Paper 2024/1103
A Note on Efficient Computation of the Multilinear Extension
Abstract
The multilinear extension of an $m$-variate function $f : \{0,1\}^m \to \mathbb{F}$, relative to a finite field $\mathbb{F}$, is the unique multilinear polynomial $\hat{f} : \mathbb{F}^m \to \mathbb{F}$ that agrees with $f$ on inputs in $\{0,1\}^m$. In this note we show how, given oracle access to $f : \{0,1\}^m \to \mathbb{F}$ and a point $z \in \mathbb{F}^m$, to compute $\hat{f}(z)$ using exactly $2^{m+1}$ multiplications, $2^m$ additions and $O(m)$ additional operations. The amount of space used corresponds to $O(m)$ field elements.
Metadata
- Available format(s)
- Category
- Cryptographic protocols
- Publication info
- Preprint.
- Keywords
- Multilinear Extension
- Contact author(s)
- rothblum @ cs technion ac il
- History
- 2024-07-11: revised
- 2024-07-06: received
- See all versions
- Short URL
- https://ia.cr/2024/1103
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2024/1103, author = {Ron D. Rothblum}, title = {A Note on Efficient Computation of the Multilinear Extension}, howpublished = {Cryptology {ePrint} Archive, Paper 2024/1103}, year = {2024}, url = {https://eprint.iacr.org/2024/1103} }