
Towards ML-KEM & ML-DSA on OpenTitan

Amin Abdulrahman1, Felix Oberhansl2, Hoang Nguyen Hien Pham3,4,
Jade Philipoom5, Peter Schwabe1,6, Tobias Stelzer2 and Andreas Zankl2,7

1 Max Planck Institute for Security and Privacy (MPI-SP), Bochum, Germany,
amin@abdulrahman.de,peter@cryptojedi.org

2 Fraunhofer Institute for Applied and Integrated Security (AISEC), Garching, Germany,
firstname.lastname@aisec.fraunhofer.de

3 BULL SAS, Les Clayes-sous-Bois, France
4 Université Grenoble Alpes, CNRS, IF, Grenoble, France,

hoang-nguyen-hien.pham{@eviden.com,@univ-grenoble-alpes.fr},
nguyenhien.phamhoang@gmail.com

5 zeroRISC, Boston, USA, jadep{@zerorisc.com,@opentitan.org}
6 Radboud University, Nijmegen, The Netherlands

7 Technical University of Munich (TUM), Munich, Germany

Abstract. This paper presents extensions to the OpenTitan hardware root of trust
that aim at enabling high-performance lattice-based cryptography. We start by
carefully optimizing ML-KEM and ML-DSA—the two primary algorithms selected by
NIST for standardization—in software targeting the OpenTitan Big Number (OTBN)
accelerator. Based on profiling results of these implementations, we propose tightly
integrated extensions to OTBN, specifically an interface from OTBN to OpenTitan’s
Keccak accelerator (KMAC core) and extensions to the OTBN ISA to support
operations on 256-bit vectors. We implement these extensions in hardware and show
that we achieve a speedup by a factor between 6 and 9 for different operations and
parameter sets of ML-KEM and ML-DSA compared to our baseline implementation
on unmodified OTBN. This speedup is achieved with an increase in cell count of less
than 12% in OTBN, which corresponds to an increase of less than 2% for the full
Earlgrey OpenTitan core.

Keywords: Post-quantum cryptography · ML-KEM · ML-DSA · OpenTitan ·
instruction set extension · HW/SW co-design

1 Introduction
In July 2022, the NIST post-quantum standardization effort produced as first output
a selection of four primitives for standardization: the signature schemes CRYSTALS-
Dilithium [LDK+22], Falcon [PFH+22], and SPHINCS+ [HBD+22], and the key encap-
sulation mechanism CRYSTALS-Kyber [SAB+22]. Out of the three signature schemes,
“NIST selected Dilithium as the primary signature algorithm that it will recommend for
general use” [AAA+20, Sec. 1]. Draft standards for three of those schemes—Dilithium,
SPHINCS+, and Kyber—were published in August 2023 [NIS23b, NIS23c, NIS23a] and
the final standards for these three schemes are expected to be ready later this year. The
standards will use different naming of the algorithms: Dilithium will be standardized as
ML-DSA, SPHINCS+ as SLH-DSA, and Kyber as ML-KEM.

Already now, before the standards are finalized, several applications have started using
the new primitives, in particular Kyber. The most notable examples are integration
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into TLS by Google, Cloudflare, and Mozilla1 [ABBO24, EWP+23], integration into the
Signal secure messenger [KS24], into Apple’s iMessage protocol [App24], and into the
Zoom end-to-end encrypted video-conferencing protocol [BBC+24].

While these prominent examples of early adoption certainly inspire hope for a speedy
migration of at least parts of our digital infrastructure to post-quantum cryptography
(PQC), it is also worth noting that all these examples share characteristics that simplify
quick deployment: all end points of communication are controlled by one or at most a few
entities, they do not require protections against local (e.g., power or EM analysis) side-
channel attacks, deployment can be achieved through already in-place update infrastructure,
and, most importantly, implementations of the new schemes are entirely in software.

Applications that rely on hardware acceleration for cryptography will naturally take
more time to migrate, but significant effort has already been invested into the implementa-
tion of post-quantum cryptography—mostly lattice-based cryptography—on embedded
platforms with hardware accelerators. These works can roughly be grouped into two
categories. The first category studies how existing hardware accelerators for big-integer
arithmetic can be used to speed up the polynomial arithmetic underlying structured-
lattice-based schemes [AHH+18, GMR21]. The second category aims at building dedicated
accelerators for PQC [BUC19].

We argue that for the foreseeable future, neither of these approaches is fully satisfactory.
The attempt to utilize existing hardware is certainly highly relevant to deploy PQC on
legacy devices that are already in the field. However, it is also rather clear that future
generations of security chips will want to take acceleration of PQC into account in the
design phase. Also, the two primary algorithms selected by NIST for general use, ML-DSA
and ML-KEM, tightly integrate multiplication through the number-theoretic transform
(NTT) into the algorithm specification. This makes it hard to gain performance when
employing a different multiplication algorithm that is amenable to acceleration through fast
big-integer arithmetic. For example, the “Kyber” implementation described in [AHH+18]
is incompatible to the actual Kyber specification for exactly this reason.

Post-quantum-only security chips are most likely what we will want in the very long
run, but we expect that any hardware deployed in the next decade will still require support
for pre-quantum asymmetric cryptography, i.e., ECC and RSA. One reason is to support
legacy applications, but a much more important reason is that sensible deployment of post-
quantum cryptography today uses hybrid schemes that combine the novel algorithms with
established pre-quantum algorithms. For example, all of the early-adopter applications
listed above, employ such hybrid solutions. It would certainly be possible to deploy
dedicated PQC accelerators in addition to ECC and RSA accelerators, but as we show in
this paper, the resulting increase in hardware resources is unnecessary.

Contributions and organization of this paper. We show that small modifications and
extensions to the hardware design and ISA of existing cryptographic hardware, designed to
accelerate ECC and RSA, yields highly efficient accelerators for both traditional asymmetric
cryptography, and novel post-quantum schemes. More specifically, we ready the OpenTitan
hardware root of trust (RoT) for the lattice-based algorithms ML-DSA and ML-KEM.
Our approach leverages multiple features of the OpenTitan platform in general and the
OTBN unit in particular: First and foremost our research is made possible by the fact
that OpenTitan is an open platform with the hardware implementation, software, build
system, etc. publicly available under permissive licenses. Furthermore, OpenTitan already
features a high-performance hardware implementation of Keccak, a central building block
of both ML-DSA and ML-KEM. Also, the hardware/software co-design for ECC and
RSA on OpenTitan uses a rather low-level ISA, which aims at accelerating only (modular)

1https://hg.mozilla.org/releases/mozilla-release/file/d3c71a6fc9a1aecf1fe04f8d
e2fc0b816588e677/security/manager/ssl/nsNSSIOLayer.cpp#l1439

https://hg.mozilla.org/releases/mozilla-release/file/d3c71a6fc9a1aecf1fe04f8de2fc0b816588e677/security/manager/ssl/nsNSSIOLayer.cpp#l1439
https://hg.mozilla.org/releases/mozilla-release/file/d3c71a6fc9a1aecf1fe04f8de2fc0b816588e677/security/manager/ssl/nsNSSIOLayer.cpp#l1439
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big-integer arithmetic in hardware; higher-level routines like ECC point operations or
exponentiation are implemented in software. In our upgrade to the OpenTitan platform,
we proceed as follows:

• We start by carefully optimizing ML-DSA and ML-KEM on OTBN in a software-
only approach, i.e., without requiring any modifications to the OpenTitan hardware
design, except for an increase in data memory. This implementation serves as a
baseline for our performance evaluation and a starting point for profiling. It is
described in detail in Section 3.

• Unsurprisingly, we identify Keccak permutations as a major bottleneck in our
software-only implementation. We resolve this by adding an interface from OTBN
to the Keccak accelerator. This interface and the resulting increase in performance
are described in Section 4.

• The main remaining bottleneck is polynomial arithmetic. In order to speed up
this part, we propose extensions to the OTBN ISA, which let us operate on the
existing 256-bit-wide registers as vectors of small integers. This ISA extension is
intentionally designed as a generic vector instruction set, rather than a set of highly
specific instructions targeting only ML-DSA and ML-KEM. This decision is partly
motivated by the fact that more specific instructions would not result in a dramatic
gain in performance, partly by the idea that the instructions will also be useful for the
implementation of other cryptographic schemes (for a discussion, see Section 8), and
partly as such generic extensions are similar in spirit to the existing generic extensions
for big-integer arithmetic. The ISA extensions and their estimated performance
increase are discussed in Section 5.

• We then present our modifications to the OpenTitan hardware that implement the
interface from OTBN to the Keccak core and our ISA extensions. In fact, we present
two different approaches, one that aims at sharing as much hardware as possible
between big-number arithmetic and vector arithmetic and one that investigates
possible gains in performance of ML-DSA and ML-KEM at the expense of larger
investment in circuitry. The hardware implementations are described in Section 6.

• Overall, our final evaluation shows that with an increase in circuit area of only
11.40% (plus the required increase in data memory) in the OTBN core, we achieve a
speed-up of up to a factor of 9.14 in ML-DSA and up to 8.87 in ML-KEM. This
increase in OTBN hardware size corresponds to an increase of only 1.79% of the
full OpenTitan Earl Grey top-level design. We present details of these results and
compare them to related work in Section 7 and conclude the paper with a discussion
in Section 8.

Artifact. We will make all software and hardware described in this paper publicly available
under permissive licenses compatible to the OpenTitan license as soon as possible.

Related work. Research in PQC implementations has seen a long series of work with
a wide spectrum, ranging from pure software to pure hardware designs, across multiple
platforms. Extensive studies have been conducted on software implementations of Kyber
and Dilithium for the Arm Cortex-M4 [HZZ+22, HAZ+24, BRS22, AHKS22, GKS21,
ABCG20, BKS19]. Highly optimized implementations for single instruction multiple
data (SIMD)-architecture have been presented for, e.g., the Intel AVX2 [Dil23] and Arm
Neon [BHK+22] platforms. To enhance PQC performance on resource-constrained devices,
hardware/software co-designs have been explored, where compute-intensive operations are
offloaded to hardware, which yields efficient performance while maintaining flexibility for
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future security updates. A notable related work is a configurable post-quantum arithmetic
logic unit (ALU) for the OTBN unit [SOSK23], accelerating polynomial arithmetic of
Dilithium, Kyber, and Falcon, with the Dilithium verification procedure as a case
study. Other tightly coupled accelerators for post-quantum cryptography, targeting
different performance/resource trade-offs, have been presented in [KSFS24, NDMZ+21,
FSS20, LTQ+24, LQYW24]. Among which, [KSFS24, FSS20, LTQ+24] provide hardware
acceleration for polynomial generation using Keccak, while the others solely focus on
speeding up the NTT-based polynomial multiplication and modular arithmetic. A less
lightweight work [ZXXH22], targeting high-speed implementation on edge nodes, proposes
a domain-specific processor optimized for module lattices. All of these designs extend the
RISC-V ISA with scheme-specific instructions. A more generic approach involving masked
accelerators is introduced in [FBR+22].

2 Preliminaries
2.1 Notation
We mainly follow the conventions of the National Institute of Standards and Technology
(NIST) Federal Information Processing Standard (FIPS) 203 [NIS23a] and 204 [NIS23b].

Intervals of integers are denoted by double square brackets, e.g., Ja, bK = {a, a+1, . . . , b}.
An outwards-facing double square bracket declares the interval excluding the respective
endpoint, e.g., Ja, bJ, denotes the set {a, a + 1, . . . , b− 1}.

We denote polynomials by lowercase letters, e.g., a, vectors of polynomials by lowercase
boldface letters, e.g., a and matrices of polynomials by uppercase boldface letters, e.g.,
A. The polynomial ring Rq is defined as Fq[X]/⟨Xn + 1⟩, where Fq = Z/qZ, q is a prime
number and n ∈ N. If not stated otherwise, n = 256 is the polynomial size in the remainder
of this paper. A polynomial a = a0 + a1X + · · · + an−1Xn−1 ∈ Rq is represented as a
vector (a0, . . . , an−1) ∈ Fn

q .
For congruences, we follow the notation from FIPS 204 [NIS23b]: For odd (respectively

even) q, the centralized reduction r′ = r mod ±q is defined as the unique number in
J− q−1

2 , q−1
2 K (respectively J− q

2 , q
2K) that fulfills r′ ≡ r mod q. Similarly, r′ = r mod +q

denotes the unique number in J0, qJ that fulfills r′ ≡ r mod q. We also denote r mod +2d

as [r]d and ⌊ r
d⌋ as [r]d, with d ∈ N.

Let B denote the set of 8-bit integers {0, . . . , 255}. For a byte-array B ∈ Bm, B[i]
denotes the entry at index i, while B[i : j] denotes the subarray from index i to j of B,
where i < j.

2.2 ML-DSA
The draft of FIPS 204, available since August 2023 [NIS23b], specifies the digital signature
scheme Dilithium [DKL+18, LDK+22] under the name module-lattice-based digital
signature algorithm (ML-DSA).

ML-DSA is believed to fulfill the strong existential unforgeability under chosen-message
attack (SUF-CMA) security property, even in the presence of powerful quantum com-
puters [NIS23b]. Its security is based on the hardness of finding short vectors in a
lattice [NIS23b]. In particular, the problems ML-DSA relies on are the module learning
with errors (MLWE) and a variant of the module short integer solution (MSIS) problem.
ML-DSA is constructed following the Fiat-Shamir with aborts pattern [Lyu09].

ML-DSA operates over the polynomial ring Rq = Fq[X]/⟨Xn + 1⟩ where q = 8380417.
The scheme offers three different security levels called ML-DSA-44, ML-DSA-65, ML-
DSA-87, which vary in their lattice dimension and in a number of further parameters, as
shown in Table 1. For a description of the algorithms refer to Algorithms 2.1 to 2.3.



Amin Abdulrahman, Felix Oberhansl, Hoang Nguyen Hien Pham, Jade Philipoom,
Peter Schwabe, Tobias Stelzer and Andreas Zankl 5

Inside Algorithms 2.1 to 2.3, a number of supporting functions are used: There are
several functions for encoding data from a polynomial into a byte array and vice versa,
also called bit-packing functions. The routines ExpandA and ExpandMask are responsible
for sampling polynomials from a seed expanded using SHAKE128 as an extended output
function (XOF), while H is instantiated with SHAKE256. The functions Power2Round,
Decompose, LowBits, HighBits, MakeHint, UseHint are related to the key compression for
ML-DSA. More details on the subroutines used in ML-DSA are provided by the draft of
FIPS 204 [NIS23b].

Table 1: Overview of ML-DSA’s parameter sets [NIS23b].
Scheme (NIST level) | pk | | sig | (k, ℓ) η τ γ1 γ2 #reps
ML-DSA-44 (2) 1312 B 2420 B (4, 4) 2 39 217 (q − 1)/88 4.25
ML-DSA-65 (3) 1952 B 3293 B (6, 5) 4 49 219 (q − 1)/32 5.1
ML-DSA-87 (5) 2592 B 4595 B (8, 7) 2 60 219 (q − 1)/32 3.85

Algorithm 2.1: ML-DSA: Key generation, following [NIS23b]
Output : Public key pk ∈ B32+32k(bitlen(q−1)−13)

Output : Secret key sk ∈ B128+32((ℓ+k)·bitlen(2η)+13k)

1 ξ ←$ {0, 1}n

2 (ρ, ρ′, K) ∈ {0, 1}n × {0, 1}2n × {0, 1}n ← H(ξ, 4n)
3 (s1, s2) ∈ Sℓ

η × Sk
η ← ExpandS(ρ′)

4 Â ∈ Rk×ℓ
q ← ExpandA(ρ)

5 t← INTT(Â ◦ NTT(s1)) + s2
6 (t1, t0)← Power2Round(t, 13)
7 pk ← pkEncode(ρ, t1)
8 tr ∈ {0, 1}2n ← H(BytesToBits(pk), 2n)
9 sk ← skEncode(ρ, K, tr, s1, s2, t0)

10 return (pk, sk)

Algorithm 2.2: ML-DSA: Verification, following [NIS23b]
Input : Public key pk ∈ B32+32k(bitlen(q−1)−13)

Input : Message M ∈ {0, 1}∗

Input : Signature σ ∈ B32+ℓ·32(1+bitlen(γ1−1))+ω+k

Output : Boolean
1 (ρ, t1)← pkDecode(pk)
2 (c̃, z, h)← sigDecode(σ)
3 if h = ⊥ then
4 return false
5 Â ∈ Rk×ℓ

q ← ExpandA(ρ)
6 tr ← H(BytesToBits(pk), 2n)
7 µ ∈ {0, 1}2n ← H(tr∥M, 2n)
8 (c̃1, c̃2) ∈ {0, 1}n × {0, 1}2λ−n ← c̃
9 c← SampleInBall(c̃1)

10 w′
Approx ← INTT(Â ◦ NTT(z)− NTT(c) ◦ NTT(213 · t1))

11 w′
1 ← UseHint(h, w′

Approx)
12 c̃′ ← H(µ∥w1Encode(w′

1), 2λ)
13 return [[∥z∥∞ < γ1]] ∧ [[c̃ = c̃′]] ∧ [[number of 1’s in h ≤ ω]]
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Algorithm 2.3: ML-DSA: Signing, following [NIS23b]
Input : Secret key sk ∈ B128+32((ℓ+k)·bitlen(2η)+13k)

Input : Message M ∈ {0, 1}∗

Output : Signature σ ∈ B32+ℓ·32(1+bitlen(γ1−1))+ω+k

1 (ρ, K, tr, s1, s2, t0)← skDecode(sk)
2 ŝ1 ← NTT(s1)
3 ŝ2 ← NTT(s2)
4 t̂0 ← NTT(t0)
5 Â ∈ Rk×ℓ

q ← ExpandA(ρ)
6 µ← H(tr∥M, 2n)
7 rnd←$ {0, 1}n

8 ρ′ ← H(K∥rnd∥µ, 2n)
9 κ← 0

10 (z, h)← ⊥
11 while (z, h) = ⊥ do
12 y ← ExpandMask(ρ′, κ)
13 w ← INTT(Â ◦ NTT(y))
14 w1 ← HighBits(w)
15 c̃ ∈ {0, 1}2λ ← H(µ∥w1Encode(w1), 2λ)
16 (c̃1, c̃2) ∈ {0, 1}n × {0, 1}2λ−n ← c̃
17 c← SampleInBall(c̃1)
18 ĉ← NTT(c)
19 ⟨⟨cs1⟩⟩ ← INTT(ĉ ◦ ŝ1)
20 ⟨⟨cs2⟩⟩ ← INTT(ĉ ◦ ŝ2)
21 z ← y + ⟨⟨cs1⟩⟩
22 r0 ← LowBits(w − ⟨⟨cs2⟩⟩)
23 if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
24 (z, h)←⊥
25 else
26 ⟨⟨ct0⟩⟩ ← INTT(ĉ ◦ t̂0)
27 h← MakeHint(−⟨⟨ct0⟩⟩, ⟨⟨cs2⟩⟩+ ⟨⟨ct0⟩⟩
28 if ∥⟨⟨ct0⟩⟩∥∞ ≥ γ2 or # of 1’s in h > ω then
29 (z, h)←⊥
30 κ← κ + ℓ

31 σ ← sigEncode(c̃, z mod ±q, h)
32 return σ

2.3 ML-KEM
Similar to ML-DSA, the module-lattice-based key-encapsulation mechanism (ML-KEM),
coined in FIPS 203 [NIS23a], is based on Kyber [SAB+22]. It is an indistinguishability
under adaptive chosen ciphertext attack (IND-CCA2)-secure key encapsulation mechanism
(KEM) obtained by applying a slightly tweaked Fujisaki-Okamoto transform [FO99]
to the underlying indistinguishability under chosen plaintext attack (IND-CPA)-secure
public-key encryption (PKE) scheme, denoted as K-PKE. Its security is based on the
MLWE problem scaled for different parameter sets through the rank k of the module.
Concretely, ML-KEM uses k = 2 for ML-KEM-512, k = 3 for ML-KEM-768 and k = 4
for ML-KEM-1024. For more details on K-PKE, see Algorithms 2.4 to 2.6. We refer
to [SAB+22] for detailed specifications of ML-KEM and underlying supporting routines
in K-PKE. The polynomial ring used in ML-KEM is also Rq = Fq/⟨Xn + 1⟩ but with
q = 3329. Table 2 lists other relevant parameters of ML-KEM with different security levels.
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The symmetric cryptographic functions G, XOF, PRF are instantiated with SHA3-512,
SHAKE128 and SHAKE256, respectively. The first draft of FIPS 203 [NIS23a] included
several modifications of Kyber, including the addition of certain input-validation steps
in ML-KEM. Due to an ongoing discussion to remove the input check steps, we will not
include them in our ML-KEM implementations. The same approach has recently been
taken in [AOB+24].

Algorithm 2.4: K-PKE.KeyGen(), following [NIS23a]
Output : Encryption key ekPKE ∈ B384k+32

Output : Decryption key dkPKE ∈ B384k

1 z
$←− B32

2 (ρ, σ)← G(z)
3 N ← 0
4 for (i← 0; i < k; i + +) do
5 for (j ← 0; j < k; j + +) do
6 Â[i, j]← SampleNTT(XOF(ρ, i, j))
7 for (i← 0; i < k; i + +) do
8 s[i]← SamplePolyCBDη1(PRFη1(σ, N))
9 N ← N + 1

10 for (i← 0; i < k; i + +) do
11 e[i]← SamplePolyCBDη1(PRFη1(σ, N))
12 N ← N + 1
13 ŝ← NTT(s)
14 ê← NTT(e)
15 t̂← Â ◦ ŝ + ê

16 ekPKE ← ByteEncode12(t̂)||ρ
17 dkPKE ← ByteEncode12(ŝ)
18 return (ekPKE, dkPKE)

Algorithm 2.5: K-PKE.Decrypt(dkPKE, c), following [NIS23a]
Input : Decryption key dkPKE ∈ B384k

Input : Ciphertext c ∈ B32(duk+dv)

Output : Message m ∈ B32

1 c1 ← c[0 : 32duk]
2 c2 ← c[32duk : 32(duk + dv)]
3 u← Decompressdu

(ByteDecodedu
(c1))

4 v ← Decompressdv
(ByteDecodedv

(c2))
5 ŝ← ByteDecode12(dkPKE)
6 w ← v − INTT(ŝ⊺ ◦ NTT(u))
7 m← ByteEncode1(Compress1(w))
8 return m

Table 2: Overview of ML-KEM’s parameter sets and sizes (in bytes) of keys and cipher-
text [NIS23a].

Scheme (NIST level) | ek | | dk | | c | | K | k (η1, η2) (du, dv)
ML-KEM-512 (1) 800 B 1632 B 768 B 32 B 2 (3, 2) (10, 4)
ML-KEM-768 (3) 1184 B 2400 B 1088 B 32 B 3 (2, 2) (10, 4)
ML-KEM-1024 (5) 1568 B 3168 B 1088 B 32 B 4 (2, 2) (11, 5)
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Algorithm 2.6: K-PKE.Encrypt(ekPKE, m, r), following [NIS23a]
Input : Encryption key ekPKE ∈ B384k+32

Input : Message m ∈ B32

Input : Random r ∈ B32

Output : Ciphertext c ∈ B32(duk+dv)

1 N ← 0
2 t̂← ByteDecode12(ekPKE[0 : 384k])
3 ρ← ekPKE[384k : 384k + 32]
4 for (i← 0; i < k; i + +) do
5 for (j ← 0; j < k; j + +) do
6 Â[i, j]← SampleNTT(XOF(ρ, i, j))
7 for (i← 0; i < k; i + +) do
8 r[i]← SamplePolyCBDη1(PRFη1(r, N))
9 N ← N + 1

10 for (i← 0; i < k; i + +) do
11 e1[i]← SamplePolyCBDη2(PRFη2(r, N))
12 N ← N + 1
13 e2 ← SamplePolyCBDη2(PRFη2(r, N))
14 r̂ ← NTT(r)
15 u← INTT(Â⊺ ◦ r̂) + ê1
16 µ← Decompress1(ByteDecode1(m))
17 v ← INTT(t̂⊺ ◦ r̂) + e2 + µ
18 c1 ← ByteEncodedu

(Compressdu
(u))

19 c2 ← ByteEncodedv
(Compressdv

(v))
20 return c← (c1||c2)

2.4 Number Theoretic Transform
The NTT is the discrete Fourier transform (DFT) on finite fields. Thanks to the divide-
and-conquer pattern enabled by the Chinese remainder theorem (CRT) proposed in the
work of Cooley-Tukey [CT65] and Gentleman-Sande [GS66], also referred to as fast Fourier
transform (FFT), polynomial multiplication using NTT can be implemented efficiently
in O(n log n) instead of in O(n2) using the general schoolbook method in the polynomial
ring Rq = Fq[X]/⟨Xn + 1⟩, q = 8380417 in ML-DSA or q = 3329 in ML-KEM.

Assume that a primitive 2nth root of unity ζ exists. Then the set of all primitive 2nth
roots of unity is

{
ζ2i+1|i ∈ J0, n− 1K

}
. As the 2nth cyclotomic polynomial Φ2n(X) =

Xn +1 is factored into n pairwise co-prime linear polynomials (X−ζ2i+1) for i ∈ J0, n−1K,
we have the ring isomorphism Rq

∼=
∏n−1

i=0 Fq[X]/⟨X − ζ2i+1⟩. The forward and backward
mapping are denoted as NTT and INTT respectively, where the latter stands for inverse
number-theoretic transform (INTT). A polynomial a ∈ Rq is thus transformed into its
“NTT representation” (â0, . . . , ân−1) ∈ Fn

q . The roots of unity are called “twiddle factors”.
We remark that in our actual implementation of the NTT, the coefficients of the output
vector are not in the normal order âi = a(ζ2i+1) for i ∈ J0, n− 1K as described above, but
they will rather be in bit-reversed order â2i = a(ζbr8(128+2i)) and â2i+1 = a(−ζbr8(128+2i))
where i ∈ J0, 127K and br8(x) is the bit reversal of a log n = 8-bit integer x.

Given two polynomials a, b ∈ Rq, to compute a · b, we first transform a, b into
their NTT representation â, b̂ ∈ Fn

q , i.e., â = NTT(a) = (â0, . . . , ân−1) b̂ = NTT(b) =
(b̂0, . . . , b̂n−1). Then we compute the “pointwise” multiplication â ◦ b̂ in “NTT domain”:
â ◦ b̂ = (â0b̂0, . . . , ân−1b̂n−1). Finally, the result is transformed back to Rq by applying
INTT, i.e., a · b = INTT(â ◦ b̂) = INTT(NTT(a) ◦ NTT(b)).
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While it is not a necessity [Sei18, Section 2.1], most commonly, the Cooley–Tukey (CT)
algorithm is used for the forward NTT and the Gentleman–Sande (GS) algorithm for the
INTT. A visualization of the “butterfly” operations used in the CT and GS algorithms is
shown in Figure 1.

ai + ai + ζbi

bi × − ai − ζbi

ζ

(a) Cooley–Tukey butterfly.

ai + ai + bi

bi − × 1
ζ (ai − bi)

ζ

(b) Gentleman–Sande butterfly.

Figure 1: NTT butterfly operations.

NTT in ML-DSA. In the case of ML-DSA, 2n | (q − 1) holds and a 2nth root of unity
ζ = 1753 exists. Therefore, we can compute log n = 8 layers of NTT which amounts to a
full splitting of the ring. This is also sometimes referred to as a “complete” NTT. The
polynomial multiplication can be computed as mentioned above.

NTT in ML-KEM. As n | (q− 1) and (2n) ∤ (q− 1), Rq does not have a 2nth but only an
nth root of unity for ML-KEM. Let ζ = 17 be the first primitive nth root of unity of Rq.
Then the set of all primitive nth roots of unity of Rq is

{
ζ2i+1|i ∈ J0, n

2 − 1K
}

. As Φ2n(X) =
Xn +1 is factored into n/2 pairwise co-prime irreducible quadratic polynomials of the form

(X2−ζ2i+1) for i ∈ J0, n
2−1K, we have the ring isomorphism Rq

∼=
∏ n

2 −1
i=0 Fq[X]/⟨X2−ζ2i+1⟩.

Thus, the NTT representation of a in bit-reversed order is â = (â0+â1X, . . . , ân−2+ân−1X)
where â2i + â2i+1X = a

(
ζ2br7(i)+1)

, which now consists of n/2 linear polynomials over
Fq. In this case, the NTT is called “incomplete”, and we compute only seven instead of
log(n) = 8 layers. As a result, the multiplication of two polynomials a, b ∈ Rq is similar to
that in ML-DSA, except for the pointwise multiplication in the NTT representations â
and b̂. Specifically, for i ∈ J0, n

2 − 1K,

(â2i + â2i+1X) (b̂2i + b̂2i+1X) = (â2ib̂2i + â2i+1b̂2i+1ζ2br7(i)+1) + (â2ib̂2i+1 + â2i+1b̂2i)X.

This special multiplication is sometimes referred to as “pair-pointwise” multiplication. In
the remainder of this paper, we will use the term pair-pointwise for multiplication in the
NTT domain in ML-KEM and the term pointwise in the context of ML-DSA.

2.5 Modular Multiplications

A popular choice for modular arithmetic in cryptographic schemes is the Montgomery
multiplication [Mon85], which has been optimized and extended for signed inputs of larger
range in [Sei18]. This signed version is officially used in the reference implementations of
Kyber and Dilithium [Dil23, Kyb23]. In the scope of our work, we only use the original
unsigned Montgomery multiplication (cf. Algorithm 2.7).
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Algorithm 2.7: Montgomery multiplication [Mon85].
Input : a, b ∈ J0, qJ, q ∈K0, 2dJ, R = (−q−1) mod 2d

Output : r = ab(2−d) mod q and r ∈ J0, qK
1 c = ab

2 r =
[
c + [[c]d R]

d
q
]d

3 if r ≥ q then
4 return r − q
5 return r

In 2021, Plantard [Pla21] introduced a new modular multiplication inherited from
that of Montgomery with a similarly dedicated “Plantard representation”. It accepts as
input non-negative integers J0, qJ and outputs also integers in the same range as there is a
correction step at the end of the algorithm where the modulus q is conditionally subtracted
from the result if they are equaled. Algorithm 2.8 shows the Plantard multiplication
without the final correction, resulting in the output range J0, qK. The efficiency of the
Plantard multiplication over the Montgomery one lies in the fact that the former can use
one multiplication less than the latter in case the multiplication b ·R in Algorithm 2.8 is
pre-computed. In exchange, this pre-multiplication doubles the size of the second input to
2d-bit instead of d-bit as in Algorithm 2.7. The work of Huang et al. [HZZ+22] extends the
input range of the Plantard multiplication to J−q2α, q2αK by adding a rounding constant
α while shifting the output range to J−(q − 1)/2, (q − 1)/2K. The larger input range for
even signed integers together with the centralized representation of the output have proven
to be very effective in some optimized implementations of NTT and INTT where layer
merging and lazy reduction are applied.

Having considered all three options for our baseline implementations of ML-KEM and
ML-DSA on OTBN where multiplications are completely implemented in software, we
choose the original Plantard multiplication without the final correction step (cf. Algo-
rithm 2.8). This is because computation with unsigned integers on OTBN is less complex
compared to signed numbers, which require more effort for a correct sign extension. Fur-
thermore, due to the specific register and instruction sets of OTBN, which are explained in
detail in Section 3, whether the output equals to q does not affect the implementation and
lazy reduction is not applicable rendering the improved Plantard multiplication useless
in this case. As for the implementations of ML-KEM and ML-DSA with our proposed
instructions, Montgomery multiplication is chosen for the hardware multipliers because
it accepts inputs of the same size, which fits the context of the vectorized multiplication
instruction perfectly. This is further discussed in Section 5.

While ML-KEM uses only Algorithm 2.8 as the modular multiplication for its base-
line implementation, ML-DSA also employs another efficient reduction called reduce32
(cf. Algorithm 2.9) for single-word reduction.

Algorithm 2.8: Plantard multi-
plication [Pla21]

Input : a, b ∈ J0, qK, q < 2d

ϕ ,
ϕ = 1+

√
5

2 ,
R = q−1 mod 22d

Output : r = ab(−2−2d) mod q
and r ∈ J0, qK

1 r =
[(

[[abR]2d]d + 1
)

q
]d

2 return r

Algorithm 2.9: Specialized re-
duction for ML-DSA [Dil23]
reduce32

Input : 0 ≤ a ≤ 231 − 222 − 1,
q = 8380417

Output : r = a mod q,
a ∈ J−6283009, 6283007K

1 t =
⌊

a+222

223

⌋
2 return r = a− tq
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2.6 OpenTitan
OpenTitan is a project building a RISC-V-based open-source silicon RoT stewarded by
lowRISC, with collaborative engineering from ETH Zürich, Google, G+D Mobile Security,
Nuvoton Technology, Western Digital, and zeroRISC to develop and maintain the open-
source silicon design [Ope23a]. It consists of several hardware intellectual property (IP)
blocks, together with a main 32-bit Ibex RISC-V core and a big-number co-processor, called
OTBN, accelerating asymmetric cryptography, such as RSA [RSA78] and elliptic curve
cryptography [Mil86, Kob87], making up the Earl Grey microcontroller [Ope23b]. The
majority of IP blocks are dedicated to cryptographic operations, including Keccak message
authentication code (KMAC) supporting SHA-3 and (c)SHAKE [SHA15], an HMAC block
supporting SHA2, AES [AES01] for encryption/decryption used in OpenTitan protocols,
and a cryptographically secure random number generator (CSRNG) together with an
entropy source IP block enabling the generation of (non)deterministic or true random
numbers compliant to, e.g., NIST standards.

2.6.1 OTBN

The OTBN [Ope23a] co-processor is designed to securely accelerate classical asymmetric
cryptography such as RSA and elliptic curve cryptography. Specifically, conditional jump
or branch instructions always cause a stall until the branch condition is resolved. This
eliminates the possibility of any kind of Spectre BHB [KHF+19] vulnerabilities [Ope23a,
Section 8.2.2]. In addition, loads from and stores to data memory are not cached, which
prevents cache-timing attacks [Ope23a, Section 8.2.2]. Memory scrambling and register
blanking are deployed to further counteract side-channel leakage [Ope23a, Section 7.2.2]
Finally, a checksum for instructions and data memory accesses as well as an instruction
counter to detect skips from the Ibex core are deployed against fault injection [Ope23a,
Section 8.2.2].

Besides its enhanced security, the appealing feature of the OTBN co-processor is its
instruction set architecture (ISA). Part of the ISA is 32-bit RISC-V-based, offering 32
general-purpose registers (GPRs) x0 to x31 used by the “base instruction subset” for
the control flow of an OTBN application. The other part is a custom big-number (“bn”)
instruction set providing 32 256-bit wide data registers (WDRs) w0 to w31 used by the
“big number instruction subset” for data processing. By convention, we refer to a WDR
containing all zeros as bn0. In addition, there are control and status registers (CSRs) and
wide special-purpose registers (WSRs) that give access to randomness sources, arithmetic
flags (the carry C, most significant bit (MSB) M, least significant bit (LSB) L, zero
flag Z), key material (accessed via the key manager), a special “modulus register” MOD
and an “accumulate register” ACC, used in some of the big-number instructions [Ope23a,
Section 8.2].

We want to note that the big-number instruction set is geared towards arithmetic on
(unsigned) 256-bit numbers and really not for performing (signed) arithmetic on small
32-bit or 16-bit integers. For example, widening multiplications require sign-extension of
the inputs up to a length that is as long as the number of correct bits desired in the low
part of the output. Due to the lack of an instruction for sign extension, this is a rather
intricate operation. Further, when performing addition and subtraction on signed 16- or
32-bit integers, the top bits will not be cut off (as they normally would), therefore we need
to handle these remaining bits manually. Finally, the bn.addm and bn.subm instructions
only perform the correcting subtraction or addition either for results > MOD or respectively
< 0, not both. This also shows that signed modular arithmetic is not a target functionality.

Note that even though the GPRs and their relating instructions are inspired by the RISC-
V integer extension RV32I, compilers and toolchains for RISC-V are not compatible with
OTBN and no dedicated toolchains for higher-level languages are available. Consequently,



12 Towards ML-KEM & ML-DSA on OpenTitan

all code for the OTBN in this work is written in assembly.

2.6.2 Python Simulator

OTBN comes with a cycle-accurate Python simulator for software development purposes.
The simulator takes .elf files that have been built for OTBN as input, executes the code,
and dumps the register contents. It offers detailed statistical data on the execution, such as
cycle counts and stalls, as well as an instruction histogram and numbers of function calls.
We make extensive use of this simulator for testing our proposals of the extended OTBN
big-number instructions, testing implementations of ML-KEM/ML-DSA and obtaining
benchmark results. This serves as a pre-test for the real hardware modifications of the
OTBN core later on.

2.6.3 KMAC Block

The KMAC core can be used to compute Keccak-based message authentication codes
(MACs), as well as unauthenticated SHA-3, including its XOF operation mode called
SHAKE [Ope23a, Section 9.13]. The latter is especially of interest for the implementation
of PQC schemes such as ML-KEM or ML-DSA. The hardware design offers a compile-time
choice between a version with first-order masking enabled and a version without masking.
The technique applied is called domain-oriented masking (DOM) and increases the area
required by the logic design by a factor of greater than two [Ope23a, Section 9.13.1].
Computing the masked permutation Keccak-f for a state of b = 1600 bits takes four cycles
per round for a number of (12+2 log b) = 24 rounds, resulting in 96 cycles in total [Ope23a,
Section 9.13]. For the unmasked implementation, one round of the Keccak-f permutation
takes just one cycle. However, in this work, we will assume the version with first-order
masking enabled, as we expect it to be more popular in practice and in order to offer
a more conservative performance estimation. The KMAC core obtains the randomness
needed for masking directly from the OpenTitan entropy distribution network. The core
is accessible to the Ibex core via the system bus and to other OpenTitan peripherals via
three application interfaces.

3 Implementation on plain OTBN
This section describes an implementation of ML-DSA and ML-KEM on an essentially
unmodified OTBN. The only change we require is an increased data-memory size. This
implementation will serve as a performance baseline and as a starting point for profiling.
Our description focuses on optimization techniques of the main computation blocks in
ML-DSA and ML-KEM, i.e., modular arithmetic, NTT and INTT, multiplication in
NTT domain, sampling, and bit packing. We also provide a pure software implementation
of Keccak-f for OTBN inspired by tiny_sha3 by Saarinen2.

3.1 Modular Multiplication and Reduction
Let d be 32 for ML-DSA and 16 for ML-KEM. A polynomial in either scheme is
represented by a vector of n coefficients of size d-bit each and polynomial arithmetic breaks
down to modular arithmetic on d-bit unsigned integers.

Modular multiplication. In order to multiply two elements a and b in Fq using Plan-
tard multiplication [Pla21], we prepare a WDR with all relevant constants and perform

2https://github.com/mjosaarinen/tiny_sha3/tree/master

https://github.com/mjosaarinen/tiny_sha3/tree/master
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the multiplication using the 64×64-bit multiplier of OTBN. In particular, we compute
Algorithm 2.8 as follows:

1. Load constants into a WDR, e.g., consts = (m||q||1||R), where m = 2d − 1 is a
mask and R = q−1 mod 22d. Next, load the elements a and b into two separate
WDRs, e.g., coeffa and coeffb.

2. Multiply a and b as two 64-bit integers: bn.mulqacc.wo.z wtmp, coeffa.0,
coeffb.0, 0. The register wtmp now has ab mod 22d at its first quad word because
we do not shift it to the left, i.e., the constant 0 at the rightmost side.

3. Compute (ab mod 22d)R, and keep the result modulo 22d: bn.mulqacc.wo.z wtmp
, wtmp.0, consts.0, 192. The constant 192 is the amount of bits to shift the
result to the left, meaning, by dropping some top-bits, the final result mod22d will
be in the fourth quad word of wtmp for ML-DSA. However, for ML-KEM, 2d is
only 32 and since the shift amount can only be picked as a multiple of 64 wtmp must
be masked with m to extract the correct result: bn.and wtmp, wtmp, consts.

4. Shift to the right by t bits and add the result with 1: bn.add wtmp, consts,
wtmp >> t, where t = 144 for ML-KEM and t = 160 for ML-DSA. This means the
result is in the second quad word of wtmp.

5. Multiply the result with q: bn.mulqacc.wo.z wtmp, wtmp.1, consts.2, 0.

6. Shift to the right by d bits: bn.rshi wtmp, bn0, wtmp >> d.

As we can see, for a typical modular multiplication, we need five instructions in ML-
DSA and six instructions in ML-KEM. In case the second factor b is pre-multiplied
by R, which normally happens in NTT, we need one instruction less for both schemes
(cf. Listing 1, Line 6 to 9).

Reduction. There are two places throughout our implementations where we require some
form of explicit modular reductions:

1. Before checking the norm bound in ML-DSA: the centralized representative inq−q−1
2 , q−1

2
y

of coefficients is required in this step as ∥w∥∞ is defined as |w mod ±q|.
We use (variants) of the reduce32 function as also used in the reference implementation,
as well as constant-time conditional subtractions to achieve this goal.

2. After the application of (pair-)pointwise multiplication with pseudo-vector accumu-
lation, where the values can grow beyond q before the INTT. Inputs to the INTT
must be in J0, qK to avoid getting negative results that cannot be reduced back into
the positive domain implicitly using bn.subm. We perform this reduction using a
variant of reduce32 for ML-DSA and using the Plantard multiplication with the
constant ((−22d) mod q)R mod 22d for ML-KEM.

3.2 NTT
This section describes the implementation of the NTT and INTT on OTBN. We make
use of common optimizations such as merging the multiplication with n−1 into the last
twiddle factor in the INTT [LN16, Sec. 3], making up for the omitted transformation
into Plantard representation during the multiplication with n−1 [LS19, Sec. 5.3] as well
as transforming the twiddle factors into the proper domain for the deployed modular
multiplication strategy ahead of time [ADPS16, Sec. 7.2].
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CT and GS butterfly. We follow the original approach from [Dil23, Kyb23] to use the
CT butterfly for the NTT and the GS butterfly for the INTT. A CT or GS butterfly
consists of a Plantard multiplication (cf. Section 3.1) between a coefficient and a twiddle
factor, preceded or followed, respectively, by a modular addition bn.addm and a modular
subtraction bn.subm. As inputs and outputs of these two instructions are in J0, qK, which
is due to the Plantard multiplication (cf. Algorithm 2.8), the outputs of each layer are
certain to be in J0, qK as well, inhibiting a growth throughout the computation. Therefore,
we do not require lazy reductions. The twiddle factors are already stored in Plantard
representation, saving one multiplication (cf. Algorithm 2.8). Subsequently, a CT butterfly
takes six and seven cycles for ML-DSA and ML-KEM, respectively. Listing 1 shows how
to extract data for a CT butterfly in ML-DSA and store the results back to the buffer
registers.

1 /* Mask out coefficients from buffer*/
2 bn.and coeffa, coeffsa, consts >> 192
3 bn.and coeffb, coeffsb, consts >> 192
4
5 /* Plantard multiplication: Twiddle * coeffb */
6 bn.mulqacc.wo.z coeffb, coeffb.0, twiddle.0, 192 /* (coeffb*R) mod 2^2d */
7 bn.add coeffb, consts, coeffb >> 160 /* +1 */
8 bn.mulqacc.wo.z coeffb, coeffb.1, consts.2, 0 /* *q */
9 bn.rshi wtmp, consts, coeffb >> 32 /* >> d */

10 /* Butterfly */
11 bn.subm coeffb, coeffa, wtmp
12 bn.addm coeffa, coeffa, wtmp
13
14 /* Shift results back to buffer and shift out used coefficients */
15 bn.rshi coeffsa, coeffa, coeffsa >> 32
16 bn.rshi coeffsb, coeffb, coeffsb >> 32

Listing 1: CT butterfly on OTBN.

Layer merge. A popular optimization technique for NTT and INTT is “layer merging”.
For a t-layer NTT (or INTT), a t0-layer merge, where t0 ≤ t, means loading and storing
2t0 coefficients from/to memory only once after processing t0 layers of NTT on these
coefficients, instead of loading and storing them t0 times as in the traditional layer-by-layer
approach. The number of layers to be merged t0 is mostly limited by the number and
size of registers available on the processor. A t0–t1 layer merge, where t0 + t1 = t, means
that the first t0 and the last t1 layers are merged separately, causing each coefficient to be
loaded and stored twice throughout one of the transformations. In this work, we adopt a
4–4 layer merge for ML-DSA and 4–3 for ML-KEM, making use of OTBN’s WDRs for
reducing the memory accesses. Particularly, 13(n/d) input coefficients are loaded on 13
WDRs, called “buffer registers”. The rest is loaded directly from the memory during the
transformation with help of the GPRs as we do not have enough WDRs for storing all input
data and doing the computation simultaneously. Since coefficients indexed (16i|i ∈ J0, 15K)
are needed for the first 4-layer merge, the required coefficients are masked out and moved
to another set of 16 WDRs, called the “working state”; while the unused ones are still
kept in the buffer registers. In addition, we need one register for storing constants in
Plantard multiplication as explained in Section 3.1, one for holding intermediate values,
and another one for holding twiddle factors (cf. Listing 1), summing up to 32 registers for
an NTT or INTT invocation. As OTBN only has a 64×64-bit multiplier, it does not make
sense to load more than four twiddle factors into a WDR – regardless of whether they are
32 or 64-bit in size – as it would incur additional overhead for data movement. This fits
perfectly for ML-DSA, because the size of the twiddle factors are doubled to 64-bit due
to Plantard representation, but not for ML-KEM. Due to our register allocation strategy,
for each iteration of a 4-layer merge, two loads of twiddle factors are needed and they are
reloaded in every iteration to enable the buffering strategy mentioned above.
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3.3 Multiplication in NTT Domain
The pointwise multiplication in ML-DSA consists of n modular multiplications in Fq

(q = 8380417), which is equivalent to n Plantard multiplication blocks as described
in Section 3.1. Recall that for ML-KEM, a pair-pointwise multiplication of two polynomials
in NTT domain consists of multiplications of 128 pairs of linear polynomials, each of which
requires five Plantard multiplications resulting in 5× 128 = 640 Plantard multiplications
for a complete pair-pointwise product. Particularly, two consecutive linear polynomials in
an NTT representation use some twiddle factor and its negation respectively. In order to
save WDRs, we reuse this factor by negating the product â2i+1b̂2i+1 of the second linear
polynomial and multiplying it with the same twiddle factor, instead of negating the twiddle
factor itself. The negation −â2i+1b̂2i+1 is done by subtracting from zero using bn.subm so
that the result is put back in the positive range J0, qK for later operations. The following
additions of the form â2ib̂2i + â2i+1b̂2i+1ζ2br7(i)+1 and â2ib̂2i+1 + â2i+1b̂2i are computed
with the modular addition instruction bn.addm of OTBN. As the output of every Plantard
multiplication is in J0, qK, the result of additions using bn.addm is ensured to be in J0, qK
as well.

Pseudo vectorization. Let a = (a0, . . . , an) and b = (b0, . . . , bn) be two input vectors
for the pointwise addition, where ai, bi ∈ J0, qK for i ∈ J0, nK and log q < d. Recall that a
WDR can store n/d coefficients: let w0 = (a0, . . . , an/d) and w1 = (b0, . . . , bn/d). Usually,
we would proceed to shift ai and bi into separate WDRs, adding them using bn.addm
before shifting the result (ai + bi) mod q back to one of the source WDRs and shifting out
the used coefficient from the other source WDR as well. This process would be repeated
for every pair of coefficients ai and bi individually.

The idea of “pseudo vectorization” is instead of processing coefficients one by one
as explained above, we can add two vectors of n/d coefficients using the non-vectorized
addition instruction bn.add and obtain the result of a vectorized one. We apply this
technique during the accumulation in the matrix-vector product in ML-DSA and ML-
KEM. This is possible because the addition of two polynomials will not exceed d bits
during accumulation as part of the matrix-vector product for the respective parameter
sets. While the outputs of the accumulated matrix-vector product must be reduced to
J0, qK manually, using either Plantard reduction for ML-KEM or a version of reduce32 for
ML-DSA (cf. Section 3.1), applying this technique greatly improves the performance.

3.4 Sampling
Rejection sampling in J0, qJ. Listing 2 shows how we implement the rejection sampling
on the output bytes of SHAKE256. We check if one coefficient candidate in the case
of ML-DSA or two in the case of ML-KEM c (i.e., cand), made up of three bytes of
SHAKE256 output read from shake_reg, is less than q. If this is the case, the candidate
is shifted into the result register accumulator. In case the candidate is rejected, the
corresponding three bytes (for ML-DSA) or 12 bits (for ML-KEM) are shifted out of
shake_reg and we sample the next candidate(s). By bundling the accepted candidates into
a WDR before storing, we can reduce the memory-access cost. Also note that even though
we cannot early-exit from the hardware loop loopi, it is still used in our implementation
because it costs only a single cycle and does not require either additional instructions or
registers to handle the loop logic in comparison to a traditional while-loop, which would
be less efficient overall.

Sampling in J−η, ηK. Both the binomial sampling in ML-KEM and the rejection
sampling in ML-DSA yield integers that fall within a signed range. For efficiency and
compatibility with unsigned integer calculations in subsequent routines, we employ modular
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subtraction bn.subm in both sampling methods of ML-KEM and ML-DSA, replacing
standard subtraction bn.sub. Pseudo vectorization is also applied to enhance bitwise
addition in binomial sampling of ML-KEM.
1 _poly_uniform_base_inner_loop:
2 loopi 10, 12
3 beq outp, t0, _skip_store1 /* n coefficients are sampled?*/
4 bn.and cand, coeff_mask, shake_reg /* Extract 3−byte candidate c from shake output */

5 bn.cmp cand, mod /* c−q */
6 csrrs a4, 0x7C0, zero /* Read flags Z, L, M, C*/
7 andi a4, a4, 3 /* Extract M, C*/
8 bne a4, const_3, _skip_store1 /* Reject if M!=1 & C!=1 i.e. (q <= c) */
9 bn.rshi accumulator, cand, accumulator >> 32

10 addi accumulator_count, accumulator_count, 1
11 bne accumulator_count, const_8, _skip_store1/* accumulator is full of 8 coeffs? */

12 bn.sid accumulator_idx, 0(outp++) /* Store full accumulator to memory */

13 li accumulator_count, 0
14 _skip_store1:
15 bn.or shake_reg, bn0, shake_reg >> 24 /* Shift out used 3 bytes */
16 ret

Listing 2: Inner loop of uniform sampling in ML-DSA on OTBN.

3.5 Bit Packing
The general idea of bit packing in ML-KEM and ML-DSA is to arrange coefficients
tightly next to each other such that there are no free bits between any two of them to
save space for data transfer. This mostly boils down to shifting coefficients with bn.rshi
and an extensive use of WDRs for caching data on OTBN. The unpacking is implemented
using the same principal. While the packing is similar for all functions in both ML-KEM
and ML-DSA, the data processing step before or after it varies.

(Un)packing coefficients in negative input range in ML-DSA. As an example, we
consider the function for packing coefficients that are in J−η, ηK in the case of ML-DSA-
44, where η = 2. In the C reference implementation [Dil23], the coefficient to be packed is
a signed integer, and thus, it is subtracted from η in order to retrieve an unsigned result in
J0, 2ηK. As we made the choice to operate on unsigned integers, we cannot simply perform
this subtraction, as, e.g., −1 maps to q − 1 in our case, and η − (q − 1) is certainly not in
the desired range. All we need to do is to apply bn.subm instead of the regular bn.sub,
which will move the result of the subtraction back into the positive domain, yielding values
in J0, 2ηK.

Encoding and decoding of hint vector in ML-DSA. The encoding and decoding in the
C reference implementation [Dil23] uses a lot of control logic based on the signature data,
as well as unaligned memory accesses, both of which are weaknesses of OTBN. Thus, we
decided to implement both using the base instruction set operating on 32-bit GPRs, which
is more useful for managing the control flow and less restricted regarding memory access.
The reason why this operation still costs many cycles is the manual 4-byte alignment of
addresses and the subsequent extraction of the desired byte, based on the lower two bits
of the unaligned address, to simulate byte-aligned memory access.

Compression and decompression of ciphertext in ML-KEM. In the current C reference
implementation [Kyb23], the compression of an element x ∈ Fq to d{u,v} bits replaces the
division by q by an addition followed by a multiplication and a right shift for it to be
constant-time. Without question, multiplication must be done individually. For dv = 4 in
ML-KEM-512, addition and shifting can be pseudo-vectorized, but not for other cases of
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Percent Poly Arith. Sample Hash Pack Round Reduce
K-3 8 12 77 1 1 1
S-3 29 8 55 1 3 3
V-3 12 10 74 1 2 1

(a) ML-DSA-65
Percent Poly Arith. Sample Hash Pack
K-768 18 12 70 1
E-768 21 11 66 2
D-768 27 10 60 3

(b) ML-KEM-768

Figure 2: Cycle count profiling on OTBN, median values over 10 000 iterations. Groups
with less than 1% not displayed. Percentages may not add up to 100% due to rounding.

d{u,v} because after the left shift of d{u,v} bits (cf. Table 2), the size of integers is at least
17-bit, exceeding a 16-bit vector element. We certainly can arrange the coefficients into
32-bit vector elements and still perform a pseudo shift/addition. Nevertheless, after this
costly arrangement, coefficients must be extracted again for the multiplication, neutralizing
the saving from the pseudo vectorization.

3.6 Keccak on OTBN
As previously mentioned, our pure software implementation of Keccak-f is based on
tiny_sha3. The input to the Keccak-f permutation are 1600 bytes, equivalently 25 64-bit
lanes, which will go through five steps θ, ρ, π, χ and ι in this order and for exactly 24
rounds. A detailed description of Keccak-f can be found in [NIS23c].

The fact that Keccak-f relies on logical AND, XOR, and NOT operations allows for
pseudo vectorization, leveraging the wide registers of OTBN for improved efficiency. To
achieve this, careful arrangement of lanes within seven WDRs is required. While circularly
rotating multiple lanes by the same amount of bits can be done concurrently using masking
and shifting, individual processing is necessary when each lane requires a different rotation,
as in the ρ− π step.

By using pseudo vectorization, we succeed in speeding up the implementation by
40%, when compared to an implementation using the “standard” approach for 64-bit
architectures. Specifically, the 64-bit approach on OTBN takes 286 cycles for one round;
while our approach takes 171 cycles, which results in 2760 cycles saved for 24 rounds of
Keccak-f. The input and output arrangement before each permutation, while appearing
intricate, outperforms the 64-bit implementation by 20 cycles, requiring only 58 cycles.
However, implementing interfaces for the symmetric primitives, including SHA3-{256, 512}
and SHAKE{128, 256}, presents a challenge. Depending on the exact use case, it may
be required to access the memory at addresses that are neither 4-, nor 32-byte-aligned,
meaning we need to explicitly extract/insert the bytes into a GPR to simulate byte-aligned
memory accesses, which comes with a hit in performance.

3.7 Profiling
Figure 2a and Figure 2b present a heatmap table illustrating the cycle count percentages
for ML-DSA and ML-KEM. Hashing emerges as the most time-consuming operation in
both schemes, a finding that aligns with the profiling results in previous works [HZZ+22,
Table 6][KRSS19]. This observation prompts us to leverage the KMAC block of OTBN
for potential optimization.
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3.8 Reflection
The wide registers on OTBN demonstrate their efficiency by allowing the caching of large
amounts of data internally, which significantly reduces the cost of memory access compared
to GPRs. The bn.subm instruction efficiently adjusts subtraction results to positive values
at no additional cost. Similarly, bn.rshi proves effective for shifting, requiring only two
instructions per coefficient. The bn.add and bn.rshi instructions further highlight the
practicality of WDRs through pseudo-vectorized addition and shifting, as long as the
coefficient size after these operations remains within the capacity of a single d-bit vector
element. The efficiency gain in addition surpasses an n/d-fold improvement, primarily
because previously, each coefficient addition often required more than one instruction.

The architecture of OTBN, however, presents several obstacles to efficient implemen-
tation that should be emphasized. Firstly, the need to extract coefficients to a separate
WDR for computation and to repack them for storage is inefficient. While this approach
reduces memory accesses, it necessitates considerable effort in data movement, which
is identified as a key performance bottleneck. Secondly, the pseudo-vectorization tech-
nique cannot be effectively applied to multiplication due to the multiplier’s limitation
to 64×64-bit products. Moreover, the absence of implicit truncation for multiplication
results creates additional overhead since it has to be done explicitly. Additionally, the
immediate for bn.mulqacc is restricted to multiples of 64, forcing explicit shifting in Step
3 of the Plantard multiplication (cf. Section 3.1). Thirdly, other central processing units
(CPUs) equipped with digital signal processor (DSP) extensions often execute the Plantard
multiplication with much shorter instruction sequences. For instance, the Arm Cortex-M4
requires only two instructions ([HZZ+22]). Finally, while the 32-byte data path for memory
access allows loading large amounts of data quickly, the lack of flexibility when loading
smaller amounts of data, i.e., individual coefficients, from unaligned addresses oftentimes
incurs performance penalties.

4 Implementation on OTBN with Keccak Acceleration
In the light of the profiling results from Section 3.7, we have decided to study the
hardware/software co-design approach by interfacing to the OpenTitan’s existing KMAC
core. We refer to OTBN with said interface as OTBNKMAC.

KMAC interface. The KMAC core within OpenTitan is accessible via the main TL-UL
bus interface, as well as through application interfaces for the key manager, life-cycle
controller, and ROM controller. To facilitate OTBN’s interaction with the KMAC core,
we introduce an additional application interface. All application interfaces feature a 64-bit
data path and employ straightforward control logic, including simple status signals such
as ready, valid, and last data. The KMAC outputs the digest as two boolean shares
on a parallel data path.

The simplicity and high throughput of the application interface make it an attractive
solution for integrating KMAC with OTBN. On the KMAC side, only minor modifications
are required, such as enabling dynamic configuration of the hash algorithms to support
SHA3-256, SHA3-512, SHAKE128, and SHAKE256. For OTBN, special-purpose registers
for KMAC configuration, message, status, and digest are added. The status register,
controlled by KMAC signals, allows OTBN to determine if the KMAC core is ready for
operation. The configuration register contains the hash function and the length of the
data to be processed. All registers can be written and read with big-number (bn.wsrr,
bn.wsrw) and general purpose (csrrw) instructions for accessing special purpose registers.

Data is sent to the KMAC core by writing to the 256-bit message register, which is
connected to a small FIFO that outputs 64-bit words to the KMAC application interface. If
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Percent Poly Arith. Sample Hash Pack Round Reduce Other
K-3 41 42 5 6 3 3 0
S-3 67 13 2 3 7 8 0
V-3 51 26 4 3 10 4 1

(a) ML-DSA-65
Percent Poly Arith. Sample Hash Pack
K-768 63 31 3 2
E-768 66 26 3 5
D-768 70 20 2 8

(b) ML-KEM-768

Figure 3: Cycle count profiling on OTBNKMAC, median values over 10 000 iterations.
Groups with less than 1% not displayed. Percentages may not add up to 100% due to
rounding.

the FIFO has not yet consumed all contents of the message register while a new instruction
is being fetched and decoded, the pipeline stalls. The input width and depth of the FIFO
can be optimized for transfer efficiency. For our case study, we selected a small FIFO
which is capable of holding four 64-bit words but can consume a complete 256-bit word
within a single cycle.

Once the KMAC core completes its operation, the corresponding bit in the status
register is set, and the two 256-bit digest registers contain the unmasked digest. In the
future, this interface could be configured to also support masked digests.

For all modifications to OTBN and KMAC - and in general for all hardware modifications
within this paper - the integration of countermeasures against fault injection and side-
channel attacks was taken into account. This includes the integrity protection of registers,
blanking and wiping of sensitive values, sparse encodings of control signals and redundancy
checks throughout the OTBN pipeline.

Python simulator of KMAC interface. An interface to the Python simulator was first
implemented by Philipoom3. The simulator matches the behavior of the actual hardware
using hash functions from PyCryptodome4 and integrating the special purpose registers for
configuration, status, message and digest introduced above. An abstract implementation
of the KMAC application interface including the FIFO within the OTBN models the fact
that the OTBN can write data faster to the KMAC core than the KMAC core can process
the data and accounts for potential stalls.

4.1 Profiling
In this section, we consider the profiling results under the assumption that the OTBN has
an interface to the KMAC core.

As it becomes clear from Figures 3a and 3b, the time spent on hashing is drastically
reduced thanks to the powerful KMAC core. For ML-DSA, we can see that the majority
of the time is now spent on polynomial arithmetic, followed by the sampling. The picture
is similar for ML-KEM, where the polynomial arithmetic accounts for an even larger
portion of the runtime, also followed by the sampling.

This result leads us to the conclusion that a second major reduction in runtime could
be achieved by accelerating the polynomial arithmetic on OTBNKMAC.

3https://github.com/jadephilipoom/opentitan/commit/e86be3446204f439c41c142b07
7a4ca8b449b1c9

4https://pycryptodome.readthedocs.io/en/latest/src/hash/hash.html

https://github.com/jadephilipoom/opentitan/commit/e86be3446204f439c41c142b077a4ca8b449b1c9
https://github.com/jadephilipoom/opentitan/commit/e86be3446204f439c41c142b077a4ca8b449b1c9
https://pycryptodome.readthedocs.io/en/latest/src/hash/hash.html
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5 Extending the OTBN ISA
This section introduces the changes to the OTBN ISA that we propose based on our
observations from Section 3. We start by describing our overall goal for the extensions,
before detailing the new instructions and explaining the reasoning behind them. We will
refer to our implementations of ML-KEM and ML-DSA with the proposed instructions
and KMAC block enabled on OTBN as OTBNKMAC

Ext. .

5.1 Goal of the ISA Extensions
The main goal of the ISA extensions is to accelerate the computation of lattice-based
cryptography on OTBN, with the focus on ML-KEM and ML-DSA. However, we aim to
offer instructions that are general enough to be useful for other cryptographic schemes,
also beyond lattice-based cryptography. More specifically, we aim to reduce the time
spent on polynomial arithmetic as we have identified it to be the main bottleneck (cf.
Section 3), next to polynomial generation, which we already addressed in the previous
section. The underlying hash functions have other use cases than asymmetric cryptography
and require parallel processing of large bit vectors. Dedicated co-processors are therefore
more suitable than instruction set extensions, as long as transfer latency does not become
an issue [KSS24].

With OTBN being a reduced instruction set computer (RISC)-based architecture and
the 32-bit instruction encoding making opcodes scarce, an additional goal is to keep the
number of new instructions to a minimum.

The primary metric for evaluating the extensions is the performance in terms of the
cycle count – while we also report the memory usage and code size, we did not specifically
optimize for them. For a discussion on the impact of memory optimizations, we refer to
Section 8.

5.2 Proposed Instructions
In the following, we argue why we deem the addition of SIMD instructions as a promising
approach to circumvent some of the previously identified bottlenecks and to improve the
performance of the polynomial arithmetic.

First, we have noticed in Section 3.8 how much time is spent on extracting individual
coefficients from the WDRs and also how much performance gain could be achieved
through the application of the pseudo-vectorization strategy as introduced in Section 3.3.
Second, the NTT and INTT naturally lend themselves to parallelization because of the
independence of the individual butterfly operations on each layer. Lastly, prior work
has shown that the performance of polynomial multiplication can be greatly improved
by making use of SIMD instructions, for example using Intel AVX2 [LDK+22] or Arm
Neon [BHK+22].

We propose a total of five new instructions with multiple subvariants each. Our first
three proposals immediately follow from the reasoning above: bn.addv, bn.subv, bn.mulv
. These instructions offer SIMD (modular) addition, subtraction, and multiplication
respectively. Note that although our proposal for bn.mulv is highly similar to the one
presented in [Saa23], the approach was developed independently.

The fourth instruction we propose serves the purpose of interleaving data inside two
WDRs when interpreting them as vectors of multiple elements. While such an instruction
is a staple in SIMD instruction sets, in our scenario, it is particularly useful for the NTT
and INTT. More details on this can be found in Section 5.3.

Lastly, we propose an instruction for bit shifting, which is useful across various functions
throughout ML-KEM and ML-DSA and a basic operation present in the majority of (SIMD)
instruction sets. For example, in ML-DSA the SIMD bit shifting instruction allows us
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bn.addv/bn.subv
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

11 01010 wrd 101 wrs1 wrs2 1 type X sub X

bn.mulv
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

11 10010 wrd 110 wrs1 wrs2 type lane

bn.trn1/bn.trn2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

11 10111 wrd 111 wrs1 wrs2 type X

bn.shv
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

11 11111 wrd 011 X ty X wrs shift_bits st X

Figure 4: Instruction encoding for the proposed extensions.

to fully vectorize the decomposition. Furthermore, the sampling of coefficients in J−η, ηK
benefits from this operation.

A more detailed description of the instructions can be found below. In the description
of the instruction <type> defines the subvariants of the instruction, including the operation
on vector elements of different sizes, e.g., .8S for a 32-bit element view or .16H for a 16-bit
element view. Furthermore, the m suffix indicates a variant that includes (pseudo) modular
reduction.

• bn.addv<type> <wrd>, <wrs1>, <wrs2>: Vectorized addition with optional con-
ditional subtraction. <type> can be (m){.8S,.16H}. Each pair of d-bit elements
in the source registers <wrs1> and <wrs2> is added together and stored to the
respective element in <wrd>. The result is truncated in case of an overflow. If m is
set in <type>, value defined in the MOD register is subtracted from the result in case
it is greater than or equal to MOD.

• bn.subv<type> <wrd>, <wrs1>, <wrs2>: Vectorized subtraction with optional
conditional addition. <type> can be (m){.8S,.16H}. This instruction functions
similarly to bn.addv, but with subtraction. MOD is added to the subtraction result
in case it is negative.

• bn.mulv<type> <wrd>, <wrs1>, <wrs2>[, <lane>]: Vectorized multiplication
with optional modular reduction. <type> can be (m)(.l){.8S, .16H}. l specifies a
lane-wise mode of operation, meaning that instead of the element-wise multiplication,
all elements of <wrs1> are multiplied with a fixed element of <wrs2> at index <lane>
in J0, n

d − 1K. Next, the result is either truncated or reduced mod+ MOD in case m is
set in <type>.

• bn.trn1/bn.trn2<type> <wrd>, <wrs1>, <wrs2>: Interleaving of even/odd in-
dexed vector elements. For this instruction, <type> can also be .4D (for 64-bit
elements) and .2Q (for 128-bit elements), alongside with .8S and .16H.

• bn.shv<type> <wrd>, <wrs> <shift_type> <shift_bits>: Bitwise logical shift
operation of individual vector elements. <type> can be .8S or .16H. <shift_type>
defines whether to perform a left (<<) or right (>>) shift. <shift_bits> is the
number of bits to shift each element.

The encoding of the instructions is shown in Figure 4. The names of the fields are chosen
in accordance with the naming of the operands of the previously introduced instructions.
“ty” is short for <type>, and “st” for <shift_type>.
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5.3 Impact on the Implementation of ML-KEM and ML-DSA
This section discusses how our proposed extensions influence the implementation of ML-
KEM and ML-DSA and illustrates the most important subroutines.

5.3.1 Polynomial Addition & Subtraction

The biggest impact of our proposed instructions can be observed in functions related to
polynomial arithmetic.

The cumbersome extraction of individual coefficients from the WDRs can be replaced
by a simple sequence of a load, the SIMD addition, and a store. Next to the reduction of
the cost for the arithmetic, a similarly impactful saving is incurred due to the reduction of
the data movement overhead. Listings 3 and 4 show how the implementation of polynomial
addition and subtraction changes under the application of bn.addvm and bn.subvm.

1 loopi 32, 4
2 bn.lid vec_1_idx, 0(src1++)
3 bn.lid vec_2_idx, 0(src2++)
4
5 bn.addvm.8S vec_1, vec_1, vec_2
6
7 bn.sid vec_1_idx, 0(dst++)

Listing 3: Polynomial addition on
OTBNKMAC

Ext.

1 loopi 32, 4
2 bn.lid vec_1_idx, 0(src1++)
3 bn.lid vec_2_idx, 0(src2++)
4
5 bn.subvm.8S vec_1, vec_1, vec_2
6
7 bn.sid vec_1_idx, 0(dst++)

Listing 4: Polynomial subtraction on
OTBNKMAC

Ext.

5.3.2 NTT & INTT

For the NTT, the code drastically simplifies as well. As we provide a dedicated instruction
for modular multiplication, the need for applying Plantard’s algorithm is eliminated.
Further, the amount of memory operations can be reduced compared to the implementation
detailed in Section 3 as we do not require the extraction of individual coefficients from the
WDRs into separate WDRs to perform the computation on.

ML-DSA. Assuming the computation of the forward NTT in ML-DSA, the code for the
CT-butterfly can be reduced down to three instructions for computing eight butterfly oper-
ations in parallel. See Listing 6 for an excerpt of the implementation. The implementation
of the GS-butterfly in the INTT is highly similar. Regarding the layer merge, we proceed
with the same 4–4 merge as in the plain implementation of ML-DSA. The approach to
vectorization we take is closely related to the one taken, e.g., in [BHK+22]. The first five
layers of NTT can be computed straightforwardly, as the stride between the coefficients
inside individual WDRs is sufficient. However, starting from layer 6, the elements that the
butterfly would be computed on are located inside the same WDR. Therefore, we need
to permute the data before we can continue with the computation. Using a sequence of
multiple bn.trn1 and bn.trn2 instructions, we follow the strategy from [BHK+22] and
“transpose” the 8× 8 matrix of elements, made up of considering eight WDRs with eight
coefficients each. See Figure 5 for a visualization.

ML-KEM. For ML-KEM, the butterfly simplifies just as for ML-DSA, shown in Listing 6,
except that the .16H variants of the instructions are used. Regarding the layer merge,
due to the availability of 32 256-bit WDRs, we are able to merge all seven layers of the
ML-KEM NTT. This reduces the memory operations to a minimum. However, a similar
“transposition” with .8S variant as with ML-DSA is required in order to compute the
last three layers.
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a0 a1 a2 a3 a4 a5 a6 a7

a8 a9 a10 a11 a12 a13 a14 a15

a16 a17 a18 a19 a20 a21 a22 a23

a24 a25 a26 a27 a28 a29 a30 a31

a32 a33 a34 a35 a36 a37 a38 a39

a40 a41 a42 a43 a44 a45 a46 a47

a48 a49 a50 a51 a52 a53 a54 a55

a56 a57 a58 a59 a60 a61 a62 a63

a0 a8 a16 a24 a32 a40 a48 a56

a1 a9 a17 a25 a33 a41 a49 a57

a2 a10 a18 a26 a34 a42 a50 a58

a3 a11 a19 a27 a35 a43 a51 a59

a4 a12 a20 a28 a36 a44 a52 a60

a5 a13 a21 a29 a37 a45 a53 a61

a6 a14 a22 a30 a38 a46 a54 a62

a7 a15 a23 a31 a39 a47 a55 a63

Transpose

w0 w8

w1 w9

w2 w10

w3 w11

w4 w12

w5 w13

w6 w14

w7 w15

Figure 5: Visualization of the transposition.

5.3.3 Multiplication in NTT Domain

Especially thanks to the availability of the bn.mulv(m) instruction, the base multiplication
for ML-DSA and ML-KEM becomes directly vectorizable.

ML-DSA. As the base multiplication in ML-DSA is a pointwise multiplication, its
computation using bn.mulvm is trivial: we load one WDR of each input polynomial,
multiply them via bn.mulvm, and store the result into the result polynomial.

ML-KEM. In ML-KEM, the need for a 2 × 2 schoolbook multiplication makes the
implementation slightly more involved while still remaining elegant compared to the plain
implementation. For computing the product ĉ = ĉ2i + ĉ2i+1X between two linear polyno-
mials â = â2i + â2i+1X, b̂ = b̂2i + b̂2i+1X, we compute â2i = â2ib̂2i + â2i+1b̂2i+1ζ2br7(i)+1

and ĉ2i+1 = â2ib̂2i+1 + b̂2iâ2i+1. For this, we need to multiply two coefficients of each
polynomial that are not located at the same index in their respective WDRs. Listing 5
shows how the pair-pointwise multiplication is done in ML-KEM thanks to the trans-
pose instructions bn.trn1 and bn.trn2. Specifically, coeffsa = (an−1, an−2, . . . , a1, a0)
and coeffsb = (bn−1, bn−2, . . . , b1, b0) are loaded from the memory. The multiplica-
tion aibi is obvious with bn.mulvm (Line 2). Directly vectorizing the multiplication
with roots of unity requires an additional n/2 = 128 multiplications of a2ib2i with 1.
However, to save 128 × 16 = 2048 multiplications per pair-pointwise operation, we
compute a second input vector coeffsd, pack all coefficients to be multiplied from
coeffsb and coeffsd in wtmp and perform the vectorized multiplication. The result
is then unpacked with one bn.rshi and two bn.trn1 (Line 17, 19). To compute the
multiplication â2ib̂2i+1 and b̂2iâ2i+1, we right-shift coeffsb by 16 bits (Line 6) and
use bn.trn1 to reorder coeffsb to be (bn−2, bn−1, . . . , b2, b3, b0, b1) (Line 7). In the
end, we have the result vectors wtmp0 = (an−1bn−1, . . . , a1b1, a0b0) and coeffsb =
(an−1bn−2, an−2bn−1, . . . , a3b2, a2b3, a1b0, a0b1). For the additions, we only need to use one
bn.trn1 on wtmp0 and coeffsb to make (an−2bn−1, an−2bn−2, . . . , a0b1, a0b0) (Line 22)
and one bn.trn2 to make (an−1bn−2, an−1bn−1, . . . , a1b0, a1b1) (Line 23). The final result
is obtained by adding the two vectors coeffsa and coeffsb together.
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1 /* a1b1, a0b0 */
2 bn.mulvm.16H wtmp0, coeffsa, coeffsb
3 bn.mulvm.16H wtmp1, coeffsc, coeffsd
4
5 /* a0b1, a1b0 */
6 bn.rshi wtmp, bn0, coeffsb >> 16
7 bn.trn1.16H coeffsb, wtmp, coeffsb
8 bn.mulvm.16H coeffsb, coeffsa, coeffsb
9

10 bn.rshi wtmp, bn0, coeffsd >> 16
11 bn.trn1.16H coeffsd, wtmp, coeffsd
12 bn.mulvm.16H coeffsd, coeffsc, coeffsd
13
14 /* Multiply with Twiddle factors */
15 bn.trn2.16H wtmp, wtmp0, wtmp1
16 bn.mulvm.16H wtmp, wtmp, twiddles
17 bn.trn1.16H wtmp0, wtmp0, wtmp
18 bn.rshi wtmp, bn0, wtmp >> 16
19 bn.trn1.16H wtmp1, wtmp1, wtmp
20
21 /* a1b1+a0b0; a1b0+a0b1 */
22 bn.trn1.16H coeffsa, wtmp0, coeffsb
23 bn.trn2.16H coeffsb, wtmp0, coeffsb
24 bn.addvm.16H res0, coeffsa, coeffsb
25
26 bn.trn1.16H coeffsc, wtmp1, coeffsd
27 bn.trn2.16H coeffsd, wtmp1, coeffsd
28 bn.addvm.16H res1, coeffsc, coeffsd

Listing 5: ML-KEM pair-pointwise
multiplication on OTBNKMAC

Ext. .

1 bn.mulvm.l.8S tmp, vec8, tf1, 0
2 bn.subvm.8S vec8, vec0, tmp
3 bn.addvm.8S vec0, vec0, tmp

Listing 6: ML-DSA CT-butterfly on
OTBNKMAC

Ext. .

5.3.4 Sampling

Rejection sampling. Although it is possible to vectorize the rejection sampling routines
in ML-DSA and ML-KEM as introduced in [GS16] and applied in [Dil23, Kyb23], our
ISA extensions are not tailored to apply this optimization. The lack of a bit-mask-based
permutation instruction inhibits the application of the technique in our case. See Section 8
for a further discussion of this topic.

Sampling in J−η, ηK & binomial sampling. As opposed to the general uniform sampling,
the sampling of coefficients in J−η, ηK for ML-DSA clearly benefits from our proposed
instructions. This is due to a sequence of arithmetic operations that are applied on each
sampled coefficient after it passes the rejection step. Instead of applying these operations
on each coefficient individually, we “collect” the coefficients in a WDR until it is filled up
and then compute in a vectorized fashion. In the binomial sampling routine of ML-KEM,
we apply a similar trick. This saves one of seven instructions inside the innermost loop
which amounts to about 15% of the overall runtime of the binomial sampling for the case
of η = 2.

5.3.5 Further Applications

Bit packing. The bit-packing functions profit from the availability of the WDRs in the
baseline implementation already. However, in instances where the coefficients need to be
subtracted from a constant value for transforming between the representation on the wire
and the representation as a coefficient, the bn.subvm instruction can be leveraged, instead
of performing individual subtractions. Especially, bn.subvm can be used to implicitly
unpack the coefficients into their representation mod+.

Reductions. Throughout the implementation of ML-KEM, no explicit reductions are
required as all operations implicitly reduce the processed data and therefore inhibit growth
of the coefficients. In ML-DSA, also all arithmetic operations provide implicit reductions,
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Percent Poly Arith. Sample Hash Pack Round Reduce Other
K-3 19 66 8 6 1 0 0
S-3 52 27 5 6 7 2 1
V-3 27 48 8 5 11 0 1

(a) ML-DSA-65
Percent Poly Arith. Sample Hash Pack Other
K-768 19 68 8 5 1
E-768 21 59 7 13 0
D-768 24 50 6 19 1

(b) ML-KEM-768

Figure 6: Cycle count profiling on OTBNKMAC
Ext. , median values over 10 000 iterations.

Groups with less than 1% not displayed. Percentages may not add up to 100% due to
rounding.

however, since we decided to operate mod+, we need to transform the coefficients into
their centralized representatives mod± before performing the norm bound check. This
transformation can be done using the reduce32 function, which we can implement efficiently
using our extensions.

Rounding. While the rounding in ML-DSA only accounts for a small fraction of the
runtime, we still note that we have been able to fully vectorize the implementations of the
Decompose and Power2Round functions, which highlights the universality of our extensions.

5.4 Profiling
The profiling data for our implementations on OTBNKMAC

Ext. , as shown in Figures 6a and 6b,
already indicates that our extensions to the ISA help with achieving our initial goal of
reducing the cycle count for the polynomial arithmetic. We reduce the part of the runtime
spent on polynomial arithmetic by up to 46 percentage points.

6 Hardware implementation
This section describes our hardware implementations and the modifications we applied to
the OTBN architecture and its components.

6.1 Basic Building Blocks
To allow the execution of vectorized 32-bit and 16-bit operations while keeping the resource
usage low, we design basic building blocks which are capable of both. In addition, for
vectorized addition and subtraction, utilizing existing resources for 256-bit additions and
subtractions is possible. Similarly, the vectorized modular multiplication of polynomial
coeffcients is designed such that it merges with the existing 64-bit multiply and accumulate
unit. The following sections describe the working principle behind our configurable addition
and multiplication module.

6.1.1 Configurable Vectorized Adder

The big number arithmetic logic unit (BN-ALU) already contains 256-bit wide adders. We
adapt these adders to enable the OTBN to execute 32-bit and 16-bit vectorized (modular)
additions and subtractions besides the 256-bit (modular) addition. In the following,
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Splitting 64-bit operands a and b
into 16-bit chunks

a0

b0

a1

b1

a2

b2

a3

b3

a = (a3||a2||a1||a0)
b = (b3||b2||b1||b0)

a0b0a1b0a2b0a3b0

a0b1a1b1a2b1a3b1

a0b2a1b2a2b2a3b2

a0b3a1b3a2b3a3b3

Figure 7: Configurable vectorized multiplication. Considering only certain partial products,
enables the execution of vectorized 32-bit and 16-bit multiplications besides one 64-bit
multiplication. For 64-bit multiplication all partial products are considered, for 32-bit
multiplications only the partial products highlighted in red are considered and for 16-bit
multiplications only the blue partial products are considered.

we describe our adder module, which will replace the 256-bit adders within the OTBN
BN-ALU and provide the means for the bn.addv and bn.subv instructions.

The idea is to split one 256-bit addition into 16 × 16-bit additions and add multiplexers
to the carry input of each adder. Depending on the carry propagation, adders of different
size can be formed. Therefore, we add multiplexers for the carry propagation between
these 16 adders. By changing the connections of the carry inputs and outputs, this adder
is capable of executing the original 256-bit addition, as well as vectorized 32-bit and
vectorized 16-bit additions. For the original 256-bit addition, as used for example in
bn.add, the carry input of each 16-bit adder is connected to the output carry of the
previous adder. For a vectorized 16-bit addition, the input carry of each 16-bit adders is
set to the input carry c0. For a vectorized 32-bit addition, two subsequent 16-bit adders
are connected to form a 32-bit adder by connecting the output carry of the first adder
to the input carry of the second adder. Note that extending this approach for vectorized
64-bit and 128-bit additions is straightforward.

6.1.2 Configurable Vectorized Multiplier

The second basic building block is a configurable vectorized multiplier. In the following,
we explain the principle behind our 64-bit operand and 128-bit result multiplier, but our
approach is applicable to arbitrary-width multiplications. Our multiplier is able to compute
either one 64-bit multiplication, two 32-bit multiplications or four 16-bit multiplications.
We achieve this by splitting one 64-bit × 64-bit product into several partial products, where
each partial product is the product of two 16-bit chunks. When adding all partial products
together, the result of the 64-bit multiplication is obtained. By only considering certain
partial products and setting irrelevant ones to zero, our multiplier is able to compute
vectorized 32-bit or 16-bit multiplications. This is illustrated in Figure 7. In this example,
each 64-bit operand is split into 16-bit chunks. Consequently, a = (a3||a2||a1||a0) and
b = (b3||b2||b1||b0). For a 64-bit multiplication, each 16-bit chunk of a must be multiplied
with each 16-bit chunk of b, and the resulting partial products must be added up to
obtain the final 128-bit result c. For a vectorized 32-bit multiplication two subsequent
16-bit chunks build the respective 32-bit operand, i.e. a = a′

1||a′
0, where a′

1 = (a3||a2) and
a′

0 = (a1||a0). Then, the final result is calculated by c = (a′
1 × b′

1||a′
0 × b′

0). Consequently,
partial products which are obtained by a′

1×b′
0 or a′

0×b′
1 are not considered. This approach

is illustrated by the red frame in Figure 7. Similarly, for a vectorized 16-bit multiplication,
the final result is obtained by c = (a3 × b3||a2 × b2||a1 × b1||a0 × b0). Therefore, only the
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partial products within the blue frames are considered, and all others are ignored.

6.2 Integration into OTBN Architecture
This section describes the modification needed to integrate our newly proposed modules.
As mentioned above, we want to share as many resources as possible while keeping the
architecture as simple as possible. This includes ensuring meaningful decoding and control
architectures. As described above, our vectorized addition unit for bn.addv and bn.subv
instruction was designed as a drop-in replacement for the existing adder using the same
resources for vectorized and big-number additions and subtractions. Similiarly, as the
BN-ALU already contains funtional units for the shifting, we integrate the functionality
for our proposed bn.shv and bn.trn1/bn.trn2 instruction into the BN-ALU.

The bn.mulv extension offers a larger reasonable design space to consider. For this
work, we examined two trade-offs. First, we try to reuse as much of the existing resources
available in the big number multiply accumulate unit (BN-MAC) unit as possible at the
cost of latency. Second, we integrate a completely new module into the OTBN pipeline
at the cost of a significantly increased resource consumption but a higher performance
improvement. Accordingly, we refer to the implementations of ML-KEM and ML-DSA
using the modified BN-MAC as OTBNKMAC

Ext. ; while OTBNKMAC
Ext.++ refers to the latter

high-end approach.
For the first trade-off, we found that the BN-MAC already provides resources which can

be reused for vectorized arithmetic. Specifically, the BN-MAC contains a 64-bit multiplier
and a 256-bit adder. Replacing both with our proposed basic building blocks, described in
Section 6.1.1 and Section 6.1.2, enables vectorized multiplications and additions while still
supporting the original bn.mulqacc operations. To keep the resource overhead as low as
possible, we split the bn.mulv instructions into several cycles and reuse the already existing
computational resources. This requires additional control logic within the BN-MAC, as
well as in the decoder and controller to stall the pipeline and keep all redundancy checks
throughout the pipeline in sync. Even with this approach, the control path is kept relatively
simple and changes integrate well into the simple architecture of OTBN. It should be noted
that according to the OTBN design rationale, all instructions should complete within a
single cycle. However, mechanisms exist that stall the pipeline for loads or if the internal
randomness register does not contain fresh randomness. In fact, the KMAC interface
also needs to potentially stall the pipeline (see Section 4). One could consider adding an
instruction for every execution stage of the bn.mulv instruction (see Section 6.2.2 for the
execution stages). Since this is a code complexity versus hardware complexity trade-off,
we do not further explore this here. The modifications to the BN-MAC and details on the
multi-cycle approach are described in Section 6.2.2.

For the second trade-off, we found that it is appropriate to outsource this operation
into a new separate module that is capable of executing bn.mulv in a single cycle. This
approach provides a clean and straightforward integration, especially when considering
the decoding and control logic. The alternatives, namely integrate the one-cycle bn.mulv
either into the BN-MAC or into the BN-ALU have the following disadvantages: Both
approaches would still add a significant resource overhead. This is mainly due to the fact
the bn.mulv requires 4×64-bit multipliers. While the BN-ALU provides the means for the
additions and subtractions within bn.mulv, this requires to add 4×64-bit multipliers to
the architecture. This would also increase the internal complexity of the BN-ALU and the
control and decode logic drastically. The BN-MAC already contains one 64-bit multiplier
and one 256-bit adder. Therefore, extending the BN-MAC for our proposed bn.mulv
instruction would require adding three 64-bit multipliers and a subtractor. Similiarly,
as for the BN-ALU, this would also increase the internal complexity of the BN-MAC,
decoder and controller drastically. As the hardware resources saved are disproportionate
to the increased complexity of the control logic, we are pursuing an independent approach.
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Adding a standalone big number vector multiplier (BN-MULV) module for the bn.mulv
instruction keeps the control path simple and ensures a clean integration. This comes at
the cost of a significant increase in hardware utilization. The BN-MULV module and its
integration is described in Section 6.2.3.

In summary, when integrating the bn.mulv instruction, one must choose between a
compact hardware implementation with a more complex control path and a simple control
path with single cycle vector multiplication and a significant increase in hardware resources.
The exact hardware costs are explored later on in this chapter.

6.2.1 Modified Big Number ALU

As descibed above, we extend the BN-ALU for bn.addv, bn.subv, bn.shv and bn.trn1
/bn.trn2 instructions.

To integrate support for the bn.addv and bn.subv instructions, we replace the adders
within the BN-ALU with our configurable vectorized adders. To be more specific, we
replaced the original 256-bit adder within Adder X and Adder Y with 16 16-bit adders,
respectively. This enables the OTBN to execute the original 256-bit wide operations as
required by bn.add/bn.addm and bn.sub/bn.subm instructions, as well as 16-bit and
32-bit vector operations for the bn.addv and bn.subv while keeping the resource overhead
at a minimum.

For the simple bn.addv and bn.subv instructions, only Adder X is used to compute
x = a+b and y = a−b, respectively. For the bn.addvm instruction, Adder X is responsible
to execute x = a+ b while Adder Y calculates the pseudo-modulo reduction y = x mod q.
Depending on, whether x < q or x ≥ q, either the results of Adder X or Adder Y are
selected as outputs. This check is achieved by evaluating the carry propagation of Adder
X and Adder Y . More specifically, if the carry bits ci

o for i ∈ J0, 15K of Adder X or
Adder Y are set, then the output of Adder Y is selected as output, otherwise the results
of Adder X are taken as result.

Similiarly, for the bn.subvm instruction, Adder X is responsible to execute x = a− b
while Adder Y calculates y = x + q. Depending on, whether x < 0 or x ≥ 0, either the
results of Adder X or Adder Y are selected as ouputs. If Adder X generates a carry,
then the respective output of Adder X is selected as result, otherwise the respective
output of Adder Y is taken as result.

The carry propagation is different for 256-bit, 32-bit and 16-bit operations. In case
of a 256-bit operation, only the carries of the 16th adders within Adder X and Adder
Y are considered. This carry bit is used to select all 16 adder results. For 16-bit (.16H)
operations on the other hand, the carry of each adder is considered to select the respective
output either from Adder X or Adder Y. For 32-bit operation (.8S), only every second
carry is considered and selects the result for two subsequent 16-bit results. An illustration
of this mechanism is given in Figure 8. Note that basically every carry bit which is
not propagated to the next 16-bit adder is effectively an output carry and, therefore,
responsible to select the results from either Adder X or Adder Y.

Furthermore, we integrate the transpose functionality for bn.trn1/bn.trn2, as well
as the vectorized shifts for bn.shv into BN-ALU. The shift operation can only partially be
merged into the existing shifter and the transpose functionality is entirely new. However,
both operations do not require a significant amount of hardware resources compared to
existing modules within the BN-ALU.

Additionally, for the integration of Keccak, we integrated four special-purpose registers
into the BN-ALU. Their functionality and how the Keccak core is interfaced trough these
registers is described in detail in Section 4.
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Figure 8: Output carry generation of 256-bit operations and vectorized 16-bit/32-bit
operations in Adder X or Adder Y.

6.2.2 Modified Big Number MAC

We choose to replace the 64-bit multiplier within the BN-MAC with our configurable
vectorized multiplier, introduced in Section 6.1.2. This enables the OTBN to execute 16-bit
and 32-bit vectorized multiplications in addition to the original 64-bit multiplications.
This comes at minimum cost, as all resources used for multiplication are reused. Only
some multiplexers need to be added. Similarly, we replaced the original adder with our
configurable vectorized adder as described in Section 6.1.1. It supports either 16-bit (.16H)
or 32-bit (.8S) vectors as input operands. As explained above, we split the execution of
one bn.mulv into several clock cycles. In the following, we describe the different execution
stages for the different bn.mulv variants. Depending on the option, d is either set to 16 or
32. For .8S variants, d = 32 and for .16H variants, d = 16. The resulting architecture of
our modified BN-MAC unit is depicted in Figure 9. To configure q and R, respectively, we
added a dedicated connection from the MOD register within the BN-ALU to the BN-MAC
module and use the content of this register. Specifically, for .16H variants, we use MOD[15:0]
as q and MOD[47:32] as R. For .8S variants, we use MOD[31:0] as q and MOD[63:32] as R.

Execution stages for bn.mulvm. For the bn.mulvm instructions, our modified BN-MAC
implements vectorized modular multiplication by leveraging the Montgomery multiplication
algorithm, given in Algorithm 2.7. In particular, it takes 256-bit WDRs as operands, and
operates on them quarter-word-wise (64-bit-wise). For each quarter word, in the first
cycle c = a × b and [c]d is performed. In the second cycle, m = [c × R]d is computed.
To store the intermediate results computed in these first two clock cycles, we added the
TMP register. Lastly, r = [m × q + c]d and a conditional subtraction of r (if r ≥ q) are
left. We merge these two steps into one clock cycle. To achieve that, we integrate an
additional subtractor into the BN-MAC. This additional subtractor saves one clock cycle
per quarter word and only introduces a small area overhead. Furthermore, it does not seem
reasonable to compute the conditional subtraction as a separate step with the BN-MAC.
The partial results obtained per quarter word operation are stored and concatenated in
the accumulator register ACC. Furthermore, c = a × b, which is computed in the first
cycle must be stored, as it is used in the third cycle again. Therefore, we integrated the
register C into the BN-MAC unit. This approach requires 12 clock cycles per bn.mulvm
instruction.

Execution stages for bn.mulv. Similar to the bn.mulvm instruction, for the bn.mulv
instruction our modified BN-MAC takes 256-bit WDRs as operands, and operates on them
quarter-word-wise. For the bn.mulv variants only one clock cycle per quarter word is
required. Specifically, for each quarter word c = a× b and [c]d is computed and partial
results are concatenated in the accumulator register.
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Figure 9: Architecture of our modified BN-MAC module.
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Figure 10: Architecture of our proposed BN-MULV module.

6.2.3 Big Number MULV Module

As described above, for the bn.mulv single-cycle approach, we integrate a complete new
module into the OTBN pipeline, namely the BN-MULV module. The rationale for this
module was laid out above. It enables high performance and keeps modifications to the
OTBN’s control logic to a minimum. The architecture of our newly proposed BN-MULV
module is illustrated in Figure 10.

For the bn.mulv instructions without modular reduction, c is selected as output.
For the bn.mulvm instructions, our BN-MULV module implements vectorized modular
multiplication by also leveraging the Montgomery multiplication algorithm (Algorithm 2.7).
It supports either 16-bit (.16H) or 32-bit (.8S) vectors as input operands. For the .16H
variants it executes 16 16-bit in parallel, and for the .8S variants it executes 8 32-bit
concurrently. It uses the same multiplier for both, .16H or 32-bit .8S, by following the
configurable vectorized multiplication approach presented in Section 6.1.2. Similiarly,
the adder and subtractor are shared for both variants. To achieve that, we follow the
configurable adder approach presented in Section 6.1.1. The vectorized addition in line
2 followed by the vectorized conditional subtraction in line 3-5 of Algorithm 2.7, is
implemented similar to the pseudo-modulo reduction within the BN-ALU for the bn.addv
instruction. Selecting the lower d bits ([ . ]d) or the upper d bits ([ . ]d) is implemented
efficiently in hardware as only additional routing resources are required. However, to
differentiate between .8S and .16H variants, multiplexers need to be added. The values
of q and R are configured analogously to our BN-MAC extension through a dedicated
connection from the BN-ALU’s MOD register to the BN-MULV module.
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Table 3: FPGA synthesis - resource utilization on Xilinx 7-Series FPGAs

Design LUT FF DSP BRAM
BN-MAC 2,141 312 16 0
BN-MACExt. 4,287 508 16 0
BN-MULVExt.++ 10,474 0 96 0
BN-ALU 6,321 320 0 0
BN-ALUKMAC 9,516 1,595 0 0
BN-ALUExt. 8,604 320 0 0
BN-ALUKMAC

Ext. 12,442 1,595 0 0
Butterfly (Kyber, Dilithium) [SOSK23] 3,887 951 33 0
Butterfly (Kyber, NewHope) [FSS20] 2,908 170 9 0
Mod. arith. (NewHope) [AEL+20] 1,907 1,658 7 34
Mod. arith. (Kyber) [NDMZ+21] 178 0 5 0.5
Mod. arith. (Dilithium) [NDMZ+21] 377 0 10 0.5
Mod. arith. (Kyber) [LQYW24] 93 0 1 0
Mod. arith. (Dilithium) [LTQ+24] 312 0 4 0
Keccak [SOSK23] 1,312 0 0 0
Keccak [LTQ+24] 3,622 1,605 0 0
Keccak [FSS20] 3,847 0 0 0

Table 4: ASIC synthesis - resource utilization for 7nm process. Area is given in µm2.

Design Cell Count Cell Area Net Area Total Area
BN-MAC 13,376 1,623 822 2,446
BN-MACExt. 22,583 2,496 1,300 3,796
BN-MULVExt.++ 100,123 10,530 5,389 15,918
BN-ALU 20,377 2,150 1,264 3,414
BN-ALUKMAC 27,053 3,195 1,652 4,846
BN-ALUExt. 22,313 2,269 1,434 3,702
BN-ALUKMAC

Ext. 34,967 4,044 2,096 6,140

6.2.4 Synthesis Results for Single Extensions

Table 3 and Table 4 present the synthesis results for Xilinx 7-Series devices and ASIC
results for the ASAP7 PDK [CVS+16], respectively. For the BN-ALU these tables contain
four different variants. BN-ALU is the reference implementation without any extension.
BN-ALUKMAC includes the interface to the KMAC as described above and in Section 4.
BN-ALUExt. presents the results for the BN-ALU with our vector extensions only. Finally,
BN-ALUKMAC

Ext. contains both, the KMAC interface and the vector extension. Our results
indicate that the BN-ALUExt. implementation does not introduce a significant overhead
and most resources can be reused. However, the KMAC interface induces an overhead
as we are not able to reuse existing hardware but need to add additional flip-flops due
to the new special-purpose registers, extend the read and write ports for special purpose
registers and introduce blanking, wiping and integrity protection countermeasures for the
registers. Moreover, the interface to the KMAC contains a small FIFO. For our vectorized
multiplication approach, Table 3 and Table 4 contain synthesis results for the original BN-
MAC, its extended version BN-MACExt. which is described in Section 6.2.2 and the newly
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proposed BN-MULVExt.++ module which is presented in Section 6.2.3. Our results indicate
that the BN-MACExt. leads to a moderate increase in resources while our BN-MULVExt.++
implementation is several times larger than the BN-MAC. Considering the amount of
required resources for parallel Montgomery multiplication pointed out in Section 6.2.3, this
is expected. For the BN-MACExt., we integrated additional registers with corresponding
integrity protections and checks. Furthermore, as explained in Section 6.2.2, we added an
additional subtractor and a corresponding blanking mechanism. In combination with the
required control logic these components make up the increase in resource consumption
induced by the BN-MACExt. extension. Table 3 also offers a comparison with other
tightly coupled accelerators from literature. We observe that extensions from literature
are more compact. Mainly this is due to the fact that these numbers only account for
very specific extensions and none of the modules include generic big number arithmetic for
contemporary cryptography. Most of the works cited in Table 3 use 32-bit architectures,
while our extensions operate on 64-bit or 256-bit. The Keccak numbers from literature show
that integrating instruction set extensions for Keccak requires as many resources as or fewer
resources than the KMAC interface. But as we will show later, massive performance gains
can be achieved with the external KMAC. Further, none of the works consider features
as needed to be compliant with OTBN’s design rationale such as integrity protection,
blanking and secure wipes. A more thorough comparison of our work with designs from
literature that also consider the respective processors can be found in Section 7.5.

7 Results
In this section, we present the results of our work in terms of cycle counts, memory
usage, code size, as well as field programmable gate array (FPGA) and application-specific
integrated circuit (ASIC) synthesis results. For the cycle count, we consider the polynomial
multiplication related functions and the full schemes separately. We also give comparisons
to related work and other common implementation targets.

7.1 Testing & Benchmarking Setup
We test our implementations of ML-DSA and ML-KEM using the Python simulator
for OTBN as provided by the OpenTitan team and for OTBNKMAC, OTBNKMAC

Ext. , and
OTBNKMAC

Ext.++ using the same simulator with additions of the KMAC interface and our
new instructions, respectively. In order to evaluate functional correctness, we compare our
implementations against open source Python implementations of Kyber and Dilithium
by Pope5, modified to match the ML-KEM and ML-DSA draft standards on more than
10 000 random inputs.

For obtaining the cycle counts on OTBN, OTBNKMAC, OTBNKMAC
Ext. , and OTBNKMAC

Ext.++,
we again make use of the cycle-accurate Python simulator in which we estimate the cycles for
the KMAC interface based on the available data in the documentation and measurements
evaluating the KMAC core. Computing one round of masked Keccak permutation takes 4
cycles; some additional overhead is incurred due to the interfacing to KMAC which we
also account for in the simulation.

For our comparison to software implementations, we select ones updated to the NIST
draft standards which are based on previously published work – if available. This is the
case for the implementations using Intel AVX2, Arm Neon, and the implementations on
the Cortex-M4. We redo most of the benchmarks ourselves and give more details on the
exact setups in the following.

5https://github.com/GiacomoPope

https://github.com/GiacomoPope
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• AVX2: We use the draft-standard compliant implementations provided by the Kyber
and Dilithium teams6 and compile it using gcc version 12.2.0. We obtain the
benchmark results on an Intel Core i7-6700K Skylake processor with hyperthreading
and Turbo Boost disabled running Debian 12.

• Neon: We make use of the implementation presented in [BHK+22], with adaptations
to the NIST draft and further optimizations that have been made by the authors since
the original publication7 and compile it using gcc version 12.2.0. For benchmarking,
we use a Raspberry Pi 4 with a Cortex-A72 processor running Debian 12.

• Cortex-M4: The benchmarking setup we use is based on pqm4 [KRSS19], in-
cluding code from [HZZ+22] for Kyber, and [HAZ+24] for Dilithium, adapted
to the NIST draft standards by Kannwischer. We compile the software using
arm-none-eabi-gcc version 13.2.1 from the Arm GNU toolchain.

While the OTBN is a co-processor to the main Ibex processor, we consider a simple
comparison of cycle counts of the cryptographic scheme on the OTBN to be fair. Granted,
there might be scenarios in which the Ibex first has to configure the OTBN by loading its
firmware. In most scenarios, however, this step can be prepared at boot-up. Writing data
to the OTBN and reading back results is as fast as normal memory accesses as the two
processors share certain memory sections. In fact, the OpenTitan architecture even allows
to shield secrets such as the secret key from the Ibex via its key manager, which might be
advantageous in certain scenarios and would make some data transfers unnecessary. For
this paper, however, we only consider plain cycle counts on the OTBN.

7.2 Polynomial Multiplication
Table 5 shows the cycle counts for the polynomial multiplication related functions of ML-
DSA and ML-KEM. From the table we can see that our implementation for OTBNKMAC

Ext.
outperforms the implementations on plain OTBN with speed-ups up to a factor of eight.
The implementation on OTBNKMAC

Ext.++ in turn is two to three times faster than the one on
OTBNKMAC

Ext. .
Comparing our results on OTBNKMAC

Ext. to the closely related work from [SOSK23], we
can observe slow-downs for the transformations of up to 18% in the case of ML-DSA, while
we manage to speed up the pointwise multiplication by 30%. In contrast to this, we are up
to two times faster in the case of ML-KEM. This can be traced back to the vectorization
allowing an even higher degree of parallelization on OTBNKMAC

Ext. , while [SOSK23] does
not consider a SIMD approach. The results from [Tur23] may suggest that applying the
Kronecker+ technique from [BRv22] might not be suitable on OTBN, as our baseline
implementation using Plantard arithmetic yields better results.

One may wonder why the AVX2 implementation on Intel Skylake (which has a similar
register size) outperforms our work on OTBNKMAC

Ext. . This is due to its super-scalar
architecture and out-of-order (OoO) execution capabilities. We observe a similar trend for
the likewise super-scalar Cortex-A72 using Arm Neon.

Compared to the work from [NDMZ+21], we achieve speed-ups up to a factor of 18
on OTBNKMAC

Ext. , which we mainly attribute to our vectorized approach. Despite the less
general approach in [FSS20], we still manage to obtain a speed-up of nearly 2×.

6https://github.com/pq-crystals/kyber/commit/11d00ff1f20cfca1f72d819e5a45165c1
e0a2816, https://github.com/pq-crystals/dilithium/commit/e7bed6258b9a3703ce78d4e
c38021c86382ce31c

7https://github.com/neon-ntt/neon-ntt/commit/0de97e07f69002ed3219828d35ee438f
3802bb34

https://github.com/pq-crystals/kyber/commit/11d00ff1f20cfca1f72d819e5a45165c1e0a2816
https://github.com/pq-crystals/kyber/commit/11d00ff1f20cfca1f72d819e5a45165c1e0a2816
https://github.com/pq-crystals/dilithium/commit/e7bed6258b9a3703ce78d4ec38021c86382ce31c
https://github.com/pq-crystals/dilithium/commit/e7bed6258b9a3703ce78d4ec38021c86382ce31c
https://github.com/neon-ntt/neon-ntt/commit/0de97e07f69002ed3219828d35ee438f3802bb34
https://github.com/neon-ntt/neon-ntt/commit/0de97e07f69002ed3219828d35ee438f3802bb34


34 Towards ML-KEM & ML-DSA on OpenTitan

Table 5: Benchmarks for polynomial multiplication related functions of ML-DSA and
ML-KEM. All numbers given refer to cycles.

Platform NTT INTT Base Mul.

ML-DSA

OTBNKMAC
Ext.++ (This work) 996 (×0.41) 1003 (×0.39) 230 (×0.40)

OTBNKMAC
Ext. (This work) 2404 (×1.00) 2587 (×1.00) 582 (×1.00)

OTBN/OTBNKMAC (This work) 8206 (×3.41) 8701 (×3.36) 2552 (×4.38)

OTBN [SOSK23]a 1972 (×0.82) 2244 (×0.87) 768 (×1.32)
OTBN [Tur23] 10 763 (×4.48) 13 943 (×5.39) 9714 (×16.69)
Skylake [LDK+22] 848 (×0.35) 806 (×0.31) 156 (×0.27)
Cortex-A72 [BHK+22] 1802 (×0.75) 2535 (×0.98) — —
Cortex-M4 [AHKS22] 8066 (×3.36) 8388 (×3.24) 1931 (×3.32)
[NDMZ+21] 18 554 (×7.72) 21 375 (×8.26) — —

ML-KEM

OTBNKMAC
Ext.++ (This work) 384 (×0.38) 392 (×0.36) 284 (×0.39)

OTBNKMAC
Ext. (This work) 1000 (×1.00) 1096 (×1.00) 724 (×1.00)

OTBN/OTBNKMAC (This work) 8133 (×8.13) 8771 (×8.00) 4605 (×6.36)

OTBN [SOSK23]a 1454 (×1.45) 1726 (×1.57) 1448 (×2.00)
Skylake [SAB+22] 218 (×0.22) 234 (×0.21) 86 (×0.12)
Cortex-A72 [BHK+22] 955 (×0.96) 1128 (×1.03) — —
Cortex-M4 [HZZ+22] 4474 (×4.47) 4684b (×4.27) 2422 (×3.35)
[NDMZ+21] 18 488 (×18.49) 18 488 (×16.87) — —
[FSS20] 1935 (×1.94) 1930 (×1.76) — —
[LQYW24] 4189 (×4.19) 3481 (×3.18) 3257 (×4.50)

a Modified variant of OTBN.
b For ML-KEM-512.

7.3 Full Scheme Benchmarks
We present the benchmark results for all three parameter sets and all three algorithms of
ML-DSA and ML-KEM in Tables 6 and 7.

As shown in Table 6, we achieve performance gains of a factor of six to nine, when com-
paring our implementation on plain OTBN with our implementation for OTBNKMAC

Ext. . As
expected, a large contribution to this is due to the KMAC interface which becomes apparent
when considering the numbers for OTBNKMAC. The implementation on OTBNKMAC

Ext.++ is
again up to 32% faster than the one on OTBNKMAC

Ext. .
Comparing our work for OTBNKMAC

Ext. to the implementations for the verification
from [SOSK23], we are around five to six times faster, which shows that the faster Keccak
acceleration and pointwise multiplication makes up for the slightly slower (inverse) NTT.

Due to the fast Keccak accelerator, we even manage to outperform the super-scalar
Cortex-A72 with Arm Neon. However, our performance on OTBNKMAC

Ext. remains behind
the AVX2 optimized implementation on Intel Skylake.

With respect to hardware/software co-designs, we achieve lower cycle counts than
all the works in the comparison. From a performance perspective, the very compact
implementation from [LTQ+24] is the closest to our work on OTBNKMAC

Ext. , while relying
on specifically tailored extensions for Dilithium. A comparison of the respective hardware
overheads will follow in Section 7.5.

When considering the performance of ML-KEM on OTBNKMAC
Ext. , the situation is

similar as for ML-DSA: We achieve significant speed-ups through the KMAC interface,
with the overall performance gain due to our ISA extensions being larger than for ML-
DSA. This can be traced back to the higher degree of parallelism for 16-bit elements. We
outperform the implementation on plain OTBN by almost a factor of nine.

Again, OTBNKMAC
Ext. outperforms the Arm Neon implementation, but cannot keep up

with the highly super-scalar AVX2 implementation.
The hardware/software co-design offering the most comparable performance is the one
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presented in [FSS20]. While the work is similar due to the vectorized approach to modular
arithmetic and the fact that it also employs a Keccak accelerator, it differs in the degree
of specificity and the capabilities of the aforementioned accelerator. We achieve speed-ups
of up to a factor of 4. As the work from [LQYW24] picks a highly resource-constrained
approach without making use of any form of Keccak acceleration, it is no surprise that the
speed-ups on OTBNKMAC

Ext. are as high as a factor of 17.

Our benchmark results also reflect a key-difference between the round 3 version of
Kyber and the draft standard for ML-KEM, namely the encapsulation usually taking
longer than the decapsulation for Kyber, while it is the other way around for ML-KEM.
This is due to the draft standard omitting parts of the hashing originally present in
Kyber [NIS23a].

Table 6: ML-DSA full scheme benchmarks. All numbers given refer to cycles. Median
result was selected, if given. 10 000 iterations for our measurements.

Operation Platform Key Gen. Sign Verify

ML-DSA-44

OTBN 1 242 455 (×8.29) 2 574 222 (×6.28) 1 226 370 (×7.75)
OTBNKMAC 270 888 (×1.81) 1 115 320 (×2.72) 318 783 (×2.01)
OTBNKMAC

Ext. 149 867 (×1.00) 410 186 (×1.00) 158 226 (×1.00)
OTBNKMAC

Ext.++ 130 730 (×0.87) 287 122 (×0.70) 131 023 (×0.83)

OpenTitan [SOSK23]b,c — — — — 997 722 (×6.31)
Skylake [LDK+22]a 91 924 (×0.61) 207 014 (×0.50) 97 082 (×0.61)
Cortex-A72 [BHK+22]a 266 767 (×1.78) 632 345 (×1.54) 264 349 (×1.67)
Cortex-M4 [HAZ+24]a 1 352 958 (×9.03) 2 854 917 (×6.96) 1 343 288 (×8.49)
[KSFS24]c 593 403 (×3.96) 1 905 872 (×4.65) 651 217 (×4.12)
[NDMZ+21]c 1 592 325 (×10.62) 5 884 266 (×14.35) 1 700 679 (×10.75)
[LTQ+24]c 541 869 (×3.62) 845 005 (×2.06) 563 385 (×3.56)

ML-DSA-65

OTBN 2 190 278 (×8.39) 4 490 766 (×6.44) 2 107 440 (×8.22)
OTBNKMAC 438 154 (×1.68) 1 842 696 (×2.64) 493 307 (×1.92)
OTBNKMAC

Ext. 261 000 (×1.00) 697 203 (×1.00) 256 327 (×1.00)
OTBNKMAC

Ext.++ 233 893 (×0.90) 477 322 (×0.68) 215 627 (×0.84)

OpenTitan [SOSK23]b,c — — — — 1 488 526 (×5.81)
Skylake [LDK+22]a 154 308 (×0.59) 342 708 (×0.49) 154 622 (×0.60)
Cortex-A72 [BHK+22]a 510 197 (×1.95) 1 053 606 (×1.51) 440 317 (×1.72)
Cortex-M4 [HAZ+24]a 2 390 080 (×9.16) 4 878 759 (×7.00) 2 289 269 (×8.93)
[KSFS24]c 1 067 824 (×4.09) 3 253 378 (×4.67) 1 126 938 (×4.40)
[NDMZ+21]c 2 974 897 (×11.40) 10 211 677 (×14.65) 2 963 936 (×11.56)
[LTQ+24]c 902 273 (×3.46) 1 329 844 (×1.91) 918 863 (×3.58)

ML-DSA-87

OTBN 3 752 708 (×9.14) 6 193 418 (×6.78) 3 676 261 (×8.72)
OTBNKMAC 691 121 (×1.68) 2 358 194 (×2.58) 769 517 (×1.83)
OTBNKMAC

Ext. 410 599 (×1.00) 913 609 (×1.00) 421 498 (×1.00)
OTBNKMAC

Ext.++ 365 484 (×0.89) 656 032 (×0.72) 361 557 (×0.86)

OpenTitan [SOSK23]b,c — — — — 2 223 143 (×5.27)
Skylake [LDK+22]a 244 128 (×0.59) 430 214 (×0.47) 242 666 (×0.58)
Cortex-A72 [BHK+22]a 776 238 (×1.89) 1 408 686 (×1.54) 753 514 (×1.79)
Cortex-M4 [HAZ+24]a 4 071 579 (×9.92) 6 638 503 (×7.27) 3 986 607 (×9.46)
[KSFS24]c 1 784 767 (×4.35) 4 357 249 (×4.77) 1 848 324 (×4.39)
[NDMZ+21]c 5 001 302 (×12.18) 13 339 255 (×14.60) 5 132 776 (×12.18)
[LTQ+24]c 1 533 230 (×3.73) 2 065 456 (×2.26) 1 561 021 (×3.70)

a Own benchmarks.
b Including modified variant of OTBN, parts of the execution on Ibex Core.
c Round 3 Dilithium.
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Table 7: ML-KEM full scheme benchmarks. All numbers given refer to cycles. Median
result was selected, if given. 10 000 iterations for our measurements.

Operation Platform Key Gen. Encaps Decaps

ML-KEM-512

OTBN 324 075 (×8.87) 352 716 (×7.56) 399 128 (×6.86)
OTBNKMAC 88 918 (×2.43) 120 212 (×2.58) 165 718 (×2.85)
OTBNKMAC

Ext. 36 554 (×1.00) 46 649 (×1.00) 58 160 (×1.00)
OTBNKMAC

Ext.++ 32 330 (×0.88) 40 567 (×0.87) 48 930 (×0.84)

Skylake [SAB+22]a 29 624 (×0.81) 31 084 (×0.67) 30 464 (×0.52)
Cortex-A72 [BHK+22]a 59 567 (×1.63) 63 576 (×1.36) 73 354 (×1.26)
Cortex-M4 [HZZ+22]a 369 323 (×10.10) 368 577 (×7.90) 404 159 (×6.95)
[NDMZ+21]b 419 597 (×11.48) 438 280 (×9.40) 100 796 (×1.73)
[FSS20]c 150 106 (×4.11) 193 076 (×4.14) 204 843 (×3.52)
[LQYW24]b 622 000 (×17.02) 785 000 (×16.83) 713 000 (×12.26)

ML-KEM-768

OTBN 563 731 (×8.10) 611 598 (×7.45) 671 625 (×6.89)
OTBNKMAC 159 774 (×2.30) 197 884 (×2.41) 258 545 (×2.65)
OTBNKMAC

Ext. 69 565 (×1.00) 82 055 (×1.00) 97 471 (×1.00)
OTBNKMAC

Ext.++ 61 909 (×0.89) 72 009 (×0.88) 83 129 (×0.85)

Skylake [SAB+22]a 47 768 (×0.69) 46 858 (×0.57) 47 474 (×0.49)
Cortex-A72 [BHK+22]a 95 875 (×1.38) 105 436 (×1.28) 117 905 (×1.21)
Cortex-M4 [HZZ+22]a 603 140 (×8.67) 622 059 (×7.58) 668 899 (×6.86)
[NDMZ+21]b 694 504 (×9.98) 731 597 (×8.92) 130 348 (×1.34)
[FSS20]c 273 370 (×3.93) 325 888 (×3.97) 340 418 (×3.49)
[LQYW24]b 988 000 (×14.20) 1 237 000 (×15.08) 1 133 000 (×11.62)

ML-KEM-1024

OTBN 911 648 (×8.02) 966 529 (×7.53) 1 044 112 (×7.03)
OTBNKMAC 249 490 (×2.19) 294 623 (×2.30) 370 528 (×2.50)
OTBNKMAC

Ext. 113 689 (×1.00) 128 339 (×1.00) 148 439 (×1.00)
OTBNKMAC

Ext.++ 101 716 (×0.89) 113 453 (×0.88) 128 059 (×0.86)

Skylake [SAB+22]a 64 608 (×0.57) 65 536 (×0.51) 67 870 (×0.46)
Cortex-A72 [BHK+22]a 150 581 (×1.32) 161 850 (×1.26) 184 320 (×1.24)
Cortex-M4 [HZZ+22]a 959 511 (×8.44) 976 865 (×7.61) 1 036 665 (×6.98)
[NDMZ+21]b 1 090 458 (×9.59) 1 126 462 (×8.78) 159 639 (×1.08)
[FSS20]c 349 673 (×3.08) 405 477 (×3.16) 424 682 (×2.86)
[LQYW24]b 1 543 000 (×13.57) 1 851 000 (×14.42) 1 719 000 (×11.58)

a Own benchmarks.
b Round 3 Kyber.
c Round 2 Kyber.

7.4 Memory & Code Size

Tables 8 and 9 present the stack usage and code size for our ML-KEM and ML-DSA
implementations, including the OTBN, OTBNKMAC, and OTBNKMAC

Ext.++ variants. The
OTBNKMAC

Ext. variant shares code with OTBNKMAC
Ext.++, resulting in identical memory con-

sumption and code size. Notably, OTBNKMAC
Ext.++ generally uses less memory, and thanks

to vectorization, has smaller code sizes compared to their baseline counterparts. While
memory and code size optimization were not our primary focus, the stack usage for
key generation and verification in ML-DSA remains comparable to that of [HZZ+22].
Signing in ML-DSA slightly exceeds Cortex-M4 usage but remains within reasonable
limits. Our three verifications are also only slightly larger than [SOSK23]. Our test
structure provides separate figures for the three routines, unlike [KSFS24], hindering direct
comparison. ML-KEM’s stack usage is considerably higher, more than doubled compared
to Cortex-M4. However, since we have not optimized for stack size and ML-DSA already
demands significant memory, this is not a concern for our consideration. Our code sizes
also approximate those on Cortex-M4, slightly higher for ML-DSA and slightly smaller
for ML-KEM with OTBNKMAC

Ext.++ variant.
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Table 8: ML-KEM and ML-DSA memory usage. All numbers refer to bytes.

NIST
Level Platform

ML-KEM ML-DSA
K E D K S V

M
L-

K
E

M
-5

12
M

L-
D

SA
-4

4

OTBN 5776 8336 8400 37 740 56 028 36 156
OTBNKMAC 5600 8224 8224 37 328 55 712 35 840
OTBNKMAC

Ext.++ 5536 8160 8160 37 248 50 624 34 720
OpenTitan [SOSK23]a,b — — — — — ≤ 32 000
Skylake [LDK+22] 100 100 100 100 100 100
Cortex-M4 [HZZ+22] 4364 5436 5412 38 296 49 416 36 184
[KSFS24] — — — 61 216c

M
L-

K
E

M
-7

68
M

L-
D

SA
-6

5

OTBN 9808 12 880 12 944 60 268 85 724 57 692
OTBNKMAC 9632 12 768 12 768 59 856 85 416 57 376
OTBNKMAC

Ext.++ 9568 12 704 12 704 59 776 78 272 56 384
OpenTitan [SOSK23]a,b — — — — — ≤ 32 000
Skylake [LDK+22] 100 100 100 100 100 100
Cortex-M4 [HZZ+22] 5396 6468 6452 60 824 68 864 57 720
[KSFS24] — — — 92 720c

M
L-

K
E

M
-1

02
4

M
L-

D
SA

-8
7

OTBN 14 928 18 512 18 576 97 132 123 612 92 764
OTBNKMAC 14 752 18 400 18 400 96 720 123 304 92 448
OTBNKMAC

Ext.++ 14 688 18 336 18 336 96 640 121 280 91 456
OpenTitan [SOSK23]a,b — — — — — ≤ 32 000
Skylake [LDK+22] 100 100 100 100 100 100
Cortex-M4 [HZZ+22] 6436 7500 7484 97 688 115 968 92 824
[KSFS24] — — — 139 840c

a Including modified variant of OTBN, parts of the execution on Ibex Core.
b Round 3 Kyber.
c Full-scheme result.

Table 9: ML-KEM and ML-DSA code size. All numbers refer to bytes.

NIST
Level Platform

ML-KEM ML-DSA
Text Const I/O Totala Text Const I/O Totala

M
L-

K
E

M
-5

12
M

L-
D

SA
-4

4 OTBN 18 160 3744 3360 21 904 25 392 5632 9696 31 024
OTBNKMAC 15 300 2688 3360 17 988 20 136 4800 9696 24 936
OTBNKMAC

Ext.++ 9620 1536 3360 11 156 17 636 2592 9696 20 228
[FSS20]b — — — 12 532 — — — —
[KSFS24] — — — — 20 624 — — —

Cortex-M4 [HZZ+22] — — — 15 824 — — — 18 596

M
L-

K
E

M
-7

68
M

L-
D

SA
-6

5 OTBN 18 660 3744 4832 22 404 26 168 5632 12 704 31 800
OTBNKMAC 15 800 2688 4832 18 488 20 112 4800 12 704 24 912
OTBNKMAC

Ext.++ 10 072 1536 4832 11 608 17 524 2592 12 704 20 116
[FSS20]b — — — 11 658 — — — —
[KSFS24] — — — — 20 052 — — —

Cortex-M4 [HZZ+22] — — — 15 992 — — — 18 588

M
L-

K
E

M
-1

02
4

M
L-

D
SA

-8
7 OTBN 21 716 3744 6464 25 460 27 052 5632 15 520 32 684

OTBNKMAC 18 856 2688 6464 21 544 20 956 4800 15 520 25 756
OTBNKMAC

Ext.++ 13 524 1536 6464 15 060 18 484 2592 15 520 21 076
[FSS20]b — — — 12 874 — — — —
[KSFS24] — — — — 20 324 — — —

Cortex-M4 [HZZ+22] — — — 16 912 — — — 18 468
a Sum of Text and Const.
b Round 2 Kyber.
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7.5 Hardware Utilization and Comparison to other HW/SW Co-designs
As shown in the previous sections, in terms of cycle counts and latency, we outperform
most existing relevant RISC-V-based ISA extensions from literature [FSS20, NDMZ+21,
KSFS24, LTQ+24, LQYW24]. In summary, this can be attributed mainly to three points,
some of which were already discussed above. First, our approach exploits the 256-bit
WDRs of the OTBN to perform operations in a SIMD manner. This provides a significant
advantage compared to 32-bit or 64-bit RISC-V architectures. Another work [SOSK23]
also leverages the OTBN and its WDRs. However, their extensions compute only one 32-bit
butterfly operation per clock cycle and does not exploit the WDRs for SIMD operations.
Second, the enormous capacities of the OTBN’s WDRs allow us to reduce memory accesses
to a minimum. Third, we implemented a dedicated interface to the OpenTitan KMAC
core. This module is able to compute a Keccak round within 4 cycles. The work presented
in [SOSK23] implements ISA extensions for Keccak. Their approach takes 40 cycles per
Keccak round. This is another reason for the performance improvement of our work over
[SOSK23]. Although the Keccak extension of [FSS20, KSFS24] is able to compute one
round per clock cycle, their Keccak accelerator needs additional floating point registers
and accesses all of them, together with some general purpose registers at once. We found
that, not integrating such a powerful accelerator into the processor pipeline itself, but
providing a dedicated interface offers similar performance as their approach and allows a
cleaner integration.

Table 11 presents the ASIC synthesis results using the ASAP7 PDK[CVS+16]. We
synthesized the Top-Earlgrey design rather than the Chip-Earlgrey-ASIC design due to
missing standard cells in the PDK. The Chip-Earlgrey-ASIC is built on top of Top-Earlgrey
and contains additional module such as an analog-sensor interface and pads. Furthermore,
the table contains synthesis results for the OTBN with different variants of our extensions.
For both designs, we applied a memory as black box synthesis and only targeted logic
overhead as the memory requirements for all different variants are similar.

These numbers highlight that the performance improvement of our OTBNKMAC
Ext. im-

plementation comes at rather low cost. On the other hand, the enormous performance
improvement of our OTBNKMAC

Ext.++ is relatively costly and nearly doubles the size of the
OTBN. However, considering the OpenTitan’s overall area, it is still a reasonable approach
and does not have a significant impact.

We analyzed the effect of our extensions on the critical path by evaluating out-of-context
FPGA synthesis results for the OTBN and Xilinx 7-Series devices as target. For the original
OTBN, the critical path is located within the BN-MAC. For OTBNKMAC

Ext. , the critical
path changes and is located within the BN-ALU, going through Adder X and Adder
Y. For OTBNKMAC

Ext.++, the critical path changes as well and is located within our newly
proposed BN-MULV module. Considering the complexity of the implemented operations,
these changes of the critical path are expected. Compared to the original OTBN, the
maximum clock frequency is decreased from 39.3 MHz to 21.3 MHz for the OTBNKMAC

Ext.
implementation and to 18.6 MHz for the OTBNKMAC

Ext.++. Note that these numbers are
limited in their significance and only few conclusions can be drawn from them. First, our
hardware extensions affect the critical path and this must be considered when building
an OpenTitan-based ASIC. Second, the purpose of the CW310 FPGA implementation is
prototyping only and it’s not intended to be a final product. Hence, the target frequency
for the OTBN on the FPGA is only 10 MHz, meaning that our hardware extensions
have zero impact on the maximum clock frequency in this case. Third, the impact of our
hardware extensions on the maximum clock frequency of an ASIC design is difficult to
quantify precisely, because the maximum clock frequency is highly dependent on the target
platform and technology node. When implemented on an ASIC, the OpenTitan has a
moderate target frequency of 100 MHz. In our opinion, the critical path in our hardware
extensions still allows to achieve this frequency for many manufacturing processes.
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Table 10: Comparison of hardware utilization of this work with state-of-the-art HW/SW
Co-designs. The overhead with relation to the base platform the ISA extension was applied
on are given as factors next to the absolute values.

Design
ASIC FPGA

Cell Count LUT FF DSP
Top-EarlgreyKMAC

Ext. 754 208 (×1.02) 244 599 (×1.05) 122 053 (×1.01) 22 (×1.00)
Top-EarlgreyKMAC

Ext.++ 839 033 (×1.13) 253 513 (×1.09) 121 871 (×1.01) 118 (×5.36)

OTBNKMAC 160 586 (×1.07) 35 421 (×1.10) 16 874 (×1.08) 16 (×1.00)
OTBNKMAC

Ext. 167 564 (×1.12) 38 236 (×1.19) 15 807 (×1.01) 16 (×1.00)
OTBNKMAC

Ext.++ 310 031 (×2.07) 49 128 (×1.53) 16 948 (×1.09) 112 (×7.00)

[SOSK23] — — 55 409 (×1.66) 16 575 (×1.06) 49 (×3.06)
[FSS20] 57 413 (×1.59) 24 306 (×1.59) 10 837 (×1.13) 18 (×3.00)
[KSFS24] 65 968 (×1.50) 22 356 (×1.48) 13 181 (×1.33) 13 (×2.17)
[NDMZ+21] — — 64 855 (×1.06) 60 349 (×1.00) 29 (×1.53)
[LQYW24] 13 573 (×1.04) 9614 (×1.01) 6669 (×1.00) 5 (×1.25)
[LTQ+24] 22 936 (×2.18) 15 258 (×1.35) 12 934 (×1.14) 7 (—)

In terms of hardware utilization of related work, Table 10 provides more insights. For
our FPGA synthesis results, we choose the Xilinx 7-Series devices as target and Table 10
includes synthesis results for the OTBN and the Chip-Earlgrey-CW310 design.

In [NDMZ+21], a CVA6, a more powerful application level processor is chosen. The
authors of [FSS20, KSFS24] use a PULPino as platform, which is a microcontroller with
slightly more features than an Ibex. In [LTQ+24, LQYW24], a very compact Hummingbird
E203 core was used.

In general, it must be said that all comparisons except for [SOSK23] are not straight-
forward, as the OTBN is a very specific target platform. Due to its big-number arithmetic
modules and countermeasures it is not compact, but still missing features that other
platforms already have. Further, OTBN’s fault injection and side-channel countermeasures
imply that all extensions must consider the same countermeasures.

The extensions in [NDMZ+21, SOSK23, LTQ+24, LQYW24] are significantly more
compact, but offer less performance. For [FSS20, KSFS24, LTQ+24], the relative overhead
is larger, but both the base and extended platform are more compact than our extended
OTBN.

In summary, existing designs might be better suited for a few specific use-cases, where
more compact base platforms are required. However, as the first industry-grade open
source secure element, our claim to our extensions for the OpenTitan is a clean integration
into the micro-architecture, flexibility and high performance without too much hardware
overhead. Our comparison with state-of-the-art designs shows that the hardware costs
of our extensions are acceptable both in relation to related work and when the entire
OpenTitan is taken into consideration.

8 Discussion and Future Work
As mentioned in Section 5.1, we choose a different approach compared to most related
work by trying to provide a rather generic ISA extension for vector arithmetic, rather than
highly specific instructions tailored towards lattice-based cryptography or even specific
schemes. We made this decision assuming that other cryptographic schemes may also
profit from efficient, vectorized modular arithmetic on “small” integers. Examples for
this would be code-based schemes such as Classic McEliece [ABC+22] or multivariate
quadratic (MQ)-based schemes. Further, we believe that our extension could be relevant
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Table 11: ASIC synthesis - area consumption for 7nm Process without Memories. Area is
given in µm2.

Design Cell Count Cell Area Net Area Total Area
Top-Earlgrey 740 101 (×1.00) 106 885 (×1.00) 41 763 (×1.00) 148 647 (×1.00)
Top-EarlgreyKMAC

Ext. 754 208 (×1.02) 108 698 (×1.02) 42 610 (×1.02) 151 308 (×1.02)
Top-EarlgreyKMAC

Ext.++ 839 033 (×1.13) 117 654 (×1.10) 47 308 (×1.13) 164 962 (×1.11)

OTBN 149 931 (×1.00) 19 746 (×1.00) 8196 (×1.00) 27 942 (×1.00)
OTBNKMAC 160 586 (×1.07) 21 467 (×1.09) 8862 (×1.08) 30 329 (×1.09)
OTBNKMAC

Ext. 167 564 (×1.12) 21 759 (×1.10) 9369 (×1.14) 31 128 (×1.11)
OTBNKMAC

Ext.++ 310 031 (×2.07) 36 144 (×1.83) 16 150 (×1.97) 52 295 (×1.87)

for accelerating symmetric schemes, especially from the domain of Add-Rotate-Xor (ARX)
ciphers for which no hardware acceleration is present on OpenTitan.

A straight-forward follow-up would be to apply the techniques for reducing the memory
usage presented in [GKS21, BRS22]. In this light, it would be interesting to see how
the trade-offs on OTBN would differ, assuming access to the fast KMAC block for the
hashing. In the same context, it could be considered whether extending the ISA with
a bit-mask-based permutation instruction to allow for vectorized rejection sampling as
in [GS16] would be worthwhile with most stack optimizations shifting the runtime towards
the sampling.

As OpenTitan already offers a masked KMAC core, extending our work to masked
implementations of ML-KEM and ML-DSA whilst re-evaluating the adequacy of our
proposed extensions could be worthwhile.

Further, the suitability of our ISA extension to, e.g., the Falcon verification, signature
schemes from NIST’s on-ramp process, or fully homomorphic encryption could be studied.

With OpenTitan aiming to provide a product with high security standards, a formally
verified re-implementation of ML-KEM and ML-DSA on OTBN would be a logical next
step. OTBN-support for the Jasmin language [ABB+17] is a current work-in-progress by
Arranz Olmos8.

As future work, the design space could be further explored and different optimization
could be applied. More specifically, our multiplier presented in Section 6.1.2 does only use
four of its sixteen 16-bit multipliers for Kyber. However, for Kyber’s 16-bit multiplications
no additional carry-save-adders are necessary for partial product combination. Therefore,
it would be possible to increase the number of parallel executed 16-bit multiplications in a
potentially cheap way.
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