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Abstract. We show that the authentication key agreement scheme [IEEE Trans. Smart
Grid, 2023, 14(5), 3816-3827] is flawed due to its inconsistent computations. We also
show that the scheme fails to keep anonymity, not as claimed.
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1 Introduction

In a smart grid, smart meters should be responsible for the information exchange between consumers
and service providers. To authenticate each other and securely transmit information, they need to
establish secure session keys via open channels. Recently, Chai et al. [1] have presented a key agree-
ment scheme for smart meters. It is designed to meet many security requirements, including mutual
authentication, session key security, identity anonymity, resistent against replay attack, imperson-
ation attack, denial of service attack, etc. In this note, we show that the scheme is not correctly
presented, and should be revised. We also find the scheme cannot provide anonymity.

2 Review of the Chai et al.’s scheme

In the considered scenario, there are three parities: Certificate Authority (CA), smart meters, and
an NAN gateway. The involved notations and their descriptions are listed below (see Table 1).

Initialisation Phase. The CA chooses a prime p and a, b ∈ Z∗
p to define the elliptic curve E

as y2 = x3 + ax + b mod p, where 4a3 + 27b2 6= 0. Choose a generator G of a cyclic subgroup of
the elliptic curve group E(Fp), with the prime order n. Choose two hash functions H1 : {0, 1}∗ →
{0, 1}v, H2 : {0, 1}∗ → {0, 1}l, where v, l are two positive integers. Publish the system parameters
p, a, b,G, n,H1, H2, v, l and h, where h = ]E(Fp)/n.

Registration Phase. A smart meter (A) and NAN gateway (B) will register with CA. A sends its
identifier IDA to CA. CA checks the uniqueness of IDA. Then CA generates a public-private key
pair for A: it selects a random number dA ∈ Z∗

n and calculates

PA = [dA]G, ZA = H1(IDA‖a‖b‖G‖PA).

Send the private key dA to A via a secure channel. Similarly, CA generates a public-private key pair
for B and sends the private key dB to B via a secure channel.
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Table 1: Notations and descriptions
Fp finite field containing p elements
E(Fp) the set of all rational points of the elliptic curve

E over Fp (including the infinity point O)
G a generator of an elliptic curve group

with the prime order n
]E(Fp) the cardinality of group E(Fp)
h cofactor, h = ]E(Fp)/n
IDA, IDB identifiers of user A and B
RIDu pseudonym identifier of user u
du private key of user u
Pu public key of user u
x‖y the concatenation of x and y
⊕ bitwise XOR
H1(·), H2(·) hash functions
KDF (·) key derivation function

Authentication Phase. The phase can be depicted as below (see Table 2).

Table 2: The Chai et al.’s key agreement scheme

Smart meter (A) Gateway (B)

Pick a nonce rA and a timestamp TA to
compute uA = rA + dA,
RIDA = IDA ⊕H(ZB‖uA).

RIDA,TA,uA−−−−−−−−−−−−→

Check TB. Then compute
s = H2(RA‖PB‖TA‖TB),
e = H2(RB‖PA‖TA‖TB),
tA = (dA + s× rA) mod n,
U = [h× tA](PB + [e]RB) = (xU , yU ). Verify

U
?
= O. If so, compute S1 = H1(0x02‖yU

‖H1(xU‖ZA‖ZB‖x1‖y1‖x2‖y2). Check if
S1 = SB. If so, compute SA = H1(0x03‖yU
‖H1(xU‖ZA‖ZB‖x1‖y1‖x2‖y2),
KA = KDF (xU‖yU

‖ZA‖ZB, klen).
SA−−−−−→

Check TA. Then check if

IDA
?
= RIDA ⊕H(ZB‖uA). Pick a nonce rB

to compute RB = [rB]G = (x2, y2),
RA = [uA]G− PA = (x1, y1). Pick the
timestamp TB. Compute
s = H2(RA‖PB‖TA‖TB),
e = H2(RB‖PA‖TA‖TB),
tB = (dB + e× rB) mod n,
V = [h× tB](PA + [s]RA) = (xV , yV ). Verify

V
?
= O. If so, compute SB = H1(0x02‖yV

‖H1(xV ‖ZA‖ZB‖x1‖y1‖x2‖y2).
TB ,RA,RB ,SB←−−−−−−−−−−−−

Compute S2 = H1(0x03‖yV
‖H1(xV ‖ZA‖ZB‖x1‖y1‖x2‖y2). Verify

S2
?
= SA. If so, compute KB = KDF (xV ‖yV

‖ZA‖ZB, klen).
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3 Inconsistent computations

The correctness of this scheme is not well verified. It only shows U = V , and immediately claims
that “A and B successfully negotiate the same session key” (see page 3819, Ref.[1]).

According to its original description, A and B should verify that U = O or V = O, respectively,
where O is the zero point. But it is easy to find that

U = [h× tA](PB + [e]RB)

= [h× (dA + s× rA)(dB + e× rB)]G

To ensure U = O, it requires that

(dA + s× rA)(dB + e× rB) ≡ 0 mod n (1)

In view of that n is a prime, we have

dA + s× rA ≡ 0 mod n, or dB + e× rB ≡ 0 mod n,

i.e.,
dA + H2(RA‖PB‖TA‖TB)× rA ≡ 0 mod n,

or
dB + H2(RB‖PA‖TA‖TB)× rB ≡ 0 mod n.

It leads to
H2(RA‖PB‖TA‖TB) ≡ −dA × r−1

A mod n, (2)

H2(RB‖PA‖TA‖TB) ≡ −dB × r−1
B mod n. (3)

Since dA is randomly chosen by the CA, it is impossible to choose such a number rA for the party
A so that the hash value satisfies Eq.(2), due to the unpredictability of hash function H2. Likewise,
it is impossible to choose such a number rB for the party B so that the other hash value satisfies
Eq.(3). That means A and B will fail to verify that U = O or V = O, respectively.

We would like to stress that the point at infinity is an extra element added to the elliptic curve
and the rules of point addition, such that for all P on the curve (including the point at infinity O),
it holds P + O = P = O + P .

For the Weierstrass equation y = x3 + ax + b mod p, the point at infinity, O, can have different
values according to the underlying coordinate system, which has no a fixed representation in affine
coordinates, instead a unique representation (0, 1, 0) in projective coordinates [2]. But the Chai et
al.’s scheme is just presented using affine coordinates. In this case, the zero point is only a virtual
point, and the verification that a point equals to zero point cannot be practically implemented.

We also find the verifications have no relation to the later processes, and never been discussed in
the whole scheme. Therefore, both verifications can be removed. By the way, the strings 0x02, 0x03
have no relation to the security of resulting key (see the later security argument, §V, Ref.[1]). The
parameter klen is not specified. These typos can be reasonably fixed.
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4 The loss of anonymity

As for the anonymity, it argues: “In the authentication stage, the smart meter establishes the session
key through pseudonym identifier RID, and the attacker cannot obtain the real identity. After the
pseudonym expires, the attacker cannot overhear the user. Thus, identity anonymity is guaranteed”
(see page 3822, Ref.[1]). We find the simple argument is not sound.

Notice that RIDA = IDA ⊕ H(ZB‖uA), where RIDA, uA are directly sent to B via the open
channel. An adversary can retrieve RIDA, uA by eavesdropping the channel. The other parameter
is

ZB = H1(IDB‖a‖b‖G‖PB) (4)

where a, b,G are public system parameters, and PB is the public key of the gateway B. Since
the identifier IDB is used to distinguish the gateway from others, IDB is also a publicly available
parameter, not a confidential parameter. Otherwise, such an identifier losses its signification. So, the
adversary can obtain ZB (in the same system, any smart meter knows ZB). Therefore, the adversary
can compute

IDA = RIDA ⊕H(ZB‖uA) (5)

to reveal the target smart meter’s identity.

5 Conclusion

We show that the Chai et al.’s authentication key agreement scheme should be revised due to some
inconsistent computations. We find the structure of an elliptic curve group is still unfamiliar to some
newcomers. We also show that the scheme cannot provide anonymity. The findings in this note could
be helpful for the future work on designing such schemes.
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