, then S certainly maps yi to bin j (and other bins)
as well, i.e., yi ∈ Xj . Therefore, for each bin j of R, if the inside element yi is
in X, we have yi ∈ Xj , then S and R receive shares of 1 from the ith instance
of batch ssPMT. Otherwise, we have yi /∈ Xj , then S and R receive shares of 0.

The above process in fact realizes a different functionality with mq-ssPMT.
In the above construction, the query sequence of R is determined by the Cuckoo
hash positions of its input elements. Since the Cuckoo hash positions depends
on the whole input set of R, and all shares is arranged in the order of the par-
ties’ Cuckoo hash positions, the reconstruction stage may leak some information
about the parties’ input sets to P1 and hence cannot be simulated. Therefore,
it is crucial to eliminate the dependence of shares’ order on the parties’ Cuckoo
hash positions before the reconstruction, while fortunately, it has been realized
by the execution of multi-party secret-shared shuffle as we discussed before. For
the difference in efficiency, refer to Section 7.1.

2.3 SK-MPSU from Batch ssPMT and mss-ROT

By replacing mq-ssPMT with the construction using batch ssPMT plus hash
to bin technique as previous, we can improve the performance of LG protocol
significantly. However, the improved protocol still relies on the non-collusion
assumption. So it remains to show that how to eliminate the non-collusion as-
sumption to obtain a SK-MPSU protocol in the standard semi-honest model.

First, let us figure out that why LG protocol needs the non-collusion assump-
tion. We still use the aforementioned three-party PSU protocol as illustration:

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 9

After the secret sharing process of P3, all parties hold the secret shares of

x∥H(x) x ∈ Y3

r03,1 ⊕ r13,1 ⊕ x∥H(x) x ∈ Y1

r03,2 ⊕ r13,2 ⊕ x∥H(x) x ∈ Y2

r13,1 ⊕ r13,2 ⊕ r03,1 ⊕ r03,2 ⊕ x∥H(x) x ∈ X2 ∩X1

In the final stage, if x ∈ Y3, P1 reconstructs the secret x∥H(x). Otherwise, the
secret is uniformly at random in the P1’s view so that P1 gains no information
about x. Nevertheless, this is only true when P1 does not collude with P3. Since
there is no randomness in P3’s view (In the two invocations of ROT, P3 receives
r03,1, r

1
3,1 and r03,2, r

1
3,2), for each x ∈ X3, the coalition of P1 and P3 can easily

check the reconstructed values, and distinguish the cases that x ∈ Y1, x ∈ Y2,
and x ∈ X2 ∩X1, which reveals the information of P2’s inputs.

To resolve the above security problem, we generalize ROT into multi-party
setting, which we call multi-party secret-shared random oblivious transfer (mss-
ROT). Suppose there are d < m involved parties and two of them, denoted Pch0

and Pch1 , possessing choice bits b0 and b1 respectively. The mss-ROT function-
ality gives each involved party Pi (i ∈ {1, · · · , d}) two outputs ri and ∆i, such
that if b0 ⊕ b1 = 0, r1 ⊕ · · · ⊕ rd = 0. Otherwise, r1 ⊕ · · · ⊕ rd = ∆1 ⊕ · · · ⊕∆d.
Note that if b0 ⊕ b1 = 1, the parties share a value which is uniformly random in
the view of a coalition of any d− 1 parties.

Equipped with this new primitive, the above protocol can be amended to
achieve security under arbitrary collusion: After P3 and P1 receiving shares e3,1
and e1,3, while P3 and P2 receiving shares e3,2 and e2,3, P1, P2, P3 invoke mss-
ROT twice. In the first invocation, P3 and P1 act as Pch0 and Pch1 holding as
choice bits e3,1 and e1,3. P1, P2, P3 receives r1,31, r2,31, r3,31 and∆1,31, ∆2,31, ∆3,31

separately. If e3,1⊕e1,3 = 0, r1,31⊕r2,31⊕r3,31 = 0, otherwise r1,31⊕r2,31⊕r3,31 =
∆1,31⊕∆2,31⊕∆3,31. Likewise, in the second invocation, P3 and P2 hold as choice
bits e3,2 and e2,3. P1, P2, P3 receives r1,32, r2,32, r3,32 and ∆1,32, ∆2,32, ∆3,32 sep-
arately. If e3,2⊕e2,3 = 0, r1,32⊕ r2,32⊕ r3,32 = 0, otherwise r1,32⊕ r2,32⊕ r3,32 =
∆1,32⊕∆2,32⊕∆3,32. Finally, P1 sets its share sh1 to be r01,31⊕ r01,32. P2 sets its
share sh2 to be r02,31 ⊕ r02,32. P3 sets its share sh3 to be r03,31 ⊕ r03,32 ⊕ x∥H(x).

We conclude that all parties hold the secret shares of

x∥H(x) x ∈ Y3

∆1,31 ⊕∆2,31 ⊕∆3,31 ⊕ x∥H(x) x ∈ Y1

∆1,32 ⊕∆2,32 ⊕∆3,32 ⊕ x∥H(x) x ∈ Y2

∆1,31 ⊕∆2,31 ⊕∆3,31 ⊕∆1,32 ⊕∆2,32 ⊕∆3,32 ⊕ x∥H(x) x ∈ X2 ∩X1

It is immediate that if x /∈ Y3, the secret-shared value is uniform and independent
of x in the view of a coalition of any two parties. Hence, the reconstruction reveals
no additional information to P1 even if it colludes with P2 or P3.

10 M. Dong et al.

2.4 PK-MPSU from Batch ssPMT and MKR-PKE

As previously mentioned, there are no existing MPSU works that achieve both
linear computation and communication complexity. Thereinto, LG protocol and
our SK-MPSU fail to achieve linear complexity because in the secret-sharing
based framework, each party holds shares of (m− 1)n elements and in the final
reconstruction stage, all parties except P1 send their shares to P1, then P1 recon-
struct (m− 1)n secrets to pick up all elements comprising the union. It is clear
that even in this single stage, the computation and communication complexity
of P1 deviate from the linear criteria. So we have to turn to another approach.

We notice that the most advanced work in terms of asymptotic complexity
is [GNT23], achieving near-linear complexity. We start by analyzing [GNT23]:
The first phase enables P1 to somehow acquire encrypted Xi \ (X1 ∪ · · · ∪Xi−1)
for 2 ≤ i ≤ m, interspersed with encrypted dummy messages filling positions
of the duplicate elements. Note that if P1 decrypts these ciphertexts by itself,
then it can establish a mapping associating each element x ∈ X1∪ · · ·∪Xm \X1

with the party to whom x belongs. To address this problem, they introduce a
PKE variant, MKR-PKE, with several tailored properties, enabling all parties
to conduct a collaborative decryption and shuffle procedure.

The second phase, which is the aforemetioned collaborative decryption and
shuffle procedure, works as follows: P1 sends the ciphertexts to P2 after permut-
ing them using a random permutation π1. P2 performs partial decryption on the
received ciphertexts before rerandomization, and permutes them using a random
permutation π2. Then it forwards the permuted partially decrypted ciphertexts
to P3. This iterative process continues until the last party, Pm, who returns its
permuted partially decrypted ciphertexts to P1. P1 decrypts the ultimate cipher-
texts, filters out the dummy elements, retains the desired set X1∪· · ·∪Xm \X1,
and appends the elements in X1, to obtain the union.

We identify that their non-linear complexity stems from their construction
of the first phase. Despite that they also use hashing to bin technique, their
construction does not support amortizing the batching cost. In the case B =
O(n) bins are considered, each party has to execute mOT and cOPRF of size
O(log log n) per bin, resulting in overall O(n log log n) computation and commu-
nication complexity. Besides, their insecurity against arbitrary collusion roots
in the construction of the first phase (cf. Appendix A). In contrast, the second
phase already has linear computation and communication complexity, as well
as security against arbitrary collusion.10 Therefore, the task of devising linear-
complexity MPSU reduces to devising a linear-complexity and secure construc-
tion against arbitrary collusion for the first phase.

10 As we have said, the second phase addresses the same problem solved by the multi-
party secret-shared shuffle, meanwhile there currently exists no construction for
multi-party secret-shared shuffle that achieves total linear complexity. This is the
root why our PK-MPSU protocol can achieve total linear complexity while our SK-
MPSU protocol cannot. The key distinction lies in our PK-MPSU protocol’s depar-
ture from the secret-shared paradigm, opting instead for a PKE-based approach to
replace the non-linear component.

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 11

Our first attempt is as follows: For 2 ≤ i ≤ m, each Pi and P1 execute
batch ssPMT (after preprocessing their inputs using hashing to bin, we ignore
this for the sake of simplicity in the later explanation) and receive secret shares
as the choice bits for the subsequent execution of two-choice-bit OT11, where
for each x ∈ Xi, Pi acts as S and inputs the encrypted x and an encrypted
dummy message. As a result, if x belongs to the difference set Xi \ X1, P1

receives the encrypted x; otherwise, it receives the encrypted dummy message.
Nevertheless, the goal of the first phase is to obtain the encrypted difference set
Xi \ (X1 ∪ · · · ∪Xi−1), which is the subset of Xi \X1.

In order to attain the above goal, our next strategy is to let each Pi engage in
a procedure with each Pj (1 < j < i) before executing the batch ssPMT and two-
choice-bit OT with P1, so that Pj can “obliviously” replace the encrypted items
in the intersection Xj ∩ Xi with encrypted dummy messages. The procedure
unfolds as follows.

Pi plays the role of R and executes the batch ssPMT with Pj . For each
x ∈ Xi, Pi and Pj receive shares ei,j and ej,i. Pi initializes a message m0 to the
encrypted x and m1 to an encrypted dummy message, then executes two-choice-
bit OT with Pj . Pi and Pj input ei,j and ej,i as their choice bits. Pi acts as S and
inputs m0 and m1. Pj acts as R and receives ct = mei,j⊕ej,i . If x /∈ Xj , ct is the
ciphertext of x; otherwise, the ciphertext of dummy message. Pj rerandomizes
ct to ct′ and returns ct′ to Pi. Pi rerandomizes ct′, then updates m0 to ct′ and
m1 to the rerandomized m1 before repeating the above procedure with the next
party Pj+1. The final values of m0 and m1 shall be used during the subsequent
invocation of two-choice-bit OT with P1.

3 Preliminaries

3.1 Notation

Letm denote the number of participants. We write [m] to denote a set {1, · · · ,m}.
We use Pi (i ∈ [m]) to denote participants, Xi to represent the sets they hold,
where each set has n l-bit elements. x∥y denotes the concatenation of two strings.
We use λ, σ as the computational and statistical security parameters respectively,

and use
s
≈ (resp.

c
≈) to denote that two distributions are statistically (resp. com-

putationally) indistinguishable. We denote vectors by letters with a right arrow

above and ai denotes the i-th component of a⃗. a⃗ ⊕ b⃗ = (a1 ⊕ b1, · · · , an ⊕ bn).
π(⃗a) = (aπ(1), · · · , aπ(n)), where π is a permutation over n items. π = π1◦· · ·◦πn

represents that applying the permutation π is equivalent to applying the permu-
tations π1, · · · , πn in sequence. x[i] denotes the i-th bit of element x, and X(i)
denotes the i-th element of set X. When we refer to an additive secret shared
value x among m parties, we mean that x = x1 ⊕ · · · ⊕ xm, where ⊕ is bit-wise
XOR and xi is held by Pi, i ∈ [m].

11 The difference of functionality between two-choice-bit OT and two-choice-bit ROT
is that S inputs two messages m0,m1 instead of obtaining two uniform messages.

12 M. Dong et al.

3.2 Multi-party Private Set Union

The ideal functionality of MPSU is formalized in Figure 2.

Parameters. m parties P1, · · · , Pm, where Pld is the leader, ld ∈ [m]. Size n of
input sets. The bit length l of set elements.
Functionality. On input Xi = {x1

i , · · · , xn
i } ⊆ {0, 1}l from Pi, give

⋃m
i=1 Xi

output to Pld.

Fig. 2. Multi-party Private Set Union Functionality Fmpsu

3.3 Batch Oblivious Pseudorandom Function

Oblivious pseudorandom function (OPRF) [FIPR05] is a central primitive in
the area of PSO. Kolesnikov et al. [KKRT16] introduced batched OPRF, which
provides a batch of OPRF instances in the following way. In the ith instance,
the receiver R has an input xi; the sender S learns a PRF key ki and R learns
PRF(ki, xi). Note that R evaluates the PRF on only one point per key. The
batch OPRF functionality is described formally in Figure 3.

Parameters. Sender S. ReceiverR. Batch size B. The bit length l of set elements.
Some PRF family PRF : {0, 1}∗ × {0, 1}l → {0, 1}γ .
Functionality. On input x⃗ ⊆ ({0, 1}l)B from R,

– For each i ∈ [B], choose uniform PRF key ki.
– For each i ∈ [B], define fi = PRF(ki, xi).

– Give vector k⃗ = (k1, · · · , kB) to S and vector f⃗ = (f1, · · · , fB) to R.

Fig. 3. Batch OPRF Functionality FbOPRF

3.4 Oblivious Key-Value Stores

A key-value store [PRTY20, GPR+21, RR22, BPSY23] is a data structure that
compactly represents a desired mapping from a set of keys to corresponding
values.

Definition 1. A key-value store is parameterized by a set K of keys, a set V of
values, and a set of functions H, and consists of two algorithms:

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 13

– EncodeH takes as input a set of key-value pairs {(ki, vi)|i ∈ [n]} and outputs
an object D (or, with statistically small probability, an error indicator ⊥).

– DecodeH takes as input an object D, a key k, and outputs a value v.

Correctness. For all A ⊆ K × V with distinct keys:

(k, v) ∈ A and ⊥̸= D ← EncodeH(A) =⇒ DecodeH(D, k) = v

Obliviousness. For all distinct {k01, · · · , k0n} and all distinct {k11, · · · , k1n}, if
EncodeH does not output ⊥ for {k01, · · · , k0n} or {k11, · · · , k1n}, then the distribu-
tion of D0 ← EncodeH({(k01, v1), · · · , (k0n, vn)}) is computationally indistinguish-
able to D1 ← EncodeH({(k11, v1), · · · , (k1n, vn)}), where vi ← V for i ∈ [n].

A KVS is an Oblivious KVS (OKVS) if it satisfies the obliviousness property.
we also require an additional randomness property [ZCL+23] from the OKVS.
Randomness. For any A = {(k1, v1), · · · , (kn, vn)} and k∗ /∈ {k1, · · · , kn}, the
output of DecodeH(D, k∗) is statistically indistinguishable to that of uniform
distribution over V, where D ← EncodeH(A).

3.5 Batch Oblivious Programmable Pseudorandom Function

Oblivious programmable pseudorandom function (OPPRF) [KMP+17, PSTY19,
CGS22, RS21, RR22] is an extension of OPRF, which lets S program a PRF F so
that it has specific random outputs for some specific inputs and pseudorandom
outputs for all other inputs. This kind of PRF with the additional property
that on a certain programmed set of inputs the function outputs programmed
values is called programmable PRF (PPRF) [PSTY19]. R evaluates the OPPRF
with no knowledge of whether it learns a programmed output of F or just a
pseudorandom value. The batch OPPRF functionality is given in Figure 4.

3.6 Hashing to Bin

The hashing to bin technique was introduced by Pinkas et al. [PSZ14, PSSZ15],
which is originally applied to construct two-party PSI protocol. At the high level,
the receiver R uses hash functions h1, h2, h3 to assign its items to B bins via
Cuckoo hashing [PR04], so that each bin has at most one item. The hashing
process uses eviction and the choice of which of the bins is used depends on the
entire set. Using the same hash functions and simple hashing, sender S assigns
each of its items x to all of the bins h1(x), h2(x), h3(x), so that if the item x is
also in R’s set and is mapped into the bin b ∈ {h1(x), h2(x), h3(x)} by Cuckoo
hashing, then the bin b of S’s simple hash table certainly contains x.

We write simple hashing with the following notation:

T 1, · · · , T B ← SimpleBh1,h2,h3
(X)

This expression means to hash the items of X into B bins using simple hashing
with hash functions h1, h2, h3 : {0, 1}∗ → [B]. The output is the simple hash

14 M. Dong et al.

Parameters. Sender S. Receiver R. Batch size B. The bit length l of keys. The
bit length γ of values. An OKVS scheme (EncodeH,DecodeH).
Sender’s inputs. S inputs B sets of key-value pairs including:

– Disjoint key sets K1, · · · ,KB .
– The value sets V1, · · · , VB , where |Ki| = |Vi| for every i ∈ [B], and Vi(j) ∈
{0, 1}γ for every i ∈ [B] and 1 ≤ j ≤ |Ki|.

Receiver’s inputs. R inputs B queries x⃗ ⊆ ({0, 1}l)B .
Functionality: On input (K1, · · · ,KB) and (V1, · · · , VB) from S and x⃗ ⊆
({0, 1}l)B from R,

– Choose uniformly random and independent PPRF key ki, for each i ∈ [B];
– Sample a PPRF F : {0, 1}∗×{0, 1}l → {0, 1}γ such that F (ki,Ki(j)) = Vi(j)

for i ∈ [B], 1 ≤ j ≤ |Ki|;
– Define fi = F (ki, xi), for each i ∈ [B];

– Give vector f⃗ = (f1, · · · , fB) to R.

Fig. 4. Batch OPPRF Functionality FbOPPRF

table denoted by T 1, · · · , T B , where for each x ∈ X we have T hi(x) = {x∥i|i =
1, 2, 3}.12

We write Cuckoo hashing with the following notation:

C1, · · · , CB ← CuckooBh1,h2,h3
(X)

This expression means to hash the items of X into B bins using Cuckoo hashing
on hash functions h1, h2, h3 : {0, 1}∗ → [B]. The output is the Cuckoo hash table
denoted by C1, · · · , CB , where for each x ∈ X there is some i ∈ {1, 2, 3} such
that Chi(x) = x∥i. Some Cuckoo hash positions do not matter, corresponding to
empty bins. We use these symbols throughout the subsequent sections.

3.7 Secret-Shared Private Equality Test

Secret-shared private equality test protocol (ssPEQT) [PSTY19, CGS22] can be
viewed as an extreme case of ssPMT when the sender S’s input set has only one
item. In Figure 5 we formally define this functionality.

3.8 Random Oblivious Transfer

Oblivious transfer (OT) [Rab05] is a foundational primitive in MPC, the func-
tionality of 1-out-of-2 random OT (ROT) is given in Figure 6.

12 Appending the index of the hash function is helpful for dealing with edge cases
like h1(x) = h2(x) = i, which happen with non-negligible probability. Without

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 15

Parameters. Two parties P1, P2. The bit length γ of inputs.
Functionality. On input x from P1 and input y from P2, sample two random
bits a, b under the constraint that a⊕ b =

∧γ
i=1(1⊕ x[i]⊕ y[i]). Namely, if x = y,

a⊕ b = 1. Otherwise a⊕ b = 0. Give a to P1 and b to P2.

Fig. 5. Secret-Shared Private Equality Test Functionality FssPEQT

Parameters. Sender S, Receiver R. The message length l.
Functionality. On input b ∈ {0, 1} from R, sample r0, r1 ← {0, 1}l. Give (r0, r1)
to S and give rb to R.

Fig. 6. 1-out-of-2 Random OT Functionality Frot

3.9 Multi-Party Secret-Shared Shuffle

Multi-party secret-shared shuffle has the capability to permute the share vectors
of all parties in a random permutation unknown to any coalition of m−1 parties.
Then it refreshs all shares. The functionality is given in Figure 7.

Eskandarian et al. [EB22] propose an online-efficient protocol by extend-
ing [CGP20] to the multi-party setting. In the offline phase, each party generates
a random permutation and a set of correlated vectors called share correlation. In
the online phase, each party permutes and refreshes the share vectors efficiently
using share correlation. We give the functionality of share correlation and details
of the online protocol in Appendix C.

Parameters. m parties P1, · · ·Pm. The dimension of vector n. The item length l.
Functionality. On input x⃗i = (x1

i , · · · , xn
i) from each Pi, sample a random

permutation π : [n] → [n]. For 1 ≤ i ≤ m, sample x⃗′
i ← ({0, 1}l)n satisfying⊕m

i=1 x⃗
′
i = π(

⊕m
i=1 x⃗i). Give x⃗′

i to Pi.

Fig. 7. Multi-Party Secret-Shared Shuffle Functionality Fms

appending i, the OKVS would contain the identical value F (ki, x), which leaks the
fact that a collision h1(x) = h2(x) occurred. Such an event is input-dependent so
cannot be simulated.

16 M. Dong et al.

3.10 Multi-Key Rerandomizable Public-Key Encryption

Gao et al. [GNT23] introduce the concept of multi-key rerandomizable public-
key encryption (MKR-PKE), which is a variant of PKE with several additional
properties. Let SK denote the space of secret keys which forms an abelian group
under the operation +, PK the space of public keys which forms an abelian group
under the operation ·,M the space of plaintexts, and C the space of ciphertexts.
MKR-PKE is a tuple of PPT algorithms (Gen,Enc,ParDec,Dec,ReRand) such
that:

– The key-generation algorithm Gen takes as input a security parameter 1λ

and outputs a pair of keys (pk, sk) ∈ PK × SK.
– The encryption algorithm Enc takes as input a public key pk ∈ PK and a

plaintext message x ∈M, and outputs a ciphertext ct ∈ C.
– The partial decryption algorithm ParDec takes as input a secret key share

sk ∈ SK and a ciphertext ct ∈ C, and outputs another ciphertext ct′ ∈ C.
– The decryption algorithm Dec takes as input a secret key sk ∈ SK and a

ciphertext ct ∈ C, outputs a message x ∈M or an error symbol ⊥.
– The rerandomization algorithm ReRand takes as input a public key pk ∈ PK

and a ciphertext ct ∈ C, outputs another ciphertext ct′ ∈ C.

MKR-PKE requires the following additional properties besides those of PKE
with indistinguishable multiple encryptions. (cf. Appendix B):

Partially Decryptable For any two pairs of keys (sk1, pk1) ← Gen(1λ) and
(sk2, pk2)← Gen(1λ) and any x ∈M, it holds that

ParDec(sk1,Enc(pk1 · pk2, x)) = Enc(pk2, x)

Rerandomizable For any pk ∈ PK and any x ∈M, it holds that

ReRand(pk,Enc(pk, x))
s
≈ Enc(pk, x)

[GNT23] uses elliptic curve based ElGamal encryption [ElG85] to instantiate
MKR-PKE. The concrete EC MKR-PKE is described in Appendix D.

Remark 1. We note that only a few of elliptic curves support efficient encoding
from bit-strings to EC points. Therefore, the plaintext space of EC MKR-PKE
is generally restricted to EC points to guarantee rerandomizable property.

4 Batch Secret-Shared Private Membership Test

The batch secret-shared private membership test (batch ssPMT) is a central
building block in both our SK-MPSU and PK-MPSU protocols. In this section,
we formally introduce this functionality and provide a construction built by the
aforementioned primitives.

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 17

The batch ssPMT is a two-party protocol implementing a batch of ssPMT
instances between a sender and a receiver. Assuming a batch size of B, the sender
S inputs B sets X1, · · · , XB , while the receiver R inputs B elements x1, · · · , xB .
Consequently, S and R receive secret shares of a bit vector of size B, whose ith
bit is 1 if xi ∈ Xi, otherwise 0. The batch ssPMT functionality is presented in
Figure 8 and the construction is given in Figure 9.

Parameters. Sender S. ReceiverR. Batch size B. The bit length l of set elements.
The output length γ of OPPRF.
Inputs. S inputs B disjoint sets X1, · · · , XB and R inputs x⃗ ⊆ ({0, 1}l)B .
Functionality. On inputs X1, · · · , XB from S and input x⃗ from R, for each i ∈
[B], sample two random bits eiS , e

i
R under the constraint that if xi ∈ Xi, e

i
S⊕eiR =

1, otherwise eiS ⊕ eiR = 0. Give e⃗S = (e1S , · · · , eBS) to S and e⃗R = (e1R, · · · , eBR) to
R.

Fig. 8. Batch ssPMT Functionality FbssPMT

Parameters. Sender S. ReceiverR. Batch size B. The bit length l of set elements.
The output length γ of OPPRF.
Inputs. S inputs B disjoint sets X1, · · · , XB and R inputs x⃗ ⊆ ({0, 1}l)B .
Protocol.

1. For each i ∈ [B], S chooses random si ← {0, 1}γ and computes a multiset Si

comprising |Xi| repeated elements that all equal to si.
2. The parties invoke FbOPPRF of batch size B. S acts as sender and inputs

X1, · · · , XB as key sets and S1, · · · , SB as value sets. R acts as receiver with
input x⃗, and receives a vector t⃗ = (t1, · · · , tB).

3. The parties invoke B instances of FssPEQT, where in the ith instance S inputs si
and R inputs ti. In the end, S receives eiS ∈ {0, 1} and R receives eiR ∈ {0, 1}.

Fig. 9. Batch ssPMT ΠbssPMT

Correctness. According to the functionality of batch OPPRF, if xi ∈ Xi, then
R receives ti = si. Subsequently, in the ith instance of ssPEQT, they input si
and ti which are equal, hence their outputs satisfy eiS ⊕ eiR = 1. Conversely, if
xi /∈ Xi, then R receives a pseudorandom value ti. The probability of ti = si
equals 2−γ and any ti = si, i ∈ [B] occurs with a probability of B · 2−γ . As we
set γ ≥ σ + logB, so B · 2−γ ≤ 2−σ, which means the probability of any ti = si

18 M. Dong et al.

occurring is negligible13. After the invocation of ssPEQT, we conclude that if
xi /∈ Xi, e

i
S and eiR satisfy eiS ⊕ eiR = 0 with overwhelming probability.

Theorem 1. Protocol ΠbssPMT securely realizes FbssPMT in the (FbOPRF,FssPEQT)-
hybrid model.

The security of the protocol follows immediately from the security of the batch
OPPRF and the ssPEQT functionalities.

Complexity Analysis. We set B = O(n) to be consistent with our MPSU pro-
tocols. Our construction in Figure 9 achieves linear complexities mainly profits
from our instantiation of batch OPPRF with linear computation complexity
and communication complexity, which can be clarified from two folds: First,
we follow the paradigm in [PSTY19] to construct batch OPPRF from batch
OPRF and OKVS and ultilize their technique to amortize communication so
that the total communication of computing all O(n) instances of batch OP-
PRF is the same as the total number of items, which is O(n) rather that
O(n log n/ log log n). Second, we employ subfield vector oblivious linear evalu-
ation (subfield-VOLE) [BCG+19a, BCG+19b, RRT23] to instantiate the batch
OPRF and the OKVS construction in [RR22] so that the computation complex-
ity of batch OPPRF of size O(n) also scales linearly with n. A comprehensive
complexity analysis is in Appendix F.1. We summarize the total costs as below:

– Offline phase. The computation complexity of each party is O(γn log n).
The communication complexity of each party is O(tλ log(γn/t)). The round
complexity is O(1).

– Online phase. The computation complexity of each party is O(n). The
communication complexity of each party is O(γn). The round complexity is
O(log γ).

5 MPSU from Symmetric-Key Techniques

In this section, we introduce a new primitive called multi-party secret-shared
random oblivious transfer (mss-ROT), then we utilize its two-choice-bit version
to construct a SK-MPSU based on oblivious transfer and symmetric-key opera-
tions in the standard semi-honest model.

5.1 Multi-Party Secret-Shared Random Oblivious Transfer

The abstraction of the general version of mss-ROT is inspired by the gener-
ation of Beaver Triples in multi-party setting. In the two-party GMW pro-
tocol, a Beaver Triple is produced by two role-switching executions of 1-bit

13 In fact, the lower bound of γ is relevant to the total number of the batch OPPRF
invocations. In our MPSU protocols, the batch OPPRF is invoked more than once,
thus γ should be more larger than this lower bound. Refer to F.1 for more details.

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 19

ROT [ALSZ13]. As a result, P1 holds a1, b1, c1 and P2 holds a2, b2, c2, such that
(a1 ⊕ a2) · (b1 ⊕ b2) = c1 ⊕ c2. In the multi-party setting, the functionality of
Beaver Triple is extended to let each party Pi hold ai, bi, ci with the correlation
(
⊕m

i=1 ai) · (
⊕m

i=1 bi) =
⊕m

i=1 ci. Given that (
⊕m

i=1 ai) · (
⊕m

i=1 bi) can be written
as (2 − m)(

⊕m
i=1 ai · bi) +

⊕
1≤i≤j≤m(ai + aj) · (bi + bj), multi-party Beaver

Triple reduces to pairwise two-party Beaver Triples. In consideration of the sim-
ple fact that the functionality of ROT can be interpreted as r0 ⊕ rb = b · ∆,
where ∆ = r0 ⊕ r1, we follow the approach to producing multi-party Beaver
Triples to extend ROT into multi-party setting, which is to let each party Pi to
individually input a choice bit bi and receive the output shares ri and ∆i such
that r1 ⊕ · · · ⊕ rm = (b1 ⊕ · · · ⊕ bm) · (∆1 ⊕ · · · ⊕∆m).

In the context of MPSU, we only need two-choice-bit version of mss-ROT,
which allows a more efficient construction with less pairwise invocations of two-
party ROT compared to the general version. To elaborate, the two-choice-bit
version of mss-ROT (for simplicity, we call it mss-ROT for short hereafter) allows
two parties Pch0

and Pch1
to hold their choice bits b0 and b1 s.t. r1 ⊕ · · · ⊕ rm =

(b0 ⊕ b1) · (∆1 ⊕ · · · ⊕∆m). We give the formal functionality in Figure 10 and
the detailed construction in Figure 11.

Theorem 2. Protocol Πmss-rot securely implements Fmss-rot in the presence of
any semi-honest adversary corrupting t < m parties in the Frot-hybrid model.

It is easy to see that our construction essentially boils down to perform-
ing ROT pairwise. As one of the benefits, we can utilize the derandomization
technique [Bea91] to bring most tasks forward to the offline phase. And the cor-
rectness and security of the mss-ROT protocol stems from the correctness and
security of ROT. For the complete proof, refer to Appendix E.1.

5.2 Construction of Our SK-MPSU

We now turn our attention to construct a SK-MPSU. The construction of our
SK-MPSU follows the high-level ideas we introduced in the technical overview
and is formally presented in Figure 12.

Theorem 3. Protocol ΠSK-MPSU securely implements Fmpsu against any semi-
honest adversary corrupting t < m parties in the (FbssPMT,Fmss-rot,Fms)-hybrid
model, where P1 = Pld.

The security proof of Theorem 3 is deferred to Appendix E.2.

Complexity Analysis. We provide a comprehensive complexity analysis for
our SK-MPSU protocol in Appendix F.2. The total costs are summarized below:

– Offline phase. The offline computation complexity per party isO(γmn log n+
m2n(logm + log n)). The offline communication complexity per party is
O(tλm log(γn/t) + tλm2 log(n/t) + λm2n(logm+ log n)). The offline round
complexity is O(1).

20 M. Dong et al.

– Online phase. The online computation complexity per party is O(m2n).
The online communication complexity of P1 is O(γmn + (l + κ)m2n). The
online communication complexity of Pj is O(γmn+m2n+ (l+ κ)mn). The
online round complexity is O(log γ +m).

Parameters. m parties P1, · · · , Pm, where Pch0 and Pch1 provide inputs as shares
of the choice bit, ch0, ch1 ∈ [m]. The message length l.
Functionality. On input b0 ∈ {0, 1} from Pch0 and b1 ∈ {0, 1} from Pch1 ,

– Sample r2, · · · rm,∆1,∆2, · · · ,∆m ← {0, 1}l and give (rj ,∆j) to Pj for 2 ≤
j ≤ m.

– If b0⊕b1 = 0, compute r1 =
⊕m

j=2 rj , else compute r1 = ∆1⊕(
⊕m

j=2(rj⊕∆j)).
Give r1 to P1.

Fig. 10. Multi-Party Secret-Shared Random OT Functionality Fmss-rot

6 MPSU from Public-Key Techniques

In this section, we describe how to construct a PK-MPSU achieving both linear
computation and linear communication complexity. The construction of our PK-
MPSU is formally presented in Figure 13.

Theorem 4. Protocol ΠPK-MPSU securely implements Fmpsu against any semi-
honest adversary corrupting t < m parties in the (FbssPMT,Frot)-hybrid model,
assuming the security of MKR-PKE scheme, where P1 = Pld.

The security of the above protocol is based on security of the underlying
building blocks, batch ssPMT and ROT, along with the rerandomizable prop-
erty and indistinguishable multiple encryptions of MKR-PKE. For the complete
proof, refer to Appendix E.3.

Complexity Analysis.We provide a comprehensive complexity analysis for our
PK-MPSU protocol in Appendix F.3. The total costs are summarized below:

– Offline phase. The offline computation complexity per party isO(γmn log n).
The offline communication complexity per party is O(tλm log(γn/t)). The
offline round complexity is O(1).

– Online phase. The online computation complexity per party is O(mn)
symmetric-key operations and O(mn) public-key operations. The onlne com-
munication complexity per party is O((γ + λ)mn). The online round com-
plexity is O(log γ +m).

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 21

Parameters. m parties P1, · · · , Pm. where Pch0 and Pch1 provide inputs as shares
of the choice bit, ch0, ch1 ∈ [m]. We use J to denote the set of indices for the
remaining parties who do not provide a choice-bit input, i.e., J = [m] \ {ch0, ch1}.
The message length l.
Inputs. Pch0 has input b0 ∈ {0, 1} and Pch1 has input b1 ∈ {0, 1}.
Protocol.

1. Pch0 and Pch1 invoke Frot twice: First, Pch0 acts as receiver with input
b0 and Pch1 acts as sender. Pch0 receives rb0ch1,ch0

∈ {0, 1}l. Pch1 receives

r0ch1,ch0
, r1ch1,ch0

∈ {0, 1}l; Second, Pch1 acts as receiver with input b1 and Pch0

acts as sender. Pch1 receives rb1ch0,ch1
∈ {0, 1}l. Pch0 receives r0ch0,ch1

, r1ch0,ch1
∈

{0, 1}l.
2. For j ∈ J : Pch0 and Pj invoke Frot where Pch0 acts as receiver with input

b0 and Pj as sender without input. Pch0 receives rb0j,ch0
∈ {0, 1}l. Pj receives

r0j,ch0
, r1j,ch0

∈ {0, 1}l.
3. For j ∈ J : Pch1 and Pj invoke Frot where Pch1 acts as receiver with input b1 and

Pj as sender. Pch1 receives rb1j,ch1
∈ {0, 1}l. Pj receives r0j,ch1

, r1j,ch1
∈ {0, 1}l.

4. For j ∈ J : Pj samples ∆j ← {0, 1}l and computes rj = r0j,ch0
⊕ r0j,ch1

. Pj

sends uj,ch0 = ∆j ⊕ r0j,ch0
⊕ r1j,ch0

to Pch0 , and uj,ch1 = ∆j ⊕ r0j,ch1
⊕ r1j,ch1

to
Pch1 , then outputs (rj ,∆j).

5. Pch0 computes ∆ch0 = r0ch0,ch1
⊕r1ch0,ch1

and rch0 =
⊕

j∈J(r
b0
j,ch0
⊕b0 ·uj,ch0)⊕

r0ch0,ch1
⊕ rb0ch1,ch0

⊕ b0 · ∆ch0 (· denotes bitwise-AND between the repetition
code of b0 and uj,ch0 , which are both strings of length l. Similarly hereinafter),
then outputs (rch0 ,∆ch0). Pch1 computes ∆ch1 = r0ch1,ch0

⊕r1ch1,ch0
and rch1 =⊕

j∈J(r
b1
j,ch1
⊕b1·uj,ch1)⊕r0ch1,ch0

⊕rb1ch0,ch1
⊕b1·∆ch1 , then outputs (rch1 ,∆ch1).

Fig. 11. Multi-Party Secret-Shared Random OT Πmss-rot

22 M. Dong et al.

Parameters. m parties P1, · · · , Pm. Size n of input sets. The bit length l of
set elements. Cuckoo hashing parameters: hash functions h1, h2, h3 and number of
bins B. An OKVS scheme (EncodeH,DecodeH). A collision-resisitant hash function
H(x) : {0, 1}l → {0, 1}κ.
Inputs. Each party Pi has input Xi = {x1

i , · · · , xn
i } ⊆ {0, 1}l.

Protocol.

1. Hashing to bin. P1 does T 1
1 , · · · , T B

1 ← SimpleBh1,h2,h3
(X1). For 1 <

j ≤ m, Pj does C1j , · · · , CBj ← CuckooBh1,h2,h3
(Xj) and T 1

j , · · · , T B
j ←

SimpleBh1,h2,h3
(Xj).

2. Batch secret-shared private membership test. For 1 ≤ i < j ≤ m: Pi

and Pj invoke FbssPMT of batch size B, where Pi acts as sender with inputs
T 1
i , · · · , T B

i and Pj acts as receiver with inputs C1j , · · · , CBj . For the instance
b ∈ [B], Pi receives e

b
i,j ∈ {0, 1}, and Pj receives ebj,i ∈ {0, 1}.

3. Multi-party secret-shared random oblivious transfers. For 1 ≤ i <
j ≤ m, 1 ≤ b ≤ B: P1, · · · , Pj invoke Fmss-rot where Pi acts as Pch0 with input
ebi,j and Pj acts as Pch1 with input ebj,i. For 1 ≤ d < j, Pd receives rbd,ji,∆

b
d,ji ∈

{0, 1}l+κ and computes ub
d,j =

⊕j−1
i=1 rbd,ji. Pj receives rbj,ji,∆

b
j,ji ∈ {0, 1}l+κ

and computes ub
j,j =

⊕j−1
i=1 rbj,ji ⊕ (Elem(Cbj)∥H(Elem(Cbj))) if Cbj is not corre-

sponding to an empty bin, otherwise chooses ub
j,j at random. Elem(Cbj) denotes

the element in Cbj .
4. Multi-party secret-shared shuffle.

(a) For 1 ≤ i ≤ m, each party Pi computes s⃗hi ∈ ({0, 1}l+κ)(m−1)B as follows:
For max(2, i) ≤ j ≤ m, 1 ≤ b ≤ B, shi,(j−2)B+b = ub

i,j . Set all other
positions to 0.

(b) For 1 ≤ i ≤ m, all parties Pi invoke Fms with input s⃗hi. Pi receives s⃗h
′
i.

5. Output reconstruction. For 2 ≤ j ≤ m, Pj sends s⃗h
′
j to P1. P1 recovers

v⃗ =
⊕m

i=1 s⃗h
′
i and sets Y = ∅. For 1 ≤ i ≤ (m− 1)B, if v′i = x∥H(x) holds for

some x ∈ {0, 1}l, adds x to Y . Outputs X1 ∪ Y .

Fig. 12. Our SK-MPSU ΠSK-MPSU

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 23

Parameters. m parties P1, · · · , Pm. Size n of input sets. The bit length l of
set elements. Cuckoo hashing parameters: hash functions h1, h2, h3 and num-
ber of bins B. An OKVS scheme (EncodeH,DecodeH). A MKR-PKE scheme
E = (Gen,Enc,ParDec,Dec,ReRand).
Inputs. Each party Pi has input Xi = {x1

i , · · · , xn
i } ⊆ {0, 1}l.

Protocol. Each party Pi runs (pki, ski)← Gen(1λ), and distributes its public key
pki to other parties. Define sk = sk1 + · · ·+ skm and each party can compute its
associated public key pk =

∏m
i=1 pki.

1. Hashing to bin. P1 does T 1
1 , · · · , T B

1 ← SimpleBh1,h2,h3
(X1). For 1 <

j ≤ m, Pj does C1j , · · · , CBj ← CuckooBh1,h2,h3
(Xj) and T 1

j , · · · , T B
j ←

SimpleBh1,h2,h3
(Xj).

2. Batch secret-shared private membership test. For 1 ≤ i < j ≤ m: Pi

and Pj invoke FbssPMT of batch size B, where Pi acts as sender with inputs
T 1
i , · · · , T B

i and Pj acts as receiver with inputs C1j , · · · , CBj . For the instance
b ∈ [B], Pi receives e

b
i,j ∈ {0, 1}, and Pj receives ebj,i ∈ {0, 1}.

3. Random oblivious transfers and messages rerandomization.
(a) For 2 ≤ j ≤ m, 1 ≤ b ≤ B: Pj defines a vector c⃗j and sets cbj =

Enc(pk,Elem(Cbj)). Elem(Cbj) denotes the element in Cbj .
- For 2 ≤ i < j: Pi and Pj invoke Frot where Pi acts as receiver with
input ebi,j and Pj acts as sender. Pi receives r

b
j,i,ebi,j

∈ {0, 1}λ. Pj receives

rbj,i,0, r
b
j,i,1 ∈ {0, 1}λ. Pj computes ub

j,i,ebj,i
= rb

j,i,ebj,i
⊕ cbj , ub

j,i,ebj,i⊕1
=

rb
j,ebj,i⊕1

⊕ Enc(pk,⊥), then sends ub
j,i,0, u

b
j,i,1 to Pi.

- Pi defines v
b
j,i = ub

j,i,ebi,j
⊕ rbi,j and sends v′bj,i = ReRand(pk, vbj,i) to Pj . Pj

updates cbj = ReRand(pk, v′bj,i).

(b) For 2 ≤ j ≤ m, 1 ≤ b ≤ B:

- P1 and Pj invoke Frot where P1 acts as receiver with input eb1,j and Pj acts
as sender. P1 receives rb1,j = rb

j,1,eb1,j
∈ {0, 1}λ. Pj receives rbj,1,0, r

b
j,1,1 ∈

{0, 1}λ. Pj computes ub
j,1,ebj,1

= rb
j,1,ebj,1

⊕ cbj , u
b
j,1,ebj,1⊕1

= rb
j,1,ebj,1⊕1

⊕

Enc(pk,⊥), then sends ub
j,1,0, u

b
j,1,1 to P1.

- P1 defines c⃗t
′
1 ∈ ({0, 1}λ)(m−1)B , and sets ct

′(j−2)B+b
1 =

ReRand(pk, ub
j,1,eb1,j

⊕ rb1,j).

4. Messages decryptions and shufflings. P1 samples π1 : [(m − 1)B] →
[(m− 1)B] and computes c⃗t

′′
1 = π1(c⃗t′1). P1 sends c⃗t

′′
1 to P2.

(a) For 2 ≤ j ≤ m, 1 ≤ i ≤ (m− 1)B: Pj computes ctij = ParDec(skj , ct
′′i
j−1),

pkAj = pk1 ·
∏m

d=j+1 pkd, and ct′ij = ReRand(pkAj , ct
i
j). Then it samples

πj : [(m − 1)B] → [(m − 1)B] and computes c⃗t
′′
j = πj(c⃗t

′
j). If j ̸= m, Pj

sends c⃗t
′′
j to Pj+1; else, Pm sends c⃗t

′′
m to P1.

(b) For 1 ≤ i ≤ (m− 1)B: P1 computes pti = Dec(sk1, ct
′′i
m).

5. Output reconstruction. P1 sets Y = ∅. For 1 ≤ i ≤ (m− 1)B, if pti ̸=⊥, it
updates Y = Y ∪ {pti}. P1 outputs Y .

Fig. 13. Our PK-MPSU ΠPK-MPSU

24 M. Dong et al.

Remark 2. When instantiating our PK-MPSU framework with EC MKR-PKE,
the element space has to be set as EC points accordingly, which may limit its
usage in a wide range of applications. We argue that the resulting PK-MPSU
protocol is still useful in scenarios that the element space is exactly EC points.
We demonstrate this by building the first multi-party private ID protocol (as
described in Appendix G), in which ΠPK-MPSU for EC point elements is used as
a core building block.

7 Theoretical Comparison

In this section, we compare the construction of mq-ssPMT in [LG23] (mq-ssPMT
for short) and our alternative construction built on batch ssPMT (batch ssPMT
for short) theoretically. Then we compare our two protocols with the recent
works [LG23] (which represents the MPSU protocol with the best concrete per-
formance) and [GNT23] (which represents the MPSU protocol with the best
asymptotic complexity), respectively. We emphasize that both of the two proto-
cols are not in the standard semi-honest model.

7.1 Comparison Between mq-ssPMT and Batch ssPMT

Liu and Gao adapt the SKE-based mq-RPMT in [ZCL+23] to construct mq-
ssPMT. The most expensive part of their construction is the secret-shared obliv-
ious decryption-then-matching (ssVODM) [ZCL+23] protocol, which is to im-
plement a decryption circuit and a comparison circuit by the GMW proto-
col [GMW87]. In total, the ssVODM protocol requires (T + l− log n− 1)n AND
gates, where l is the bit length of set elements, and T is the number of AND
gates in the SKE decryption circuit and is set to be considerably large (≈ 600)
according to their paper.

The costs of the batch ssPMT of size B = 1.27n14 consist of the costs of
batch OPPRF of size 1.27n and the costs of 1.27n instances of ssPEQT, where
the batch OPPRF can be instantiated by extremely fast specialized protocol
and the ssPEQT is implemented by the GMW protocol. Moreover, the state-
of-the-art batch OPPRF construction [CGS22, RS21, RR22] can achieve linear
computation and communication complexity with respect to n . In the ssPEQT,
the parties engage in 1.27(γ − 1)n AND gates, where γ is the output length of
OPPRF. Note that in the typical setting where n ≤ 224, l ≤ 128, γ ≤ 64, we have
(T + l− log n−1)n≫ 1.27(γ−1)n, which means that the number of AND gates
desired involved in batch ssPMT is far smaller than mq-ssPMT. Therefore, the
construction built on batch ssPMT greatly reduces the dependency on general
2PC and significantly decreases both computation and communication complex-
ity by a considerable factor, compared to the mq-ssPMT (For a finer-grained
asymptotic analysis of mq-ssPMT and batch ssPMT, refer to Appendix F.4 and
Appendix F.1).

14 We use stash-less Cuckoo hashing [PSTY19] with 3 hash functions, where B = 1.27n.

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 25

7.2 Comparison Between LG Protocol and Our SK-MPSU

We provide a comprehensive complexity analysis for the state-of-the-art LG
protocol in Appendix F.4. In Table 2, we present a comparison of the theoretical
computation and communication complexity for each party in both offline and
online phases between LG protocol and our SK-MPSU.

Computation Communication
Offline Online Offline Online

Leader Client Leader Client

[LG23] (T + l +m)mn logn (T + l +m)mn (T + l)mn λm2n logn (T + l)mn+ lm2n (T + l)mn

Ours (γ +m)mn logn m2n λm2n logn γmn+ lm2n (γ + l +m)mn

Table 2. Asymptotic communication (bits) and computation costs of LG protocol and
our SK-MPSU in the offline and online phases. n is the set size. m is the number of
participants. λ and σ are computational and statistical security parameter respectively
and λ = 128, σ = 40. T is the number of AND gate in an SKE decryption circuit,
T ≈ 600. l is the bit length of input elements. γ is the output length of OPPRF. t is
the noise weight in dual LPN, t ≈ 128.

As depicted in Table 2, our offline communication complexity is compara-
ble to theirs, our offline computation complexity and online computation and
communication complexity of the leader are superior to theirs. Nevertheless, our
online computation and communication complexity of client seem to be sur-
passed by theirs, as ours are quadratic in the number of parties m, while their is
linear. We argue that it is because that in order to achieve security against arbi-
trary collusion, our protocol introduces extra overhead (from mss-ROT). Even
so, for most applications when m is moderate, and our online computation and
communication costs still outperform theirs. This shall give the credit to our
speedup by replacing their mq-ssPMT with batch ssPMT.

7.3 Comparison Between [GNT23] and Our PK-MPSU

In Table 3, we present a comparison of the theoretical computation and com-
munication complexity for each party in both offline and online phases between
[GNT23] and our PK-MPSU.

We conclude that the complexity of our PK-MPSU surpasses theirs in all
respects, including the computation and communication complexity of the leader
and clients in the offline and online phases, as depicted in the Table 3.

Remark 3. The reason why our PK-MSU protocol achieves linear complexities
whereas the protocol in [GNT23] does not, lies in that the combination of our
batch ssPMT and ROT extension essentially realizes a batched version of their
membership Oblivious Transfer (mOT) with O(1) amortized costs for each in-
stance (which mainly profits from the batch OPPRF instantiation achieving
linear computation complexity and communication complexity, see Section 4).

26 M. Dong et al.

Computation Communication
Offline Online Offline Online

[GNT23] γmn logn(logn/ log log n) mn(logn/ log log n) tλm logn(logn/ log logn) (γ + λ)mn(logn/ log log n)

Ours γmn logn mn tλm logn (γ + λ)mn

Table 3. Asymptotic communication (bits) and computation costs of [GNT23] and our
PK-MPSU protocol in the offline and online phases. In the offline phase, the compu-
tation is composed of symmetric-key operations; In the online phase, the computation
is composed of public-key operations since we ignore symmetric-key operations. n is
the set size. m is the number of participants. λ and σ are computational and statisti-
cal security parameter respectively and λ = 128, σ = 40. l is the bit length of input
elements. γ is the output length of OPPRF. t is the noise weight in dual LPN, t ≈ 128.

In contrast, their protocol requires the invocation of conditional oblivious pseu-
dorandom function (cOPRF) besides mOT, and the instantiations of cOPRF
and mOT incur O(log n/ log log n) amortized costs for each instance.

8 Performance Evaluation

In this section, we provide implementation details and experimental results for
our SK-MPSU and PK-MPSU protocols. Most previous works [KS05, Fri07,
BA12, GNT23] lack open-source codes. The work of [VCE22] shows fairly poor
performance in comparison with the state-of-the-art LG protocol. Therefore, we
only compare our works with LG protocol whose complete implementation is
available on https://github.com/lx-1234/MPSU.

In the implementation of LG protocol, they designate one party to generate
share correlations in the offline phase and store them as local files, so that other
parties can read these files and consume these share correlations in the online
phase15. This implementation is not faithful to the protocol specifications, which
is to let the parties pairwise execute share translation protocols [CGP20]. It has
two pitfalls: (1) Their code does not support distributed execution. (2) It would
lead to serious information leakage. Concretely, if it is the leader who generates
share correlations, then it can learn the party to whom each element in the
union belongs (which is the same security problem addressed by the execution
of multi-party secret shuffle as we mentioned in the technical overview). If it is
a client who generates share correlations, then it can learn the union. Moreover,
their implementation gives incorrect results in several test cases when the set
size n is quite large (cf. Table 4). As a result, their code cannot be considered
as a correct or secure implementation for MPSU.

To conduct a fair comparison, we replace their implementation of share cor-
relation generation with our correct one.

15 Refer to the function ShareCorrelation::generate() in ShareCorrelationGen.cpp
of the repository https://github.com/lx-1234/MPSU.git

https://github.com/lx-1234/MPSU
https://github.com/lx-1234/MPSU.git

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 27

8.1 Experimental Setup

We run LG and our two protocols on Ubuntu 22.04 with a single Intel i7-13700
2.10 GHz CPU (16 physical cores) and 64 GB RAM. We emulate the two network
connections using Linux tc command. In the LAN setting, the bandwidth is set
to be 10 Gbps with 0.1 ms RTT latency. In the WAN setting, the bandwidth
is set to be 400 Mbps with 80 ms RTT latency. We record the running time as
the maximal time from protocol begin to end, including messages transmission
time. We compute the communication costs of the leader as the sum of the data
it sent and received. For a fair comparison, we stick to the following setting for
all protocols being evaluated:

– We set the computational security parameter κ = 128 and the statistical
security parameter λ = 40.

– We test the balanced scenario by setting all m input sets to be of equal
size. In LG protocol and our SK-MPSU, each party holds n 64-bit strings.
In our PK-MPSU, we assume that each party holds n elements encoded
as elliptic curve points (We provide two versions of the implementation of
our PK-MPSU, including encoding elements in uncompressed form and in
compressed form respectively).

– For each party, we use m − 1 threads to interact with all other parties si-
multaneously and 4 threads to perform share correlation generation (in LG
protocol and our SK-MPSU), Beaver Triple generation (in all three), paral-
lel SKE encryption (in LG protocol), ciphertext rerandomization and partial
decryption (in our PK-MPSU).

8.2 Implementation Details

Our protocols are written in C++, and we use the following libraries in our
implementation.

– VOLE: We use VOLE implemented in libOTe16, and instantiate the code
family with Expand-Convolute codes in [RRT23].

– OKVS and GMW: We use the optimized OKVS in [RR22] as our OKVS
instantiation17, and re-use the implementation of OKVS and GMW by the
authors of in [RR22]18.

– ROT: We use SoftSpokenOT [Roy22] implemented in libOTe, and set field
bits to 5 to balance computation and communication costs.

– Share Correlation: We re-use the implementation of Permute+Share [MS13,
CGP20] by the authors of in [JSZ+22]19 to build the generation of share
correlations for our SK-MPSU and LG.

16 https://github.com/osu-crypto/libOTe.git
17 Since the existence of suitable parameters for the new OKVS construction of the

recent work [BPSY23] is unclear when the set size is less than 210, we choose to use
the OKVS construction of [RR22].

18 https://github.com/Visa-Research/volepsi.git
19 https://github.com/dujiajun/PSU.git

https://github.com/osu-crypto/libOTe.git
https://github.com/Visa-Research/volepsi.git
https://github.com/dujiajun/PSU.git

28 M. Dong et al.

– MKR-PKE: We implement MKR-PKE on top of the curve NIST P-256 (also
known as secp256r1 and prime256v1) implementation from openssl20.

– Additionally, we use the cryptoTools21 library to compute hash functions and
PRNG calls, and we adopt Coproto22 to realize network communication.

8.3 Experimental Results

We conduct an extensive experiment for the numbers of parties {3, 4, 5, 7, 9, 10}
and a wide range of set sizes {26, 28, 210, 212, 214, 216, 218, 220} in the LAN and
WAN settings. We compare the performance of the protocols from four dimen-
sions: online and total running time, and online and total communication costs.
The results of online and total running time are depicted in Table 4. The results
of online and total communication costs are depicted in Table 5.

As we can see in the tables, our protocols outperform LG protocol in almost
all the case studies. Especially, our SK-MPSU protocol performs best in terms of
online running time in LAN setting, online communication costs for a relatively
small number of parties, and total running time for medium and large sets in
LAN setting among the three protocols. We observe a 4.9−9.3× improvement in
online running time and a 1.7− 8.5× improvement in total running time in the
LAN setting. It is worth mentioning that our SK-MPSU takes only 3.6 seconds
for 3 parties with sets of 220 items each, and 4.9 seconds for 4 parties with sets
of 220 items each in online phase, while the implementation of LG protocol fails
to run correctly in these cases.

On the other hand, our PK-MPSU protocol performs best in terms of total
running time in WAN setting and total communication costs among the three
protocols. It shows a 3.0− 36.5× improvement in overall communication, and a
1.8− 5.4× improvement in overall running time in the WAN setting, compared
to LG protocol.

For the cases where both the number of parties and the set size are rela-
tively large and the network environment is bandwidth-constrained, LG proto-
col marginally surpasses ours in terms of online running time, but its speedup is
only up to 1.4×. This result aligns with our theoretical analysis in Section 7.2.
Nevertheless, when each party’s set size increases to sufficiently large (220), their
implementation gives wrong results.

Acknowledgements. We would like to thank Jiahui Gao for the clarification
of their work.

References

ALSZ13. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
More efficient oblivious transfer and extensions for faster secure computa-
tion. In 2013 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS’13, 2013, pages 535–548. ACM, 2013.

20 https://github.com/openssl/openssl.git
21 https://github.com/ladnir/cryptoTools.git
22 https://github.com/Visa-Research/coproto.git

https://github.com/openssl/openssl.git
https://github.com/ladnir/cryptoTools.git
https://github.com/Visa-Research/coproto.git

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 29

Sett. m Protocol
Set size n

Online time (seconds) Total time (seconds)
26 28 210 212 214 216 218 220 26 28 210 212 214 216 218 220

LAN

3

LG23 0.030 0.038 0.056 0.106 0.286 1.024 3.899 × 0.631 0.660 0.822 1.188 4.709 22.62 95.98 ×
Our SK 0.004 0.005 0.006 0.012 0.033 0.138 0.749 3.641 0.232 0.254 0.282 0.344 0.824 3.042 14.32 119.2

Our PK♦ 0.061 0.134 0.406 1.466 5.452 22.29 87.23 357.3 0.086 0.163 0.440 1.543 5.753 23.55 92.74 389.6
Our PK▼ 0.083 0.200 0.562 2.039 8.030 31.53 127.4 514.3 0.108 0.229 0.596 2.116 8.331 32.79 133.0 546.6

4

LG23 0.050 0.055 0.063 0.117 0.336 1.274 5.572 × 0.948 0.970 1.098 1.744 6.939 32.12 135.4 ×
Our SK 0.006 0.007 0.008 0.017 0.049 0.202 1.043 4.905 0.442 0.458 0.489 0.665 1.700 7.167 36.16 344.71

Our PK♦ 0.125 0.243 0.734 2.642 10.35 40.83 166.7 − 0.161 0.280 0.784 2.760 11.00 43.51 178.3 −
Our PK▼ 0.160 0.346 1.033 3.936 15.50 61.19 246.3 − 0.196 0.383 1.083 4.054 16.16 63.87 257.9 −

5

LG23 0.064 0.066 0.077 0.133 0.383 1.509 7.613 − 1.325 1.355 1.419 2.680 10.82 48.95 213.6 −
Our SK 0.009 0.010 0.013 0.021 0.061 0.290 1.478 − 0.677 0.708 0.760 1.114 3.260 13.10 62.35 −
Our PK♦ 0.170 0.401 1.229 4.191 16.41 64.84 262.5 − 0.211 0.443 1.273 4.348 17.13 67.89 276.3 −
Our PK▼ 0.192 0.509 1.611 6.226 24.62 98.04 400.0 − 0.233 0.551 1.655 6.383 25.33 101.1 413.8 −

7

LG23 0.099 0.111 0.118 0.233 0.676 3.684 14.45 − 2.356 2.515 2.752 5.247 23.77 103.6 452.1 −
Our SK 0.014 0.017 0.021 0.040 0.109 0.545 2.701 − 1.312 1.357 1.510 2.336 8.368 37.17 146.0 −
Our PK♦ 0.273 0.649 2.225 8.325 31.62 125.7 521.2 − 0.338 0.715 2.314 8.695 33.02 131.7 552.7 −
Our PK▼ 0.339 1.031 3.230 12.25 48.71 195.2 798.1 − 0.404 1.097 3.319 12.62 50.11 201.3 829.6 −

9

LG23 0.136 0.142 0.18 0.49 1.584 6.121 − − 4.169 4.251 4.716 9.418 44.19 191.6 − −
Our SK 0.025 0.029 0.034 0.058 0.186 0.972 − − 2.183 2.272 2.557 5.085 18.93 80.01 − −
Our PK♦ 0.429 1.064 3.553 13.23 51.74 206.8 − − 0.495 1.133 3.660 13.79 54.37 217.9 − −
Our PK▼ 0.567 1.558 5.346 22.65 80.03 322.5 − − 0.633 1.627 5.453 23.21 82.66 333.6 − −

10

LG23 0.161 0.167 0.215 0.531 2.123 8.301 − − 4.943 5.178 5.604 12.82 59.17 252.5 − −
Our SK 0.03 0.033 0.042 0.073 0.234 1.219 − − 2.745 2.883 3.290 6.733 25.12 110.7 − −
Our PK♦ 0.498 1.338 4.348 16.35 63.54 260.6 − − 0.581 1.435 4.492 17.03 66.77 275.4 − −
Our PK▼ 0.677 1.913 6.552 25.11 98.94 404.3 − − 0.760 2.010 6.696 25.79 102.2 419.1 − −

WAN

3

LG23 4.510 4.516 4.521 4.979 6.295 11.87 17.98 × 11.87 13.04 15.00 18.33 28.49 85.85 247.6 ×
Our SK 2.413 2.570 2.580 3.402 4.129 5.241 10.91 31.83 8.591 9.731 12.81 16.63 25.56 56.39 192.6 826.3

Our PK♦ 4.559 4.952 5.787 7.481 13.91 37.62 131.90 505.93 5.300 5.698 6.694 8.420 15.22 39.86 138.5 538.4
Our PK▼ 4.571 4.662 5.643 7.796 14.82 42.08 150.5 593.6 5.312 5.408 6.550 8.735 16.13 44.33 157.1 626.1

4

LG23 5.789 5.876 6.293 6.956 7.587 13.58 23.32 × 17.10 19.64 26.64 32.29 49.43 139.9 490.9 ×
Our SK 3.376 3.536 3.553 4.408 5.919 8.448 20.65 64.01 11.81 14.41 20.42 27.29 48.65 132.1 499.2 2283

Our PK♦ 6.231 7.181 8.962 11.88 23.57 69.76 251.4 − 7.374 8.327 10.27 13.22 25.31 73.35 264.1 −
Our PK▼ 6.264 6.436 8.256 12.14 25.92 81.50 294.2 − 7.407 7.582 9.565 13.48 27.66 85.08 306.9 −

5

LG23 7.556 7.794 7.902 9.102 10.63 15.18 34.82 − 23.26 26.46 35.49 47.53 83.94 250.6 969.6 −
Our SK 4.501 4.583 5.217 5.955 7.936 12.21 32.14 − 18.11 21.85 30.93 45.68 91.47 278.9 1112 −
Our PK♦ 8.050 9.745 11.31 16.08 35.07 108.2 388.9 − 9.593 11.31 13.03 17.84 37.24 112.5 404.4 −
Our PK▼ 8.072 8.869 10.91 10.84 42.83 129.1 468.9 − 9.615 10.43 12.63 18.85 45.00 133.3 484.4 −

7

LG23 9.722 10.44 11.25 11.67 12.71 22.73 68.51 − 34.35 45.68 65.99 95.61 203.1 707.2 2881 −
Our SK 7.241 7.414 8.121 9.808 14.52 22.93 69.19 − 35.65 46.73 62.48 99.11 234.0 817.7 3399 −
Our PK♦ 11.44 14.77 17.55 25.72 61.13 201.6 745.7 − 13.79 17.14 20.10 28.30 64.28 209.3 779.2 −
Our PK▼ 11.54 14.11 15.89 29.37 70.84 249.3 921.8 − 13.89 16.48 18.43 31.96 73.98 257.0 955.3 −

9

LG23 11.07 11.41 13.94 14.91 15.86 34.82 − − 55.36 74.52 103.4 166.2 413.7 1531 − −
Our SK 10.62 10.81 11.75 13.88 21.07 39.73 − − 57.91 88.27 113.7 189.5 505.3 1881 − −
Our PK♦ 16.30 19.45 24.87 37.99 93.69 327.8 − − 19.45 22.64 28.21 41.33 97.85 341.3 − −
Our PK▼ 15.65 19.58 22.33 42.38 109.7 396.3 − − 18.80 22.76 25.68 45.73 113.8 409.9 − −

10

LG23 12.81 12.99 16.29 16.83 17.50 45.20 − − 66.79 91.10 137.2 126.4 579.0 2205 − −
Our SK 12.56 12.76 13.60 16.27 25.20 49.94 − − 70.02 113.8 140.6 250.8 693.0 2644 − −
Our PK♦ 19.48 22.71 28.51 43.45 112.5 392.0 − − 23.06 26.32 32.28 47.28 117.2 408.5 − −
Our PK▼ 18.28 21.67 26.72 50.03 134.4 487.3 − − 21.87 25.28 30.49 53.86 139.1 503.8 − −

Table 4. Online and total running time of LG protocol and our protocols in LAN and
WAN settings. m is the number of parties. LG denotes LG protocol. Our SK denotes
our SK-MPSU protocol. Our PK denotes our PK-MPSU protocol and we denote the
version that does not use or uses point compression technique with ♦ and ▼ respectively.
Cells with × denotes trials that obtain wrong results. Cells with − denotes trials that
ran out of memory. The best protocol within a setting is marked in blue.

30 M. Dong et al.

m Protocol
Set Size n

Online communication (MB) Total communication (MB)
26 28 210 212 214 216 218 220 26 28 210 212 214 216 218 220

3

LG23 0.157 0.284 0.962 3.662 14.43 57.58 229.8 × 6.311 7.904 13.37 32.58 114.6 474.3 2054 ×
Our SK 0.031 0.111 0.426 1.687 6.778 27.83 112.5 455.0 2.541 3.582 8.529 30.90 132.7 588.7 2615 11533

Our PK♦ 1.854 2.147 3.293 7.984 26.69 102.4 406.8 1634 2.123 2.489 3.711 8.474 27.30 103.0 408.8 1640
Our PK▼ 1.815 1.983 2.655 5.418 16.36 60.78 239.3 959.5 2.084 2.325 3.073 5.908 16.92 61.41 241.3 966.1

4

LG23 0.242 0.449 1.536 5.868 23.15 92.38 368.6 × 9.591 12.44 23.89 67.25 253.7 1074 4677 ×
Our SK 0.060 0.218 0.848 3.376 13.57 55.44 223.9 904.4 3.943 6.399 17.01 67.12 294.7 1315 5851 25819

Our PK♦ 2.781 3.212 4.939 11.98 40.04 153.6 610.2 − 3.185 3.725 5.566 12.71 40.88 154.5 613.2 −
Our PK▼ 2.723 2.975 3.983 8.130 24.54 91.20 359.0 − 3.127 3.488 4.610 8.127 25.38 92.12 362.0 −

5

LG23 0.330 0.630 2.173 8.325 32.86 131.2 523.5 − 13.12 17.75 36.48 110.7 435.2 1869 8172 −
Our SK 0.097 0.361 1.411 5.628 22.63 92.18 372.0 − 5.511 10.22 30.59 125.3 551.2 2455 10875 −
Our PK♦ 3.708 4.283 6.585 15.97 53.38 204.8 813.6 − 4.247 4.966 7.421 16.95 54.51 206.0 817.5 −
Our PK▼ 3.630 3.967 5.311 10.84 32.72 121.6 478.7 − 4.169 4.650 6.147 11.82 33.84 122.8 482.6 −

7

LG23 0.519 1.038 3.635 13.99 55.29 220.8 881.3 − 19.92 29.90 71.59 243.2 997.9 4327 18930 −
Our SK 0.198 0.750 2.956 11.82 47.55 193.1 778.6 − 8.853 18.92 65.23 277.2 1233 5505 24402 −
Our PK♦ 5.563 6.425 9.878 23.95 80.07 307.1 1220 − 6.371 7.450 11.13 25.42 81.76 309.0 1226 −
Our PK▼ 5.445 5.950 7.966 16.25 49.07 182.3 718.0 − 6.253 6.975 9.220 17.72 50.76 184.2 723.9 −

9

LG23 0.723 1.509 5.347 20.65 81.72 326.3 − − 28.15 44.74 115.0 415.3 1742 7609 − −
Our SK 0.333 1.278 5.060 20.27 81.54 330.5 − − 13.90 33.27 120.9 520.0 2310 10268 − −
Our PK♦ 7.417 8.566 13.17 31.94 106.8 409.5 − − 8.495 9.933 14.84 33.90 109.0 412.0 − −
Our PK▼ 7.26 7.933 10.62 21.67 65.43 243.1 − − 8.338 9.300 12.29 23.63 67.68 245.6 − −

10

LG23 0.831 1.768 6.296 24.36 96.43 385.1 − − 32.32 54.34 148.7 549.4 2314 10081 − −
Our SK 0.413 1.594 6.322 25.34 101.9 412.9 − − 16.12 40.87 151.2 656.4 2921 12989 − −
Our PK♦ 8.344 9.637 14.82 35.93 120.1 460.7 − − 9.556 11.18 16.70 38.13 122.6 463.5 − −
Our PK▼ 8.168 8.925 11.95 24.38 73.61 273.5 − − 9.380 10.46 13.83 26.59 76.14 276.3 − −

Table 5. Online and total communication costs of LG protocol and our protocols. m
is the number of parties. LG denotes LG protocol. Our SK denotes our SK-MPSU
protocol. Our PK denotes our PK-MPSU protocol and we denote the version that does
not use or uses point compression technique with ♦ and ▼ respectively. Cells with ×
denotes trials that obtain wrong results. Cells with − denotes trials that ran out of
memory. The best protocol within a setting is marked in blue.

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 31

BA12. Marina Blanton and Everaldo Aguiar. Private and oblivious set and mul-
tiset operations. In 7th ACM Symposium on Information, Compuer and
Communications Security, ASIACCS 2012, pages 40–41. ACM, 2012.

BC23. Dung Bui and Geoffroy Couteau. Improved private set intersection for sets
with small entries. In Public-Key Cryptography - PKC 2023 - 26th IACR
International Conference on Practice and Theory of Public-Key Cryptog-
raphy, volume 13941 of Lecture Notes in Computer Science, pages 190–220.
Springer, 2023.

BCG+19a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent non-
interactive secure computation. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019, pages
291–308. ACM, 2019.

BCG+19b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT
extension and more. In Advances in Cryptology - CRYPTO 2019. Springer,
2019.

Bea91. Donald Beaver. Efficient multiparty protocols using circuit randomiza-
tion. In Advances in Cryptology - CRYPTO ’91, 11th Annual International
Cryptology Conference, volume 576 of Lecture Notes in Computer Science,
pages 420–432. Springer, 1991.

BKM+20. Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho Sen-
gupta, Erik Taubeneck, and Vlad Vlaskin. Private matching for compute.
2020. https://eprint.iacr.org/2020/599.

BNOP22. Aner Ben-Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-
Cherniavsky. Psimple: Practical multiparty maliciously-secure private set
intersection. In ASIA CCS ’22, pages 1098–1112. ACM, 2022.

BPSY23. Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. Near-
Optimal oblivious Key-Value stores for efficient PSI, PSU and Volume-
Hiding Multi-Maps. In USENIX Security 2023, pages 301–318, 2023.

BS05. Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms
in the semi-honest model. In Advances in Cryptology - ASIACRYPT 2005,
11th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, volume 3788 of Lecture Notes in Computer
Science, pages 236–252. Springer, 2005.

CDG+21. Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi Bhavana
Obbattu, Sruthi Sekar, and Akash Shah. Efficient linear multiparty PSI
and extensions to circuit/quorum PSI. In CCS ’21, pages 1182–1204. ACM,
2021.

CGP20. Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. Secret-shared shuffle.
In Advances in Cryptology - ASIACRYPT 2020, volume 12493 of Lecture
Notes in Computer Science, pages 342–372. Springer, 2020.

CGS22. Nishanth Chandran, Divya Gupta, and Akash Shah. Circuit-psi with linear
complexity via relaxed batch OPPRF. Proc. Priv. Enhancing Technol.,
2022(1):353–372, 2022.

CM20. Melissa Chase and Peihan Miao. Private set intersection in the internet set-
ting from lightweight oblivious PRF. In Advances in Cryptology - CRYPTO
2020, volume 12172 of Lecture Notes in Computer Science, pages 34–63.
Springer, 2020.

https://eprint.iacr.org/2020/599

32 M. Dong et al.

CO18. Michele Ciampi and Claudio Orlandi. Combining private set-intersection
with secure two-party computation. In Security and Cryptography for Net-
works - 11th International Conference, SCN 2018, volume 11035 of Lecture
Notes in Computer Science, pages 464–482. Springer, 2018.

CZZ+24a. Yu Chen, Min Zhang, Cong Zhang, Minglang Dong, and Weiran Liu. Pri-
vate set operations from multi-query reverse private membership test. In
Public-Key Cryptography - PKC 2024. Springer, 2024.

CZZ+24b. Yu Chen, Min Zhang, Cong Zhang, Minglang Dong, and Weiran Liu. Pri-
vate set operations from multi-query reverse private membership test. In
PKC 2024, 2024. https://eprint.iacr.org/2022/652.

EB22. Saba Eskandarian and Dan Boneh. Clarion: Anonymous communication
from multiparty shuffling protocols. In 29th Annual Network and Dis-
tributed System Security Symposium, NDSS 2022. The Internet Society,
2022.

ElG85. Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory, 31:469–
472, 1985.

FIPR05. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Key-
word search and oblivious pseudorandom functions. In Theory of Cryptog-
raphy, Second Theory of Cryptography Conference, TCC 2005, volume 3378
of Lecture Notes in Computer Science, pages 303–324. Springer, 2005.

Fri07. Keith B. Frikken. Privacy-preserving set union. In Applied Cryptography
and Network Security, 5th International Conference, ACNS 2007, volume
4521 of Lecture Notes in Computer Science, pages 237–252. Springer, 2007.

GMR+21. Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian,
and Jaspal Singh. Private set operations from oblivious switching. In
Public-Key Cryptography - PKC 2021, volume 12711 of Lecture Notes in
Computer Science, pages 591–617. Springer, 2021.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, pages 218–229. ACM, 1987.

GNT23. Jiahui Gao, Son Nguyen, and Ni Trieu. Toward a practical multi-party
private set union. Cryptology ePrint Archive, Paper 2023/1930, 2023.
https://eprint.iacr.org/2023/1930.

GPR+21. Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. Oblivious key-value stores and amplification for private set intersec-
tion. In Advances in Cryptology - CRYPTO 2021, volume 12826 of Lecture
Notes in Computer Science, pages 395–425. Springer, 2021.

HLS+16. Kyle Hogan, Noah Luther, Nabil Schear, Emily Shen, David Stott, Sophia
Yakoubov, and Arkady Yerukhimovich. Secure multiparty computation for
cooperative cyber risk assessment. In IEEE Cybersecurity Development,
2016, pages 75–76. IEEE Computer Society, 2016.

JSZ+22. Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du, and Dawu Gu.
Shuffle-based private set union: Faster and more secure. In USENIX 2022,
2022.

KKRT16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Ef-
ficient batched oblivious PRF with applications to private set intersection.
In CCS 2016, pages 818–829. ACM, 2016.

https://eprint.iacr.org/2022/652
https://eprint.iacr.org/2023/1930

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 33

KMP+17. Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and
Ni Trieu. Practical multi-party private set intersection from symmetric-key
techniques. In Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2017, pages 1257–1272. ACM,
2017.

KRTW19. Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable
private set union from symmetric-key techniques. In Advances in Cryp-
tology - ASIACRYPT 2019, volume 11922 of Lecture Notes in Computer
Science, pages 636–666. Springer, 2019.

KS05. Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations.
In Advances in Cryptology - CRYPTO 2005, volume 3621 of Lecture Notes
in Computer Science, pages 241–257. Springer, 2005.

LG23. Xiang Liu and Ying Gao. Scalable multi-party private set union from multi-
query secret-shared private membership test. In Advances in Cryptology -
ASIACRYPT 2023. Springer, 2023.

LV04. Arjen K. Lenstra and Tim Voss. Information security risk assessment,
aggregation, and mitigation. In Information Security and Privacy: 9th
Australasian Conference, ACISP 2004., volume 3108 of Lecture Notes in
Computer Science, pages 391–401. Springer, 2004.

MS13. Payman Mohassel and Seyed Saeed Sadeghian. How to hide circuits in
MPC an efficient framework for private function evaluation. In Advances
in Cryptology - EUROCRYPT 2013, volume 7881 of Lecture Notes in Com-
puter Science, pages 557–574. Springer, 2013.

NTY21. Ofri Nevo, Ni Trieu, and Avishay Yanai. Simple, fast malicious multi-
party private set intersection. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2021, pages
1151–1165. ACM, 2021.

PR04. Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2):122–144, 2004.

PRTY19. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light:
Lightweight private set intersection from sparse OT extension. In Ad-
vances in Cryptology - CRYPTO 2019, volume 11694 of Lecture Notes in
Computer Science, pages 401–431. Springer, 2019.

PRTY20. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from
paxos: Fast, malicious private set intersection. In Advances in Cryptology -
EUROCRYPT 2020, volume 12106 of Lecture Notes in Computer Science,
pages 739–767. Springer, 2020.

PSSZ15. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phas-
ing: Private set intersection using permutation-based hashing. In 24th
USENIX Security Symposium, USENIX Security 15, Washington, D.C.,
USA, August 12-14, 2015, pages 515–530. USENIX Association, 2015.

PSTY19. Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay
Yanai. Efficient circuit-based PSI with linear communication. In Advances
in Cryptology - EUROCRYPT 2019, volume 11478 of Lecture Notes in
Computer Science, pages 122–153. Springer, 2019.

PSZ14. Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set
intersection based on OT extension. In Proceedings of the 23rd USENIX
Security Symposium, 2014, pages 797–812. USENIX Association, 2014.

Rab05. Michael O. Rabin. How to exchange secrets with oblivious transfer. IACR
Cryptol. ePrint Arch., page 187, 2005.

34 M. Dong et al.

Roy22. Lawrence Roy. Softspokenot: Quieter OT extension from small-field silent
VOLE in the minicrypt model. In Advances in Cryptology - CRYPTO
2022. Springer, 2022.

RR22. Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved
OKVS and subfield VOLE. In ACM CCS 2022, 2022.

RRT23. Srinivasan Raghuraman, Peter Rindal, and Titouan Tanguy. Expand-
convolute codes for pseudorandom correlation generators from LPN. In
Advances in Cryptology - CRYPTO 2023, volume 14084 of Lecture Notes
in Computer Science, pages 602–632. Springer, 2023.

RS21. Peter Rindal and Phillipp Schoppmann. VOLE-PSI: fast OPRF and
circuit-psi from vector-ole. In Advances in Cryptology - EUROCRYPT
2021, volume 12697 of Lecture Notes in Computer Science, pages 901–930.
Springer, 2021.

VCE22. Jelle Vos, Mauro Conti, and Zekeriya Erkin. Fast multi-party private set
operations in the star topology from secure ands and ors. IACR Cryptol.
ePrint Arch., page 721, 2022.

ZCL+23. Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin. Optimal
private set union from multi-query reverse private membership test. In
USENIX 2023, 2023. https://eprint.iacr.org/2022/358.

ZMS+21. Shengnan Zhao, Ming Ma, Xiangfu Song, Han Jiang, Yunxue Yan, and
Qiuliang Xu. Lightweight threshold private set intersection via oblivious
transfer. In Wireless Algorithms, Systems, and Applications - 16th In-
ternational Conference, WASA 2021, volume 12939 of Lecture Notes in
Computer Science, pages 108–116. Springer, 2021.

A Leakage Analysis of [GNT23]

The MPSU protocol in [GNT23] is claimed to be secure in the presence of
arbitrary colluding participants. However, our analysis suggests that the protocol
fails to achieve this security, and also requires the non-collusion assumption as
LG protocol. First, we give a brief review of the protocol.

Apart from MKR-PKE, their protocol utilizes three primary ingredients: 1)
The OPRF [PRTY19, CM20, RS21, RR22], where the sender S inputs a PRF
key k, and the receiver R inputs a elements x and receives the corresponding
PRF evaluation {Fk(x)}. 2) The conditional oblivious pseudorandom function
(cOPRF), an extension they develop on the OPRF, where the sender S addition-
ally inputs a set Y . If x /∈ Y , R receives Fk(x), else R receives a random value
sampled by S.23 3) The membership Oblivious Transfer (mOT), where S inputs
an element y and two messages u0, u1, while R inputs a set X and receives u,
one of u0, u1. If y ∈ X, u = u0, else u = u1.

To illustrate the insecurity of their protocol, we consider a three-party case
where P1 and P3 each possess a single item X1 = {x1} and X3 = {x3} re-
spectively, while P2 possesses a set X2. We assume that x1 = x3. According to
their protocol, in step 3.(a), P1 and P2 invoke the OPRF where P1 acts as R
23 In the latest version of [GNT23], they have made a slight adjustment to the function-

ality of cOPRF. However, this adjustment does not change their insecurity. Their
latest protocol is still vulnerable to our attack.

https://eprint.iacr.org/2022/358

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 35

inputting x1 and P2 acts as S inputting its PRF key k2. P1 receives the PRF
value Fk2

(x1). Meanwhile, in step 3.(c), P2 and P3 invoke the cOPRF where
P3 acts as R inputting x3, and P2 acts as S inputting its PRF key k2 and the
set X2. P3 receives the output w from the cOPRF. By the definition of cOPRF
functionality, if x3 /∈ X2, w = Fk2

(x3), otherwise w is a random value.
If P1 and P3 collude, they can distinguish the cases where x3 ∈ X2 and

x3 /∈ X2 by comparing P1’s output Fk2
(x1) from the OPRF and P3’s output w

from the cOPRF for equality. To elaborate, we recall that x1 = x3, so Fk2(x1) =
Fk2(x3). If Fk2(x1) = w, it implies that P3 receives Fk2(x3) from the cOPRF,
so the coalition learns that x3 /∈ X2; On the contrary, if Fk2

(x1) ̸= w, it implies
that the output of P3 from the cOPRF is not Fk2

(x3), so it is a random value,
then the coalition learns that x3 ∈ X2. More generally, as long as P1 and P3

collude, they can identify whether each element x ∈ X1 ∩X3 belongs to X2 or
not, by comparing the PRF value Fk(x) from the OPRF between P1 and P2 and
the cPRF value (whose condition depends on x ∈ X2 or not) from the cOPRF
between P2 and P3. This acquired knowledge is information leakage in MPSU.
Therefore, their protocol also requires the non-collusion assumption.

B Public-Key Encryption

A public-key encryption (PKE) scheme is a tuple of PPT algorithms (Gen,Enc,Dec)
such that:

– The key-generation algorithm Gen takes as input the security parameter 1λ

and outputs a pair of keys (pk, sk) ∈ PK × SK.
– The encryption algorithm Enc takes as input a public key pk and a plaintext

x ∈M, and outputs a ciphertext ct.
– The decryption algorithm Dec takes as input a secret key sk and a ciphertext

ct, and outputs a message x or or an error symbol ⊥.

Correctness. For any (pk, sk) outputed by Gen(1λ), and any x ∈ M, it holds
that Dec(sk, (Enc(pk, x))) = x.

The IND-CPA security of PKE implies security for encryption of multiple
messages whose definition is as follows:

Definition 2. A public-key encryption scheme E = (Gen,Enc,Dec) has indis-
tinguishable multiple encryptions if for all PPT adversaries A s.t. any tuples
(m1, · · · ,mq) and (m′

1, · · · ,m′
q) chosen by A (where q is polynomial in λ):

{Enc(pk,m1), · · · ,Enc(pk,mq) : (pk, sk)← Gen(1λ)}
c
≈

{Enc(pk,m′
1), · · · ,Enc(pk,m′

q) : (pk, sk)← Gen(1λ)}

C Construction of Multi-Party Secret-Shared Shuffle

The functionality of share correlation generated in the offline phase is depicted
in Figure 14. The online details of multi-party secret-shared shuffle in [EB22]
are given in Figure 15.

36 M. Dong et al.

Parameters. m parties P1, · · ·Pm. The dimension of vector n. The item length l.
Functionality. On input πi : [n] → [n] from each Pi (1 ≤ i ≤ m), sample

a⃗′
i, b⃗i ← ({0, 1}l)n for 1 ≤ i ≤ m − 1, and a⃗i, ∆⃗m ← ({0, 1}l)n for 2 ≤ i ≤ m,

which satisfy

∆⃗m = πm(· · · (π2(π1(

m⊕
i=2

a⃗i)⊕ a⃗′
1)⊕ a⃗′

2) · · · ⊕ a⃗′
m−1)⊕

m−1⊕
i=1

b⃗i

Give a⃗′
1, b⃗1 to P1, a⃗

′
i, a⃗i, b⃗i to Pi (1 < i < m), and a⃗m, ∆⃗m to Pm.

Fig. 14. Share Correlation Functionality Fsc

Parameters: m parties P1, · · · , Pm. Ideal functionality Fsc in Figure 14. The
dimension of vector n. The item length l.
Inputs: Each party Pi has input x⃗i = (x1

i , · · · , xn
i).

Protocol:

1. Each party Pi samples a random permutation πi : [n] → [n] and invokes Fsc

with input πi. P1 receives a⃗′
1, b⃗1 ∈ ({0, 1}l)n; For 2 ≤ j < m, Pj receives

a⃗′
j , a⃗j , b⃗j ∈ ({0, 1}l)n; Pm receives a⃗m, ∆⃗m ∈ ({0, 1}l)n.

2. For 2 ≤ j ≤ m, Pj computes c⃗j = x⃗j ⊕ a⃗j and sends c⃗j to P1.
3. P1 computes c⃗′1 = π1(

⊕m
j=2 c⃗j ⊕ x⃗1)⊕ a⃗′

1 and send it to P2. P1 outputs b⃗1.

4. For 2 ≤ j < m, Pj computes c⃗′j = πj(c⃗′j−1) ⊕ a⃗′
j and send it to Pj+1. Pj

outputs b⃗j .
5. Pm outputs πm(c⃗′m−1)⊕ ∆⃗m.

Fig. 15. Multi-Party Secret-Shared Shuffle Protocol Πms

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 37

D Construction of MKR-PKE from ElGamal

The MKR-PKE is instantiated using ElGamal encryption as follows:

– The key-generation algorithm Gen takes as input the security parameter 1λ

and generates (G, g, p), where G is a cyclic group, g is the generator and q
is the order. Outputs sk and pk = gsk.

– The randomized encryption algorithm Enc takes as input a public key pk
and a plaintext message x ∈ G, samples r ← Zq, and outputs a ciphertext
ct = (ct1, ct2) = (gr, x · pkr).

– The partial decryption algorithm ParDec takes as input a secret key share
sk and a ciphertext ct = (ct1, ct2), and outputs ct′ = (ct1, ct2 · ct−sk

1).

– The decryption algorithm Dec takes as input a secret key sk and a ciphertext
ct = (ct1, ct2), and outputs x = ct2 · ct−sk

1 .

– The rerandomization algorithm ReRand takes as input pk and a ciphertext
ct = (ct1, ct2), samples r ← Zq, and outputs ct′ = (ct1 · gr

′
, ct2 · pkr

′
).

E Missing Security Proofs

E.1 The Proof of Theorem 2

In order to facilitate the proof, we assume that ch0 = 1 and ch1 = m, and P1 and
Pm provide inputs b1 ∈ {0, 1} and bm ∈ {0, 1} respectively. We turn to proving
the correctness and security of the protocol in Figure 16. Note that when ch0
and ch1 are assigned different values, the proof is essentially the same.

Correctness. From the description of the protocol, we have the following equa-
tions:

r1 ⊕ (

m−1⊕
j=2

rj)⊕ rm = (

m−1⊕
j=2

(rb1j,1 ⊕ b1 · uj,1)⊕ r01,m ⊕ rb1m,1 ⊕ b1 ·∆1)

⊕(r0j1 ⊕ r0j,m)⊕ (

m−1⊕
j=2

(rbmj,m ⊕ bm · uj,m)⊕ r0m,1 ⊕ rbmm,1 ⊕ bm ·∆m) (1)

uj,1 = ∆j ⊕ r0j,1 ⊕ r1j,1, uj,m = ∆j ⊕ r0j,m ⊕ r1j,m (2)

From the definition of Random OT functionality (Figure 6), we have the follow-
ing equations:

rb1j,1 = r0j,1 ⊕ b1 · (r0j,1 ⊕ r1j,1), r
bm
j,m = r0j,m ⊕ bm · (r0j,m ⊕ r1j,m), (3)

rb1m,1 = r0m,1 ⊕ b1 · (r0j,1 ⊕ r1j,1) = r0m,1 ⊕ b1 ·∆1, (4)

rbm1,m = r01,m ⊕ bm · (r01,m ⊕ r11,m) = r01,m ⊕ bm ·∆m (5)

38 M. Dong et al.

Parameters: m parties P1, · · · , Pm. The message length l.
Inputs: P1 has input b1 ∈ {0, 1} and Pm has input bm ∈ {0, 1}.
Protocol:

1. P1 and Pm invoke Frot twice: First, P1 acts as receiver with input b1 and Pm

acts as sender. P1 receives rb1m,1 ∈ {0, 1}l. Pm receives r0m,1, r
1
m,1 ∈ {0, 1}l;

Second, Pm acts as receiver with input bm and P1 acts as sender. Pm receives
rbm1,m ∈ {0, 1}l. P1 receives r01,m, r11,m ∈ {0, 1}l.

2. For 1 < j < m: P1 and Pj invoke Frot where P1 acts as receiver with input
b1 and Pj as sender without input. P1 receives rb1j,1 ∈ {0, 1}

l. Pj receives

r0j,1, r
1
j,1 ∈ {0, 1}l.

3. For 1 < j < m: Pm and Pj invoke Frot where Pm acts as receiver with input bm
and Pj as sender. Pm receives rbmj,m ∈ {0, 1}

l. Pj receives r0j,m, r1j,m ∈ {0, 1}l.
4. For 1 < j < m: Pj samples ∆j ← {0, 1}l and computes rj = r0j,1 ⊕ r0j,m. Pj

sends uj,1 = ∆j ⊕ r0j,1 ⊕ r1j,1 to P1, and uj,m = ∆j ⊕ r0j,m ⊕ r1j,m to Pm, then
outputs (rj ,∆j).

5. P1 computes ∆1 = r01,m ⊕ r11,m and r1 =
⊕m−1

j=2 (rb1j,1 ⊕ b1 · uj,1) ⊕ r01,m ⊕
rb1m,1 ⊕ b1 ·∆1 (· denotes bitwise-AND between the repetition code of b1 and
uj,1, which are both strings of length l. Similarly hereinafter), then outputs
(r1,∆1). Pm computes ∆m = r0m,1⊕ r1m,1 and rm =

⊕m−1
j=2 (rbmj,m⊕ bm ·uj,m)⊕

r0m,1 ⊕ rbm1,m ⊕ bm ·∆m, then outputs (rm,∆m).

Fig. 16. Multi-Party Secret-Shared Random OT Πmss-rot

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 39

Substitute Equation 2, 3, 4, 5 into Equation 1 and cancel out the same terms,
we obtain:

r1 ⊕ (

m−1⊕
j=2

rj)⊕ rm

= (b1 ⊕ bm) ·∆1 ⊕ (

m−1⊕
j=2

(b1 ⊕ bm) ·∆j)⊕ (b1 ⊕ bm) ·∆m

=

m⊕
i=1

(b1 ⊕ bm) ·∆i

Then we can summarize that if b1 ⊕ bm = 0, r1 =
⊕m

j=2 rj , else r1 = ∆1 ⊕
(
⊕m

j=2(rj ⊕∆j)). This is exactly the functionality Fmss-rot.
Security. We now prove the security of the protocol.

Proof. Let Corr denote the set of all corrupted parties and H denote the set of
all honest parties. |Corr| = t.

Intuitively, the protocol is secure because all things the parties do are invoking
Frot and receiving random messages. The simulator can easily simulate these
outputs from Frot and protocol messages by generating random values, which
are independent of honest parties’ inputs.

To elaborate, in the case that P1 /∈ Corr and Pm /∈ Corr, simulator receives
all outputs (rc, ∆c) of Pc ∈ Corr and needs to emulate each Pc’s view, including
its private ∆c, outputs (r0c,1, r

1
c,1) and (r0c,m, r1c,m) from Frot. The simulator for

corrupted Pc runs the protocol honestly except that it sets Pc’s random tape to
be the output ∆c, and simulates uniform outputs from Frot under the constraint
that r0c,1 ⊕ r0c,m = rc. Clearly, the joint distribution of all outputs (rc, ∆c) of
Pc ∈ Corr, along with their view emulated by simulator, is indistinguishable
from that in the real process.

In the case that P1 ∈ Corr or Pm ∈ Corr, since the protocol is symmetric
with respect to the roles of P1 and Pm, we focus on the case of corrupted P1.
The simulator receives b1 in addition to all outputs (rc, ∆c) of Pc ∈ Corr. For
P1, its view consists of its private ∆1, outputs rb1m,1, (r

0
1,m, r11,m), {rb1j,1}1<j<m

from Frot and protocol messages {uj,1}1<j<m from Pj . For each Pc(c ̸= 1), its
view consists of its private ∆c, outputs (r

0
c,1, r

1
c,1) and (r0c,m, r1c,m) from Frot.

The simulator sets each corrupted party Pc’s random tape to be its output
∆c. Then for P1’s view, it runs the protocol honestly except that it simulates
uniform outputs rb1m,1, (r

0
1,m, r11,m), rb1i,1 from Frot and uniformly random messages

ui,1 from Pi under the constraint
⊕m−1

j=2 (rb1j,1⊕b1 ·uj,1)⊕r01,m⊕r
b1
m,1⊕b1 ·∆1 = r1,

where Pi ∈ H. For other corrupted parties’ view, it runs the protocol honestly
except that it sets r0c,m = r0c,1⊕ rc and simulates uniform output r1c,m from Frot.

In the real execution, P1 receives ui,1 = ∆i ⊕ r0i,1 ⊕ r1i,1. From the defini-

tion of ROT functionality, r0i,1 (when b1 = 0) or r1i,1(when b1 = 0) is uniform
and independent of P1’s view. Therefore, ui,1 is uniformly at random from the
perspective of P1. Clearly, the joint distribution of b1 and all outputs (rc, ∆c)

40 M. Dong et al.

of Pc ∈ Corr, along with their view emulated by simulator, is indistinguishable
from that in the real process.

In the case that P1 ∈ Corr and Pm ∈ Corr, the simulator receives b1, bm
and all outputs (rc, ∆c) of Pc ∈ Corr. For P1, its view consists of its private
∆1, outputs rb1m,1, (r01,m, r11,m), {rb1j,1}1<j<m from Frot and protocol messages
{uj,1}1<j<m from Pj . For each Pc(c ̸= 1, c ̸= m), its view consists of its private
∆c, outputs (r0c,1, r

1
c,1) and (r0c,m, r1c,m) from Frot. For Pm, its view consists of

its private ∆m, outputs rbm1,m, (r0m,1, r
1
m,1), {r

bm
j,1}1<j<m from Frot and protocol

messages {uj,m}1<j<m from Pj .
The simulator sets each corrupted party Pc’s random tape to be its output

∆c. Then for P1’s view, it runs the protocol honestly except that it simulates
uniform outputs rb1i,1 from Frot and uniformly random messages ui,1 from Pi

under the constraint
⊕m−1

j=2 (rb1j,1 ⊕ b1 · uj,1) ⊕ r01,m ⊕ rb1m,1 ⊕ b1 ·∆1 = r1, where
Pi ∈ H. For the view of Pc(c ̸= 1, c ̸= m), it runs the protocol honestly except
that it sets r0c,m = r0c,1 ⊕ rc and simulates uniform output r1c,m from Frot. For
Pm’s view, it runs the protocol honestly with the following changes:

– It simulates uniform outputs rbmi,m from Frot and uniform messages ui,m from

Pi under the constraint
⊕m−1

j=2 (rbmj,m⊕bm ·uj,m)⊕r0m,1⊕rbm1,m⊕bm ·∆m = rm,
where Pi ∈ H.

– It sets the output rbmc,m from Frot to be consistent with the partial view
(r0c,m, r1c,m) of each corrupted Pc in preceding simulation, where c ̸= 1 and
c ̸= m.

Clearly, the joint distribution of b1, bm and all outputs (rc, ∆c) of Pc ∈ Corr,
along with their view emulated by simulator, is indistinguishable from that in
the real process.

E.2 The Proof of Theorem 3

Proof. This proof is supposed to be divided into two cases in terms of whether
P1 ∈ Corr, since this determines whether the adversary has knowledge of the
output. Nevertheless, the simulation of these two cases merely differ in the output
reconstruction stage, thus we combine them together for the sake of simplicity.
Specifically, the simulator receives the input Xc of Pc ∈ Corr and the output⋃m

i=1 Xi if P1 ∈ Corr.
For each Pc, its view consists of its input Xc, outputs from FbssPMT, Fmss-rot,

output s⃗h
′
c from Fms as its share, and m − 1 sets of shares {s⃗h

′
i}1<i≤m(Pi’s

output from Fms) from Pi if c = 1. The simulator emulates each Pc’s view by
running the protocol honestly with the following changes:

– In step 2, it simulates uniform outputs {ebc,j}c<j≤m and {ebc,i}1≤i<c from
FbssPMT, on condition that Pi, Pj ∈ H.

– In step 3, it simulates uniform outputs {rbc,ji}c<j≤m,1≤i<j , {∆b
c,ji}c<j≤m,1≤i<j

from Fmss-rot, on condition that ∃1 ≤ d ≤ j, Pd ∈ H.

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 41

– In step 4, it simulates uniformly output s⃗h
′
c from Fms.

Now we discuss the case when P1 ∈ Corr. In step 4 and 5, it computes
Y =

⋃m
i=1 Xi \X1 and constructs v⃗ ∈ ({0, 1}l+κ)(m−1)B as follows:

– For ∀xi ∈ Y , vi = xi∥H(x), 1 ≤ i ≤ |Y |.
– For |Y | < i ≤ (m− 1)B, samples vi ← {0, 1}l+κ.

Then it samples a random permutation π : [(m − 1)B] → [(m − 1)B] and

computes v⃗′ = π(v⃗). For 1 ≤ i ≤ m, it samples share s⃗h
′
i ← ({0, 1}l+κ)(m−1)B ,

which satisfies
⊕m

i=1 s⃗h
′
i = v⃗′ and is consistent with the previous sampled s⃗h

′
c

for each corrupted Pc. Add all s⃗h
′
i to P1’s view and s⃗h

′
c′ to each corrupted Pc′ ’s

view(c′ ̸= 1) as its output from Fms, respectively.
The changes of outputs from FbssPMT and Fmss-rot have no impact on Pc’s

view, for the following reasons. By the definition of FbssPMT, each output ebc,j
and ebc,i from FbssPMT is uniformly distributed as a secret-share between Pc and
Pj , or Pi and Pc, where Pi, Pj ∈ H. By the definition of Fmss-rot, each output
rbc,ji from Fmss-rot is a secret-share of 0 among P1, · · · , Pj if ebi,j ⊕ ebj,i = 0, or a

secret-share of
⊕j

d=1 ∆
b
d,ji if e

b
i,j ⊕ ebj,i = 1. Therefore, even if Pc colludes with

others, rbc,ji is still uniformly random from the perspective of adversary, since
there always exists a party Pd ∈ H(1 ≤ d ≤ j) holding one share. Besides, the
outputs {∆b

c,ji}c<j≤m,1≤i<j from Fmss-rot are uniformly distributed.

It remains to demonstrate that the output s⃗h
′
c from Fms(P1 /∈ Corr) or all

outputs {s⃗h
′
i}1≤i≤m from Fms(P1 ∈ Corr) does not leak any other information

except for the union. The former case is easier to tackle with. The output s⃗h
′
c

is distributed as a secret-share among all parties, so it is uniformly distributed
from the perspective of adversary.

We now proceed to explain the latter case. For all 1 < j ≤ m, consider an
element x ∈ Xj and x is placed in the bth bin by Pj . In the real protocol, if there
is no Xi(1 ≤ i < j) s.t. x ∈ Xi, then for all 1 ≤ i < j, eyi,j ⊕ eyj,i = 0. By the

Fmss-rot functionality in Figure 10, each rbd,ji is uniform in {0, 1}l+κ conditioned

on
⊕j

d=1 r
b
d,ji = 0. From the descriptions of the protocol, We derive that each

ub
d,j is uniform in {0, 1}l+κ conditioned on

⊕j
d=1 u

b
d,j = x∥H(x), namely, they

are additive shares of x∥H(x) among all parties. This is exactly identical to the
simulation.

If there exists some Xi(1 ≤ i < j) s.t. x ∈ Xi, then ebi,j ⊕ ebj,i = 1. By

the Fmss-rot functionality in Figure 10, each rbd,ji is uniform conditioned on⊕j
d=1 r

b
d,ji =

⊕j
d=1 ∆

b
d,ji, where each ∆b

d,ji is uniformly held by Pd. From the

descriptions of the protocol, We derive that each ub
d,j is uniform conditioned on⊕j

d=1 u
b
d,j = x∥H(x) ⊕

⊕j
d=1 ∆

b
d,ji ⊕ r, where r is the sum of remaining terms.

Then, even if P1 colludes with others,
⊕j

d=1 u
b
d,j is still uniformly random from

the perspective of adversary, since there always exists a party Pd ∈ H(1 ≤ d ≤ j)
holding one uniform ∆b

d,ji and independent of all honest parties’ inputs. For all

42 M. Dong et al.

empty bins, ub
d,j is chosen uniformly random, so the corresponding

⊕j
d=1 u

b
d,j

is also uniformly at random, which is identical to the simulation. By the defi-
nition of Fms, all parties additively share

⊕j
d=1 u

b
d,j in a random permutation

that maintains privacy against a coalition of arbitrary corrupted parties, and

receive back {s⃗h
′
i}, respectively. We conclude that all outputs {s⃗h

′
i}1≤i≤m from

Fms distribute identically between the real and ideal executions.

E.3 The Proof of Theorem 4

Proof. The simulator receives the input Xc of Pc ∈ Corr and the output
⋃m

i=1 Xi

if P1 ∈ Corr.
For each Pc, its view consists of its input Xc, outputs from FbssPMT and

Frot, protocol messages {ub
j,c,0}c<j≤m, {ub

j,c,1}c<j≤m from Pj , rerandomization

messages {v′bc,i}1<i<c from Pi, πc, permuted partial decryption messages c⃗t
′′
c−1

from Pc−1 if c > 1, or c⃗t
′′
m from Pm if c = 1. The simulator emulates each Pc’s

view by running the protocol honestly with the following changes:

– In step 2, it simulates uniform outputs {ebc,j}c<j≤m and {ebc,i}1≤i<c from
FbssPMT, on condition that Pi, Pj ∈ H.

– In step 3, it simulates uniform outputs {rbc,i,0}1≤i<c, {rbc,i,1}1≤i<c from Frot,

and {rb
j,c,ebc,j

}c<j≤m from Frot, on condition that Pi, Pj ∈ H. For c < j ≤ m,

it computes ub
j,c,ebc,j

= rb
j,c,ebc,j

⊕Enc(pk,⊥) and simulates ub
j,c,ebc,j⊕1

uniformly

at random, on condition that Pj ∈ H. For 1 < i < c, it simulates v′bc,i =
Enc(pk,⊥), on condition that Pi ∈ H.

– If P1 /∈ Corr, in step 4, for 1 ≤ i ≤ (m− 1)B, it computes ct′ic−1 = Enc(pk,⊥
), and then simulates the vector c⃗t

′′
c−1 = π(c⃗t

′
c−1) from Pc−1, where π is

sampled uniformly random and Pc−1 ∈ H.

Now we discuss the case when P1 ∈ Corr. In step 4, assume d is the largest
number that Pd ∈ H, namely, Pd+1, · · · , Pm ∈ Corr. The simulator emulates the

partial decryption messages c⃗t
′′
d from Pd in the view of Pd+1 as follows:

– For ∀xi ∈ Y =
⋃m

j=1 Xj , ct
′i
d = Enc(pkA, xi), 1 ≤ i ≤ |Y |.

– For |Y | < i ≤ (m− 1)B, sets ct′id = Enc(pkA,⊥).

where pkAd
= pk1 ·

∏m
j=d+1 pkj . Then it samples a random permutation π :

[(m− 1)B]→ [(m− 1)B] and computes c⃗t
′′
d = π(c⃗t

′
d).

For other corrupted Pd′+1 ∈ {P2, · · · , Pd−1}, if Pd′ ∈ H, it simulates each
partial decryption message ct′id′ = Enc(pk,⊥) for 1 ≤ i ≤ (m − 1)B, and then

computes the vector c⃗t
′′
d′ = π(c⃗t

′
d′) from Pd′ , where πd′ is sampled uniformly

random. Append c⃗t
′′
d′ to the view of Pd′+1.

The changes of outputs from FbssPMT and Frot have no impact on Pc’s view,
for similar reasons in Theorem 3.

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 43

Indeed, ub
j,c,ebc,j⊕1

is uniform in the real process, as rb
j,c,ebc,j⊕1

(which is one of

Pj ’s output from Frot hidden from Pc, and is used to mask the encrypted message
in ub

j,c,ebc,j⊕1
) is uniform and independent of rb

j,c,ebc,j
from Pc’s perspective.

It’s evident from the descriptions of the protocol and the simulation that the
simulated ub

j,c,ebc,j
is identically distributed to that in the real process, condi-

tioned on the event ebc,j ⊕ ebj,c = 1. The analysis in the case of ebc,j ⊕ ebj,c = 0 can
be further divided into two subcases, c ̸= 1 and c = 1. We first argue that when
c ̸= 1, ub

j,c,ebc,j
emulated by simulator is indistinguishable from that in the real

process.
In the real process, for 1 < c < j ≤ m, 1 ≤ b ≤ B, if Elem(Cbj) ∈ Xj \ (X2 ∪

· · · ∪Xc−1), c
b
j = Enc(pk,Elem(Cbj)), ub

j,c,ebc,j
= rb

j,c,ebc,j
⊕ Enc(pk,Elem(Cbj)); else

cbj = Enc(pk,⊥), ub
j,c,ebc,j

= rb
j,c,ebc,j

⊕ Enc(pk,⊥). In the real process, for 1 < c <

j ≤ m, 1 ≤ b ≤ B, ub
j,c,ebc,j

= rb
j,c,ebc,j

⊕ Enc(pk,⊥). If there exists an algorithm

that distinguishes these two process, it implies the existence of an algorithm
that can distinguish two lists of encrypted messages, with no knowledge of sk
(since sk is secret-shared among m parties, it is uniformly distributed for any
coalition ofm−1 parties). Consequently, this implies the existence of a adversary
to break the indistinguishable multiple encryptions of E in Definition 2 (where
q = (m− 1)B).

When c = 1, ub
j,eb1,j

emulated by simulator is indistinguishable from that in

the real process for the similar reason as the above analysis when c > 1.
Next, we start demonstrating that all v′bc,i = Enc(pk,⊥) emulated by simula-

tor are indistinguishable from the real ones via the sequences of hybrids:

– Hyb0 The real interaction. For 1 < i < c, 1 ≤ b ≤ B: If Elem(Cbc) ∈ Xc \
(X1 ∪ · · · ∪ Xi), vbc,i = Enc(pk,Elem(Cbc)); else vbc,i = Enc(pk,⊥). v′bc,i =

ReRand(pk, vbc,i).

– Hyb1 For 1 < i < c, 1 ≤ b ≤ B: If Elem(Cbc) ∈ Xc \ (X1 ∪ · · · ∪ Xi), v
′b
c,i =

Enc(pk,Elem(Cbc)); else v′bc,i = Enc(pk,⊥). This change is indistinguishable
by the rerandomizable property of E .

– Hyb2 For 1 < i < c, 1 ≤ b ≤ B: v′bc,i = Enc(pk,⊥). This change is indistin-
guishable by the indistinguishable multiple encryptions of E .

When P1 ∈ Corr, we prove that c⃗t
′′
d emulated by simulator is indistinguish-

able from that in the real process via the sequences of hybrids:

– Hyb0 The real interaction. c⃗t
′′
1 = π1(c⃗t

′
1). For 2 ≤ j ≤ d, 1 ≤ i ≤ (m − 1)B:

ctij = ParDec(skj , ct
′′i
j−1), ct

′i
j = ReRand(pkAj , ct

i
j), c⃗t

′′
j = πj(c⃗t

′
j).

– Hyb1 For 2 ≤ j ≤ d, 1 ≤ i ≤ (m − 1)B: ctij = ParDec(skj , ct
i
j−1). c⃗t

′
d =

ReRand(pkAd
, c⃗td), c⃗t

′′
d = π(c⃗t

′
d), where π = π1 ◦ · · · ◦πd. It’s easy to see that

Hyb1 is identical to Hyb0.
– Hyb2 c⃗t1 is replaced by the following:
• For ∀xi ∈ Y =

⋃m
j=1 Xj , ct

i
1 = Enc(pk, xi), 1 ≤ i ≤ |Y |.

44 M. Dong et al.

• For |Y | < i ≤ (m− 1)B, sets cti1 = Enc(pk,⊥).
Hyb2 rearranges c⃗t1 and it is identical to Hyb1 as the adversary is unaware

of πd s.t. the order of elements in c⃗t1 has no effect on the result of c⃗t
′′
d .

– Hyb3 c⃗td is replaced by the following:
• For ∀xi ∈ Y =

⋃m
j=1 Xj , ct

i
d = Enc(pkAd

, xi), 1 ≤ i ≤ |Y |.
• For |Y | < i ≤ (m− 1)B, sets ctid = Enc(pkAd

,⊥).
The indistinguishability between Hyb3 and Hyb2 is implied by the partially
decryptable property of E .

– Hyb4 c⃗t
′
d is replaced by the following:

• For ∀xi ∈ Y =
⋃m

j=1 Xj , ct
′i
d = Enc(pkAd

, xi), 1 ≤ i ≤ |Y |.
• For |Y | < i ≤ (m− 1)B, sets ct′id = Enc(pkAd

,⊥).
Hyb4 is indistinguishable to Hyb3 because of the rerandomizable property of
E .

– Hyb5 The only change in Hyb5 is that π are sampled uniformly by the sim-

ulator. Hyb5 generates the same c⃗t
′′
d as in the simulation. Given that πd

is uniform in the adversary’s perspective, the same holds for π, so Hyb5 is
identical to Hyb4.

When P1 /∈ Corr, the simulator is unaware of the final union, so it has to em-
ulate the partial decryption messages c⃗t

′′
c−1 as permuted Enc(pk,⊥) in the view

of Pc. Compared to the above hybrid argument, we only need to add one addi-
tional hybrid after Hyb4 to replace all rerandomized partial decryption messages

c⃗t
′
c−1 with Enc(pk,⊥). This change is indistinguishable by the indistinguishable

multiple encryptions of E , as the adversary cannot distinguish two lists of mes-
sages with no knowledge of the partial secret key skAc−1

= sk1+ skc+ · · ·+ skm
(it is unaware of sk1).

The same applies for the simulation of the partial decryption messages c⃗t
′′
d′

in the view of corrupted Pd′+1 (d′ ̸= d) when P1 ∈ Corr. c⃗t
′′
d′ is also emulated

by permuted Enc(pk,⊥). To avoid repetition, we omit the analysis here.

F Complete Complexity Analyses of Protocols

F.1 Theoretical Analysis of Protocol ΠbssPMT

The costs of each stage in ΠbssPMT (Figure 9) are calculated as follows.

Batch OPPRF. The cost of batch OPPRF mainly consists of two parts:

– Batch OPRF: There are several options for instantiating batch OPRF func-
tionality [KKRT16, BC23]. We opt for subfield vector oblivious linear evalu-
ation (subfield-VOLE) [BCG+19a, BCG+19b, RRT23] to instantiate batch
OPRF using the approach in [BC23].
For B = O(n) instances of OPRF, we require performing a subfield-VOLE
of size B in the offline phase, and sending B derandomization messages of
length l in the online phase. We resort to Dual LPN with Fixed Weight

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 45

and Regular Noise [BCG+19a, BCG+19b] to improve efficiency of subfield-
VOLE, and instantiate the code family with Expand-Convolute codes [RRT23],
which enables near-linear time syndrome computation. The computation
complexity is O(n log n). The computation complexity is O(tλ log n/t), where
t is the fixed noise weight24. The round complexity is O(1).
We denote the output length of OPPRF as γ. The lower bound of γ is
relevant to the total number of the batch OPPRF invocations. In our SK-
MPSU and PK-MPSU protocols, for 1 ≤ i < j ≤ m, Pi and Pj invoke
batch OPPRF. Overall, there are 1 + 2 + · · · + (m − 1) = (m2 − m)/2
invocations of batch OPPRF. Considering all these invocations, we set γ ≥
σ+log((m2−m)/2)+log2 B, so that the probability of any ti ̸= si occurring
if x /∈ Xi, which is ((m2 −m)/2))B · 2−γ , is less than or equal to 2−σ.

– OKVS: The size of key-value pairs encoded into OKVS is |K1|+ · · ·+ |KB |.
Taking into account the invocation of batch ssPMT in our two MPSU pro-
tocols in advance, this size is 3n. We use the OKVS construction of [RR22],
and the computation complexities of EncodeH and DecodeH algorithms are
both O(n). As we employ their w = 3 scheme with a cluster size of 214, the
size of OKVS is 1.28γ · (3n) bits.

– Offline phase. The computation complexity of each party is O(n log n).
The communication complexity of each party is O(tλ log(n/t)). The round
complexity is O(1).

– Online phase. The computation complexity of each party is O(n). The
communication complexity of each party is O(γn). The round complexity is
O(1).

Secret-shared private equality tests. Like [PSTY19], we instantiate ssPEQT
(Figure 5) using the generic MPC techniques. The circuit of FssPEQT is composed
of γ−1 AND gates in GMW [GMW87], where the inputs are already in the form
of secret-shaing. Executing γ−1 AND gates in sequence would incur γ−1 rounds.
To reduce the round complexity, we leverage a divide-and-conquer strategy and
recursively organize the AND gates within a binary tree structure, where each
layer requires one round. This ensures that the number of rounds is directly
related to the depth of the tree (i.e., O(log γ)). To sum up, each party invoke B
instances of ssPEQT, which amounts to (γ−1)B AND gates and takes O(log γ)
rounds.

We use silent OT extension [BCG+19a] to generate Beaver triples in offline
phase, then each AND gate only requires 4 bits communication and O(1) com-
putation in the online phase. As a result, an invocation of ssPEQT requires 4γ
bits communication and O(1) computation in the online phase25.

24 For instance, t ≈ 128.
25 When calculating computational complexity, one evaluation on PRG or one hash

operation is usually considered as O(1) operation. However, here, the computational
unit is bitwise XOR operation, and it’s evident that performing O(γ) bitwise XOR
operations is much faster than executing O(1) PRG evaluation or hash operation.
Therefore, we count the online computation complexity of ssPEQT as O(1)

46 M. Dong et al.

– Offline phase. The computation complexity of each party is O(γn log n).
The communication complexity of each party is O(tλ log(γn/t)). The round
complexity is O(1).

– Online phase. The computation complexity of each party is O(n). The
communication complexity of each party is O(γn). The round complexity is
O(log γ).

F.2 Theoretical Analysis of Protocol ΠSK-MPSU

The costs of each stage in ΠSK-MPSU (Figure 12) are calculated as follows.

Batch ssPMT. To achieve linear communication of this stage, we use stash-less
Cuckoo hashing [PSTY19]. To render the failure probability (failure is defined
as the event where an item cannot be stored in the table and must be stored
in the stash) less than 2−40, we set B = 1.27n = O(n) for 3-hash Cuckoo
hashing. The cost of batch ssPMT follows the complexity analysis in Section 4.
For 1 ≤ i < j ≤ m, Pi and Pj invoke batch ssPMT. Overall, each party Pj

engages in m − 1 invocations of batch ssPMT, acting as R in the first j − 1
invocations, and acting as S in the last m− j invocations.

– Offline phase. The computation complexity of each party is O(γmn log n).
The communication complexity of each party isO(tλm log(γn/t)). The round
complexity is O(1).

– Online phase. The computation complexity of each party is O(mn). The
communication complexity of each party is O(γmn). The round complexity
is O(log γ).

Multi-party secret-shared random oblivious transfers. Each invocation
of mss-ROT involves pairwise executions of two-party OT. If Pi and Pj hold the
two choice bits, then Pi and Pj invoke two instances of OT and they separately
invoke one instance of OT with the remaining parties.

Each OT execution consists of two parts: In the offline phase, the parties
engages in a random-choice-bit ROT, then S sends one messages of length l+ κ
(κ = σ + log(m − 1) + log n) to R26; In the online phase, R sends a 1-bit
derandomization message to transform ROT into a chosen-input version.

For 1 ≤ i < j ≤ m, P1, · · · , Pj engage in B instances of mss-ROT, where
Pi and Pj hold the two choice bits. Considering one instance of mss-ROT and
fixing j, there are overall j − 1 invocations of mss-ROT. For 1 ≤ d < j, each Pd

has one chance to act as the choice-bit-holder (who invokes two instances of OT
with another and one with j − 2 remaining parties separately in one invocation
of mss-ROT) and acts as a nomal party (who invokes one instances of OT with
the two choice-bit-holders separately in one invocation of mss-ROT) in the rest

26 The OT execution between two choice-bit-holder does not include the sending step.
This does not affect the total complexity, so we ignore this.

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 47

j−2 invocations. Pj act as the choice-bit-holder in j−1 invocations (who invokes
2 + (j − 2) = j instances of OT).

Overall, each party Pj′ invokes [j′(j′ − 1) +
∑m

j=j′+1(j + 2(j − 2))]B =

(3m
2−j′2−5m+3j′

2)B instances of two-party OT.

– Offline phase. The computation complexity of each party is O(m2n log n).
The communication complexity of each party is O(tλm2 log(n/t)). The round
complexity is O(1).

– Online phase. The computation complexity of each party is O(m2n). The
communication complexity of each party is O(m2n). The round complexity
is O(1).

Multi-party secret-shared shuffle. We use the construction in [EB22]. In the
offline phase, each pair of parties runs a Share Translation protocol [CGP20] of
size (m− 1)B and length l + κ.

– Offline phase. The computation complexity of each party isO(m2n log(mn)).
The communication complexity of each party isO(λm2n log(mn)). The round
complexity is O(1).

– Online phase. The computation complexity of P1 is O(m2n). The commu-
nication complexity of P1 is O((l+ κ)m2n). The computation complexity of
Pj is O(mn). The communication complexity of Pj is O((l + κ)mn). The
round complexity is O(m).

Output reconstruction. For 1 < j ≤ m, Pj sends s⃗h
′
j ∈ ({0, 1}l+κ)(m−1)B to

P1. P1 reconstructs (m− 1)B secrets, each having m shares.

– Online phase. The computation complexity of P1 is O(m2n). The commu-
nication complexity of P1 is O((l+ κ)m2n). The communication complexity
of Pj is O((l + κ)mn). The round complexity is O(1).

Total costs.

– Offline phase. The offline computation complexity per party isO(γmn log n+
m2n(logm + log n)). The offline communication complexity per party is
O(tλm log(γn/t) + tλm2 log(n/t) + λm2n(logm+ log n)). The offline round
complexity is O(1).

– Online phase. The online computation complexity per party is O(γmn +
m2n). The online communication complexity of P1 is O(γmn+(l+κ)m2n).
The online communication complexity of Pj is O(γmn+m2n+ (l+ κ)mn).
The online round complexity is O(log γ +m).

F.3 Theoretical Analysis of Protocol ΠPK-MPSU

The costs of each stage in ΠPK-MPSU (Figure 13) are calculated as follows.

48 M. Dong et al.

Batch ssPMT The cost of this stage is the same as that in ΠSK-MPSU (cf.
Appendix F.3).

– Offline phase. The computation complexity of each party is O(γmn log n).
The communication complexity of each party isO(tλm log(γn/t)). The round
complexity is O(1).

– Online phase. The computation complexity of each party is O(mn). The
communication complexity of each party is O(γmn). The round complexity
is O(log γ).

Random oblivious transfers and messages rerandomization. We use EC
ElGamal encryption to instantiate the MKR-PKE scheme. So each of encryption,
partial decryption and rerandomization takes one point scalar operation. The
length of ciphertext is 4λ.

For 1 ≤ i < j ≤ m, Pi and Pj invoke B instances of silent ROT correlations
with random inputs during the offline phase. In the online phase, Pi sends 1-bit
derandomization message to transform each ROT into a chosen-input version.
For each OT correlation, each Pj executes two encryptions and sends two 4λ-
bit messages to Pi. Pi executes one rerandomization. If i ̸= 1, Pi sends one
ciphertext to Pj and Pj executes one rerandomization as well.

– Offline phase. The computation complexity of each party is O(mn log n).
The communication complexity of each party is O(tλm log(n/t)). The round
complexity is O(1).

– Online phase. The computation complexity of each party is O(mn) public-
key operations. The communication complexity of each party is O(λmn).
The round complexity is O(1).

Messages decryptions and shufflings. Each party shuffles (m− 1)B cipher-
texts and executes (m−1)B partial decryptions before sending them to the next
party.

– Online phase. The computation complexity of each party is O(mn) public-
key operations. The communication complexity of each party is O(λmn).
The round complexity is O(m).

Total costs.

– Offline phase. The computation complexity of each party is O(γmn log n).
The communication complexity of each party is O(tλm log(γn/t). The round
complexity is O(1).

– Online phase. The computation complexity of each party isO(mn) symmetric-
key operations and O(mn) public-key operations. The communication com-
plexity of each party is O((γ+λ)mn). The round complexity is O(log γ+m).

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 49

F.4 The Complete Analysis of LG Protocol

The costs of each stage in LG protocol are calculated as follows.

mq-ssPMT. The cost of this stage mainly consists of three parts:

– SKE encryption: The computation complexity of encrypting 0, 1, · · · , n − 1
is O(n).

– OKVS: The computation complexities of Encode and Decode algorithms are
both O(n). The size of OKVS is 1.28κn bits, where κ is the size of a SKE
ciphertext with the same range as before.

– ssVODM: The ssVODM protocol requires a total of (T + l− log n−1)n AND
gates, where T is the number of AND gates in the SKE decryption circuit.

For 1 ≤ i < j ≤ m, Pi and Pj invoke mq-ssPMT of size B. Overall, each
party Pj engages in (m− 1) instances of mq-ssPMT.

– Offline phase. The computation complexity of each party is O((T + l −
log n)mn log((T+ l− log n)n)). The communication complexity of each party
is O(tλm log(((T + l − log n)n)/t)). The round complexity is O(1).

– Online phase. The computation complexity of each party is O((T + l −
log n)mn). The communication complexity of each party is O((T + l + κ −
log n)mn). The round complexity is O(log(l − log n)).

Random oblivious transfers. For 1 ≤ i < j ≤ m, Pi and Pj invoke ROT
extension of size B. Overall, each party Pj engages in (m − 1) independent
instances of ROT extension of size B.

– Offline phase. The computation complexity of each party is O(mn log n).
The communication complexity of each party is O(tλm log(n/t)). The round
complexity is O(1).

– Online phase. The computation complexity of each party is O(mn). The
communication complexity of each party is O(mn). The round complexity
is O(1).

The costs of the remaining two steps, multi-party secret-shared shuffle
and output reconstruction, are exactly the same as those in our SK-MPSU
protocol.(cf. Appendix F.2).

Total costs.

– Offline phase. The computation complexity of each party is O((T + l −
log n)mn log((T+l−log n)n)+m2n logmn). The communication complexity
of each party is O(tλm log(((T + l− log n)n)/t)+λm2n(logm+log n)). The
round complexity is O(1).

– Online phase. The computation complexity of P1 is O((T + l− log n)mn+
m2n). The communication complexity of P1 is O((T + l + κ − log n)mn +
(l+κ)m2n). The computation complexity of Pj is O((T + l− log n)mn). The
communication complexity of Pj is O((T + l + κ − log n)mn). The round
complexity is O(log(l − log n) +m).

50 M. Dong et al.

G Multi-Party Private-ID

We generalize the two-party private-ID [BKM+20] to multi-party setting. Sup-
pose there are m parties, each possessing a set of n elements. The multi-party
private-ID functionality assigns a unique random identifier to each element across
all input sets, ensuring that identical elements in different sets obtain the same
identifier. Each party receives identifiers associated with its own input set, as well
as identifiers associated with the union of all parties’ input sets. With multi-party
private-ID, the parties can sort their private sets based on a global set of identi-
fiers and perform desired private computations item by item, ensuring alignment
of identical elements across their sets. The formal definition of the multi-party
private-ID is depicted in Figure 17. We build a concrete multi-party private-ID
protocol based on the DDH assumption (described in Figure 18) by extending
the “distributed OPRF+PSU” paradigm [CZZ+24b] to multi-party setting.

Parameters. m parties P1, · · ·Pm. Size n of input sets. The bit length l of set
elements. The range D of identifiers.
Functionality. On input Xi = {x1

i , · · · , xn
i } ⊆ {0, 1}l from Pi,

– For every element x ∈
⋃m

i=1 Xi, choose a random identifier R(x)← D.
– Define R∗ = {R(x)|x ∈

⋃m
i=1 Xi} and Ri = {R(x)|x ∈ Xi} for i ∈ [m].

– Give output (R∗, Ri) to Pi.

Fig. 17. Multi-Party Private ID Functionality FMPID

Correctness. The first two steps essentially realize a multi-party distributed
OPRF protocol, where each party Pi inputs a set {x1

i , · · · , xn
i } and receives

its own PRF key ki and the PRF values computed on its input set using all
parties’ keys k1, · · · , km, denoted as {PRFk1,··· ,km(x1

i), · · · ,PRFk1,··· ,km(xn
i)}. In

this case, PRFk1,··· ,km
(x) = H(x)k1···km . Note that even if m− 1 parties collude,

there exist one exponent private to the adversary, ensuring that the PRF values
remain pseudorandom (The proof is analogous to that of the DH-based OPRF,
so we omit it here).
Security. Assuming H is a random oracle, the security of protocol follows imme-
diately from the DDH assumption and the security of our PK-MPSU protocol.

Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions 51

Parameters. m parties P1, · · ·Pm. Size n of input sets. The bit length l of set
elements. A cyclic group G, where g is the generator and q is the order. The
identifie range D = G. Hash function H(x) : {0, 1}l → G.
Inputs. Each party Pi has input Xi = {x1

i , · · · , xn
i } ⊆ {0, 1}l.

Protocol.

1. For 1 ≤ i ≤ m, Pi samples ai ← Zq and ki ← Zq, then
sends {H(x1

i)
ai , · · · ,H(xn

i)
ai} to P(i+1) mod m. For 1 ≤ j < m,

P(i+j) mod m receives {y1
i , · · · , yn

i } from P(i+j−1) mod m. P(i+j) mod m com-
putes {(y1

i)
k(i+j) mod m , · · · , (yn

i)
k(i+j) mod m} and sends to P(i+j+1) mod m.

2. For 1 ≤ i ≤ m, Pi receives H(xj
i)

aiki+1···kmk1···ki−1 for j ∈ [n], then it
computes (H(xj

i)
aiki+1···kmk1···ki−1)−aiki = H(xj

i)
k1···km . We denote the set

{H(x1
i)

k1···km ,H(xn
i)

k1···km} as Ri = {r1i , · · · , rni }, where each rji ∈ G.
3. The parties invoke ΠPK-MPSU where Pi inputs Ri = {r1i , · · · , rni }. P1 receives

the union R∗ =
⋃m

i=1 Yi, and sends it to other parties.
4. Each party Pi outputs (R

∗, Ri).

Fig. 18. DH-based Multi-Party Private ID ΠMPID

	Breaking Free: Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions

