
A Note on “Privacy Preserving n-Party Scalar Product Protocol”

Lihua Liu

Abstract. We show that the scalar product protocol [IEEE Trans. Parallel Distrib. Syst.
2023, 1060-1066] is insecure against semi-honest server attack, not as claimed. Besides, its
complexity increases exponentially with the number n, which cannot be put into practice.

Keywords: privacy preserving scalar product, semi-honest server attack, diagonal ma-
trix, trace map.

1 Introduction

In 2002, Du and Zhan [1] designed a privacy preserving two-party scalar product protocol. Recently,
Daalen et al. [2] have generalized it to a general n-party protocol. In this note, we show that the
Daalen et al.’s protocol is insecure against semi-honest server attack. Besides, the protocol cannot
be practically implemented because of its exponential complexity.

2 The Du-Zhan two-party protocol

Alice and Bob want to calculate the scalar product of their private vectors A and B, both of the
same size m. Merlin is a semi-honest server, who generates two random vectors Ra, Rb of size m and
two scalars ra and rb such that

ra + rb = Ra ·Rb (1)

Then securely send (Ra, ra) to Alice, and (Rb, rb) to Bob. The protocol can be depicted as below
(Table 1).

Clearly, we have

v1 + v2 = u−Ra · B̂ + ra + v2

= Â ·B + rb − v2 −Ra · B̂ + ra + v2

= (A+Ra) ·B −Ra · (B +Rb) + ra + rb

= A ·B −Ra ·Rb + ra + rb = A ·B

Notice that the Du-Zhan protocol has two shortcomings. The first is the presence of an honest
convener. In the protocol, only Bob can know the result v1 + v2. If Alice wants to know the result,
it must introduce other mechanism enabling Bob to honestly and securely transfer the nonce v2 to
Alice.

L. Liu is with Department of Mathematics, Shanghai Maritime University, Shanghai, China. Email: li-
ulh@shmtu.edu.cn

1



Table 1: The Du-Zhan two-party protocol

Alice: (Ra, ra) Bob: (Rb, rb)

Input the private
A. Compute the
vector
Â = A+Ra.

Compute the
scalar v1 =
u−Ra · B̂ + ra.

Â−−→

B̂,u←−−−
v1−−→

Input the private
B. Pick a nonce
v2. Compute
B̂ = B +Rb,
u = Â·B+rb−v2.

Output v1 + v2.

The second is that insecurity against semi-honest server attack. A semi-honest party is a party
which executes its part in the protocol accurately, but may try to learn as much as it can from the
messages it receives in the process. In the Du-Zhan protocol, once the server captured Â, B̂ via the
open channels, it can retrieve the private vectors A,B using Ra, Rb.

3 The Daalen et al.’s three-party protocol

3.1 Review of the Daalen et al.’s protocol

Table 2: The Daalen et al.’s three-party scalar product protocol

Alice: (Ra, ra) Bob: (Rb, rb) Claire: (Rc, rc)

Input the private A. Convert
it into A. Compute
Â = A + Ra. Perform
two-party scalar product
protocol with Merlin who
knows Rb,Rc to obtain
ka = φ(AMa), where
Ma = RbRc. Broadcast Â.

Input the private B. Convert
it into B. Compute
B̂ = B + Rb. Perform
two-party scalar product
protocol with Merlin who
knows Ra,Rc to obtain
kb = φ(BMb), where
Mb = RaRc. Broadcast B̂.

Input the private C. Convert
it into C. Compute
Ĉ = C + Rc. Perform
two-party scalar product
protocol with Merlin who
knows Ra,Rb to obtain
kc = φ(CMc), where
Mc = RaRb. Broadcast Ĉ.

Compute
u2 = u1 − φ(RaB̂Ĉ) + 2ra.

Pick a nonce v2, compute
u1 = φ(BÂĈ) + 2rb − v2.

u1, kb←−−−−−−−−
u2, ka, kb−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ u3 = u2 − φ(RcÂB̂) + 2rc +

ka + kb + kc.

Output u3 + v2.
u3←−−−−−

In the Daalen et al.’s three-party protocol [2], we use lowercase letters to denote scalars, upper-
case for vectors and uppercase with a bold face for matrices. It needs to convert a vector into its

2



corresponding diagonal matrix. Let φ be the trace map of a matrix. The protocol can be rephrased
and depicted as below (Table 2).

The server Merlin generates three random diagonal matrices Ra, Rb, Rc and three scalars ra, rb, rc
such that

ra + rb + rc = φ(RaRbRc) (2)

Send {Ra, ra} to Alice, {Rb, rb} to Bob and {Rc, rc} to Claire.

Its correctness is due to that

u3 = u2 − φ(RcÂB̂) + 2rc + ka + kb + kc

= u1 − φ(RaB̂Ĉ) + 2ra − φ(RcÂB̂)

+ 2rc + ka + kb + kc

= φ(ÂĈB) + 2rb − v2 − φ(RaB̂Ĉ)

+ 2ra − φ(RcÂB̂) + 2rc + ka + kb + kc

= φ((A + Ra)(C + Rc)B)− φ(Ra(B + Rb)(C + Rc))

− φ(Rc(A + Ra)(B + Rb))

+ 2(ra + rb + rc)− v2 + ka + kb + kc

= φ(ABC)− φ(ARbRc)− φ(BRaRc)− φ(CRaRb)

− v2 + ka + kb + kc = φ(ABC)− v2

The three-party protocol can be generalized to an n-party protocol, but which should recursively
perform plenty of (n−1)-party protocols, (n−2)-party protocols, ..., and 2-party protocols. We refer
to the original description (page 1062, [2]).

3.2 Insecure against semi-honest server attack

In order to solve the so-called left-over problems [2]

φ(ARbRc), φ(BRaRc), φ(CRaRb)

it needs to use two-party scalar product protocols, where Merlin is one of the parties. A big difference
between two-party protocol and three-party protocol is whether the semi-honest server involves in
the procedures after the setup phase is completed.

In the three-party protocol, Alice has to perform the two-party protocol with Merlin in order to
compute ka = φ(AMa) where Ma = RbRc, and both Rb and Rc are known to Merlin. That means
Alice needs to send Â = A+Ra to Merlin. Since Merlin knows Ra, he can easily recover the private
diagonal matrix A and the corresponding private vector A. Likewise, Merlin can retrieve the private
vectors B and C.

To resist the semi-honest server attack, it suggests that the role of commodity server Merlin could
be jointly played by many semi-honest parties. For instance, there are ` semi-honest servers, Server1,
Server2, ..., Server`, where ` > 3. None of them can solely access Ra,Rb,Rc. In this case, they need
to collaboratively and securely compute the diagonal matrix

Ma = RbRc (3)

3



But we find the above problem is just a new secure `-party computation problem, which is more
intractable than the original 3-party computation problem.

It also suggests that (page 1064, [2]): “a sufficient level of trust can be achieved to minimize
the risk of this attack by enforcing the commodity server to act as an honest party, not just semi-
honest.” But we find the argument is self-contradictory. If the server is full-honest, not semi-honest,
the original protocol becomes unnecessary. Actually, in this case any party-i can send D̂i = Di +Ri

to the honest server, who then retrieves Di using Ri. After all vectors are collected, the server
computes the final scalar product and securely sends the result to any target user.

3.3 Exponential complexity

In the proposed n-party protocol, the party-I needs to compute

φ(D1R2R3), φ(D1R2R4), · · · , φ(D1R2Rn);

φ(D1R2R3R4), φ(D1R2R3R5), · · · ;

· · ·
φ(D1R2R3R4 · · ·Rn)

That means any party needs to perform 2n−1 − n sub-protocols. The complexity increases exponen-
tially with the number n. Therefore, the n-party protocol cannot be put into practice.

4 Conclusion

We show that the Daalen et al.’s scalar product protocol is insecure against semi-honest server attack.
Its massive complexity is a big issue for practical implementation. The findings in this note could be
helpful for the future work on designing such protocols.

References

[1] W. Du and Z. Zhan: Building decision tree classifier on private data, in Proc. IEEE Int. Conf.
Privacy Secur. Data Mining, 2002, pp. 1-8.

[2] F. Daalen, L. Ippel, A. Dekker, and I. Bermejo: Privacy Preserving n-Party Scalar Product
Protocol, IEEE Trans. Parallel Distributed Syst., 34(4), pp. 1060-1066, 2023.

4


	Introduction
	The Du-Zhan two-party protocol
	The Daalen et al.'s three-party protocol
	Review of the Daalen et al.'s protocol
	Insecure against semi-honest server attack
	Exponential complexity

	Conclusion

