
A New CRT-based Fully Homomorphic
Encryption

Anil Kumar Pradhan

Vaultree Ltd.

Abstract. We have proposed a novel FHE scheme that uniquely en-
codes the plaintext with noise in a way that slows down the increasing
noise from overflowing and corrupting the plaintext. This allows users
to perform computations on encrypted data smoothly. The scheme is
constructed using the Chinese Remainder Theorem (CRT), supporting a
predefined number of modular operations on encrypted plaintext without
the need for bootstrapping.
Although FHE recently became popular after Gentry’s work [10] [11]
and various developments have occurred in the last decade, the idea of
"Fully Homomorphic Encryption (FHE)" scheme was first introduced in
the 1970s by Rivest [13]. The Chinese Remainder Theorem is one of the
most suitable tools for developing a FHE Scheme because it forms a ring
homomorphism Zp1 × Zp2 × . . . × Zpk

∼= Zp1p2...pk . Various attempts
have been made to develop a FHE using CRT, but most of them were
unsuccessful, mainly due to the chosen plaintext attack (CPA) [5].
The proposed scheme overcomes the chosen plaintext attack. The scheme
also adds random errors to the message during encryption. However,
these errors are added in such a way that, when homomorphic opera-
tions are performed over encrypted data, the increasing values of errors
never overwrite the values of the messages, as happens in LWE-based
homomorphic schemes. Therefore, one can perform a predefined number
of homomorphic operations (both addition and multiplication) without
worrying about the increasing values of errors.

Keywords: Fully Homomorphic Encryption (FHE), Chinese Reminder Theo-
rem, Chosen Plaintext Attack

1 Introduction

Fully Homomorphic Encryption (FHE) is a transformative cryptographic paradigm
that enables computations on encrypted data without requiring decryption. In-
troduced by in 1970’s by Rivest [13] and first secure scheme was proposed Craig
Gentry in 2009 [10] [11], and later improved in [3] [2] [4] [7] [14] [9], FHE has
opened new avenues for secure data processing, allowing operations to be per-
formed on ciphertexts while maintaining the confidentiality of the underlying
plaintexts. This capability is particularly valuable in scenarios where data pri-
vacy is paramount, such as in cloud computing, medical data processing, and
financial transactions.



FHE schemes can execute a wide range of operations on encrypted data,
including both arithmetic (addition and multiplication) and logical operations,
making them Turing complete. This means that any computable function can,
in theory, be evaluated on encrypted data without revealing the data itself. The
potential applications of FHE are vast, encompassing secure voting systems,
privacy-preserving data analysis, and encrypted search functionalities, among
others.

One of the critical challenges addressed by FHE is the need to maintain
data privacy while enabling the functionality of modern data analytics and ma-
chine learning. Traditional encryption schemes secure data at rest and in transit
but require decryption for processing, exposing sensitive information to poten-
tial breaches. FHE, on the other hand, keeps data encrypted throughout the
processing life-cycle, thus significantly enhancing security and privacy.

Despite its promising features, the practical deployment of FHE has been
historically hindered by performance issues, particularly the high computational
overhead associated with homomorphic operations. Early FHE schemes required
bootstrapping [8] [6] [12]—a process to refresh ciphertexts to manage noise
growth during computations—which was computationally expensive and imprac-
tical for real-world applications [1].

The concept of utilizing the Chinese Remainder Theorem (CRT) for con-
structing a fully homomorphic encryption (FHE) scheme was first introduced
as a “privacy homomorphism” in 1978 by Rivest, Adleman, and Dertouzos [13].
The fundamental idea was to define an encryption function that allows compu-
tations on encrypted data without needing to decrypt it. The approach begins
with enabling basic binary operations, such as addition and multiplication, over
encrypted data. Since any function can be approximated by a polynomial, sup-
porting addition and multiplication on encrypted data implies the potential to
compute any function on the data.

The privacy homomorphism designed by Rivest, Adleman, and Dertouzos
operates as follows:

– Key Generation: The user selects two large prime numbers, p and q, and
computes the public parameter n = pq.

– Plaintext and Ciphertext Spaces: The plaintext space is defined as Zn, and
the ciphertext space is defined as Zp × Zq.

Encryption:

m ∈ Zn −→ (m mod p,m mod q) = (c1, c2)

Decryption:

The plaintext m is recovered from (c1, c2) using the Chinese Remainder Theorem.

However, it was later demonstrated that this privacy homomorphism is vul-
nerable to known plaintext attacks [5]. The attack exploits the fact that if
Enc(m) = (c1, c2), then:

c1 = m mod p ⇒ m = pk + c1 ⇒ p|(m− c1)

2



Since p|n, we have:
p| gcd(m− c1, n)

Similarly, q| gcd(m − c2, n). Given that n = pq, the greatest common divisor
gcd(m − ci, n) for i = 1, 2 can be either p or q. Consequently, an attacker can
recover the secret keys from a known set of plaintext and ciphertext values.

This vulnerability highlighted the need for more secure methods of construct-
ing fully homomorphic encryption schemes, leading to the exploration and de-
velopment of more robust approaches in the following decades.

Our Contribution: The main idea of the scheme is to enable efficient com-
putation on encrypted data by uniquely encoding the plaintext with noise in a
way that prevents noise from increasing to the point of overflowing and corrupt-
ing the plaintext. This innovative approach allows users to perform computations
on encrypted data smoothly without the common problem of noise accumula-
tion degrading the data integrity. The techniques used in scheme ensure that
the noise introduced during encryption does not interfere with the accuracy and
reliability of the computations performed on the encrypted data.

This paper aims to provide a comprehensive overview of the proposed Fully
Homomorphic Encryption, discussing its foundational principles, security anal-
ysis, speed, performance, and practical applications. We will also explore the
implementation and benchmarking of the proposed scheme.

We reduce the security of the proposed scheme to lattice-based cryptography,
meaning it is as secure as any other lattice-based cryptographic scheme. Specifi-
cally, we demonstrate that if a method exists to break the proposed scheme, the
same method can be used to break the known hard problem, LWE and RLWE
problem. Therefore, our proposed FHE scheme is as secure as any cryptographic
scheme based on the LWE problem, which is recognized as being quantum-safe.

The rest of the section is organized as follows: we begin with an introduction
to the preliminaries, followed by the definition of essential notations and pa-
rameters. Next, we describe the proposed fully homomorphic encryption (FHE)
algorithm in detail. Following this, we provide a proof of the algorithm’s cor-
rectness and conduct a thorough security analysis. Additionally, we present a
performance analysis and benchmarking results.

2 Preliminary

In this section, we provide an overview of the basic concepts that underpin
our Fully Homomorphic Encryption (FHE) scheme, focusing on the Chinese
Remainder Theorem (CRT). These concepts are fundamental to understanding
the security and functionality of our encryption scheme.

2.1 Chinese Remainder Theorem (CRT)

The Chinese Remainder Theorem is a key mathematical tool used in number
theory and cryptography. It provides a way to solve systems of simultaneous
congruences with pairwise co-prime modulo.

3



Let n1, n2, . . . , nk be pairwise coprime integers (i.e., gcd(ni, nj) = 1 for i ̸= j).
For any given integers a1, a2, . . . , ak, there exists an integer x that simultaneously
satisfies the system of congruences:

x ≡ a1 mod n1

x ≡ a2 mod n2

...

x ≡ ak mod nk

Moreover, the solution x is unique modulo N = n1n2 · · ·nk.
The CRT is useful in cryptographic applications because it allows computa-

tions to be performed independently in smaller, modular arithmetic spaces and
then recombined to form the final result. This can lead to efficiencies in both
computation and storage.

Definition 1 (CRT Function). For pairwise coprime integers p1, . . . , pk, we
define the CRT function CRT(p1,...,pk) for inputs (m1, . . . ,mk) as a number in
Zp1

× · · · ×Zpk
which is congruent to mi modulo pi for all i ∈ {1, . . . , k}, where

p =
∏k

i=1 pi.
Formally, we have:

CRT(p1,...,pk)(m1, . . . ,mk) ≡
k∑

i=1

mip̂i(p̂
−1
i mod pi) mod p,

where

p̂i =
p

pi
=

k∏
j=1
j ̸=i

pj

2.2 NTT Representation

Polynomial Representation In the context of Fully Homomorphic Encryp-
tion (FHE) schemes like BFV, data is often represented as polynomials. A poly-
nomial in the ring R = Z[X]/(Xn + 1) can be written as:

a(X) = a0 + a1X + a2X
2 + · · ·+ an−1X

n−1

where each ai is a coefficient in Z. Operations such as addition and multipli-
cation of these polynomials are performed modulo Xn + 1. This representation
aligns directly with the algebraic structures used in FHE schemes.

For instance, in the BFV scheme:

– The plaintext modulus is denoted by t.
– The ciphertext modulus is denoted by q.

4



– Rt = Zt[X]/(Xn + 1) and Rq = Zq[X]/(Xn + 1) are the polynomial rings
with coefficients in Zt and Zq, respectively.

In polynomial representation, addition and multiplication operations are straight-
forward but can be computationally expensive for large polynomials due to the
convolution involved in polynomial multiplication.

NTT Representation The Number Theoretic Transform (NTT) is a discrete
Fourier transform (DFT) performed over finite fields. It transforms a polynomial
from its coefficient representation into a point-value representation, significantly
speeding up polynomial multiplication.

Transform Process
Given a polynomial a(X) in R, the NTT of a(X) is:

A = NTT(a)

This transformation maps the polynomial to an array of its values at spe-
cific points, known as roots of unity, in a finite field. The inverse NTT (INTT)
transforms it back to the coefficient representation:

a = INTT(A)

Advantages of NTT

– Efficiency in Multiplication: Multiplying two polynomials in coefficient form
requires a convolution operation, which is computationally expensive (O(n2)).
In NTT representation, multiplication becomes pointwise and linear in com-
plexity (O(n)), followed by an inverse transform, making the overall com-
plexity O(n log n).

– Scalability: NTT-based multiplication handles large polynomials efficiently,
crucial for FHE schemes that operate over high-degree polynomials to achieve
security.

Steps in NTT-Based Polynomial Multiplication

– Forward Transform: Apply NTT to both polynomials, a and b, obtaining A
and B.

– Pointwise Multiplication: Multiply the transformed polynomials pointwise,
C = A⊙B.

– Inverse Transform: Apply the inverse NTT to C to obtain the resulting
polynomial in coefficient form.

In the context of the BFV scheme [4]:

– Encryption involves transforming the plaintext polynomial to NTT form,
performing the encryption operation, and transforming the resulting cipher-
text polynomial back to coefficient form if necessary.

5



– Homomorphic multiplication benefits significantly from NTT, as it reduces
the complexity of polynomial multiplication.

In summary, while polynomial representation is simpler and more intuitive, NTT
representation is preferred in practical homomorphic encryption implementa-
tions due to its substantial efficiency benefits in polynomial multiplication, which
are essential for the performance of schemes like BFV.

2.3 Terminologies

The notation commonly employed includes Z for the set of integers and Zq for
the ring of integers modulo q. The plaintext modulus is denoted by t, while the
ciphertext modulus is denoted by q. The degree of the cyclotomic polynomial,
usually a power of 2, is represented by n. The polynomial ring R is defined
as Z[X]/(Xn + 1), and Rq is the corresponding ring with coefficients in Zq.
Within this scheme, s represents the secret key polynomial, e denotes an error
polynomial with small coefficients, and a and b are components of the public
key. Ciphertexts are typically represented as a vector c = (c0, c1). The security
of the scheme is grounded in the hardness of the Learning With Errors (LWE)
problem and its variant, the Ring Learning With Errors (RLWE) problem. The
RLWE problem involves finding a secret polynomial s given a polynomial a and
a noisy polynomial b, where the noise polynomial e has small coefficients. The
difficulty of solving this problem without the secret key underpins the security
guarantees of the scheme, making it a robust choice for applications requiring
secure computation on encrypted data.

2.4 Hard Problems

1. Learning With Errors (LWE) Problem: Given a matrix A and a vector
b = As + e where s is a secret vector and e is a small error vector, the
task is to find s. The hardness of this problem is the foundation of many
cryptographic schemes.

2. Ring Learning With Errors (RLWE) Problem: A variant of the LWE
problem where the operations are performed in a polynomial ring. Given a
polynomial a ∈ Rq and a polynomial b = a · s + e mod q where s and e
have small coefficients, the task is to find s. The RLWE problem is believed
to be hard and forms the security basis of the scheme.

BFV Scheme
The BFV scheme (Brakerski/Fan-Vercauteren) is an FHE scheme based on

the RLWE problem. It allows for both addition and multiplication operations
on ciphertexts, supporting computations on encrypted data.

The difficulty of solving the RLWE problem ensures that the scheme is se-
cure against various cryptographic attacks. The noise e added during encryption
makes it hard to recover the plaintext without the secret key.

6



By leveraging these hard problems and mathematical structures, the scheme
achieves secure and efficient fully homomorphic encryption, enabling computa-
tions on encrypted data while preserving confidentiality. In the context of FHE,
the CRT is used to manage modular arithmetic operations efficiently, allow-
ing homomorphic operations to be performed on encrypted data. The RLWE
problem provides a hard computational foundation that ensures the security of
the encryption scheme. Together, these concepts enable the construction of a
FHE scheme that is both secure and practical for performing large amount of
computations on encrypted data.

3 Construction

In this section, we outline the construction of our Fully Homomorphic Encryp-
tion (FHE) scheme, focusing on its key components: key generation, encryption,
homomorphic operations, and decryption. Our construction builds on the prin-
ciples of lattice-based cryptography, incorporating enhancements to achieve im-
proved performance and security. First we describe the required parameters for
the scheme along with their sizes, then the actual construction of the scheme
and finally we prove the correctness of the scheme.

3.1 The Construction

In this section we describe the construction of the proposed fully homomor-
phic encryption scheme. The scheme has 4 major components Key Generation,
Encryption, Decryption, and Homomorphic Operations e.g. Addition and Mul-
tiplication.

The scheme consists of the following algorithms:

– Key Generation:
• Input: Security parameter λ.
• Output: Public key pk, secret key sk, and evaluation key evk.
• Steps:

∗ Sample s ∈ R2 uniformly.
∗ Sample a ∈ Rq uniformly.
∗ Sample e = (e1, ..., en) from a discrete Gaussian or uniform distri-

bution with small coefficients.
∗ Encode the noise vector into a polynomial using INTT

ϵ = INTT (CRTp1,p2
(0, e1), CRTp1,p2

(0, e2), ..., CRTp1,p2
(0, en))

∗ Compute b = (a · s+ ϵ) mod q.
∗ Set pk = (b,−a) and sk = s.
∗ Generate the evaluation key (aka relinearization keys:) rlk as needed

for homomorphic multiplication.

– Generate Relinearization Keys:

7



• Create Auxiliary Keys:
∗ Choose a base w such that q ≈ wl for some integer l.
∗ Decompose the secret key s in base w:

s =

l−1∑
i=0

siw
i

where each si ∈ Rq are the base-w digits of s.

– Steps
• For each i ∈ {0, . . . , l − 1}:

∗ Choose a random polynomial ri1 ∈ Rq.
∗ Sample noise ei = (ei1, ..., ein) and compute

ϵi = INTT (CRTp1,p2
(0, ei1), CRTp1,p2

(0, ei2), ..., CRTp1,p2
(0, ein))

– Compute the relinearization key component:

ri0 = ri1 · s+ ϵi + wi · s2 mod q

– The relinearization key is then:

rlk = {(ri0 , ri1) | i = 0, . . . , l − 1}

– Encryption:
• Input: Public key pk, Plaintext m = (m1, ...,mn) ∈ Zn

p1
.

• Output: Ciphertext c ∈ R2
q .

• Steps:
∗ Sample random noise vector e = (e1, ..., en).
∗ Encode m into a polynomial µ ∈ Rq using NTT.

µ = INTT (CRTp1,p2(m1, e1), CRTp1,p2(m2, e2), ..., CRTp1,p2(mn, en))

∗ Sample random vector u, e′, e′′ with small element values.
∗ Compute

ϵ′ = INTT (CRTp1,p2
(0, e′1), CRTp1,p2

(0, e′2), ..., CRTp1,p2
(0, e′n))

ϵ′′ = INTT (CRTp1,p2(0, e
′′
1), CRTp1,p2(0, e

′′
2), ..., CRTp1,p2(0, e

′′
n))

∗ Compute c0 = pk0 · INTT (u) + ϵ′ + µ mod q.
∗ Compute c1 = pk1 · INTT (u) + ϵ′′ mod q.
∗ Set c = (c0, c1).

c = (c0, c1)

– Decryption:
• Input: Secret key sk, ciphertext c = (c0, c1) ∈ R2

q .
• Output: Plaintext m ∈ Rp1

.
• Steps:

∗ Compute v = c0 + c1 · s mod q.

8



∗ Recover the plaintext as m = NTT (v) mod p1

Note that

c0+c1s = µ = INTT (CRTp1,p2(m1, e1), CRTp1,p2(m2, e2), ..., CRTp1,p2(mn, en))

Homomorphic Operations

– Homomorphic Addition:
• Input: Ciphertexts c1 = (c1,0, c1,1), c2 = (c2,0, c2,1) ∈ R2

q .
• Output: Ciphertext csum ∈ R2

q .
• Steps:

∗ Compute csum = (c0,1 + c0,2 mod q, c1,1 + c1,2 mod q).

– Homomorphic Multiplication:
• Input: Ciphertexts c1, c2 ∈ R2

q , evaluation key evk.
• Output: Ciphertext cmult ∈ R2

q .

Steps: Homomorphic multiplication in the scheme involves multiplying two
ciphertexts and then relinearizing the result. The steps are as follows:

Input Ciphertexts: Let c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1) be two ciphertexts
that encrypt plaintexts µ1 and µ2, respectively.

ci,0 + ci,1s = µi = INTT ((CRTp1,p2
(mik , eik))

n
k=1)

µ1.µ2 = INTT ((CRTp1,p2
(m1km2k , e1ke2k))

n
k=1)

Ciphertext Multiplication: Compute the product of the two ciphertexts:

cmult = c1 · c2

µ1.µ2 = (c1,0 + c1,1s)(c2,0 + c2,1s)

= c1,0 · c2,0 + (c1,0 · c2,1 + c1,1 · c2,0)s+ (c1,1 · c2,1)s2

This results in a ciphertext of degree 2:

cmult = (c0, c1, c2)

where:
c0 = c1,0 · c2,0
c1 = c1,0 · c2,1 + c1,1 · c2,0
c2 = c1,1 · c2,1

µ1.µ2 = c0 + c1s+ c2s
2

Relinearization is a step in the scheme that converts a higher-degree ciphertext
(resulting from homomorphic multiplication) back to a form that can be handled
like an original ciphertext. Here are the mathematical steps to generate the
relinearization key:

9



Decompose c2 in base w:

c2 =

l−1∑
i=0

c2,iw
i

where c2,i ∈ Rq are the base-w digits of c2.
Use the relinearization keys to reduce the degree of the ciphertext:

crelin = (c0 +

l−1∑
i=0

ri0 · c2,i, c1 +
l−1∑
i=0

ri1 · c2,i)

Output Ciphertext: The relinearized ciphertext crelin = (c′0, c
′
1) now encrypts the

product µ1 · µ2 and has the same form as an original ciphertext.
These steps ensure that the homomorphic multiplication and relinearization

process in the scheme maintains the ciphertext structure, allowing for further
homomorphic operations while controlling the growth of ciphertext size and
complexity.

3.2 LWE Variant

This scheme also accommodates a LWE variant. The structure of the scheme is
outlined as follows

– Public Parameters:
• Choose pairwise relatively primes: p1, p2, q
• Ciphertext Modulus: q, Plaintext Modulus: p1, Noise Modulus: p2

– Key Generation:
• Secret key s ∈ Zn

q

– Encryption:
• Plaintext m = (m1, ...,mn) ∈ Zn

p1

• Choose mask a ∈ Zn
q , and small error e′ ∈ Zq.

• Compute ciphertext:

c = ([a · s+ (CRT (m, e)]q,−a)

– Decryption:
• Ciphertext c = (c0, c1)

• Decrypted plaintext

m = c0 + ⟨c1, s⟩ mod q mod p1

10



3.3 Correctness

In this section we prove the correctness of encryption scheme. First we prove the
correctness of the encryption scheme in the following theorem. Later we prove
the correctness of the homomorphic operations over encrypted data.

Theorem 1. For any message m and secret key sk, the decryption of the en-
cryption of m using sk recovers the original message:

Dec(Enc(m, sk), sk) = m

Proof. The ciphertext c is computed from the plaintext m and the secret key
sk.

The encryption process involves the following steps:

Enc(m, sk) = c

To decrypt c, we apply the decryption function:

Dec(c, sk) = NTT (c0 + c1 · s mod q) mod p1

= NTT (µ) mod p1 = m

Therefore, we conclude:

Dec(Enc(m, sk), sk) = m

This proof demonstrates that the encryption and decryption functions are cor-
rect and consistent, ensuring that decrypting an encrypted message recovers the
original message without loss or alteration.

4 Security Analysis

To establish the security of the RLWE-based Fully Homomorphic Encryption
(FHE) scheme, we need to show that breaking the scheme is as hard as solving
the underlying RLWE problem. This involves proving that any adversary who
can break the scheme can be used to solve the RLWE problem, which is believed
to be computationally hard. Our goal is to prove semantic security under the
chosen plaintext attack (CPA) model, with a focus on the indistinguishability of
ciphertexts.

Ring Learning With Errors (RLWE) Problem
The security of our scheme is based on the Ring Learning With Errors

(RLWE) assumption. It can be stated as follows:

– Given a ring Rq = Zq[X]/(Xn + 1), a secret polynomial s ∈ Rq, and a
small error polynomial ϵ ∈ Rq, the RLWE problem is to distinguish the
distribution (as+ e,−a) from the uniform distribution over Rq ×Rq, where
a ∈ Rq is chosen uniformly at random.

11



The RLWE problem is considered hard based on worst-case hardness assump-
tions of certain lattice problems, making it computationally infeasible to solve
for sufficiently large parameters.

Semantic security ensures that an adversary cannot distinguish between en-
cryptions of any two chosen plaintexts with a non-negligible advantage. The
semantic security proof for the RLWE-based FHE scheme involves a reduction
from breaking the scheme to solving the RLWE problem.

4.1 Reduction to RLWE

We now present the reduction from breaking the FHE scheme to solving the
RLWE problem. This reduction demonstrates that an adversary who can distin-
guish ciphertexts can be used to solve the RLWE problem.

The ciphertext from the proposed scheme has the following form:

c = (c0, c1) = (a · s+ µ,−a)

µ = INTT (CRTp1,p2
(m1, e1), CRTp1,p2

(m2, e2), ..., CRTp1,p2
(mn, en))

The plaintext and the noise are encoded into the polynomial µ. So µ is a function
of the plaintext and the noise, that itself can be considered as a random noise.

So solving (a·s+µ,−a) is equivalent to solving a RLWE problem (a·s+e,−a).
If there exists an adversary A that can break the semantic security of the scheme
i.e. it can solve (a · s + µ,−a) then the same adversary can solve any RLWE
sample (a · s+ e,−a).

Detailed Proof
To rigorously establish the reduction, we need to show that the simulation

is indistinguishable from a real execution of the scheme. This involves demon-
strating that:

– The public key pk = (b,−a) generated using the RLWE instance is indis-
tinguishable from a valid public key in the scheme.

– The challenge ciphertext c generated using the RLWE instance is indistin-
guishable from a valid ciphertext in the scheme.

Public Key Indistinguishability:

– In a real public key pk = (as+ ϵ,−a), the polynomial b follows the RLWE
distribution.

– By the RLWE assumption, the polynomial b in the RLWE instance (a,b)
is computationally indistinguishable from a polynomial following the RLWE
distribution.

Ciphertext Indistinguishability:

– In a real ciphertext c = (c0, c1), the polynomials c0 and c1 are computed as
c0 = pk0 · u+ ϵ′ + µ mod q and c1 = pk1 · u+ ϵ′′ mod q.

– Using the RLWE instance (a,b), the challenge ciphertext c is constructed
in the same way, ensuring its indistinguishability from a real ciphertext.

12



– If the adversary A can distinguish the challenge ciphertexts with a non-
negligible advantage, it implies a non-negligible advantage in distinguishing
the RLWE sample from uniform, thus solving the RLWE problem.

– Since the RLWE problem is assumed to be hard, the adversary A cannot
have a non-negligible advantage in distinguishing ciphertexts, proving that
the FHE scheme is semantically secure under CPA.

This completes the security proof for the RLWE-based FHE scheme, demon-
strating that breaking the scheme is as hard as solving the RLWE problem.

The security of the proposed cryptographic scheme is based on the hardness of
the Ring Learning With Errors (RLWE) problem, similar to many lattice-based
cryptographic constructions. This section provides a detailed security analysis
of the scheme, focusing on the core components that contribute to its security:
the RLWE problem, noise growth, and the impact of homomorphic operations.

4.2 Parameter Selection and Security Levels

The security of our scheme relies on choosing appropriate parameters (n, q, p1, p2)
such that the underlying RLWE problem is hard to solve. The parameters must
be selected to balance between security and efficiency:

– Degree n: The degree of the cyclotomic polynomial, typically chosen as a
power of 2 for efficiency in polynomial arithmetic.

– Ciphertext modulus q: A large integer modulus that affects both the security
level and the noise growth in ciphertexts.

– Plaintext and Noise moduli p1, p2: Smaller moduli that determine the plain-
text space and noise space respectively.

For a given security level λ, these parameters must satisfy certain constraints
to ensure that the RLWE problem remains hard, even for powerful adversaries.

Noise Growth and Error Terms In our scheme, each ciphertext contains
inherent noise due to the error polynomials used during encryption. The noise
grows with each homomorphic operation, and controlling this noise growth is
crucial for maintaining decryption correctness.

– Encryption Noise:

c = (c0, c1) = (pk0 · u+ ϵ′ + µ mod q,pk1 · u+ ϵ′′ mod q)

The noise in the initial ciphertext is primarily due to the error terms encoded in
µ.

– Noise Growth in Homomorphic Operations:
• Addition: The noise in the resulting ciphertext after addition is the sum

of the noises in the individual ciphertexts.
• Multiplication: The noise in the resulting ciphertext after multiplication

involves products of the noise terms from the input ciphertexts, leading
to more significant growth.

13



• Relinearization:
∗ Relinearization helps to manage noise growth after multiplication by

converting the ciphertext back to a lower degree while introducing
controlled additional noise.

4.3 Practical Considerations

In practical implementations, security considerations must account for poten-
tial side-channel attacks and implementation-specific vulnerabilities. Robust pa-
rameter selection and efficient noise management are crucial for ensuring both
security and performance.

– Side-Channel Attacks: Implementation techniques such as constant-time al-
gorithms and masking can help mitigate side-channel threats.

– Parameter Tuning: Ensuring that parameters are chosen to balance effi-
ciency, correctness, and security according to the desired application and
threat model.

The security of our scheme fundamentally relies on the hardness of the RLWE
problem and careful management of noise growth in ciphertexts. By selecting
appropriate parameters and employing techniques to control noise, our scheme
provides a robust framework for fully homomorphic encryption with strong secu-
rity guarantees. The formal security proofs and reductions to the RLWE problem
underpin the confidence in the scheme’s resilience against adversarial attacks.

5 Performance Analysis

In this section, we analyze the performance of our Fully Homomorphic Encryp-
tion (FHE) scheme based on various cryptographic operations. The performance
metrics were obtained using a MacBook Pro M1 Max with 64 GB of RAM, with-
out any special hardware or command set optimizations. The results presented
here are for reference only and may vary depending on the hardware configura-
tion.

5.1 Overview of Performance Metrics

The performance of the proposed FHE scheme was evaluated across several types
of operations, including encryption, decryption, and basic arithmetic operations
(addition, subtraction, and multiplication) on multiple size of plaintext data. We
provide the average time taken for 1 million operations and the average number
of operations performed per minute.

Time per Million Operations
The table below shows the average time (in seconds) required to perform 1

million operations for different data types and operations:
Operations per Minute
The table below shows the number of operations performed per minute for

different data types and operations:

14



Operation Type Encryption Decryption Addition Subtraction Multiplication
Time 19 sec 18 sec 0.9 sec 0.74 sec 81 sec

Table 1. Time per Million

Operation Type Encryption Decryption Addition Subtraction Multiplication
Time 3,157,895 3,333,333 66,666,667 81,081,081 740,741

Table 2. Operations per Minute

Analysis

– Encryption and Decryption: The average time for 1 million encryptions is 19
seconds, while decryption takes approximately 18 seconds. This translates
to around 3,157,895 encryptions and 3,333,333 decryptions per minute for
integer data types.

– Arithmetic Operations: Addition and subtraction are significantly faster
than multiplication. The system can perform up to 66,666,667 additions
and 81,081,081 subtractions per minute, but only 740,741 multiplications.

Our performance analysis demonstrates that the proposed scheme is capable
of handling a high volume of cryptographic operations efficiently, particularly for
basic arithmetic operations. The scheme performs best with additions and sub-
tractions, while multiplications is more computationally intensive. The results
highlight the feasibility of using FHE for practical applications, although actual
performance may vary based on specific hardware and ongoing optimizations.

6 Conclusion

In this paper, we have introduced a novel Fully Homomorphic Encryption (FHE)
scheme that leverages the Chinese Remainder Theorem (CRT) to address the
critical issue of noise accumulation in homomorphic computations. By uniquely
encoding the plaintext with noise, the proposed scheme effectively prevents the
noise from growing to the point where it corrupts the plaintext, thereby facilitat-
ing smooth computations on encrypted data without the need for bootstrapping.
This advancement is significant, as it allows for a predefined number of modular
operations on encrypted data, enhancing both efficiency and practicality.

The evolution of FHE has been marked by notable milestones since its con-
ceptual inception by Rivest in the 1970s and its formal realization by Gentry in
the late 2000s. While numerous efforts have been made to develop FHE schemes
using CRT, these have often fallen short due to vulnerabilities such as chosen
plaintext attacks (CPA). Our proposed scheme addresses these vulnerabilities
by incorporating random errors into the encryption process in a controlled man-
ner. These errors are designed such that, during homomorphic operations, their
growth does not interfere with the integrity of the plaintext, unlike in traditional
LWE-based schemes.

The key contributions of the proposed scheme can be summarized as follows:

15



– Noise Management: By encoding the plaintext with noise in a novel way, we
ensure that the noise does not overflow and corrupt the plaintext, enabling
reliable homomorphic computations.

– CRT Utilization: We harness the power of the Chinese Remainder Theorem
to construct a robust FHE scheme that supports a set number of modular
operations without necessitating bootstrapping.

– Security Enhancement: the proposed scheme is resilient to chosen plain-
text attacks, thereby improving the security profile compared to previous
attempts utilizing CRT.

This research represents a significant step forward in the development of
efficient and secure FHE schemes. By overcoming the traditional limitations as-
sociated with noise management and CPA vulnerabilities, the proposed scheme
opens up new possibilities for practical applications of FHE in fields such as se-
cure data processing, privacy-preserving computations, and encrypted machine
learning. Future work will focus on further optimizing the performance and ex-
panding the range of supported operations to enhance the scheme’s applicability
in diverse real-world scenarios.

References

1. Ahmad Al Badawi and Yuriy Polyakov. Demystifying bootstrapping in fully ho-
momorphic encryption. 2023.

2. Z. Brakerski. Fully homomorphic encryption without modulus switching from
classical gapsvp. Advances in Cryptology – CRYPTO 2012, 7417:868–886, 2012.

3. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-
lwe and security for key dependent messages. Advances in Cryptology – CRYPTO
2011, 6841:505–524, 2011.

4. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-
lwe and security for key dependent messages. P. Rogaway, editor, Advances in
Cryptology – CRYPTO 2011, 6841:505–524, 2011.

5. Ernest F. Brickell and Yacov Yacobi. On privacy homomorphisms. 1987.
6. Hao Chen and Kyoohyung Han. Homomorphic lower digits removal and improved

FHE bootstrapping. 2018.
7. J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun.

Batch fully homomorphic encryption over the integers. To Appear at Eurocrypt
2013.

8. Robin Geelen and Frederik Vercauteren. Bootstrapping for BGV and BFV revis-
ited. 2022.

9. C. Gentry, S. Halevi, and N. Smart. Fully homomorphic encryption with polylog
overhead. Advances in Cryptology – EUROCRYPT 2012, 7237:465–482, 2012.

10. Craig Gentry. Fully homomorphic encryption using ideal lattices. volume 9, pages
169–178, 05 2009.

11. Craig Gentry. Toward basing fully homomorphic encryption on worst-case hard-
ness. pages 116–137, 08 2010.

12. Shai Halevi and Victor Shoup. Bootstrapping for HElib. 2014.
13. Ronald L. Rivest and Michael L. Dertouzos. On data banks and privacy homo-

morphisms. 1978.

16



14. M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic en-
cryption over the integers. Advances in Cryptology – EUROCRYPT 2010, 6110:24–
43, 2010.

17


	A New CRT-based Fully Homomorphic Encryption

