A Practical and Scalable Implementation of the
Vernam Cipher, under Shannon Conditions,
using Quantum Noise

Results from an implementation of arbitrary-length
key-distribution for a browser-integrated one-time pad

Adrian Neal

adrian.neal@oxfordscientifica.com

Oxford Scientifica

July 2024

Abstract

The one-time pad cipher is renowned for its theoretical perfect secu-
rity, yet its practical deployment is primarily hindered by the key-size and
distribution challenge. This paper introduces a novel approach to key dis-
tribution called g-stream, designed to make symmetric-key cryptography,
and the one-time pad cipher in particular, a viable option for contempo-
rary secure communications, and specifically, post-quantum cryptography,
leveraging quantum noise and combinatorics to ensure secure and effi-
cient key-distribution between communicating parties. We demonstrate
that our key-distribution mechanism has a variable, yet quantifiable hard-
ness of at least 504 bits, established from immutable mathematical laws,
rather than conjectured-intractability, and how we overcome the one-time
pad key-size issue with a localised quantum-noise seeded key-generation
function, having a system hardness of at least 2304 bits, while introduc-
ing sender authentication and message integrity. Whilst the proposed
solution has potential applications in fields requiring very high levels of
security, such as military communications and large financial transactions,
we show from our research with a prototype of g-stream, that it is suf-
ficiently practical and scaleable for use in common browser-based web-
applications, without any modification to the browser (i.e. plug-ins), run-
ning above SSL/TLS at the application level, where in tests, it achieved
a key-distribution rate of around 7 million keys over a 5 minute surge-
window, in a single (multi-threaded) instance of g-stream.

Keywords— one time pad, symmetric key distribution, quantum noise,
combinatorics, forward secrecy

1 Introduction

In this paper, we present a novel method for symmetric-key distribution that has
a quantifiable hardness of at least 504 bits, to which we refer to this scheme as
g-stream, since it is based on the stream of a quantum random number generator
(QRNG) . We demonstrate that this key-distribution mechanism makes the one-
time-pad cipher|4], a viable option for general encryption requirements, due it’s
scalable nature, and introduce a simple modification to the one-time pad that
addresses sender authentication and message integrity with a custom HMAC.
We discuss the current state of public-key cryptography and how it is under
threat from quantum computing and why current proposals for post-quantum
(or quantum-safe) cryptography are failing to meet generally accepted levels of
cryptographic robustness and how that is undermining forward secrecy.

Additionally, we argue that cryptographic solutions based upon conjectured
intractability, rather than immutable laws of mathematics, will always carry the
additional attack-vector that the intractability-conjecture may be false. So far,
this has been the case for quantum-safe isogeny-based algorithms|1|, and there
are early signs|2| that this may soon be the case for quantum-safe lattice-based
cryptography as well.

Finally, we demonstrate that attack-vectors for our key-distribution scheme
are mitigated in its design and that the chosen mathematical principles upon
which the scheme is based, are the primary source of the security hardness of
the scheme, being by nature, immutable.

2 Motivation

The need for secure key distribution is critical as cyber threats continue to
evolve. Current public-key cryptographic methods of key distribution (or en-
capsulation) face both classic and post-quantum threats, even for supposedly
quantum-safe algorithms, raising the distinct possibility that public-key cryp-
tography may become non-viable over the next decade, but quite possibly much
sooner.

The logical upshot of this is that we may have to return to secret-key (sym-
metric) cryptography entirely, sooner or later, for which we will need new, se-
cure and scalable key-distribution solutions. If a key distribution mechanism
can overcome both the key-size distribution problem with one-time pads, as
well as the inherent scalability problem, then it is worth pursuing.

3 Problems with Public-key based Key Exchange
Mechanisms

3.1 The Quantum Threat

When the Cryptographically Relevant Quantum Computers (CRQC) era in
quantum computing arrives, public-key cryptography will face the threat of
quantum computers capable of executing algorithms such as Shor’s algorithm|g],
which are predicted to solve the problem of finding the prime factors of an in-
teger in polynomial time, rendering current public key systems, including RSA
and ECC, insecure. Initial estimates of the required number of qubits to execute
Shor was 2n, where n is the size, in bits, of the key being factored. Subsequent
papers from Regev|6], followed by Vaikuntanathan and Ragavan|5|, lowered this
to 1.5n, and then further with more efficient usage of memory, respectively.

3.2 Vulnerabilities in Proposed Quantum-Safe Algorithms

However, before the CRQC era, RSA and ECC will be replaced either partially
or entirely, by quantum-safe algorithms, which should be capable of withstand-
ing quantum cryptanalysis attack. While this is a positive step forward, these
new quantum-safe algorithms are not immune to classic cryptanalysis, to which
some of them have already failed|1|, cryptographically, while others continue
to display vulnerabilities to varying degrees|2]]3]. In response to the quantum
threat, the National Institute of Standards and Technology (NIST) have an-
nounced three new quantum-safe algorithms as the new standard for public-key
cryptography. These are CRYSTALS-KYBER (FIPS-203|9]) for key encap-
sulation, together with CRYSTALS-Dilithium (FIPS-204[10]) and SPHINCS+
(FIPS-205[11]) for digital signatures.

Given the potential vulnerabilities and the impending quantum threat, there
is a possibility that public-key cryptography could become non-viable as a secure
form of cryptography. If this scenario materializes, symmetric-key cryptography
might remain the only post-quantum alternative.

4 System Description of g-stream

Like Shannon’s conditions|7| of the one-time pad, g-stream requires for its’ se-
curity, that the output of the stream is only transmitted and used once (per
recipient, per message). It operates under a registration system where users re-
ceive a one-time code (OTC) as a seed for generating a variable-length rotating
user identifier (rUID). This rUID serves as a shared secret between g-stream
and the user. Users also choose a public identity token, such as an email address,
to facilitate identification by key requestors.

The system can be defined at a high level as a series of primary functions,
which are User Registration, Requesting a Key and Receiving a Key. In reality,

it is not the key that is sent or received, it is the key-generation material that
will be used to create the key on the devices of the recipients.

4.1 User Registration

Before a user can request a key, they must first perform the registration process,
whereby a unique rUID is created for one of their devices. Each device requires
its own rUID and may hold multiple rUIDs.

A users choose a public identity token ID,, such that:
Yu € U, 3D,
Given:
e OTC is the one-time code of obituary length.
e U is the user-specific data, including the public identity token ID,,
e n is a counter
e H is a one-way hash function.

e LM is the last block of key generation material received from the ¢-stream
service.

Step 1: Initialization

e Alice receives a one-time code OTC.

e Alice has user-specific data U.

Step 2: Generating the rUID

e Alice uses a counter n to keep track of the number of usages.

e Alice generates the rUID token using the formula:
rUID,, = H(OTC|U||LM|n)
where H is a one-way hash hash function.

Step 3: Usage and Rotation

e Every time Alice uses the rUID token, she increments the counter n to
ensure the token is rotated.

4.2

1.

Requesting a key

Alice (A) and Bob (B) are registered users with public identity tokens ID 4
and IDp.

Alice requests a key to communicate with Bob from g¢-stream.

Q)-stream generates a random block R using a quantum random number

generator (QRNG) with a size of 2,097,152 bits.
Q-stream generates 18 rUIDs of each recipient in the key request.

@-stream modifies R by inserting Alice’s and Bob’s rUIDs at random
positions, to which a 40-bit suffix P is concatenated, containing key gen-
eration material (kGen) location, size and ordinal position, to which a
bitwise XOR operation is performed against a reserved part of the rUID,
denoted as S, resulting in PS.

R = QRNG()
Vi € [1,18], Ra,; = insert(R, rUID 4(t;)|| PS)
Vj € [1,18], Rp,; = insert(R, rUID g(t;)|| PS)

Receiving a key

. The modified block R’ is transmitted to both Alice and Bob.
. Alice and Bob search, respectively, for their first 7UIDs and locate PS.

. After performing an bitwise XOR operation of PS and S, the kGen location

is obtained and then the kGen extracted.

. Alice and Bob both rotate their respective rUIDs in H and the process is

repeated until the search for the next rUID fails.

. Alice and Bob leave their rUIDs in the final state that failed, ready to

begin the search for it when a new R is received (from a new key request).

. Alice and Bob concatenate the kGen material according to the stated

ordinal position given in P
Key 4 = generate_key({R)y ;})

Keyp = generate _key({Rj ;})

Alice rUiD, 40-bit rJID-XOR'd
T TerTTramee @050 T528d80d7T6 c7d776c 713 @-sasseadd i 2R LIS 1]

Bob rUID;, —imrszmmssioseorenores oot 5149baS3FFU325d25d92 ££1325405 @
58c0082¢7c37982c928b

ordinal position of
kGen,

0ebeld90d179973 @kebs R
Alice rUID,

U4a5a691852691852f0e575e3e5c0dF0. .\
3b38b786524¢020 kGen
2

90c766e6114d390c766e6

cf18016bUbd4d8

kGen,

Bob rU[D] 409d18d6dBa2eb5f95cd

4279517a6721]
8aeb8T9c3083F8a

16b6752c371c3
2be38a3U33

b98a3bU37d17
+8703cc2370.

003e514086252f1deef 1016bc5df

kGeny

926a63U34TTcbf34fbc
S5fceafUT2fU13

Alice rUiD,
0f2cTb2cB22058Fde690F1T690F1

Bob rUID 016bF370F2eaB0
__\ﬂ 2c0237ac623c

16824156 200

Figure 1: Visual part-rendering of g-stream

Protocol Definition for g-stream and One-Time
Pad
Registration:

o Alice (A) and Bob (B) register with g-stream and receive their OTCs.
e Alice and Bob generate their rUIDs: rUID 4 and rUIDg.

Key Request:

e Alice requests a key for Bob.
o ()-stream generates R using QRNG.

Modification of R:

e ()-stream inserts Alice’s current rUID and rotate the rUID.

e ()-stream repeats for 18 rUIDs in total for both Alice and Bob, each.
Transmission:

e ()-stream sends R’ to both Alice and Bob.
. Key Extraction:

e Both idenitfy their own rUIDs in R and derive kGen block positions,
sizes and concatenation order.

e Both extract kGen blocks and reorder them.

Key Generation

e Alice generates key K from the kGen material, of the same length as
the message M that Alice intends to send to Bob.

7. HMAC Generation

e Alice generates an HMAC of the message M using the key Kymac:

HMAC = HMAC(Kpyac, M)

e The HMAC is a fixed-size output that ensures the authenticity and
integrity of the message.

8. Encryption

e Alice concatenates the message M and the HMAC to create M':

M' = M||HMAC

e Alice performs a bitwise XOR operation between each bit of M’ and
the corresponding bit of the key K to produce the ciphertext C":

C=M=oK

e Alice sends the ciphertext C' to Bob.
9. Decryption

e Bob receives the ciphertext C'. He creates K in the same manner as
Alice, to the length of C' and performs a bitwise XOR operation to
retrieve M':

M=CoK

e Bob separates M’ into the message M and the HMAC:
M’ = M||HMAC

10. HMAC Verification

e Bob generates his own HMAC of the message M using the key

Kumac:
HMACp = HMAC(Kgyvac, M)

e Bob compares his generated HMAC with the received HMAC. If they
match, it verifies the integrity and authenticity of the message.

6 Algorithmic vs Foundational Hardness

6.1 Definitions

In cryptographic systems, the concept of security hardness can be understood
from two perspectives:

e Algorithmic hardness, which we define as intractability-conjecture, with
examples such as cryptographic algorithms like RSA and AES, and

e Foundational hardness, which we define as immutable pure mathemat-
ical laws, with the example of Vernam’s’ Cipher|12], or one-time pad, for
which Shannon introduced the conditional notion of 'perfect secrecy’|7].

6.2 Algorithmic Hardness

Algorithmic hardness refers to the security provided by cryptographic algo-
rithms, which rely on the computational difficulty of certain mathematical prob-
lems. For instance, the security of RSA encryption is based on the difficulty of
factoring large prime numbers, while elliptic-curve cryptography (ECC) relies
on the hardness of the elliptic-curve discrete logarithm problem.

However, the algorithmic hardness of these cryptographic methods inher-
ently carries a non-zero risk of undiscovered weaknesses. Advances in mathe-
matical research or computational power, such as the development of quantum
computers, could potentially expose weaknesses in these algorithms. Conse-
quently, while current cryptographic algorithms are deemed secure based on
contemporary knowledge and technology, they are always susceptible to future
breakthroughs that may render them obsolete or vulnerable.

6.3 Foundational Hardness

Foundational hardness, on the other hand, is grounded in principles of pure
mathematics and number theory, which are considered immutable. In the con-
text of g¢-stream, foundational hardness is derived from the use of quantum
randomness and a combinatorial explosion.

6.3.1 Quantum Randomness

The unpredictability of quantum random number generators (QRNG) ensures
that the initial random block R is fundamentally secure. QRNGs leverage quan-
tum mechanical phenomena, which are inherently random and cannot be pre-
dicted or reproduced, providing a robust source of entropy.

6.3.2 Permutations

The process of breaking the kGen into the 18 blocks of random length, that
are then inserted into the random block R at random positions, creates, given
the chosen bounds of kGen and R, a combinatorial explosion of permutations,

where finding the single correct permutation of kGen blocks is computationally
infeasible.

6.4 Comparison

Algorithmic hardness is reliant on the current understanding and computational
infeasibility of certain mathematical problems, which always carries a risk of
being compromised by future discoveries. In contrast, foundational hardness,
in the context of g-stream, is based on the intrinsic properties of randomness
and combinatorial permutations, which are not subject to the same risks of
computational advancements.

7 @Q-stream Security Definition

We define the security of ¢-stream as a set of propositions that must be true for
the system to be intrinsically secure:-

Let:
e () represent the use of QRNG.
e R represent the random block generated by the QRNG.
e (' represent the combinatorial explosion of permutations.

e D represent the random assignment of positions and lengths of kGen
blocks.

e S represent the security of the system.
e P represent the property of unpredictability.

The security, based on both quantum randomness and the combinatorial
explosion of permutations can be defined thus:

(Q = P)A((PAD) = C)A(C = S)

Q-stream leverages foundational hardness by utilizing QRNGs and combi-
natorial permutation-explosion principles, ensuring that the security is not de-
pendent on the assumed difficulty of mathematical problems but rather on the
fundamental properties of randomness and mathematical theory. This distinc-
tion is critical, as it provides a more robust and enduring form of security that
is less likely to be compromised by future technological advancements.

8 Claims of Hardness

To calculate the security hardness, we consider the combinatorial complexity of
the kGens placements and their sizes.

8.1 Combinatorial Complexity

For each of the 18 kGen blocks, the placement can vary across n bits, and
each block can vary in length between 128 and 256 bits. The total number
of possible placements is the number of ways to choose 18 positions out of
2,097,152, considering the varying lengths of each block:

n!
(n —18)!

Combinations =

Additionally, considering the block lengths, we need to factor in the range for
each block:
Total Combinations = Combinations x 12918

8.1.1 Overall Security Hardness

Given the complexity, the total hardness Hyotq is:
Hiptq1 = logy(Total Combinations)
Assuming n = 2,097,152 bits:

2,097, 152!
(2,007, 152 — 18)!

Combinations = ~ 2,097, 1528

log, (2,097, 152" x 129'8) = 181og, (2,097, 152 x 129)
= 181og, (270,528, 608) ~ 18 x 28.0 ~ 504
Htotal =~ 504 bits

Thus, the security hardness of g-stream, for a QRNG block of 2097152 bits, is
approximately 504 bits, assuming all bits contribute equally to the combinatorial
complexity of the system.

Or to quantify an attack, the attacker would be required to calculate all
possible sets of 18 kGen blocks within the QRNG block, having a computational
complexity of 504 bits, thus being computationally infeasible.

8.2 Key Generation Process and Complexity
Initialization

Initialize the master hash as an empty string:

MO — 29

10

Step 1: Order the 18 kGen blocks
Order the 18 kGen blocks as per the original order in P:

Bp = (Bpq), Bp2), - Bpras))
Step 2: Hash the concatenation of the ordered kGen blocks and the

master hash

For n = 0:
Co = Bpu) |l Bpy |l --- || Bras)

Ho = H(Cy || Mo)

Step 3: Concatenate the new hash from step 2 with the master hash
My = My || Hy

Step 4: Repeat if necessary

If the master hash is smaller than the required key size K, reorder the 18 kGen
blocks in a predetermined sequence and return to Step 2.
Forn > 1:
If len(M,,) < K, then:

Bp, =reorder(Bp,n)
Cn = Bp,) || Bp,2) Il - || Bp,(18)
H, =H(C, || M,)
Mn+1 = Mn || Hn
Repeat steps 2 to 4 until:
len(M,,) > K

In summary, the process can be expressed as:
1. Initialize:

Mo ="
2. Forn =0:
Co = Bpq) || Br@) |l --- | Bras)
Ho = H(Cy|| Mo)
My = My || Ho
3. Forn > 1:

If len(M,,) < K, then:
Bp, =reorder(Bp,n)

Cn=Bp, || Bp,2) | --- || Bp,18)

11

H,=H(C, || M,)
Mn+1 = Mn || Hn
4. Until:
len(M,) > K
8.2.1 Measuring Key Predictability

For arbitary-length keys, we state that any knowledge of part of the key does
not lead to knowledge of either any other part of the key, or any of the key-
generation material.

While a long key will be the concatenation of multiple hashes, in general, one
hash cannot be used to directly determine another hash, especially for crypto-
graphic hash functions such as SHA-1, SHA-256, or others. This is due to
several fundamental properties of cryptographic hash functions, which ensure
their security and integrity.

8.2.2 Preimage Resistance

Given a hash output h, it should be computationally infeasible to find any input
x such that H(x) = h. Formally, this is expressed as:

Vh € Range(H), Pr[find such that H(z) = h] <e

where € is a very small probability. Furthermore, in this particular scenario, it
is not enough to find any input, as the attack needs to find a specific input.
Given that the input, for any segment of the generated key, is at least 2304 bits,
any and all keys of any length will have a key-generation hardness of over 2304
bits, usually much more.

8.2.3 Second Preimage Resistance

Given an input x; and its hash H(z1), it should be computationally infeasible
to find a different input zo such that H(z1) = H(z2). Formally:

Va1, Prifind xzo # x1 such that H(z1) = H(x2)] <€

8.2.4 Collision Resistance

It should be computationally infeasible to find two different inputs x; and zo
such that H(x1) = H(z3). Formally:

Prlfind 21 # x5 such that H(x1) = H(z2)] <€

12

9 Attack Vectors

The primary attack vector in the g-stream system is the compromise of the rUID
for any recipient. Access to the rUID compromises all future communication for
that recipient because the rUID is used in the generation of subsequent keys.
However, prior communication remains secure because the rotation of the rUID
each time it is used, utilises a one-way hash function that cannot be reversed.
This is because the rotation function intentionally loses information, making it
infeasible to reconstruct the original rUID from its hashed form.

9.1 One-Way Hash Functions

One-way hash functions are mathematical functions that take an input (or 'mes-
sage’) and return a fixed-size string of bytes. The output is typically a ’digest’
that is unique to each unique input. The key property of one-way hash func-
tions is that they are designed to be irreversible. It should be computationally
infeasible to reverse the process and obtain the original input given only the
output. This is achieved by ensuring that the function loses information dur-
ing the hashing process, creating a scenario where many different inputs could
produce the same output, but it is not possible to determine which one was the
original.

In g¢-stream, this property is used to ensure that once an rUID is rotated
and hashed, the previous rUID cannot be deduced from the new one, securing
past communications against future compromise.

9.2 User Registration

Since the user registration involves the exchange of a one-time code (OTC) and
the setup of the initial rUID, it is a single one-time event. In a general harvesting
attack vector, the likelihood of correlating the registration communication to
future key requests is exceptionally low, with additional mitigation’s possible,
such as out-of-band registration, if this was deemed to pose a risk.

9.3 Traffic Harvesting for Later Decryption

9.3.1 Using g-stream with Common Symmetric Cryptographic Al-
gorithms

Attackers may attempt to harvest encrypted traffic with the intention of de-
crypting it at a later date, when they potentially have more computational
power or new cryptographic breakthroughs. This will always remain a risk.

9.3.2 Using g-stream with the One-Time Pad

Traffic harvesting is not a threat when g¢-stream is used with the one-time pad,
as described in this paper with the addition of the HMAC.

13

9.3.3 Attacking g-stream Directly with Traffic Harvesting

If g-stream traffic is the target of the traffic harvesting, we have already calcu-
lated that it has a hardness of 504 bits; harder than most symmetric algorithms,
but not as hard as the one-time pad.

10 Protocol Variations

10.1 Variation 1: Secret Inclusion in Key Generation

In the first variation, the key generation function includes a secret that only the
recipients know, but not the ¢-stream service. This secret could be a pre-shared
word, group of words or phrase, between the recipients that is combined with
the kGen blocks extracted from R’.

1. Registration:

e Alice (A) and Bob (B) register with g-stream and exchange a secret
S securely.

2. Key Generation:

o Alice and Bob extract the kGen blocks from R’ as usual.

e They combine these blocks with the secret S using a secure key
derivation function (KDF):

Key = KDF({R) ;},5)

This ensures that the final key is known only to Alice and Bob, and not to
the g-stream service.

10.2 Variation 2: Agreed kGen Block Locations

In the second variation, the recipients agree between themselves on the chosen
locations in R for the kGen blocks. This agreement can be done securely using
an initial pre-shared secret or an out-of-band communication method.

1. Registration:
e Alice and Bob agree on the locations in the R for the kGen blocks.
2. Key Request:

e Alice requests a key for Bob from ¢-stream without disclosing the
agreed locations.

3. Key Generation:

e ()-stream generates R as usual and sends it to both Alice and Bob.

14

e Alice and Bob extract the kGen blocks from the agreed locations
within R:

Key = generatefkey({RA,agreedilocations })

In both cases, the g-stream service has no knowledge of the final keys gener-
ated, presenting a complete point-to-point key distribution scheme where only
the intended recipients have knowledge of the final key.

11 Varying the Computational Hardness

The specific computational hardness of ¢-stream can be varied by changing the
size of R or the count of kGen blocks, or it’s length and size bounds.

11.1 Variation 1: Increasing the size of R

If we double the size of the QRNG block R, then:-

Assuming n = 4,194, 304 bits:

4,194, 304!
(4,194,304 — 36)!

Combinations = ~ 4,194, 3048

log, (4,194, 30436 x 129%¢) = 361og, (4, 194,304 x 129)
= 361og,(541,085,216) ~ 36 x 29.0 ~ 522

Hiotqr =~ 522 bits

11.2 Variation 2: Increasing the Number of kGen Blocks
If we further double the number of kGen blocks, then:-

Assuming n = 4,194, 304 bits:

4,194, 304!

~ 4,194, 30436
(4,194,304 — 36)! e

Combinations =

log, (4,194, 30436 x 1293%) = 36log, (4, 194,304 x 129)
= 361log, (541,085,216) ~ 36 x 29.0 ~ 1044

Hiotar =~ 1044 bits

15

11.3 Variation 3: Increasing the Lower and Upper Bounds
of kGen Blocks

If we then further double the distance between the lower and upper bounds of
the size of the kGen blocks, then:-

Assuming n = 4,194, 304 bits:

4,194, 304!
(4,194,304 — 36)!

Combinations = ~ 4,194,304

log, (4,194, 30436 x 25736) = 36 log, (4, 194, 304 x 257)
= 361og,(1,078,409,408) ~ 36 x 30.0 ~ 1080

Htotal ~ 1080 bits

11.4 Summary of Variation Impact

Where the increase of hardness doubles from 522 bits to 1044 bits, indicates
that it is the number of kGen block in the scheme that has the most impact on
the overall hardness. Comparatively, for variations 1 and 3, the increase was
relatively minimal.

12 Results from SSL/TLS Browser Prototype Im-
plementations

Prototype implementations of g-stream have shown that its performance makes
it feasible for many applications. In tests using AWS as the host of ¢-stream,
the rate of key-distribution was approximately 25,000 keys per second. Because
a web-browser session requires only one call to g-stream to be able to generate
unique keys for each transmission during a session, a single g-stream instance
can support a significant number of users simultaneously.

The integration of g-stream and it’s modified one-time pad implementation
into a web-browser did not require any modification of the browser, such as
additional plugins, as maintaining user key-state was accomplished using ex-
isting out-of-the-box browser capabilities, with g-stream being implemented at
the web-application level, on top of, and without interference to the existing
SSL/TLS communications layer.

The result of using g-stream in this way means that such traffic has an
additional lay of encryption, should either classic or quantum-safe cryptography
become vulnerable to attack.

A typical example of expected performance, would be the number of key
requests that it could support over a 5 minute period when there is a surge

16

of users, such as certain times in the morning when messages and emails are
checked. In our tests, a single instance of g-stream was capable of supporting
over 7 million users within that 5 minute surge-window, although probably a
lot more with implementation refinements.

13 Conclusion

@Q)-stream presents a novel approach to symmetric-key distribution by leveraging
quantum randomness and rotating user identifiers. This system offers enhanced
security, achieving a hardness significantly greater than traditional methods.

The distinction between algorithmic and foundational hardness further un-
derscores the robustness of g-stream, as it relies on immutable mathematical
principles rather than the assumed difficulty of computational problems.

Consequently, g-stream is capable of providing reliable forward-secrecy of
messages, if the encryption algorithm for which the keys have been generated,
is also cryptographically robust. It will increase the security of most symmet-
ric cryptographic schemes, but will have the most value if deployed with the
variation of the one-time pad as described in this paper.

Its practicality and scalabilty was demonstrated in its simple integration
into common web-browsers, providing elevated security for highly confidential
transmissions, neutralising traffic-harvesting threats against forward-secrecy.

Future work will focus on practical implementations and further analysis of
the protocol’s resilience against various attack vectors. Additionally, exploring
protocol variations can further enhance security by ensuring that only the in-
tended recipients have knowledge of the final generated keys, making g-stream
a versatile and robust solution for secure key distribution in the quantum era.

17

References

(1]

2]

13l

4]

5]

16]

7]

18]

19]

[10]

[11]

Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH. Cryptology ePrint Archive, Paper 2022/975. https://eprint.
iacr.org/2022/975. 2022. URL: https://eprint.iacr.org/2022/975.

Yilei Chen. Quantum Algorithms for Lattice Problems. Cryptology ePrint
Archive, Paper 2024/555. https://eprint.iacr.org/2024/555. 2024.
URL: https://eprint.iacr.org/2024/555.

Emre Karabulut and Aydin Aysu. “FALCON Down: Breaking FALCON
Post-Quantum Signature Scheme through Side-Channel Attacks”. In: 2021
58th ACM/IEEE Design Automation Conference (DAC). 2021, pp. 691—
696. DOT: |10.1109/DAC18074.2021.9586131.

Thomas Lugrin. “One-Time Pad”. In: Trends in Data Protection and En-
cryption Technologies. Ed. by Valentin Mulder et al. Cham: Springer Na-
ture Switzerland, 2023, pp. 3—6. ISBN: 978-3-031-33386-6. DOTI: [10.1007/
978-3-031-33386-6_1. URL: https://doi.org/10.1007/978-3-031-
33386-6_1.

Seyoon Ragavan and Vinod Vaikuntanathan. Space-Efficient and Noise-
Robust Quantum Factoring. Cryptology ePrint Archive, Paper 2023/1501.
https://eprint.iacr.org/2023/1501. 2023. URL: https://eprint.
iacr.org/2023/1501.

Oded Regev. An Efficient Quantum Factoring Algorithm. https://arxiv.
org/abs/2308.06572. 2024. arXiv:[2308.06572 [quant-ph]. URL: https:
//arxiv.org/abs/2308.06572.

Claude Shannon. Communication Theory of Secrecy Systems. Bell Sys-
tem Technical Journal. https : //www . cs . virginia . edu/ “evans /
greatworks/shannon1949.pdf. 1949. URL: https://www.cs.virginia.
edu/"evans/greatworks/shannon1949.pdf.

P.W. Shor. “Algorithms for quantum computation: discrete logarithms
and factoring”. In: Proceedings 35th Annual Symposium on Foundations of
Computer Science. 1994, pp. 124-134. DOI: |10.1109/SFCS. 1994 .365700.

National Institute of Standards and Technology. Module-Lattice-based Key-
Encapsulation Mechanism Standard. Tech. rep. Federal Information Pro-
cessing Standards Publication (FIPS PIBS) 203. Washington, D.C.: U.S.
Department of Commerce, 2024. DOI: |10.6028/NIST.FIPS.203.1ipdl

National Institute of Standards and Technology. Module- Lattice-based Key-
Encapsulation Mechanism Standard. Tech. rep. Federal Information Pro-
cessing Standards Publication (FIPS PIBS) 204. Washington, D.C.: U.S.
Department of Commerce, 2024. DOI: |10.6028/NIST.FIPS.204.1ipdl

National Institute of Standards and Technology. Module-Lattice-based Key-
Encapsulation Mechanism Standard. Tech. rep. Federal Information Pro-
cessing Standards Publication (FIPS PIBS) 205. Washington, D.C.: U.S.
Department of Commerce, 2024. DOI: |10.6028/NIST.FIPS.205. ipdl

18

https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2024/555
https://eprint.iacr.org/2024/555
https://doi.org/10.1109/DAC18074.2021.9586131
https://doi.org/10.1007/978-3-031-33386-6_1
https://doi.org/10.1007/978-3-031-33386-6_1
https://doi.org/10.1007/978-3-031-33386-6_1
https://doi.org/10.1007/978-3-031-33386-6_1
https://eprint.iacr.org/2023/1501
https://eprint.iacr.org/2023/1501
https://eprint.iacr.org/2023/1501
https://arxiv.org/abs/2308.06572
https://arxiv.org/abs/2308.06572
https://arxiv.org/abs/2308.06572
https://arxiv.org/abs/2308.06572
https://arxiv.org/abs/2308.06572
https://www.cs.virginia.edu/~evans/greatworks/shannon1949.pdf
https://www.cs.virginia.edu/~evans/greatworks/shannon1949.pdf
https://www.cs.virginia.edu/~evans/greatworks/shannon1949.pdf
https://www.cs.virginia.edu/~evans/greatworks/shannon1949.pdf
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd

[12] Gilbert Vernam. One-Time Pad (OTP). Cryptomuseum.com. Archived
from the original on 2014-03-14. Retrieved 2014-03-17. https://web.
archive.org/web/20140314175211/http://www. cryptomuseum. com/
crypto/otp.htm. 1917. URL: http://www.cryptomuseum. com/crypto/
otp.htm.

19

https://web.archive.org/web/20140314175211/http://www.cryptomuseum.com/crypto/otp.htm
https://web.archive.org/web/20140314175211/http://www.cryptomuseum.com/crypto/otp.htm
https://web.archive.org/web/20140314175211/http://www.cryptomuseum.com/crypto/otp.htm
http://www.cryptomuseum.com/crypto/otp.htm
http://www.cryptomuseum.com/crypto/otp.htm

	Introduction
	Motivation
	Problems with Public-key based Key Exchange Mechanisms
	The Quantum Threat
	Vulnerabilities in Proposed Quantum-Safe Algorithms

	System Description of q-stream
	User Registration
	Requesting a key
	Receiving a key

	Protocol Definition for q-stream and One-Time Pad
	Algorithmic vs Foundational Hardness
	Definitions
	Algorithmic Hardness
	Foundational Hardness
	Quantum Randomness
	Permutations

	Comparison

	Q-stream Security Definition
	Claims of Hardness
	Combinatorial Complexity
	Overall Security Hardness

	Key Generation Process and Complexity
	Measuring Key Predictability
	Preimage Resistance
	Second Preimage Resistance
	Collision Resistance

	Attack Vectors
	One-Way Hash Functions
	User Registration
	Traffic Harvesting for Later Decryption
	Using q-stream with Common Symmetric Cryptographic Algorithms
	Using q-stream with the One-Time Pad
	Attacking q-stream Directly with Traffic Harvesting

	Protocol Variations
	Variation 1: Secret Inclusion in Key Generation
	Variation 2: Agreed kGen Block Locations

	Varying the Computational Hardness
	Variation 1: Increasing the size of R
	Variation 2: Increasing the Number of kGen Blocks
	Variation 3: Increasing the Lower and Upper Bounds of kGen Blocks
	Summary of Variation Impact

	Results from SSL/TLS Browser Prototype Implementations
	Conclusion

