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Abstract—In crowdsourcing systems, requesters publish tasks,
and interested workers provide answers to get rewards. Worker
anonymity motivates participation since it protects their privacy.
Anonymity with unlinkability is an enhanced version of anonymity
because it makes it impossible to “link” workers across the tasks
they participate in. Another core feature of crowdsourcing sys-
tems is worker quality which expresses a worker’s trustworthiness
and quantifies their historical performance. In this work, we
present AVeCQ, the first crowdsourcing system that reconciles
these properties, achieving enhanced anonymity and verifiable
worker quality updates. AVeCQ relies on a suite of cryptographic
tools, such as zero-knowledge proofs, to (i) guarantee workers’
privacy, (ii) prove the correctness of worker quality scores
and task answers, and (iii) commensurate payments. AVeCQ is
developed modularly, where requesters and workers communi-
cate over a platform that supports pseudonymity, information
logging, and payments. To compare AVeCQ with the state-of-
the-art, we prototype it over Ethereum. AVeCQ outperforms
the state-of-the-art in three popular crowdsourcing tasks (image
annotation, average review, and Gallup polls). E.g., for an
Average Review task with 5 choices and 128 workers AVeCQ is
40% faster (including computing and verifying necessary proofs,
and blockchain transaction processing overheads) with the task’s
requester consuming 87% fewer gas.

Index Terms—Anonymity, zk-SNARKs, Crowdsourcing,
Blockchain

I. INTRODUCTION

Crowdsourcing is the process of gathering information
regarding a task (e.g., a query or project) by leveraging agents
who are incentivized to work on them within a specific time
frame [1]. A prominent example of crowdsourcing revolves
around Human Intelligence Tasks (HITs), which can be used
to enrich datasets designed for empowering machine learning
models. Those who request crowdsourcing tasks can extract
statistical data, form conclusions, and even monetize from any
results based on the individually-provided answers [2].

Specifically, a popular use case is the calculation of the
average over a set of values. Representative examples can
be found in personal data analytics (e.g., average salary
calculation), smart agriculture (average crop collection), smart
grid (average daily energy consumption), and others [3]–[6].
Other motivating tasks revolve around calculating a set’s n-
most popular items. E.g., for n = 1 this encompasses image
annotation [7], [8], while for n > 1 Gallup polls [9].

More concretely, a requester publishes a task seeking infor-
mation and workers provide their responses. The requester can
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Fig. 1. The crowdsourcing setting and phases of AVeCQ .

define a task policy specifying various task parameters (e.g.,
the task description, a final answer calculation mechanism,
a minimum number of participating workers). To incentivize
participation, requesters may reward workers [10]–[12]. E.g.,
the workers may be compensated based on a flat rate or even
based on how “close” their responses are to the final answer of
the task. Such compensation mechanisms can be specified in
the task policy and in fact, there exists a plethora of deployed
crowdsourcing systems that operate in this paradigm (e.g.,
Amazon MTurk [13], Microwork [14], and QMarkets [15]).

A common feature in crowdsourcing systems is that workers
are individually associated with a quality score, which esti-
mates how “trustworthy” their responses are based on prior
performance [16]. Indeed, worker qualities can be a vital tool
for a requester, who can use them to screen workers (e.g.,
specify a certain threshold so that only a worker whose quality
surpasses it may participate), or even pay them according to
their quality scores. A worker’s quality score (we refer to it as
quality) is dynamic, as it may change after every participation,
depending on the task policy. In practice, qualities represent
the performance of workers in previous tasks. Thus, they can
ultimately assist in “ostracizing” workers who submit answers
without judiciously performing tasks [10], [17], [18]. E.g.,
workers who submit arbitrary answers will have their quality
decrease over time, making it increasingly harder to clear
quality thresholds and participate in future tasks.

Privacy in Crowdsourcing. Protecting worker’s private infor-
mation is greatly important [19]. In practice, task participation
may require workers to disclose sensitive data to requesters
(e.g., location, age, gender, race). Being able to observe the
answer pattern of a specific worker is therefore undesirable;
in fact, it opens the system up to worker profiling [19] and
potential discrimination! For example, suppose Alice deploys
a task requesting workers to disclose their racial background.
After Bob provides such information, solely based on this,
Alice may choose to exclude Bob from her future tasks.
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Yan et al. [30] †

Duan et al. [31] ‡

PACE [32] ⋆ † †

TrustWorker [33] ⋆ †

Dragoon [34] ⋆

bHIT [35] ⋆

zkCrowd [36] ‡/♦

ZebraLancer [25]
BPRF [37] ♦

AVeCQ

/ / : Absence/Presence/Weaker-version of the property,
⋆: Data quality, †: Semi-honest intermediary, ‡: TEE, ♦: Blockchain

TABLE I
AVeCQ VS RELATED WORKS. SPECIAL SYMBOLS DENOTE WEAKER

VARIANTS OF THE PROPERTY ARE ACHIEVED.

Motivated by this, a line of works has emerged that studies
privacy in crowdsourcing systems and proposes corresponding
solutions [20]–[28]. The required property in these works
is worker anonymity: it should be impossible to deduce a
worker’s identity from information revealed during task par-
ticipation. A “naive” way to achieve anonymity would be to
hide workers’ identities behind pseudonyms. However, this is
not enough as, through a series of tasks, requesters may be able
to identify workers on the basis of their answers alone. If a
worker participates in multiple tasks, requesters may be able to
build a “rich” profile linked to a certain pseudonym. To avoid
such cases, prior works [25], [29] consider a stronger privacy
notion, anonymity with unlinkability: It should be infeasible to
link a worker’s participation across tasks. Throughout the rest
of the paper we refer to anonymity in this “stronger” variant.

We now make the following observations based on the
discussion above, regarding qualities and anonymity. On one
hand, qualities directly stem from workers’ participation pro-
files. On the other hand, anonymity aims to obscure all
past participation information. Thus, the two properties ap-
pear to be inherently contradictory: achieving one seemingly
precludes the other. In fact, there exist works that achieve
anonymous crowdsourcing without worker quality [25]–[27]
and vice versa [28] (see Table I). To the best of our knowledge,
no prior work simultaneously achieves both.

This Work. We propose AVeCQ (Figure 1), a crowdsourcing
system that is the first to satisfy worker anonymity while
maintaining worker qualities in a verifiable manner. Table I
highlights the differences between AVeCQ and existing works
in terms of achieved properties (see Section II for a more in-
depth comparison).

First, our system achieves anonymity with unlinkability, i.e.,
requesters learn nothing about participating workers except for
their explicit task answers and possibly that their correspond-
ing qualities are above the threshold specified in the task’s
policy (but, crucially, not the quality itself). Second, even
though each worker’s participation history remains hidden,
AVeCQ supports verifiable qualities, meaning that the follow-
ing two conditions apply. To participate in a task, workers

must prove they are using their correctly calculated quality as
derived by their entire participation history. Likewise, upon
task completion, requesters must prove the correctness of
the participants’ quality updates according to the answers
and the task policy. Crucially, the workers in AVeCQ verify
their updated qualities without any information about the final
answer except for what can be trivially inferred from the
policy. Note that achieving each of this properties on its
own is rather straight-forward (e.g., if we do not care about
protecting worker identities it is easy to check that the correct
quality score is used for each task); the challenge arises when
simultaneously trying to achieve both.
AVeCQ is additionally secure against other significant

threats. Anonymity might allow workers to generate multiple
identities arbitrarily (i.e., perform a Sybil attack) and reap
extra payments [38]. AVeCQ avoids Sybil attacks by requiring
workers certificates to be issued by a Registration Authority
(RA) before task participation. Moreover, we counter free-
rider attacks, i.e., workers cannot submit someone else’s
response or use another’s quality as their own to successfully
participate in a task. Last, AVeCQ guarantees fair worker
compensation according to task policy, i.e., the requester
cannot “cheat” to avoid payments.

Overview of Challenges and Techniques. At the core of
our solution lies a wide range of cryptographic techniques,
including zero-knowledge proofs (ZKPs) that allow a prover
to convince a verifier about the correctness of a computation,
without revealing any private information. Below we state
briefly the major challenges we encountered in this work and
how we overcame them.

Privately updating qualities, verifiably. To hide worker qual-
ities from the task requester we have workers submit their
qualities as additively homomorphic commitments. This en-
ables requesters to increment/decrement all workers’ qualities
without ever accessing any raw underlying quality. This cal-
culation is based on the workers’ answers, the final answer,
and the task policy. Now, all workers know their own answer
to the task and the policy, so when they see their updated
quality it is trivial to check whether the change is computed
correctly or not, if they also know the final answer. However,
since AVeCQ does not reveal the final answer to the workers,
the question of how to verify that the corresponding updates
are honestly computed arises. To this end, the requester is
obligated to present individual ZKPs to all workers, regarding
the correctness of their quality update.

Proof of quality-freshness. If a worker’s quality decreases after
participating in a task she may be incentivised to discard the
latest quality update and reuse her earlier quality in future
tasks. Thus, we face the following problem: “How can we
ensure that the quality used is always the latest, according
to all previous task participations?”. To address this, we
borrow and adapt a technique used in privacy-preserving
cryptocurrencies [39], [40]. The proof that requesters compute
for each worker after task completion must also pertain to
the fact that the updated quality commitment of a worker has
been appended as a leaf to a Merkle Tree which contains all
quality commitments across all tasks. A worker that wishes
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to participate in a task provides a ZKP that pertains to the
fact that the re-randomized quality commitment she provides
corresponds to the quality committed in one of the Merkle
tree leaves, without revealing to which one. In this manner, a
worker that tries to benefit by reusing an earlier quality will
break her anonymity due to the way this proof is crafted in
AVeCQ—specifically as the same Merkle leaf will need to be
used again (see Section V). Crucially, this is also easy to detect
even long after the worker’s participation.

Anonymous task participation. To anonymously participate in
future tasks, the worker cannot utilize the quality commitment
in the way it exists in the Merkle tree as that would trivially
break anonymity. To surpass this obstacle, a worker can re-
randomize her quality commitment and provide the requester
with a ZKP that corresponds to its correctly updated quality
and is above the task participation threshold. However, a new
question arises now: “how can a requester be certain that the
worker has not re-randomized an outdated quality commit-
ment?” To prevent such behavior, each worker must submit
a cryptographic hash, including the quality commitment used
in the ZKP above, concatenated with the unique identifier it
provided to the RA upon registering. Thus, workers trying to
re-randomize/use a previous quality could be trivially detected.

Nevertheless, if the hash is computed “naively” now the
RA can launch possible de-anonymization attacks. To avoid
this, essentially, the worker must not hash any public infor-
mation (i.e., its latest quality commitment transmitted by the
latest task requester) together with its identifier. Instead, the
requester, upon concluding its task, will transmit the updated
quality of the worker combined with a “dummy” commitment,
whose randmoness will communicate to the worker in a
confidential manner. The worker can then decompose the
commitment, extract its true quality commitment, and continue
participating in tasks without compromising its identity.

Resistance to free-riding. Workers might attempt to partici-
pate effortlessly by (re)submitting someone else’s response or
quality. AVeCQ resists such free-riding attacks by tying each
worker’s answer to her quality and a unique “payment wallet”
via a ZKP. Thus, no worker attempting to “hijack” someone
else’s response is able to produce valid proof for participation
and get compensated.

Implementing AVeCQ. We implement a prototype of AVeCQ ,
whose smart contract component is deployed over Ethereum
testnets, i.e., Rinkeby [41] and Goerli [42]. To demonstrate the
practicality and scalability of AVeCQ, we report extensively
on its performance focusing on computational and blockchain
overheads, communication bandwidth, and monetary costs. We
test AVeCQ on three popular, real-world-inspired tasks [3],
[4], [7], i.e., image annotation, average review estimation,
and Gallup polls, using the real datasets Duck [5], Amazon
Review [6], and COVID-19 Survey [9]. Our results show,
somewhat surprisingly, that AVeCQ outperforms other state-
of-the-art systems, even though it achieves a combination
of stronger security properties and/or operates in a stronger
security model (Table I). We benchmark AVeCQ’s perfor-
mance for representative tasks against the “best” systems with
available implementation. E.g., for binary image annotation

with 39 workers our end-to-end (E2E) time is < 8 mins, vs.
< 2 hours for only 11 workers in [25]. Note that contrary
to ZebraLancer, AVeCQ’s smart contract is only used for
storage purposes (e.g., no on-chain verfication happens—see
Section V). AVeCQ also retains its edge in terms of gas
consumption. E.g., for generating an average review with 128
workers, a requester in AVeCQ consumes ≈ 4.3M gas units,
whereas in [31] ≈ 35M gas units are required for just 100
workers. Last, AVeCQ consumes < 25% of the gas required
in [34] (See Section IX for a more detailed comparison).
Our Contributions. In summary, we construct a crowdsourc-
ing system that bridges the gap between anonymity and worker
qualities while being able to scale to real-world inspired task
instances. The main contributions of our works are as follows:
1) We design AVeCQ, the first crowdsourcing system that

guarantees the anonymity of participating workers across
tasks while maintaining a quality system verifiably (see
Section V). Crucially, it does so without compromising
functionality, as it can support arbitrary policies and tasks.

2) We provide definitions for three critical security and pri-
vacy properties of crowdsourcing systems: anonymity, free-
rider resistance, and policy verifiability. We prove that
AVeCQ satisfies all three properties under standard assump-
tions (see Section VIII). Additionally, in Section VII-D,
we additionally show AVeCQ to be secure against other,
various, popular attacks.

3) We develop a prototype implementation of AVeCQ and
test its performance thoroughly. In terms of efficiency and
scalability, our implementation is comparable, when not
better, than other state-of-the-art systems providing less
functionality (e.g., support only gold-standard tasks) or
operate in a weaker threat model (see Section IX). In
fact, we provide an in-depth comparison with prior works,
both qualitative (in terms of properties) and quantitative (in
terms of three specific real-world tasks).

II. RELATED WORK

Worker Quality. Prior works in crowdsourcing systems adopt
different notions of “quality”. The authors of [32]–[35] inter-
pret worker quality in terms of proximity to an “estimated” or
“final” answer. Specifically, Lu et al. [34] use a set of gold-
standard tasks, whose final answer is known a priori to the
requester and a posteriori to the workers, to determine the
quality of the answers. Despite being commonly used, this
approach is rather limiting since it only works when the answer
is known. It does not work for other popular crowdsourcing
tasks e.g., Gallup polls. The authors of [32], [33] assign scores
to workers based on the proximity of their response to the
mean of the submitted data. Contrary, (as also in [10], [28],
[37], [43]) we interpret worker quality as a representation of
workers’ entire historical task performance. This is not only
more realistic but also strictly more general, since AVeCQ can
capture all previous notions through different task policies.
Privacy. Another point of contention in the literature revolves
around the definition of identity and data privacy—both of
which are essential. Anonymity with unlinkability protects the
workers identities across tasks entirely, as explained before.
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Contrary, data privacy limits what the system entities (e.g.,
blockchain nodes) learn about the workers’ data.

Anonymity requires two conditions to be met: (i) the worker
identity to remain hidden and (ii) the quality itself cannot
be used to de-anonymize workers. The authors of [29], [44]
satisfy (i) by allowing workers to generate identities freely,
however, this in turn allows Sybil attacks. CrowdBC [28] suf-
fers from the same limitation, with two additional drawbacks.
Crucially, CrowdBC stores qualities on-chain, in the plain.
This poses a potential and significant risk to de-anonymizing
workers, as explained before, rendering [28] not anonymous.

Regarding data privacy towards third parties (most com-
monly referred to as confidentiality), it is commonplace to
require workers to submit their responses in an encrypted
manner as done in [20], [25], [28], [31], [32], [34], [45]–
[47], with two exceptions. First, in [33] a deterministic en-
cryption scheme is used meaning the Computing Server (the
intermediary collecting worker responses) can access them in
the plain, while in [37] all responses are already communicated
in the plain. The authors of [21], [22], [24], [26], [48]–[51] use
differential privacy to protect workers’ inputs. However, noisy
methods affect the correctness of the crowdsourcing process as
they dilute the final answer. Thus, they are impractical when
including qualities in the crowdsourcing model, since most
quality update mechanisms are based on correlations between
a worker’s answer and the “final answer” of a task, and even
more so when the set of possible answers is of limited size.

Verifiable Policy. To achieve policy verifiability, works such
as [30]–[33], [36], [37] either entrust (i) a semi-honest interme-
diary, (ii) a Trusted Execution Environment (TEE), e.g., Intel
SGX, or (iii) blockchain miners to carry out policy-related
computations (e.g., calculate the final answer or rewards).
However, having to “blindly” trust intermediaries is not ideal,
secure hardware is susceptible to side-channel attacks [52],
[53], and on-chain computations jeopardise data confidential-
ity. AVeCQ is free of any such assumptions and is policy-
verifiable under only cryptographic assumptions.

Other Security Issues. Two common security threats in
crowdsourcing are Sybil and Free-riding attacks. A coun-
termeasure to Sybil attacks is employing a trusted RA that
registers workers by issuing a certificate based on the worker’s
unique identifier (e.g., ID documentation) [25], [36], [37], [46],
[54]. In fact, the authors of [28], [31], [33] do not utilize an
RA and fail to prevent such attacks. Alternatively, in [31] the
authors argue that their incentive-compatible mechanism disin-
centives worker misbehavior —a strictly stronger assumption.

To safeguard against free-riding, requesters can employ
a trusted third party [55], or couple workers’ certificates
with their public addresses [25]. CrowdBC [28], alternatively,
requires workers to deposit funds to a smart contract to be
eligible for a task. Workers are incentivized to exert effort,
or risk their deposits. Instead, AVeCQ eliminates free-riding
attacks also by relying only on cryptographic assumptions.

AVeCQ vs. State-of-the-art. Unlike the works above, our
system satisfies all properties in Table I. Recently, Liang et al.
proposed bHIT [35], a blockchain-based crowdsourcing sys-
tem for HITs that, similarly to AVeCQ, does not disclose the

responses of the workers to the public blockchain. However,
bHIT does not provide any notion of anonymity or policy
verifiability and operates in a weaker security model since it
does not consider colluding workers.

Zebralancer [25] is the closest work to ours in terms of
the employed techniques and properties. Both AVeCQ and Ze-
bralancer utilize zk-SNARKs but Zebralancer only uses them
for proving the correctness of the rewards calculation, while
in AVeCQ zk-SNARKs are also used by workers to prove that
they are using their latest valid qualities. Moreover, requesters
use zk-SNARKs to prove the correctness of the final answer,
updates of qualities, and calculation of payments. Similarly,
both works employ an RA, and utilize smart contracts for
task deployment and participation. However, in contrast to
Zebralancer, AVeCQ additionally supports worker qualities.

This extra feature is far from trivial to implement as new
security and privacy concerns emerge that require the design
of a more complex protocol to be addressed. More specifically,
the inclusion of qualities in crowdsourcing poses several new
challenges as we outlined in Section I: (i) the requester needs
to update qualities privately but also in a verifiable manner, (ii)
workers need to prove that they have used their own quality
before participating in a task, (iii) workers need to prove the
freshness of their quality before participating in a task, and
(iv) the quality design and update mechanisms need to avoid
compromising the anonymity of the worker. To address all
the above, we utilize a plethora of additional components
and techniques with respect to [25]. These include the use
of encrypted communication, homomorphic commitments for
the qualities, and a Merkle tree structure that stores re-
randomized quality commitments. We expand on all of our
techniques in Section V and analyze how AVeCQ remains
secure against misbehaving entities that try to deviate from
the protocol in Section VIII. Nevertheless, this does not come
at a performance cost, as AVeCQ is at least as (or even more)
efficient than Zebralancer, despite supporting worker qualities.

III. PRELIMINARIES

We now present the tools used in AVeCQ. Table II provides
a reference for key notation. Let E be an elliptic curve defined
over a large prime field Fp with G,H ∈ E as publicly known
generators. We denote by x←$ A the sampling at random of
the element x from the domain A, by λ the security parameter,
and by negl(λ) a function negligible in λ. Last, we denote by
AdvG(A) the advantage that A has in winning the G game.
Pedersen Commitments [56]. A commitment scheme binds
and hides a value x. Specifically, a Pedersen commitment of
x with randomness r is in the form of Com(x, r) = x ·G+
r · H . Pedersen commitments are additively homomorphic,
i.e., Com(x1, r1) ◦ Com(x2, r2) = Com(x1 + x2, r1 + r2),
computationally binding (it is not feasible to “change one’s
mind” after committing), and perfectly hiding (they reveal
nothing about the committed data).
Public-Key Encryption (PKE) Scheme [57]. A PKE scheme
consists of the following algorithms:
• KeyGen(λ) → (sk, pk). Given the security parameter λ,

KeyGen samples a secret key sk ←$ {0, 1}λ, computes the
public key pk = sk ·G. It outputs the key-pair (sk, pk).
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Crowdsourcing Model

Aτ Set of possible answers for task τ
aτϕ,P τ Final answer and task policy for τ
dτ , DLτ Description and deadlines of τ
qτi Quality score of wi at τ
nτ
th Threshold number of workers required for τ

nτ Total number of worker responses for τ
pτi wi’s payment for τ
paτi wi’s address for compensation for τ

Protocol Notations

certi EdDSA signature for party i
rootMT Root of a Merkle Tree (MT )
pathleaf path for leaf in MT
rτk,i wi’s randomness for τ
rτ∗,i wi’s randomness to re-randomize

Com(qτ−1
i , ·)

rτ∗∗,i Randomness of the “dummy” qτi commitment
rτc,i Randomness with Com(0, rτ∗∗,i) for qτi
rτc−d,i Randomness without Com(0, rτ∗∗,i) for qτi
E(pkR, aτi ; ·) Encryption of wi’s response aτi for τ
E(pkR, paτi ; ·) Encryption of wi’s address paτi for τ
Com(qτ−1

i , rτ−1
c,i + r⋆,i) Re-randomized commitment of qi for τ

E(pkR, rτk,i; ·) Encryption of wi’s index rτk,i for τ

H
(

Com(qτ−1
i , rτ−1

c,i ),mi

)
Quality “tag” of wi for τ

zk-SNARKs

πτ
oi

PROVEQUAL proof for wi’s tuple oτi for τ
πτ
aϕ

AUTHCALC proof for aτϕ for τ
πτ
qi

AUTHQUAL proof for wi’s updated qτi for τ
πτ
ai

AUTHVALUE proof for wi’s response aτi for τ

TABLE II
KEY NOTATIONS

• Enc(pk, x; r) → E(pk, x; r). To encrypt a value x, the
algorithm takes input a randomness r and outputs the curve
point (r ·G,Px + ·r(sk ·G)). Here, Px is a publicly-known
mapping of a value x to a curve point in E.

• Dec(E(pk, x; r), sk) → x. To decrypt x from E(pk, x; r),
the algorithms computes x := Px + ·r(sk ·G)− r · sk ·G.

Hash Function [58]. A cryptographic hash function H :
{0, 1}∗ → {0, 1}λ is collision-resistant if the probability of
two distinct inputs mapping to the same output is negligible:
Pr[H(x) = H(y) | x ̸= y] ≤ negl(λ). Additionally, it is pre-
image resistant if the probability of inverting it is negligible.
We denote the indistinguishability games for these properties
as H − CR and H − PR respectively.

Digital Signatures [59]. A digital signature scheme allows
verification of the authenticity of a certificate. EdDSA is a
Schnorr-based signature scheme defined over E. In EdDSA,
given G, one derives its public key pk by sampling sk ←$ Fp.
A party i signs the value H(mi) for a secret message mi

denoted as its signature certi = (Ri, Si). Here, Ri = r · G
s.t. r ←$ Fp, and Si = r +H(mi) · sk. A verifier accepts the
signature iff Si ·G = Ri +H(mi) · pk holds.

zk-SNARKs [60]. A zero-knowledge succinct non-interactive
argument of knowledge (zk-SNARK) allows a prover to
convince a verifier about the correctness of a computation
on private input, through a protocol. The verifier-available
information is referred to as statement x⃗ and the private input
of the prover as witness ω⃗. The protocol execution takes place
in a non-interactive manner, with succinct communication.

A zk-SNARK consists of: (i) a Setup algorithm which out-
puts the public parameters PP for a NP-complete language
LS = {x⃗ | ∃ ω⃗ s.t. S(x⃗, ω⃗) = 1}, where S : Fn×Fh → Fl is
the arithmetic circuit satisfiability problem of an F-arithmetic
circuit; (ii) A Prover algorithm that outputs a constant size
proof π, attesting to the correctness of x⃗ ∈ LS with witness
ω⃗; and (iii) A Verifier algorithm which efficiently checks
the proof. Informally, a zk-SNARK satisfies the following
properties:
• Completeness. If ∃ω⃗ : LS(x⃗, ω⃗) = 1, honest Provers can

always convince Verifiers.
• Soundness. If ∃ω⃗′ : LS(x⃗, ω⃗) = 0, a dishonest Prover has

negligible probability in convincing the Verifier.
• Zero-knowledge. If ∃ω⃗ : LS(x⃗, ω⃗) = 1, the Verifier does not

learn any information about ω⃗ (besides its existence).

Merkle Tree (MT) [61]. A Merkle tree (MT ) is a complete
binary tree where each parent node is a hash of its children.
This structure allows for membership proofs, attesting to the
existence of a specific leaf via a publicly known root (rootMT )
and a path (pathleaf ).

Blockchain & Smart Contracts. A blockchain is a ledger
distributed across peers and made secure through cryptography
and incentives. Peers agree upon storing information in the
form of blocks through consensus algorithms. Blockchain
technology has transcended its use in cryptocurrency appli-
cations, especially with the introduction of smart contracts
with Ethereum [62]. A smart contract is a computer program
that can be run in an on-chain manner. Performing any smart-
contract computation over Ethereum requires gas. The amount
of gas charged depends on the type of computation. More
computationally extensive operations require higher gas to be
executed on-chain. The total charge for the computation is
referred to as gas cost. Any computation that alters the state
of the contract, i.e., alters any contract method or variables,
consumes gas. Contrary, reading data from the contract is free.
To submit state-altering transactions users specify a gas price
that they are willing to pay per gas unit.

EIP-1559 [63]. In Ethereum, each transaction creator pays a
dynamic base fee b and a priority fee δ (in gas). Each block’s
miner receives δ while the base fee is “burned” (i.e., removed
from the supply, forever). δ affects the verification time, as
higher δ results in faster transaction verification time.

Crowdsourcing Quality-Update Policies. Various techniques
have been proposed for updating workers’ qualities after task
participation [64]–[68]. AVeCQ integrates the widely adopted
in academia [66], [67] and industry (Amazon MTurk [13])
Beta distribution. Formally, for each wi and task τ , we
maintain integers ατ

i and βτ
i , initialised to 1. The quality score

for τ is then given by the Beta distribution with mean ατ
i

ατ
i +βτ

i
.

The update rule considering a worker’s response aτi and the
“final answer” aτϕ is:
• if aτi = aτϕ : ατ+1

i = ατ
i + 1; βτ+1

i = βτ
i

• if aτi ̸= aτϕ : βτ+1 = βτ + 1; ατ+1
i = ατ

i

AVeCQ uses this mechanism to handle quality updates
and specifically computes increments/decrements as Pedersen
commitments of 1 and 0, accordingly. That way a worker can
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Entity Adversarial Behavior

Req
ue

ste
r – “de-anonymize” workers from multi-task participation

– update qualities and calculate payments arbitrarily
– avoid paying or updating qualities

W
ork

er – participate in a single task multiple times
– use other worker’s answer/quality and get rewards

RA – track a worker across tasks

TABLE III
POSSIBLE ATTACKS BASED ON AVeCQ ’S THREAT MODEL

utilize the commitments’ additive homomorphic property to
compute its new quality.

IV. PROBLEM FORMULATION

In this section, we present the problem formulation in three
aspects: system model, threat model, and problem statement.
System Model. It includes three types of entities, namely a
Registration Authority (RA), a set of Requesters, and a set
of Workers. The RA is in charge of registering workers in
the system by providing them with a participation certifi-
cate, upon receiving a unique identifier. Requesters can (i)
create and publish tasks, and (ii) collect worker-generated
responses. Workers observe published tasks and upon wishing
to participate in a task they provide the respective requester
with their individual responses. At a high level, to create a
task, a requester needs to disclose its description alongside an
answer-calculation mechanism, a quality-update rule, and a
payment scheme. Remember that each worker has a quality
that reflects their trustworthiness based on their previous
answers. Specifically, we denote all registered workers by the
set W = {w1, . . . , wn}, and their associated qualities by the
set Q = {q1, . . . , qn}.
Threat Model. We make no assumptions as to the behavior of
requesters or workers. Malicious requesters (R) can try to infer
information about participating workers (not trivially leaked
by their answers), calculate the final answer and the updated
qualities arbitrarily, and avoid payments. On the other hand,
malicious workers (W) can try to generate multiple identities
arbitrarily and respond by utilizing outdated quality scores or
even someone else’s response. Last, the RA is considered to be
semi-honest, but may try to track a worker across tasks. Based
on the above, Table III presents possible attacks to systems
operating in our threat model.

Problem Statement. Considering the above system and threat
model, the problem we study in this paper is the following:
How to design an efficient and scalable system that carries out
arbitrary crowdsourcing tasks and supports worker qualities,
while safeguarding against the mentioned attacks.

V. AVeCQ

This section presents our crowdsourcing system. Following,
we provide the reader with the foundational concept basis of
our protocol design. We wish to enable AVeCQ to facilitate
tasks with high expressivity in terms of the calculation mecha-
nism for the final answer, the quality updates, and the rewards.
Specifically, we adopt an approach that will accommodate any

such mechanism/policy that can be expressed as a circuit, and
we do so by employing zk-SNARKs in order to verifiably
ensure workers about the righteous execution of the task while
at the same time protecting the individual responses and the
final answer from other participating workers. Additionally, we
wish to safeguard AVeCQ against the previously mentioned
de-anonymizing and other quality-related attacks. To do so,
we employ a series of techniques at a high level: 1 all
communication that is happening on-chain is encrypted, 2 all
qualities are expressed through homomorphic commitments,
whose updates are calculated via a zk-SNARK as per the task
policy, 3 and the updated quality commitments are stored in
a Merkle tree and are re-randomized each time to participate in
a task. To the best of our knowledge, no other crowdsourcing
system is able to support more expressive project descriptions
and task policies than AVeCQ .

Our construction utilizes cryptographic components (i.e.
digital signature, public-key encryption, commitment scheme,
zero-knowledge proof protocol, Merkle tree, and hash func-
tion) and a smart contract. Particularly, to create a task τ ,
a requester can specify a set of attributes depending on the
expressivity of the task. These include: (i) the task description
dτ , (ii) the set of available answer choices Aτ = {aτ1 , . . . , aτc},
(iii) the maximum budget Γτ the requester is willing to allocate
to the workers, (iv) a set of deadlines DLτ (signifying until
when workers may submit their responses and until when task
processing must be completed by the requester), (v) a threshold
number of workers nτ

th (denoting the minimum participation
of workers that is needed to calculate the final answer),
(vi) the requester’s public key pkR (which the workers will
use to encrypt their sensitive data), and (vii) the task policy
P τ (including task-related information e.g., quality-threshold
participation requirements, the final answer calculation mech-
anism, the quality-update rule, and the payment scheme). We
denote the set of responses workers submit to task τ as Oτ

nτ =
{oτ1 , . . . , oτnτ }, where nτ denotes the the total workers who
provided responses to τ . A response oi of worker wi includes,
among others, its answer to the task (aτi ) and its quality from
the previous task (qτ−1

i )1. Therefore, we denote the set of
answers to the task τ as Aτ

nτ = {aτ1 , . . . , aτnτ } and the set of
corresponding qualities as Qτ−1

nτ = {qτ−1
1 , . . . , qτ−1

nτ }.
During a task, the requester collects Oτ

nτ and extracts Aτ
nτ .

Then, (if needed) it calculates the final answer and for all
participants their updated qualities and payments. For this, the
requester uses the following algorithms:
1) ANSCALC(Aτ

nτ , Qτ−1
nτ , P τ ) → aτϕ: On input the set of

answers from the participating workers Aτ
nτ , the qualities

Qτ−1
nτ and the participating policy P τ , it outputs the final

answer aτϕ.
2) QUALCALC(Qτ−1

nτ , aτϕ, P
τ ) → Qτ

nτ : On input the set of
the quality scores from the participants Qτ−1

nτ , the final
answer aτϕ, and the participation policy P τ , outputs the set
of the updated quality scores for every participating worker
Qτ

nτ = {qτ1 , . . . , qτnτ }.
3) PAYMCALC(Aτ

nτ , Qτ−1
nτ , aτϕ, P

τ )→ Paymτ : On input the

1 We acknowledge that the “previous” task for two workers wi and wj might
differ, however we use qτ−1

i and qτ−1
j to denote their latest qualities.
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Requester R Blockchain Worker wi

Ta
sk

C
re

at
io

n

Deploys CSTask1

Creates task with CREATETASK
(
τ =

⟨dτ ,Aτ ,Γτ ,DLτ , nτ
th, pkR, P τ ⟩

)2
Pulls the task policy and pkR
Produces πτ

oi
with PROVEQUAL

3

Submits a response with
SUBMITRESPONSE

(
oτi = ⟨E(pkR, aτi ; ·),

E(pkR, paτi ; ·),Com(qτ−1
i , rτ−1

c,i + rτ⋆,i),

E(pkR, rτk,i; ·), H
(
Com(qτ−1

i , rτ−1
c,i ),mi

)
,

πτ
oi
⟩
)

4

R
esponse

Subm
ission

Verifies πτ
oi

∀wi

Decrypts E(pkR, aτi ; ·), ∀wi

Calculates aτϕ using ANSCALC

5 Correctness proof πτ
aϕ

with AUTHCALC

Generate qτi and πτ
qi
, ∀wi using AUTHQUAL

Comparison proof πτ
ai

with AUTHVALUE

Appends Com(qτi , r
τ
c,i) to MT

Uploads E(pkr, aτϕ; ·) and πτ
aϕ

Submits qualities individually with
SUBMITQUALITY

(
H(rτk,i), r

τ
R,i + rτk,i, r

τ
⋆⋆,i + rτk,i,

Com(qτi , r
τ
c−d,i), pos

τ
qi

+ rτk,i, π
τ
qi
, πτ

ai

)
,∀wi

Submits payments individually with
WORKERPAYMENT(Paymτ

i = ⟨pτi , paτi ⟩)

6R
es

po
ns

e
Pr

oc
es

si
ng

CSTask pays
pτi to wi, ∀wi

7

Verifies proofs πqi and πτ
ai

If qi updated correctly:
=⇒ Adopts qi as new quality

Else:
=⇒ Approaches RA with qi, π

τ
qi

and πτ
ai

8 Protest
Q

uality
Verification

ReadWrite On-chain Off-chain

Fig. 2. AVecQ: Task-specific stage analysis. To initiate a task, a requester R deploys a smart contract. A worker may submit a response including her
(encrypted) answer, latest quality (commitment), and attest to the validity of the quality and conformity to the task policy (via a ZKP). R then verifies all
submitted proofs off-chain, computes the final answer aτϕ, quality updates (commitments), payments, and ZKPs, and uploads all but aτϕ on-chain. Last, workers
get rewards and adopt their new qualities.

set of the answers Aτ
nτ and qualities Qτ−1

nτ , the final answer
aτϕ, and the participation policy P τ , outputs the set of
payments for every worker that participated Paymτ =
{pτ1 , . . . , pτn}.

A. Protocol

Next we describe our construction and explain the design
rationale. Particularly, our protocol comprises of two stages: a
preprocessing-setup and a task-specific one. Requesters can
design the tasks they want workers to participate in with
the sole constraint that the mechanisms for calculating the
final answer of the task, the quality updates, and the rewards
must be expressible as a circuit. This in turn allowsAVeCQ to
facilitate virtually all tasks that are available on real-world
crowdsourcing platforms. For example, workers can be asked
to identify auditory, or image-related content (“Watch a video
and identify the region from where sound originates” or “If
the shopping receipt image is readable extract the required
information”), participate in surveys (”Short Multiple Choice
Survey”), or generate content (“Your goal is to generate 10-
15 effective and relevant searchable keywords we can use for
original clipart.”) all of which can be found at the worker
dashboard on MTurk2. The rewards can be calculated in a
static manner i.e., each worker gets paid a certain amount,
or dynamically e.g., “6 cent bonus if your answer matches
another independent worker’s”, and AVeCQ allows such ex-
pressive policies. To assist the reader, we provide the following
task as a representative example and follow its execution
through the rest of this subsection.

Running example (τex). A requester deploys on 31/1/2023
at 23 : 00 the following image annotation task:

2 worker.mturk.com

AT = {“Does this image contain a duck?”, (Yes,No),
200ETH, (31/1/2023/23 : 30, 1/2/2023/23 : 59), 1001,

0x7584e47e7a7e09a6be64dc3aeaf0b64364234d9c,

(Quality > 75%,Majority,Beta distribution,
Correct:0.0001ETH,Not correct:0.00005ETH)}

Remark: This is the most expressive task which can be
executed through AVeCQ, in terms of supported features. For
tasks requiring less functionality (e.g. reward each worker
horizontally or do not require/need qualities) the related el-
ements/steps can be omitted.

Preprocessing-Setup stage. Ahead of time, the RA generates
the public parameters PP by running the zk-SNARKs’ setup
and encryption key-generation algorithms. When a worker
wi wishes to participate in the crowdsourcing system, it
presents the RA with unique identification data mi. The RA,
in turn, generates a participation certificate certi (i.e., an
EdDSA signature on mi, which in the U.S.A. could be the
Social Security Number of wi.). Additionally, it initializes
the quality of wi, generates the commitment Com(q

(0)
i , r

(0)
c,i )

where r
(0)
c,i ←$ Zp, and appends this as a leaf to a Merkle Tree

MT . Last, the RA provides wi with (certi, q
(0)
i , r(0)c,i ). Notably,

this is a dynamic stage, as new workers can register arbitrarily
and independently of other operations. In τex, the RA sets up
the SNARKs for calculating the most popular answer aτϕ, the

Beta distribution, and for the aτi
?
= aτϕ check. We formally

present all four zk-SNARKs’ construction AVeCQ utilizes in
Section V-B and further elaborate them in Section VI.

Task-specific stage. To carry out a specific task, the requester
and participating workers engage in a protocol having four
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phases: Task Creation, Response Submission, Response Pro-
cessing, and Quality Verification. Broadly, a requester creates
a crowdsourcing task by deploying a smart contract on a
blockchain to elicit responses from interested workers. Upon
collecting all responses, the requester invokes ANSCALC to
extract the final answer. Additionally, the requester invokes
QUALCALC to calculate the updated worker qualities and
PAYMCALC to calculate individual compensations. All par-
ticipants have known public addresses and can connect to the
blockchain network. Figure 2 depicts all task-specific phases of
AVeCQ’s protocol. We present all the phases in detail, below.

1) Task Creation: This phase includes solely on-chain
computations. First, a requester deploys a smart con-
tract (CSTask) and deposits Γτ funds into it. Next,
to publish a new task τ the requester (suppose Al-
ice) uses the CREATETASK method of CSTask and up-
loads on-chain the following transaction: txCREATETASK(τ) =
⟨dτ ,Aτ ,Γτ ,DLτ , nτ

th, pkR, P
τ ⟩ = AT , in τex. The requester

then awaits for the next phase to conclude.
2) Response Submission: An interested wi can invoke the

SUBMITRESPONSE method of CSTask to submit its response.
Naively, wi just needs to provide the requester with its answer,
its quality, a proof about holding a valid quality, and a pub-
lic address for compensation. However, SUBMITRESPONSE-
related data are uploaded to a blockchain. Thus, if we allow
wi to send this data in the plain some of our security properties
will be trivially violated3.

To ensure no leakage of sensitive data, wi provides a
response oτi containing, (i) an encryption of its answer aτi ,
(ii) an encryption of its public address paτi , (iii) a re-
randomized commitment regarding its latest quality qτ−1

i , (iv)
an encryption of a random value rτk,i, (v) a hash of the
commitment in MT with mi, and (vi) a corresponding proof of
correctness for all these values. This phase includes off-chain
and on-chain computations as wi generates commitments,
encryptions, hashes, and proofs locally; and later on invokes
the SUBMITRESPONSE method to upload oτi on CSTask.

Off-chain. First, wi calculates the ciphertexts for its answer,
address, and a random value rτk,i ←$ Zp: E(pkR, a

τ
i ; ·),

E(pkR, pa
τ
i ; ·), E(pkR, r

τ
k,i; ·)4. Additionally, wi computes

the commitment Com(qτ−1
i , rτ−1

c,i + rτ⋆,i)
5 and the hash

H
(
Com(qτ−1

i , rτ−1
c,i ),mi

)
6 where rτ⋆,i ←$ Zp. Now, using the

proof generating algorithm of our PROVEQUAL zk-SNARK, a
worker wi produces a proof πτ

oi . Specifically, πτ
oi attests to (i)

wi having registered, (ii) the existence of a leaf in MT that
hides qτ−1

i , (iii) qτ−1
i conforms to P τ , and (iv) (mi, q

τ−1
i )

are included in the calculation of H
(
Com(qτ−1

i , rτ−1
c,i ),mi

)
.

On-chain. A worker wi can use the SUBMITRESPONSE
method of CSTask to submit a response oτi in the form
of the following transaction: txSubmitResponse(o

τ
i ) =〈

E(pkR, a
τ
i ; ·), E(pkR, pa

τ
i ; ·), E(pkR, r

τ
k,i; ·),

Com(qτ−1
i , rτ−1

c,i +rτ⋆,i), H
(
Com(qτ−1

i , rτ−1
c,i ),mi

)
, πoτi

〉
.

3 See Section VIII for a more elaborate analysis. 4 Crucially, rτk,i will
be used to hide the leaf-position of the worker’s newly updated quality
commitment. 5 Com(qτ−1

i , rτ−1
c,i ) is a leaf in MT . 6 We utilize this hash

as a tag ensuring that wi cannot re-submit a quality without being detected.

3) Response Processing: During this phase, the requester
computes aτϕ, computes and communicates (via the SUB-
MITQUALITY method) the updated worker qualities, and ini-
tiates payments (via WORKERPAYMENT). Notably, workers
need to be certain that the requester updated qualities, and cor-
responding payments, based on P τ . Thus, requesters provide
individual zk-SNARK proofs for correctly updating qualities.
Overall, the requester performs the following off-chain and
on-chain computations.
Off-chain. After the response submission deadline (specified
in DLτ ) has passed and nτ ≥ nτ

th workers have submitted
responses, the requester uses the verification algorithm of
PROVEQUAL to verify all proofs πoτi

, individually. Then, it
calculates aτϕ ← ANSCALC(Qτ−1

nτ , Aτ
nτ ,P τ ), all updated qual-

ities using QUALCALC(Qτ−1
nτ , aτϕ, P

τ ), and payments using
PAYMCALC(Qτ−1

nτ , Aτ
nτ , aτϕ, P

τ ). Recall that quality updates
must be verifiable, even when only the requester knows aτϕ.
To achieve this we follow the next three steps.

First, the requester generates a proof of the final answer
calculation, using the workers’ on-chain responses and the task
policy. Specifically, it uses the zk-SNARK AUTHCALC to do
so. AUTHCALC decrypts all encrypted answers and using P τ

calculates aτϕ. Second, the requester provides an individual
“proof of correctness” for each worker wi regarding the
correlation between aτϕ, aτi , and P τ , using AUTHVALUE. This
proof includes a single decryption and comparison. Third, the
requester uses oτi , aτϕ, and P τ to generate an individual “proof
of correct quality update” for each worker via AUTHQUAL.
This includes a decryption and comparison as before, and
additionally the verification of the new quality, based on P τ .
Quality Updates. Recall that workers submit their qualities in
the form of commitments. To update the quality of wi, the
requester computes: Com(qτ−1

i , rτ−1
c,i + rτ⋆,i) ◦ Com(µ, rτR,i),

rτR,i ←$ Zp, where µ ∈ Z is the difference between the
old and new quality of wi (qτi = qτ−1

i + µ). Finally, for
each wi, the requester re-randomizes the newly generated
qualities commitment using “dummy” commitments i.e., ∀i ∈
[nτ ],Com(0, rτ⋆⋆,i) s.t. rτ⋆⋆,i ←$ Zp. Formally, the requester
appends the commitment Com(qτi , r

τ
c,i) = Com(qτ−1

i , rτ−1
c,i +

rτ⋆,i) ◦ Com(µ, rτR,i) ◦ Com(0, rτ⋆⋆,i) to the MT and we
denote rτc,i = rτ−1

c,i + rτ⋆,i + rτR,i + rτ⋆⋆,i. We also denote
Com(qτi , r

τ
c−d,i) = Com(qτ−1

i , rτ−1
c,i + rτ⋆,i) ◦ Com(µ, rτR,i)

as the quality commitment without the “dummy” commitment
with rτc−d,i = rτ−1

c,i + rτ⋆,i + rτR,i. In τex, suppose Bob is a
worker who has answered “Yes”, along with the majority of
the rest of the workers, meaning aτϕ=“Yes”. Alice computes
Com(qτi,α, r

τ
c,i) = Com(qτ−1

i,α , ·) ◦Com(1, ·) ◦Com(0, ·) and
Com(qτi,β , r

τ
c,i) = Com(qτ−1

i,β , ·) ◦ Com(1, ·) ◦ Com(0, ·).
On-chain. The requester invokes the SUBMITQUALITY
method, to communicate the newly updated qualities to each
worker wi. The transaction is of the form: txSubmitQuality =〈
H(rτk,i), r

τ
R,i + rτk,i, r

τ
⋆⋆,i + rτk,i,Com(qτi , r

τ
c−d,i)

7, posτqi +

rτk,i, π
τ
qi , π

τ
ai

〉
. It includes: (i) a worker index H(rτk,i), (ii) the

new quality randomness rτR,i+rτk,i, (iii) the randomness of the
“dummy” commitment rτ⋆⋆,i+rτk,i, (iv) the commitment of the

7 The quality commitment without the “dummy” re-randomization.
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PROVEQUAL

Statement x⃗PQ: PP, P τ , rootMT , pkR, pkRA,Com(qτ−1
i , rτ−1

c,i + rτ−1
⋆,i ), H

(
Com(qτ−1

i , rτ−1
c,i ),mi

)
, E(pkR, aτi ; ·), E(pkR, paτi ; ·)

Witness ω⃗PQ: certi,mi, q
τ−1
i , rτ−1

c,i , rτ⋆,i, r
τ−1
⋆⋆,i ,Com(qτ−1

i , rτ−1
c−d,i), a

τ
i , pa

τ
i , pathqτ−1

i

Language LPQ =
{

x⃗PQ | ∃ ω⃗PQ s.t. EdDSAver(pkRA; certi,mi) ∧ ValidEnc
(
E(pkR, aτi ); a

τ
i

)
∧ TaskVer(P τ ; qτ−1

i ) ∧

QualVer
(
H
(
Com(qτ−1

i , rτ−1
c,i ),mi)

)
, Com(qτ−1

i , rτ−1
c−d,i);Com(qτ−1

i , rτ−1
c,i ), rτ−1

⋆⋆,i , r
τ
⋆,i,mi

)
∧

HashComVer
(
H
(
Com(qτ−1

i , rτ−1
c,i ),mi

)
; Com(qτ−1

i , rτ−1
c−d,i),Com(0, rτ−1

⋆⋆,i ),mi

)
∧

ValidEnc
(
E(pkR, paτi ); pa

τ
i

)
∧ MTPathVer

(
rootMT ;Com(0, rτ−1

⋆⋆,i ), Com(qτ−1
i , rτ−1

c−d,i), pathqτ−1
i

, H(rτ−1
k,i ,mi)

)
= 1

}
.

AUTHCALC
Statement ⃗xAC : PP,E(pkR, aτϕ; ·), {E(pkR, aτi ; ·)}i∈[nτ ], pkR
Witness ω⃗AC : skR
Language LAC = {x⃗AC | ω⃗AC s.t. ValidKeyPair(pkR; skR)∧ FinAnsVer

(
P τ , {E(pkR, aτi ; ·)}i∈[nτ ], E(pkR, aτϕ; ·); skR

)
= 1}.

AUTHQUAL
Statement x⃗AV : PP,E(pkR, aτϕ; ·), E(pkR, aτi ; ·), pkR
Witness ω⃗AV : skR
Language LAV = {x⃗AV | ω⃗AV s.t. EqCheck

(
E(pkR, aτϕ), E(pkR, aτi ), pkR; skR

)
∧ ValidKeyPair(pkR; skR)=1}.

AUTHVALUE Statement x⃗AQ: PP,E(pkR, aτϕ; ·), E(pkR, aτi ; ·), Com(qτi , r
τ
c−d,i),Com(qτ−1

i , rτ−1
c,i + rτ⋆,i), pkR

Witness ω⃗AV : skR
Language LAQ = {x⃗AQ | ω⃗AQ s.t. NewQual

(
E(pkR, aτϕ), E(pkR, aτi ; ·),Com(qτi , r

τ
c−d,i), Com(qτ−1

i , rτ−1
c,i +rτ⋆,i); skR

)
∧

ValidKeyPair(pkR; skR) = 1}.

Fig. 3. Statements, witnesses, and languages for PROVEQUAL, AUTHCALC, AUTHVALUE, and AUTHQUAL.

updated quality Com(qτi , r
τ
c,i), (v) the position posτqi + rτk,i of

the MT leaf storing wi’s new commitment-quality, and (vi)
the proofs πτ

qi , π
τ
ai

for AUTHQUAL and AUTHVALUE. Last,
the requester submits worker payment pτi through the WORK-
ERPAYMENT method and CSTask reimburses the worker.

4) Quality Verification: Quality verification includes only
off-chain computations. In fact, wi verifies πτ

qi and πτ
ai

and
adopts the updated quality. We analyze the case when proofs
do not pass verification in Section VII-E.

Remark: Below-Threshold Worker Participation: Recall that a
requester, upon creating a task can specify a minimum par-
ticipation of nτ

th workers. If nτ < nτ
th the task is considered

void and the requester compensates workers for any expenses
already made, re-randomizes the quality commitments, and
produces corresponding πqi ; allowing workers to take part in
their next task seamlessly.

B. zk-SNARKs

AVeCQ utilizes four different zk-SNARKs, allowing work-
ers to participate in tasks honestly and requesters to calculate
the final answer, updated qualities, and payments correctly, all
of which verifiably. Below we explain the functionality of all
checks included in the employed zk-SNARKs and we include
all statements, witnesses, and languages in Figure 3.

PROVEQUAL. To participate in τ , wi uses PROVEQUAL’s
proving algorithm to generate a proof πτ

oi . PROVEQUAL
performs seven checks. EdDSAVer checks wi has already reg-
istered by verifying certi signature using mi, while MPathVer
that qτ−1

i exists hidden as a commitment in a leaf of MT .
Additionally, TaskVer ensures qτ−1

i conforms with P τ , and
HashComVer that (mi, q

τ−1
i ) are included in the calculation

of H
(
Com(qτ−1

i , rτ−1
c,i ),mi

)
. Last, ValidEnc verifies well-

formedness of the ciphertexts in oτi and Qualver that mi and
the same qi are included in the hash and the commitment.

AUTHCALC. The requester uses AUTHCALC to attest to the
correctness of aτϕ. First, ValidKeyPair checks if the secret key
in the witness consists a valid key-pair with the public key
provided by the requester during the task’s creation. After-
wards, the circuit decrypts all workers’ encrypted answers and
computes the final answer based on P τ . FinAnsVer(·)= 1
if the computed final answer matches the decryption of the
requester-submitted encrypted final answer.

AUTHVALUE and AUTHQUAL. These zk-SNARKs attest to
the correctness of each worker’s answer and quality update,
respectively. AUTHVALUE first checks the validity of the re-
quester’s key pair with ValidKeyPair. Next, it uses EqCheck
to check if the worker’s encrypted response equals the final en-
crypted answer. Likewise, AUTHQUAL first uses ValidKeyPair
to check the key pair’s well-formedness. Additionally, it uses
NewQual to check if the updated qualities were computed
correctly using the encrypted final answer and the worker’s
response. P τ is hard-coded in the SNARK.

VI. ZK-SNARKS SPECIFICATIONS FOR AVecQ

Figure 3 includes all the parameters and formal languages
supported by the SNARKs used in AVecQ. PROVEQUAL
is used by workers to generate proofs for their responses.
Contrary, a task’s requester uses AUTHCALC, AUTHQUAL,
and AUTHVALUE to attest to the final answer’s and worker’s
quality correctness and the woker’s answer vicinity to the final
answer, respectively.

PROVEQUAL. For a task τ , each worker wi generates a proof
πτ
oi attesting to the correctness of its quality qτi using PROVE-

QUAL. The statement x⃗i comprises the MT root, requester,
and RA’s public keys, the re-randomized commitment of wi’s
current quality, the quality “tag” and encryption of wi’s answer
and address for reimbursement. The corresponding witness ω⃗i

consists of wi’s certificate, its secret identifier, quality and
corresponding randomness in plaintext, quality commitment,
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plaintext answer, and public address followed by the MT path.
PROVEQUAL’s language-specific checks prove the correctness
of x⃗i while simultaneously guarding wi’s response against
free-rider attacks. As mentioned in Section V-B, these checks
include certificate verification (EdDSAver), quality verifica-
tion (QualVer), correctness of the answer and address encryp-
tions (ValidEnc), quality “tag” verification (HashComVer),
MT membership proof (MTPathVer), and any task-specific
check with TaskVer.

We can trivially see that these checks together ensure
the validity of x⃗i in PROVEQUAL. We also remark that
PROVEQUAL assists in safeguarding AVeCQ against free-
rider attacks. By including the correctness check for wi’s
reimbursement address in PROVEQUAL, we ensure that an
adversary copying wi’s response cannot change the reim-
bursement address (without breaking the SNARK’s soundness
property). As such, no adversary has an incentive to launch
free-riding attacks.
AUTHCALC. Each task’s requester uses AUTHCALC to gener-
ate the proof πτ

aϕ
to attest the correctness of the final answer

aτϕ. The statement x⃗AC includes the encryption of aτϕ, the
set of all encrypted responses and the public key pkR; while
the witness ω⃗AC comprises the requester’s secret key skR.
Each task’s policy is hard-coded in the SNARK. The language
makes up the following two checks: (i) ValidKeyPair, which
ensures that (pkR, skR) are valid key pair and (ii) FinAnsVer,
which checks if the final answer is correctly computed given
the set of all encrypted responses.

Figure 5 and Figure 6 shows the practicality of AUTHCALC.
E.g., the SNARK can generate proofs for popular crowdsourc-
ing policies for 1K workers and 64 choices in < 15 minutes.
AUTHQUAL and AUTHVALUE. The requester uses these
SNARKs to generate the proofs πτ

qi and πτ
ai

. These attest
to the correctness of wi’s updated quality and the proximity
of their answer with the final answer. Note that the quality
update rule and worker answer policies are hard-coded in
the SNARK. AuthValue’s statement x⃗AV includes encryption
of the final and wi’s answer and requester public key pkR,
while AUTHQUAL’s statement x⃗AQ additionally includes the
commitments of the old and updated qualities. Both the
witnesses, ω⃗AV and ω⃗AQ, comprise the secret key skR. The
language for AUTHVALUE comprises checks for the key-pair
validity (ValidKeyPair) and the correctness of wi’s answer
with respect to aτϕ (EqCheck). Likewise, AUTHQUAL’s lan-
guage includes ValidKeyPair and NewQual which checks the
quality update given wi’s answer, aτϕ and the old and updated
quality commitments as inputs.

Notably, from Table IV, both these SNARKs are efficient
in proving and verification times for popular crowdsourcing
policies. Depending on the policy, the proving time ranges
from 2.9− 3.6 sec, while the verification takes < 12.5 ms.

VII. SECURITY PROPERTIES OF AVeCQ

A. Anonymity (with Unlinkability)

The goal is to define the property so that no en-
tity can establish a connection between a worker’s iden-
tity and its responses across tasks. We therefore need to

take a closer look to the response oi. Remember that a
worker wi submits oτi to a task τ in the following form:
oτi = ⟨E(pkR, a

τ
i ; ·), E(pkR, pa

τ
i ; ·), Com(qτ−1

i , rτ−1
c,i +rτ⋆,i),

E(pkR, r
τ
k,i; ·), H

(
Com(qτ−1

i , rτ−1
c,i ),mi

)
, πτ

oi⟩.
First, we look at the public address pai: if it is not unique

across tasks, then any requester (or participant in general)
can connect the same pai with two discrete responses and
thus identify-link a worker across two tasks. Notably, this
is the case regardless of whether the uploading mechanism
is anonymous or not. For example, in Ethereum a worker
may select to respond to different tasks from equally different
addresses. However, this measure alone is not sufficient. In
our system’s case, by including pai encrypted in the response
tuple, we ensure that only the requester can identify any
connection between the uploading mechanism and the public
addresses that receive compensation after the task has been
concluded. This, in turn, translates into the fact that any
other entity that is even observing all blockchain transactions
may connect each worker across at most two tasks. To avoid
even such a case though, multiple approaches have already
been proposed in the literature, from anonymous tokens e.g.,
ZCash [39] to mixnets or tumblers [69]; techniques that are
easy to plug in AVeCQ.

We now consider which other element of the response can
be used non-trivially to link a worker across two tasks. We
observe that the quality scores can “reveal” the identity of a
worker across two tasks. If a worker submits its quality in the
response as a plaintext then any participant can possibly track
them across tasks e.g., workers with high or low qualities.
However, even if they are provided in a hiding manner i.e., as
commitments in AVeCQ, recall that it is actually the requester
that updates the quality scores of the participating workers and
then commits to them. Therefore, if qualities are used exactly
as provided by the last requester then back-to-back responses
can be linked across these two tasks, forming in fact the full
chain or responses across all tasks. To avoid this we require
from workers to re-randomize the quality commitments before
participating in the next task.

To prove that AVeCQ satisfies Anonymity we rely on the
hiding of Com, the collision-resistance of H , and the zero-
knowledge property of PROVEQUAL, assuming that no non-
trivial information about qi is leaked to the requester or anyone
else during response submission or processing. We refer to
trivial leakage as information that one can decipher from the
publicly available task policy (e.g., qi surpasses a certain qτth).
We design a game GAnon to formally capture anonymity as
a property. At a high level, we state that a crowdsourcing
system is anonymous if for any two distinct tasks τi, τj with
corresponding worker sets Wi,Wj , no entity can non-trivially
distinguish whether ∃ w⋆ s.t. w⋆ ∈ Wi and w⋆ ∈ Wj .

B. Free-rider Resistance

For this property we try and capture the following adver-
sarial behavior: A worker whose goal is to utilize another
worker’s answer and/or quality and get compensated. We
present and analyze all three cases below. First, workers might
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try to elude task execution or inflate total worker rewards8 by
submitting other workers’ responses as their own. Generally in
such cases the requester would face the challenge of deciding
which of the duplicate tuples was submitted first/legitimately.
However, in AVeCQ all submitted responses are timestamped
on a blockchain meaning that even if a worker copies all parts
of a response and only changes the public address part (or even
submit the same response entirely), the requester can disregard
any “duplicate” records. Thus, such behavior is counterincen-
tivized as workers who pawn someone else’s response as their
own (i) have to expend resources for uploading it on-chain
and (ii) deterministically will get no reward.

Second, workers might try to use someone else’s quality
to pass a specified threshold. In AVeCQ, when responding
to a task, wi ties specifically its qi to the underlying mi of
certi. Then, each worker produces a proof of validity for all
hashes, commitments, and encryptions in the submit-response
tuple using PROVEQUAL. From the soundness property of the
employed zk-SNARK and the hiding property of the com-
mitment scheme, no polynomially bound worker can produce
a convincing proof without a witnesses and from the zero-
knowledge property of PROVEQUAL no polynomially-bound
worker can extract any underlying witness from πτ

oi .
Third, to ensure no worker can utilize the encrypted-answer

part of another worker’s response and use it with its own
quality commitments we rely on the soundness and zero-
knowledge property of PROVEQUAL. Similarly to the above,
no polynomially-bound worker can extract another worker’s
answer ai from its response oi. We design a game GFRR to
formally capture this property. At a high level, we state that
a crowdsourcing system is secure against free-riding attacks
if the adversary can submit a response oi containing any
element from another worker’s response o′i and can distinguish
between getting the legitimate compensation based on the
answer included in oi or the minimum possible compensation.

C. Policy-Verifiable Correctness

No requester can produce convincing fabricated aτ,′ϕ and
qualities. Additionally, no worker-provided response that con-
tains an answer ai ̸∈ Aτ is included in the aτϕ calculation.
To prove this, we rely on the soundness of the zk-SNARKs’
outputs: πτ

ϕ ←AUTHCALC(·), πqi ← AUTHQUAL(·), and
πτ
ai
← AUTHVALUE(·). The trusted RA setups all SNARKS

for policy P τ . Thus, no requester can produce a valid proof
that pertains to a fabricated result aτ,′ϕ ̸= aτϕ or qualities for
a different policy P τ,′ without breaking the underlying zk-
SNARK soundness property.

D. Other Properties

Sybil-Attack Resistance. These attacks correspond to entities
forging identities to participate in tasks. For instance, a worker
with a “low” quality may prefer to generate fresh identities to
have higher chances of clearing quality thresholds and being
able to participate in future tasks. Moreover, workers might

8 E.g., a worker who cannot clear the quality threshold for a task can collude
with another worker, submit a duplicate response, and split the reward.

attempt to participate in a task multiple times, under different
identities, and reap rewards arbitrarily. On top of that, espe-
cially in tasks where the final answer is not known a-priori,
a worker that participates arbitrarily-many times in a task can
launch even more sophisticated attacks (see Section VII-E).
The severity of Sybil attacks in crowdsourcing systems has
been studied extensively and we rely on a trusted RA to
combat them, similarly to prior works [25], [34], [35]. Recall
that AVeCQ includes a registration phase where every worker
provides a secret message mi and acquires a participation
certificate in the form of an EdDSA signature certi through the
RA. To submit oi, each worker has to generate a PROVQUAL
proof, which includes a verification of certi based on mi.
From modeling the RA as trusted and the soundness property
of PROVEQUAL, no polynomially-bound worker can produce
a convincing proof without the respective witnesses.

However, even though AVeCQ relies on a trusted RA to
generate the certificates and run the SNARKs’ setup phases,
it does not allow the RA to track worker participation across
tasks. With the exception of Zebralancer [25] and to the best of
our knowledge no other system that employs an RA achieves
a similar goal, even without supporting qualities, crucially,
without restricting the adversary’s capabilities.
Payment and Quality Deprivation Resistance. No requester
can avoid paying. CSTask method PAYWORKER handles the
payments of workers during the quality verification phase.
Therefore, rightful reimbursements are allocated to workers,
assuming an honest majority in the on-chain validators. Any
worker wi who submits a correct answer aτi and yet is not paid
for participating in τ , during the protest period, can contact
the RA with the evidence πτ

ai
, oτi . Upon verifying the proof,

the RA can confiscate the requester funds, pay the worker, and
impose added penalties (similarly, for when a requester does
not upload on-chain a quality update).

E. Miscellaneous Attacks

Below we analyze additional attacks that our crowdsourcing
and threat model (see Section IV) allows and possible mitiga-
tion techniques.
Final-Answer Skewing. First, since we allow arbitrary col-
lusions between the entities and our system imposes no
restrictions to the task policy, the following attack is enabled.
Consider our running-example task where |WYes| = |WNo|+1.
An adversarial requester can skew the final answer if he
colludes with even just two additional workers. Interestingly,
this type of attack in combination with certain task policies
can even result in the requester giving out less rewards totally!

The following example is illuminating: Consider the case
where the final answer is calculated as the average of the
workers numerical responses and the qualities/rewards are cal-
culated based on a proximity deviation between the worker’s
answer and the final answer. In this case, the requester can
collude with even just one worker who just needs to purpose-
fully submit an “overshot” answer, affecting the final answer
enough to reduce total expended rewards. Our system does not
safeguard workers against such game-theoretic attacks, which
is in line with the broad mechanism design [18], [70]–[74] and
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anonymous crowdsourcing [25], [31] literature. Additionally,
in tasks where the final answer of a task is calculated as a
function of participating worker responses, workers may opt
to misreport their answer to try and “guess” the final answer
and get rewarded. Popular approaches to avoid such attacks
is to impose constant rewards for all participating workers
or enable tasks with only publicly available ground truth [75],
[76]. In AVeCQ we adopt a more expressive model concerning
the task policy, which includes the above approaches, but is
not restricted to these.

Quality Inflation. Another possible (and rather subtle) threat
stems from the fact that in AVeCQ workers verify just their
own quality updates. In fact, if a worker realizes that its quality
is lower than what it should be or that the requester-provided
proofs do not pass verification, it is incentivized to protest
and correct the wrongdoing. However, if the updated quality
is higher, then the worker is incentivized to avoid protesting!
This in turn, enables requesters to collude with workers
to raise arbitrarily their qualities. Previous blockchain-based
works adopt on-chain verification to avoid similar issues [25],
[34]. We adopt a different approach; all proofs and responses
are uploaded on-chain, but all verifications happen off-chain.
Thus, to combat such behavior we can pair AVeCQ with a
“bounty-hunter” protocol, where blockchain participants are
incentivized to verify all requester-provided proofs and reap
additional rewards upon discovering rejecting ones.

VIII. AVeCQ : CORE SECURITY PROPERTIES

We now introduce definitions, theorems, and proofs for the
three core properties of our system: (i) Anonymity with Unlink-
ability, (ii) Free-Rider Resistance, and (iii) Policy Verifiability.
We denote by AdvGx(A) the advantage that the adversary A
has in winning the game Gx. We denote by AdvC-Hiding(A)
the advantage A has in breaking the hiding property of
the commitment scheme C, by AdvH-CR(A) breaking the
collision-resistance of H , and by AdvProveQual-ZK(A) breaking
the zero-knowledge of PROVEQUAL.

Definition 1 (Anonymity with Unlinkability). A crowdsourc-
ing system is anonymous with unlinkability if no PPT adver-
sary A has non-negligible advantage in the next game GAnon.
• Initialization: A specifies parameters n, λ. The challenger
C runs the certificate generation algorithm to register n
workers such that the maximum worker set for GAnon is
Wt = {w1, · · · , wn} and samples a bit b←$ {0, 1}.

• Corruption Queries: When A issues such a query, it
specifies a set of workers Wc ⊆ Wt, and C ∀wi ∈ Wc

provides all respective private information to A.

• Task processing: A specifies a task τ and a corresponding
worker set Wτ . C, ∀wi /∈ Wc, samples random answers
and computes all necessary encryptions, commitments, and
proofs using the information for all participating workers,
and forwards the responses to A. A computes and com-
municates to C all proofs regarding the participation of all
wi /∈ Wc. If C cannot verify even one of these proofs the
game halts.

• Challenge:A specifies a task τ , two worker setsWτ ,W ′
τ ⊆

Wt−Wc, with |Wτ | = |W ′
τ |, and forwards Wτ ,W ′

τ to C.
If b = 0 then C “runs” τ using Wτ or uses W ′

τ otherwise.
Specifically, C computes all necessary encryptions, com-
mitments, and proofs for the non-corrupted workers of the
two sets and forwards corresponding responses to A.

• Finalization: A sends b′ ∈ {0, 1} to C.
A wins in GAnon if b′ = b. A naive A, by sam-
pling b′ at random has a 1

2 probability of winning. A
system is anonymous if ∀ PPT A, AdvGAnon(A) =
|Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| ≤ negl(λ).

Theorem 1. Assuming Com is computationally hiding,
PROVEQUAL computationally zero-knowledge, and H colli-
sion and pre-image resistant, AVeCQ is anonymous.

Proof. For an adversary to non-trivially identify whether “two
workers are the same” or not, one of the following conditions
must be true about the adversary: (i) compromised the hiding
property of the commitment scheme and accessed qualities
in the plain, (ii) found a collision in the hash function,
or (iii) compromised the zero-knowledge property of the
underlying SNARK for PROVEQUAL and accessed identity-
revealing witnesses. In GAnon the challenge query requires
the Challenger to execute a task τ with either of the following
two worker sets Wτ and W ′

τ , depending on the challenger
bit. Our proof follows a standard hybrid argument across all
possible selections of Wτ and W ′

τ , specifically over their
overlap regarding workers.

We prove indistinguishability of the view of the adversary
in GAnon, regardless of the challenger bit, through a series
of Hybrid games over all possible Wτ ∩ W ′

τ . We denote
Hj the hybrid where |Wτ ∩ W ′

τ | = j. Note that, when
Wτ ∩ W ′

τ = n,AdvGAnon=Hn(A) = 0. The only difference
between the views of executing hybrids Hj and Hj+1 lie
in the computation of a commitment, a hash and a proof.
This means that the advantage a PPT adversary A has in

distinguishing between the two hybrids is AdvH,j
?
≈j+1(A) ≤

AdvC-Hiding(A) + AdvH-CR(A) + AdvProveQual-ZK(A). Since
by assumption the commitment scheme is computationally
hiding, the hash function is collision-resistant, and Prove-
Qual is computationally zero-knowledge, no PPT adversary
can distinguish between these two views with non-negligible
advantage. To conclude the proof we apply this transformation
n times from H0 to Hn = GAnon. Since n is polynomially
bound no PPT adversary has a non-negligible advantage in
winning GAnon.

Definition 2 (Free-Rider Resistance). A crowdsourcing sys-
tem is free-rider resistant if no PPT adversary A has non-
negligible advantage in the following game GFRR.
• Initialization: A specifies parameters n, λ. The challenger
C runs the certificate generation algorithm to register n
workers such that the maximum worker set for GFRR is
Wt = {w1, · · · , wn} and samples a bit b←$ {0, 1}.

• Corruption Queries: When A issues such a query, it
specifies a set of workers Wc ⊆ Wt, and C ∀wi ∈ Wc

provides all respective private information to A.
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• Task processing: A defines a task τ , by specifying
ANSCALCτ , QUALCALCτ , and PAYMCALCτ , with range
[minCompτ ,maxCompτ ] for the workers’ compensa-
tions. A forwards all this information to C who ∀wi /∈Wc,
samples random responses, computes all necessary encryp-
tions and proofs using the information for all participating
workers, and forwards all responses {oi}∀wi ∈ Wh =
Wt −Wc to A.

• Challenge: A specifies a task τ and C provides
A with the set of responses O = {oi}, for each
wi ∈ Wh. A then forwards to C a response oj =
⟨E′(pkR, a

τ
i1
; ·), E′(pkR, pa

τ
i2
; ·),Com′(qτ−1

i3
, rτ−1

c,i4
+

rτ⋆,i5), E
′(pkR, r

τ
k,i6

; ·), H⋆
(
Com(qτ−1

i7
, rτ−1

c,i8
),mi9

)
, piτ

′

oi10
⟩,

where ∃i† ∈ {i1, i2 · · · , i10}, i† ∈ Wh, and τ ′ ̸= τ . If
b = 0, C outputs pτi = minCompτ to wi or runs
PAYMCALC(aτi1 , ·)→ pτi otherwise.

• Finalization: A sends b′ ∈ {0, 1} to C.
A wins in GFRR if b′ = b. A naive A, by sampling
b′ at random has a 1

2 probability of winning. A sys-
tem is free-riding resistant if ∀ PPT A, AdvGFRR(A) =
|Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| ≤ negl(λ).

Theorem 2. Assuming that the PKE scheme E is CPA-secure,
the hash function H is collision-resistant, the commitment
scheme Com is computationally hiding, and PROVEQUAL is
computationally sound, AVeCQ is free-riding resistant.

Proof. To break Free-riding Resistance, an adversary has to
extract information regarding wi’s answer ai or quality qi.
Violating the first one reduces to breaking the security of
the PKE scheme E. The second condition is more complex.
Specifically, the adversary “wins” iff it can break the hiding
property of Com, find a collision in H , or break the soundness
of PROVEQUAL. To prove indistinguishability between the
view of the adversary regardless of the challenger bit we use a
hybrid analysis where we change one by one the witnesses into
random values while simulating proofs. The total advantage of
A is AdvGFFR(A) ≤ AdvCom(A) +AdvCPA−security(A) +
AdvH−CR(A) +AdvSNARK−soundness(A) ≤ negl(λ).

Definition 3 (Policy Verifiability). A crowdsourcing system is
policy-verifiable if both following conditions hold:
(i) For any task τi with worker setWi = {wi,1, · · · , wi,ni}, no
PPT adversary can output aτi,′ϕ ↚ ANSCALC(Aτi

nτi , P
τi), or

{qi,1, · · · , qi,ni
} ↚ QUALCALC(Qnτ , aτiϕ , P τi), and accept-

ing proofs πτi
aϕ

, {πτi
ai,1

, · · · , πτi
ai,ni
}, {πτi

qi,1 , · · · , π
τi
qi,ni
} with

more than negligible probability.
(ii) For any task τj no PPT adversary can fabricate q⋆i , for any
wi with qi, and an accepting proof πτj

o⋆i
← PROVEQUAL(q⋆i , ·),

where q⋆i ̸= qi with more than negligible probability.

Theorem 3. Assuming AUTHCALC, AUTHVALUE, AU-
THQUAL and PROVEQUAL are computationally zero-
knowledge, Com computationally hiding and H collision-
resistant, AVeCQ satisfies Policy Verifiability.

Proof. To break Policy Verifiability an adversary has to violate
any of the two conditions. In either case, the adversary essen-
tially needs to provide convincing results and corresponding

proofs that do not satisfy the relations in Figure 3 but still
pass verification. Therefore, violating the first one reduces to
breaking the soundness of AUTHCALC, or AUTHVALUE, or
AUTHQUAL or the binding property of Com. The second
condition is more straightforward. The adversary “wins” iff
it can find a collision in H or can break the soundness of
PROVEQUAL with non-negligible probability. Since that would
contradict the underlying assumptions, no PPT adversary can
break the policy-verifiability property of AVeCQ .

IX. AVeCQ : EXPERIMENTAL EVALUATION

We implement a prototype of AVeCQ 9 and report its per-
formance. We deploy the sole on-chain component of AVeCQ,
CSTask, over Ethereum using Solidity [77]. Additionally, we
develop requester and worker Java applications that connect
with the Rinkeby [41] and Goerli [42] test networks using the
Web3j framework. We use the Zokrates toolbox [78] for all zk-
SNARKs implementation. Last, we perform all cryptographic
operations over the ALT BN128 elliptic curve [79]. As for the
answer calculation policies, we consider (i) Average (Avg),
and (ii) γ-Most Frequent (γ-MF) with γ ∈ {1, 3}. We
choose these parameters to test across various popular answer
calculation mechanisms based on data gathered from MTurk
tasks e.g., “Tell us how much this item would cost to replace”
(Avg), “Tell us what this item is” (1-MF), and “Given a
question/utterance, rank the responses. Keep the best response
at the top and the worst response at the bottom.”(3-MF).

First, we measure AVeCQ’s on-chain costs in gas and USD.
Next, we examine the impact of varying gas prices on the
verification time for th SUBMITRESPONSE method. Then, we
measure the computation time and communication size of the
off-chain components. Finally, we include E2E analyses that
report on the total time, space, and expenses required for
the completion of three real-world tasks and compare, where
possible, with state-of-the-art systems.

Setup. We construct CSTask with bytecode size 3.8 KB with
Solidity and deploy on the Rinkeby and Goerli testnets with
the Web3j framework. We monitor the created transactions
through Etherscan [80]. We create three different versions for
AUTHCALC, AUTHQUAL, and AUTHVALUE zk-SNARKs for
our three crowdsourcing policies. For our off-chain crypto-
graphic primitives, we use the Zokrates-accompanying py-
crypto library. For hashing we use Pedersen hash [39] and
ElGamal cryptosystem as the PKE scheme, which are zk-
SNARK-friendly. We execute all off-chain-component exper-
iments on a 40-core server with Intel(R) Xeon(R) CPU E5-
2640 v4 @2.40GHz and 1 GB RAM per core.

A. On-chain Measurements

Gas Consumption and Costs. We measure the gas con-
sumption for CSTask deployment and method execution. We
map gas to USD, using the default gas price of 1 Gwei =
1 × 10−9 ETH, base fee 5 GWei and the price of 1 ETH
= 1716.42 USD (27/03/2023). Notably, deploying CSTask
consumes ≈ 1.34 million gas units and costs ≈ 13.79 USD.

9 The codebase is available at: github.com/sankarshandamle/AVeCQ.
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Fig. 4. SUBMITRESPONSE Verification Time vs Priority Fee. Here, the base
fee is 5 GWei.

Further, the method CREATETASK consumes 363491 gas
units costing 3.74 USD. SUBMITRESPONSE requires 2367624
units and costs the participating worker 4.06 USD. Uploading
AUTHCALC proof consumes 120772 gas units and costs the
requester 1.24 USD. As shown below in Table V, the gas
consumption in AVeCQ outperforms the work of [31]. This is
mainly due to the following: In our protocol, we utilize the
blockchain and the corresponding task-related smart contracts
to solely store information and do not perform any on-chain
computation, contrary to [31]. Zebralancer [25] does not
provide any on-chain measurements, however we expect that
our system should require less gas as well, since in [25] the
ZKP verification is happening on-chain.

Priority Fee vs Transaction Processing Time. Transaction
processing time behaves in an “inversely proportional” manner
to the chosen priority fee, δ. We observe that depending on the
urgency of the task, workers may opt to use gas prices other
than the default. Motivated by this, we examine the average
verification time (in blocks) of SUBMITRESPONSE for each
δ ∈ {0.5, 1, 1.1, 1.5, 2, 5, 10} across 200 instances, and depict
the result in Figure 4. As shown, for a gas price of 1.1 GWei,
the average verification time on Rinkeby is 2.54± 0.7 blocks
(≈ 30 secs). With Goerli, the verification time marginally
increases to 3.52 ± 0.8 blocks (≈ 42) seconds. As expected,
we observe that the verification time decreases as δ increases.
However, the increase is minimal (≈ 0.7 block across both test
networks) and the standard deviation remains almost constant,
for prices ranging from 1.1 GWei to 10 GWei. Importantly
though, on Rinkeby, for gas prices < 1.1 GWei, the difference
in processing time is considerable and with high deviation.
E.g., for 0.5 GWei the average processing time is 8.68 blocks,
with a deviation of ≈ 2 blocks.

The Ethereum Main network shows a similar trend. For
instance, the verification time decreases from ≈ 10 mins with
δ = 0 to ≈ 3 mins with δ = 1 GWei [81]. We argue that
1 GWei is a reasonable priority fee, as each crowdsourcing
task’s time sensitivity is absorbed in its deadline. For shorter
deadlines, a worker can accordingly increase its priority fee.

B. Off-chain Measurements

Non-SNARK Computations. Both the requester and the
workers generate ElGamal ciphertexts, Pedersen hashes and
commitments. A single encryption takes ≈ 11ms, while a
decryption takes < 1ms. Constructing a pre-image and com-
puting a Pedersen hash requires ≈ 59ms, while generating a
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Fig. 6. AUTHCALC: Proving & Verification Time vs. number of choices for
ANSCALC= 1-MF with 1024 workers.

Pedersen commitment takes < 1ms. Overall, the communi-
cation size between the requester and a worker is 384B and
between a worker and the requester is 448B.
SNARKs Performance. Here we present measurements re-
lated to the proving and verification time for all employed
zk-SNARKs. As we show below for all three different ap-
plications and policies the proving time is in the order of
seconds while the verification time in milliseconds. We report
the average data across 10 runs.
PROVEQUAL includes 8 checks as described in Figure 3, one
of which is a membership proof for MT . This is the only
variable for the generation of πτ

oi and we examine how the
Merkle tree depth affects the proving and verification times.
We present our findings for varying depths from 20 to 24 in
Figure 7. Notably, to generate a proof for depth 23 a worker
needs < 23 secs, which the requester verifies in ≈ 24 msecs.
AUTHCALC embodies the implementation of ANSCALC. As
such, we provide the implementation for the γ-Most Frequent
(MF) and the Average (Avg) algorithms. The performance
of AUTHCALC depends on the number of (i) workers and
(ii) choices. Figure 5 depicts the performance of both im-
plementations (for γ = {1, 3}) with 4 choices and workers
varying from 64 to 1024. Contrary, in Figure 6 we show
the performance when fixing the number of workers to 1024
and varying the choices from 4 to 64. Crucially, the results
confirm the practicality of our design, e.g., a requester using
AVeCQ can output a proof pretending to be the most frequent
answer, for 1K workers and 64 choices, in < 15 mins. We
remark here that Avg is independent of the number of choices.
Last, in all cases above, the verification time is < 0.7 secs.
AUTHVALUE and AUTHQUAL. The former produces a proof
for the correctness of response wi. For ANSCALC=1-MF we
establish aτi as correct if aτi = aτϕ, while for ANSCALC=Avg if
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ANSCALC zk-SNARK Proving (s) Verification (ms)

1-MF AUTHQUAL 2.29 11.8
AUTHVALUE 1.93 11.2

3-MF AUTHQUAL 3.59 12.3
AUTHVALUE 3.25 11.7

Avg AUTHQUAL 2.91 12.1
AUTHVALUE 1.96 10.7

TABLE IV
AUTHQUAL AND AUTHVALUE PROVING AND VERIFICATION TIME FOR

DIFFERENT ANSCALC MECHANISMS.

it is within a P τ -specific range around the final answer. Now,
AUTHQUAL produces a proof regarding the corresponding
update of qi based on the correctness of aτi . Recall that the
requester does not have access to the qualities in the plain.
To update a worker’s quality, the requester “adds” a Pedersen
commitment of 0 or 1 to the worker-provided commitment
appropriately. These zk-SNARKs have a constant number of
constraints, and we provide the per-worker proof generation
and verification times in Table IV.

C. End-to-End (E2E) Run Time

To further demonstrate the practicality of AVeCQ, we mea-
sure its performance on popular crowdsourcing tasks [3], [4],
[7] simulated on real-world datasets [5], [6], [9]. We measure
each task’s time from their deployment until completion.
Tasks. First, we consider Image Annotation [8], commonly
used in crowdsourcing to generate datasets to train Machine
Leaning (ML) models. Similar to [7], we consider a task such
as identifying whether a given image contains a duck or not.
We deploy CSTaskML for this task. Second, we consider the
task of generating the Average Review of an online product
through CSTaskReview. Last, we deploy CSTaskGallup to
estimate public opinion through a Gallup poll. E.g. to deter-
mine the “COVID-19 fear level” for citizens living in major
Spanish cities [9].
Datasets. For CSTaskML, we use worker reports obtained
using a real-world image annotation dataset, Duck [5]. Further,
CSTaskML has ANSCALC=1-MF, nτ

th = 39, and |Aτ | = 2.
For CSTaskGallup, the worker reports are from the real-world
survey conducted by Pérez et al. [9]. Specifically, we have
ANSCALC=3-MF, |Aτ | = 5 and we subsample nτ

th = 64
worker reports from the ≈ 8K available. Last, CSTaskReview

acquires an average review, with individual worker reports
taken from the Amazon review dataset [6]. More concretely,
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CSTaskReview has ANSCALC=Avg, where each worker can
report a rating from the set {1, 2, 3, 4, 5},|Aτ | = 5. We sub-
sample nτ

th = 128 worker reports from the ≈ 1M available.
Results. Figure 8 depicts our results with δ = 1 GWei.
Depending on the task, a worker’s response takes 93.34-
108.52 secs (Rinkeby) and 62.36-63.12 secs (Goerli) to be
constructed, submitted, and verified on-chain. Based on the
underlying crowdsourcing policy, the number of workers, and
choices, to calculate the result and produce the corresponding
proof the requester takes from 206 to 764 secs, while for
uploading the quality updates and payments it takes 204-280
secs on Rinkeby and 106-140 secs on Goerli. Last, the quality
verification phase takes < 1 sec.

D. Comparing AVeCQ with Prior Works

We remark that AVeCQ outperforms state-of-the-art pro-
tocols [25], [28], [31], [34] in multiple metrics, despite in-
corporating worker quality and achieving stronger security
properties. Below we compare wherever and however possible
with such systems. We discuss initially E2E performance and
then comparable individual aspects.
E2E Comparison. Surprisingly, very few prior works report
the computational expenses or other overheads for an E2E
execution of a specific task holistically. In fact, only [25]
and [31] report such data. Table V, includes a head-to-head
comparison between our system and these works. As shown,
AVeCQ outperforms [25] in time and [31] in gas required while
achieving similar time efficiency.
Gas Consumed. Task creation requires ≈ 4× and response
submission ≈ 7.4× more gas in [34], compared to AVeCQ.
Additionally, the deployment cost of the smart contracts
in [28], [31] is comparable to the one of CSTask. Whereas,
worker responses require ≈ 2 times more gas in [31]. Further,
the authors of [28] perform the majority of their protocol
operations on-chain, which would incur prohibitive gas (and
monetary) costs for tasks with a high number of workers, based
on a similar approach followed in [82].
Supporting Workers and Task Choices. Last, unlike [25]
and [34] we provide results for significantly greater number of
workers and task choices. The authors in [25] provide results
up to 11 workers and 2 choices, and only 4 workers in [34].
To the best of our knowledge, AVeCQ is the first anonymous
crowdsourcing system measured against > 1K workers and
> 100 choices (Figures 5 and 6).
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Tasks Image Annotation
(|W | = 39, |A| = 2)

Average Review
(|W | = 128, |A| = 5)

AVeCQ
Time: < 8mins

Gas: < 19MWei
Time: < 18mins
Gas: < 55MWei

E2E Comparable
Blockchain-based

Systems

ZebraLancer [25]
Time: > 7h⋆
Gas: No data

Duan et al. [31]
Time: 30min⋆

Gas: > 416MWei⋆
⋆ denotes extrapolation of results.

TABLE V
COMPLETION TIME AND ON-CHAIN COSTS OF AVeCQ (ON GOERLI) VS

CONTEMPORARY WORKS IN POPULAR CROWDSOURCING TASKS.

X. DISCUSSION & CONCLUSION

Discussion. Using gold-standard tasks to evaluate the “trust-
worthiness” of a worker is quite popular [32], [35], [83], [84].
AVeCQ can support such tasks. In fact, for these types of tasks,
all requester off-chain computations are almost non-existent
since all workers know the final answer upon completion of
the task and, therefore, can verify the correctness of their
quality updates and payments. Therefore, AVeCQ operates in
a richer setting functionality-wise, and specifically for this
subset of cases, it is even more efficient. On a different note,
there indeed exist quality/reputation systems based on more
complex algebraic relations than additions (e.g., products [18]
or Gompertz function [70]). We acknowledge this and iden-
tify as an interesting future direction the construction of an
even more general protocol that can incorporate sophisticated
quality scores inexpressible via homomorphic commitments
(e.g., [17], [18], [70]). Another research question that has yet
to be explored revolves around quantifying more qualitative
characteristics of different crowdsourcing systems e.g., the
user experience. We aim to explore this direction in a following
version of our work. Additionally, we identify that designing
an anonymous and verifiable crowdsourcing system that does
not rely at all on the existence of a registration authority is
a challenging research direction that we also plan to explore
in a future version of our work. Last, AVeCQ is task/poli-
cy/blockchain agnostic at its core. The only requirement is that
the policy can be expressed as a circuit and thus ANSCALC,
QUALCALC, and PAYMCALC as zk-SNARKs.

Conclusion. In this work, we proposed AVeCQ, the first
anonymous crowdsourcing system with verifiable worker qual-
ities. AVeCQ leverages a fusion of cryptographic techniques
and is built atop a blockchain that supports smart contracts.
Moreover, we demonstrated via extensive experimentation that
our system is deployable in real-world settings. Additionally,
increases in the number of workers/choices for popular task
policies do not impact the performance of AVeCQ. In con-
clusion, AVeCQ outperforms state-of-the-art and guarantees
stronger security and privacy properties.
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